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Abstract

In this paper we apply the abstract interpretation approach for approximat-
ing the behavior of biological systems, modeled specifically using the Chemical
Ground Form calculus, a simple stochastic calculus rich enough to model the
dynamics of biochemical reactions.

The analysis is based on the idea of representing a set of experiments,
which differ only for the initial concentrations, by abstracting the multiplicity
of reagents present in a solution, using intervals. For abstracting the proba-
bilistic semantics, modeled as a Discrete-Time Markov Chain, we use a variant
of Interval Markov Chains, where probabilistic and non-deterministic steps are
combined together. The abstract probabilistic semantics is systematically de-
rived from an abstract Labeled Transition System. The abstract probabilistic
model safely approximates the set of concrete experiments and reports conser-
vative lower and upper bounds for probabilistic termination.

Keywords: Chemical Ground Form Calculus, Abstract Interpretation,
Probabilistic Termination

1. Introduction

Process calculi, originally designed for modeling distributed and mobile sys-
tems, are nowadays one of the most popular formalisms for the specification
of biological systems. In this new application domain, a great effort has been
devoted for adapting traditional models to characterize the molecular and bio-
chemical aspects of biological systems. On one hand, the proposals, such as
BioAmbients [49], Beta-Binders [47], and Brane calculi [10], aim at expressing
the concepts of hierarchy, compartment and membrane, which play a key role
in the organization of biomolecular systems. On the other hand, there is a
new interest in the design of calculi able to capture the quantitative aspect
(both time and probability) of real life applications, in the style of stochastic
π-calculus [46, 48, 50].

A variety of automated methods for analysis and verification can be applied
to biological systems modeled using a stochastic process calculus in order to
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deduce information about their complex dynamics. The quantitative analysis
is a fundamental task to better understand the behavior of biological systems,
to test possible hypothesis of biologists and to observe fundamental properties
which can guide future in vitro experiments.

A well-established approach relies on stochastic simulation techniques, based
on the well-known results of Gillespie [26] (SSA). For stochastic π-calculus, the
tools BioSpi [50] and SPiM [43, 44] explore a given evolution of the biological
system model over a given time interval, thus realizing a virtual experiment. By
performing a substantial number of simulation runs statistically relevant results
about the possible behavior of biological systems can be achieved.

The principal alternative is based on quantitative model checking, a formal
verification technique which supports the validation of (quantitative) temporal
properties over all the runs of a biological system model. Tools such as PRISM
[31] applies to models formalized as a Discrete-Time Markov Chain (DTMC), as
a Markov Decision Process (MDP) as well as a Continuous-Time Markov Chain
(CTMC). In this framework, the properties to be validated can be expressed in
the probabilistic logic PCTL [29] or in the continuous-time logic CSL [36]. As an
example, it is possible to answer to the following queries about the behaviour
of biological systems: (i) what is the probability to reach a state where the
concentration of molecule A is greater than n? (ii) What is the probability to
reach a state, where the concentration of molecule A is greater than n, within
a given time interval? (iii) In the long run, what is the probability that the
concentration of molecule A reaches a level n, and then remains within certain
bounds? Such properties have been demonstrated to capture important aspects
of typical biological systems, discussed in literature, including complex pathways
and systems which exhibits an oscillatory behaviour [14, 8, 9, 30, 3, 2, 6].

Unfortunately, the practical application of automatic model checking tools to
biological systems revealed serious limitations. One specific feature of biological
processes is that they are composed of a huge number of processes with identical
behavior, such as thousands of molecules of the same type. Therefore, the state
space of the model is often too large or even infinite. Another drawback is that
typically the experimental data concerning the model are not precisely known.
As a consequence, the biological system model has to be analyzed under different
scenarios, namely by varying both the concentration levels of reagents and the
rates of reactions of the experiment.

Approximation techniques preserving the validation of temporal properties
have been established to be one of the most effective ways for overcoming these
limitations. In particular, static analysis techniques provide automatic and
decidable methods for establishing properties of programs (even infinite), by
computing in a systematic way safe approximations of their (run-time) behav-
ior. This approach has been widely applied for analyzing qualitative properties
of traditional process calculi for mobile systems [7, 25, 39, 41] and also of bio-
logically inspired process calculi [27, 42, 45, 6].

In this paper, we investigate the application of abstraction techniques to
probabilistic model checking in the context of stochastic process calculi. The
technique of approximation that we propose aims to reduce the complexity of the
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analysis of a given biological system under several different scenarios. The idea
is to calculate an abstract probabilistic model which represents the behaviour of a
set of experiments for the biological system w.r.t. different initial concentrations
of reagents. Probabilistic model checking of the abstract probabilistic model
gives an approximated result for the probability of a property (that is lower and
upper bounds) rather than exact value. The interval of probability reported
by the analysis includes the exact values for the probability of the property
for all the experiments which are approximated and therefore gives information
on the possible effect on the probability due to the variation on the initial
concentrations.

As a specification language we choose the Chemical Ground Form (CGF)[12]
calculus because it is simple and expressive enough for modeling the dynamics of
biochemical reactions. The calculus is a variant for biological systems of stochas-
tic π-calculus without communication. Moreover, we consider the property of
probabilistic termination (discussed for CGF in [53]), a particular probabilistic
reachability property expressing the probability of a system to terminate. For-
mally, the probability of termination is captured by the probability of the set
of runs reaching a terminated state, in the DTMC modeling the probabilistic
semantics of a CGF system. Probabilistic termination (and more general prob-
abilistic reachability properties) cannot be observed through stochastic simula-
tion techniques given that their validation requires an exhaustive exploration of
the model to be analyzed.

We propose an approximation technique for probabilistic termination of CGF
which is based on the abstract interpretation [17, 18] approach. Therefore, the
set of experiments for a biological system is modeled by an abstract CGF system
where the information about the multiplicities of reagents, present in a solution,
is approximated by means of intervals of integers [16]. Moreover, the abstract
probabilistic model for the set of experiments is obtained through a systematic
and effective approximation of the semantics. The abstract probabilistic model
for an abstract CGF system satisfies two important properties: it safely approx-
imates all DTMCs that model the probabilistic semantics of a concrete CGF
system which is represented by the abstract one; and it gives lower and upper
bounds for probabilistic termination which are conservative w.r.t. the set of
experiments which are approximated.

The complete methodology is illustrated in Fig. 1. In the concrete case,
the probabilistic semantics (DTMC) of a CGF system is derived from a Labeled
Transition System (LTS) semantics (this is represented by function H depicted
in Fig. 1). In the LTS, transition labels record a label (identifying the reaction)
and the corresponding rate. In a standard way, for each state the probability of
a move is calculated from the the rate of the move and from the rate of all the
moves exiting from the state.

In the abstract case, the approximated semantics is obtained in a similar way
through the definition of an abstract LTS semantics for abstract CGF systems
and the derivation of a corresponding abstract probabilistic semantics (this is
represented by function H◦ in Fig. 1).

It is well-known that models combining probabilistic and non-deterministic
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Concrete semantics: LTS
H //

αlts

��

DTMC

αmc

��
•

v◦lts

•

v◦mc

Abstract semantics: LTS◦
H◦ // IMC

Figure 1: The complete picture

steps, are particularly adequate for abstracting probabilistic models such as
DTMC. In these models, each state has associated a set of probability distri-
butions, reflecting the non-determinism introduced by the abstraction over the
state space. In MDP [22, 23, 1] each state has associated a set of probability dis-
tributions, describing the probability to move in any other state. Analogously,
in Interval Markov Chains [51, 24, 32], each move has associated an interval
of probability, representing a possible range for the probability of that move.
In both cases, the validation of probabilistic temporal properties reports lower
and upper bounds, rather than exact values. As expected, the lower and upper
bounds are obtained by considering the worst-case and best-case scenario w.r.t.
all non-deterministic choices, respectively.

Nonetheless, in our application to probabilistic termination the partition of
the state space of the abstract probabilistic model is critical. As an example,
we consider the two very simple DTMCs, illustrated in Fig. 2 (a) and (b), which
have initial states S0 and S′0, respectively. In both cases, the system terminates
with probability 1, that is it universally terminates. In order to reason on the
abstraction of a set of DTMCs, it is convenient to built the best abstraction
with respect to a given partition of the state space. The best abstraction is
the abstract probabilistic model, which safely approximates both DTMCs and
which is sound with respect to the property to be proved. Notice that in order
to preserve probabilistic termination (and similarly probabilistic reachability
properties) it must be the case that each abstract state has associated a set
of probability distributions which over-approximates the concrete ones. We
illustrate the abstraction which can be obtained using an MDP given that a
model such as Interval Markov Chain presents similar problems in terms of
precision.

The MDP1 shown in Fig. 2 (c) is the best abstraction of the DTMCs, shown
in Fig. 2 (a) and (b), by considering the partition of the concrete state space
into the abstract states {S0, S

′
0} and {S1}. Actually, each abstract state has a

1For MDPs we use the notation of PRISM. In the figure there are two distributions for
state {S0, S′0}: the first one is identified by the arrows exiting from {S0, S′0} and labeled with
0 followed by colon and the probability of the transition, the second one by arrows labeled
with 1, while there is just one distribution for state {S1} identified by the arrow labeled 0.
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set of probability distributions which are precisely the union of the probability
distributions, associated to each corresponding concrete state.

The validation of probabilistic termination over the abstract probabilistic
model gives the following results: the lower and upper bound for the probability
of reaching a terminated state, from the initial state {S0, S

′
0}, are 0 and 1 respec-

tively. Notice that the lower bound is calculated by minimizing the probability
of the computations reaching a ∀-terminated state, e.g. an abstract state which
represents only terminated states. Conversely, the upper bound is calculated by
maximizing the probability of the computations reaching a ∃-terminated state,
e.g. an abstract state which represents at least a terminated state. In par-
ticular, the abstract state {S1} is ∀-terminated (and thus also ∃-terminated),
while the abstract state {S0, S

′
0} is ∃-terminated (but it is not ∀-terminated).

As a consequence, the lower and upper bounds are obtained by choosing the
probability distributions ρ1 and ρ0 for the initial state {S0, S

′
0} respectively,

ρ0({S0, S
′
0}) = 0, ρ0({S1}) = 1

ρ1({S0, S
′
0}) = 1, ρ1({S1}) = 0.

Intuitively, the probability distribution ρ0 models the move into the abstract
state {S1} (which is ∀-terminated), while the probability distribution ρ1 models
the behaviour of the system which remains forever in the initial abstract state
{S0, S

′
0} (which is ∃-terminated). The distinction between ∃-terminated and

∀-terminated abstract states in the calculation of the lower and upper bound
for probabilistic termination is necessary to safely approximate probabilistic
termination and it is typical of abstract model checking techniques [51, 24, 32,
22, 23].

Even if the MDP of Fig. 2 (c) is the best abstraction of the DTMCs of
Fig. 2 (a) and (b), the abstraction over the state space leads to a dramatic loss
of information. The problem illustrated by the previous example is related to
hybrid states, namely abstract states representing both concrete terminated and
non terminated states. As it should be clear, the initial state {S0, S

′
0} in the

MDP of Fig. 2 (c) is precisely an hybrid state.
In order to validate in a more accurate way the property of probabilistic

termination we define a methodology, where the hybrid states are eliminated
from the abstract state space, by construction.

In the abstract LTS semantics the abstract states are abstract multisets
where the multiplicity of reagents is approximated by intervals of integers. More-
over, the abstract transition labels record a label (identifying the reaction) as
well as information about the possible rate of the reaction (represented by an
interval of rates). The definition of the abstract transition relation uses a parti-
tioning of hybrid states which guarantees that each abstract state approximates
either terminated or non terminated concrete states. Due to the splitting of
hybrid states, it may be the case that an abstract state has different exiting
abstract transitions which share the same label. Such abstract transitions ap-
proximate the same reaction (identified by the label) for different concentrations
of the reagents, which participate in the reaction. Thus, they approximate the
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S0 S1
1

1

S0'

1

{S0, S0'}

 1: 1

0: 0

{S1}
0: 1

1: 0

0: 1

(a) (b) (c)

Figure 2: Two universally terminating DTMC’s and an MDP that approximates them.

same reaction but for different concrete states which are represented by the ab-
stract source state. This situation, which we call a conflict between abstract
transitions, is explicitly captured by means of the labels corresponding to reac-
tions.

The information about conflict recorded by the labels, corresponding to re-
actions, can be profitably exploited in order to limit the non-determinism in-
troduced by the abstraction, in the derivation of the corresponding abstract
probabilistic semantics. Intuitively, this information can be used to more pre-
cisely calculate the set of probability distributions, which can be assigned to
each abstract state.

For these purposes, we adopt as abstract probabilistic model a generaliza-
tion of standard Interval Markov Chains, called Labeled Interval Markov Chains
(IMC), where moves are decorated by labels in addition to intervals of proba-
bility. Using labels, similarly as in the abstract LTS semantics, it is possible
to maintain the information about the possible conflict between different moves
from a given abstract state. The model IMC provides a more precise representa-
tion of the set of probability distributions which are associated to each abstract
state with respect to the standard model using just intervals of probability.

In order to define the abstract probabilistic semantics of an abstract CGF
we give a translation from abstract LTS into IMC (represented by function H◦

in Fig. 1). The most difficult part of the derivation from abstract LTS into
IMC consists of the computation of the interval of probability, corresponding
to a move. We propose an effective technique where the intervals of probability
are calculated from the information recorded on abstract transition labels: the
abstract rates (intervals of rates) and the labels identifying the reactions. In-
tuitively, for each abstract state the interval of probability corresponding to a
move is derived from the abstract rate of the move and from the abstract rates
of the alternative moves from the considered abstract state. The information
about conflict, recorded by the labels, is exploited to determine which moves
from the abstract state may coexist in the concrete behaviour for one of the
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concrete states which are represented by the abstract one. Moreover, we adopt
a symbolic approach in the representation of intervals of rates which supports
a more precise calculation of the corresponding intervals of probability given
that it maintains relational information about the possible values of reagent
variables.

Finally, we prove the soundness of the proposed approach with respect to
probabilistic termination using standard abstract interpretation concepts. We
prove both for the LTS and probabilistic semantics that their abstract versions
safely approximate the corresponding concrete semantics. This shows that the
abstract semantics of an abstract CGF system approximates the concrete se-
mantics for each concrete CGF system, which is represented by the abstract
one. The proof is based on the definition of approximation orders, both on the
domain of abstract LTS and on the domain of IMC (represented by v◦lts and
v◦mc in Fig. 1, respectively). In the style of [20, 22, 23, 51, 32], the approxima-
tion order allows us to compare two abstract semantics in terms of precision and
thus to say when an abstract semantics is a safe approximation of another one.
Moreover, the proof uses abstraction functions to relate the concrete semantics,
both LTS and probabilistic, to their abstract versions (functions αlts and αmc
in Fig. 1, respectively). The abstraction function both on the domain of LTS
and on the domain of DTMC reports an abstract version which is equivalent to
the concrete one.

Furthermore, we prove that the IMC of an abstract CGF system gives con-
servative lower and upper bounds for probabilistic termination. This guarantees
that the interval of probability for probabilistic termination, calculated over the
IMC of an abstract CGF system, includes the exact value of probabilistic termi-
nation, calculated over the DTMC, for each CGF system which is represented
by the abstract one.

To validate the usefulness of our approach in the context of biological systems
modeling, we apply abstract probabilistic model checking to verify probabilistic
termination of a 2-way oscillator, in standard, partially doped and fully doped
versions, in the style of [11, 3].

The paper is organized as follows. Section 2 introduces the CGF calculus,
the LTS semantics, the model DTMC and the related probabilistic termina-
tion property, and the probabilistic semantics of CGF in terms of DTMC. Sec-
tion 3 presents the formalization in CGF of the 2-way oscillator and illustrates
probabilistic termination for the system. Section 4 presents the abstract LTS
semantics. Section 5 introduces the model IMC and the related probabilistic
termination property. Section 6 presents the abstract probabilistic semantics
of CGF, that is the translation from abstract LTS into IMC. Finally, Section
7 shows the application of abstract probabilistic model checking to the 2-way
oscillator, using PRISM.

Remark This paper is a revised and extended version of [28]. A related
paper [15] presents a similar approach, which computes a weaker approximation,
able to address probabilistic reachability properties. The analysis proposed
here is also sound for general probabilistic reachability properties, following the
arguments presented in [15].
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E ::= 0 | X = S, E Environment

S ::= 0 | πλ.P + S Molecules
P ::= 0 | X|P Solutions

π ::= ar
λ | arµ | τrθ a ∈ N and r ∈ R+ Basic Actions

Table 1: Syntax of CGF

2. The Concrete Framework

The CGF calculus [12] is a fragment of stochastic π-calculus [46, 43] without
communication. The calculus is designed for modeling basic chemical reactions,
in particular unary reactions (a molecule may spontaneously degrade into com-
ponents), hetero binary reactions (two molecules of different species may collide
and produce other molecules) and homeo binary reactions (two molecules of the
same species may collide and produce other molecules).

We present a Labeled Transition System semantics of CGF, which is a vari-
ant of that originally proposed in [12] (commented in Section 2.4). Then, we
present the probabilistic model of DTMC and the related property of proba-
bilistic termination. Finally, we introduce the probabilistic semantics of CGF
in terms of DTMC.

2.1. Labeled Transition System Semantics
The syntax of (annotated) CGF is defined in Table 1. We consider a set N

(ranged over by a, b, c, . . .) of names, a set L (ranged over by λ, µ . . .) of tags,
and a set X (ranged over by X,Y ,....) of variables (representing reagents).

A CGF is defined as a pair (E,P ) where E is a species environment and P
is a solution. The environment E is a (finite) list of reagent definitions Xi = Si
for distinct variables Xi and molecules Si describing the interaction capabilities.
A molecule S may do nothing, may change after a delay or may interact with
other reagents. The interactions are defined by: τrθ representing a delay at rate
r (where r ∈ R+ and θ ∈ L is a tag); arλ and arµ modeling the input and output
on channel a at rate r (where r ∈ R+ and λ, µ ∈ L are tags), respectively. Each
channel always has the same rate. A solution P is a parallel composition of
variables, that is a finite list of reagents. The rates associated to basic actions
are the parameters of the exponential distribution which regulates the stochastic
behavior.

Notice that we annotate basic actions with tags λ ∈ L. Tags are exploited
in order to identify exactly the actions which participate in a move. For these
purposes, we consider well-formed environments; an environment E is well-
formed if the tags occurring in the definitions of E are all distinct. In the
following, we assume that in a CGF (E,P ) the environment E is well-formed
and each variable X, occurring in E or in P , has a corresponding definition in
E.

Given an environment E and a reagent variable X ∈ X we use E(X) for
denoting the molecule which defines X in E. Moreover, use πλ.P ∈ S to indicate
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that process πλ.P appears in the molecule S (that is S = . . .+ πλ.P + . . .). In
the following, L(S) and L(E) denote the set of tags appearing in the molecule
S and in the environment E, respectively.

We introduce an LTS semantics for CGF where: solutions are represented
as multisets and transition labels record a label, representing the tag of the
basic action which participates in the move (or the tags of the basic actions
which participate in the move), the number of occurrences of the related reagent
variable (variables) and the rate of the basic action.

Definition 2.1 (Multiset). A multiset is a function M : X → N. We use M
for the set of multisets.

In the following, we call M(X) the multiplicity of reagent X in the multiset
M . We may also represent multisets as sets of pair (m,X), where m is the mul-
tiplicity of reagent X, using a standard notation, where pairs with multiplicity
0 are omitted.

For multisets we use standard operations of sum and difference, ⊕ and 	,
such that ∀M,N ∈M, ∀X ∈ X ,

M ⊕N(X) = M(X) +N(X)

M 	N(X) = M(X)−̂N(X) where n−̂m =

{
n−m if n−m ≥ 0,
0 otherwise.

Moreover, we define the translation of a solution P into a multiset of reagents
[[P ]] in the obvious way: [[0]] = {} and [[X|P ]] = {(1, X)} ⊕ [[P ]].

For describing the behavior of a solution (represented by a multiset of
reagents) we adopt a labeled transition relation of the form

M
Θ,∆,r−−−−→M ′

where r ∈ R+, Θ ∈ L̂ = L∪ (L×L), ∆ ∈ Q̂ = N∪ (N×N) such that arity(Θ) =
arity(∆). The component Θ ∈ L̂ is a label, which describes the reaction and
records either the tag of the action which changes after a delay (a unary reaction)
or the pair of tags of the actions which synchronize (a binary reaction). The
components ∆ ∈ Q̂ and r ∈ R+ give information needed for computing the
rate of the reaction, that is the multiplicity of the reagent (reagents) which
participates (participate) and the rate associated to the basic action.

The transition relation for multisets is defined by the rules Table 2, reasoning
with respect to an environment E. There are two transition rules describing
delay and synchronization, respectively. Rule (Delay) models the move of a
process τrλ.Q appearing in the definition of reagent X. The transition label
records the tag λ together with the multiplicity of reagent X (e.g M(X)) as
well as the rate of delay r. Rule (Sync) models the synchronization between
two complementary processes arλ.Q1 and ārµ.Q2 appearing in the definition of
reagents X and Y (that may even coincide2). The transition label records the

2This is the case of homeo reactions.
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(Delay)
τr
λ.Q ∈ E(X)

E `M λ,M(X),r−−−−−−→ (M 	 (1, X))⊕ [[Q]]

(Sync)
ar
λ.Q1 ∈ E(X) ār

µ.Q2 ∈ E(Y )

E `M (λ,µ),(M(X),M(Y )),r−−−−−−−−−−−−−−→ ((M 	 (1, X))	 (1, Y ))⊕ [[Q1]]⊕ [[Q2]]

Table 2: Transition relation

tags λ and µ together with the multiplicities of reagents X and Y (e.g M(X)
and M(Y )) as well as the rate of the channel r.

Notice that we admit explicit transitions even for reactions involving reagent
variables having multiplicity 0 in the multiset M (thus having rate 0). This
choice simplifies the definition of the abstraction (as discussed in Section 2.4)

We recall that the environment is well-formed, e.g. basic actions have dis-
tinct tags. As a consequence, the transitions having a solution M as source have
distinct labels too. More in detail, for each label Θ ∈ L̂ we may have at most
one transition, decorated by label Θ, leaving from M . We therefore adopt the
following definition of LTS.

Definition 2.2 (LTS). A labeled transition system is a tuple (S,→,M0, E)
where:

i) S ⊆M is the set of states, M0 ∈ S is the initial state and E is the environ-
ment;

ii) →⊆ S×L̂×Q̂×R+×S is a set of transitions, such that, for each M
Θ,∆1,r1−−−−−→

M1,M
Θ,∆2,r2−−−−−→M2, we have ∆1 = ∆2, r1 = r2 and M1 = M2.

In the following, we use LT S to denote the set of LTS. The semantics of
a multiset M0 is defined as LTS((E,M0)) = (S,→,M0, E), which denotes the
LTS, obtained by transitive closure, starting from the initial state M0, using the
rules of Table 2 w.r.t. the environment E. The LTS describing the semantics
of a CGF (E,P ) is defined by LTS((E, [[P ]])).

Moreover, given a transition t = M
Θ,∆,r−−−−→ M ′ we use label(t) to denote

the label Θ, and source(t), target(t) to denote its source and target states M
and M ′, respectively. Similarly, for a set of transitions TS, we use label(TS) =⋃
t∈TS label(t). We also use

Ts(M,M ′) = {t | source(t) = M and target(t) = M ′}
Ts(M) = {t | source(t) = M}

for describing the transitions from a multiset M to a multiset M ′ and all tran-
sitions leaving from multiset M , respectively.
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2.2. Discrete-Time Markov Chains
We introduce the probabilistic model of DTMC and we define the property

of probabilistic termination. Given a finite or countable set of states S ⊆M we
denote with

SDistr(S) = {ρ | ρ : S → [0, 1]},
Distr(S) = {ρ | ρ ∈ SDistr(S) and

∑
M∈S ρ(M) = 1}

the set of (discrete) probability pseudo-distributions and of distributions on
S, respectively.

Definition 2.3 (DTMC). A DTMC is a tuple (S,P,L,M0) where:

i) S ⊆M is a finite or countable set of states and M0 ∈ S is the initial state;

ii) P : S → Distr(S) is the probability transition function;

iii) L : S → (S → ℘(L̂)) is a labeling function such that L(M)(M ′)∩L(M)(M ′′) =
∅ if M ′ 6= M ′′.

In DTMC state transitions are equipped with probabilities, specifically P(M)(M ′)
reports the probability of moving from state M to state M ′. In addition,
L(M)(M ′) ∈ ℘(L̂) reports the set of labels corresponding to the move from
state M to state M ′. Notice that the labels have no semantic significance here,
while they are exploited to simplify the abstraction (see Section 2.4).

In the following, we restrict our attention to finitely branching DTMC, mean-
ing that for each state M ∈ S the set {M ′ | P(M)(M ′) > 0} is finite. We use
MC for the set of (finitely branching) DTMC.

We are interested in probabilistic termination, that is on the probability to
reach a state that is terminated. Probabilistic termination is given by the prob-
ability of the set of terminated paths, which can be calculated by considering a
probability space over paths of the DTMC [35].

Given a DTMC (S,P,L,M0), a path π is a non-empty sequence of states
of S. We denote the i-th state in a path π by π[i], and the length of π by |π|.
The set of paths over S is denoted by Paths(S). The set of finite paths over S
is denoted by FPaths(S). C(M) denotes the set of paths starting from the state
M ∈ S and C(π), with π ∈ FPaths(S), denotes the set of paths that have the
finite path π as prefix.

Definition 2.4 (Probability of paths). Let (S,P,L,M0) be a DTMC. Let
C =

⋃
π∈FPaths(S) C(π) be the cylinders, B be the smallest σ-algebra containing

C, and M ∈ M a state. The tuple (Paths(S),B,PM ) is a probability space,
where PM is the unique measure satisfying, for all path M0 . . .Mn,

PM (C(M0 . . .Mn)) =





1 if M0 = M ∧ n = 0
P(M0,M1) · . . . ·P(Mn−1,Mn) if M0 = M ∧ n > 0
0 otherwise
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Given a DTMC (S,P,L,M0), we say that a state M ∈ S is terminated iff
P(M)(M ′) = 0, for each M ′ ∈ S with M ′ 6= M . A path is terminated if it leads
to a terminated state.

Definition 2.5 (Probabilistic termination). Let mc = (S,P,L,M0) be a
DTMC. The probability of reaching a terminated state, from M ∈ S, is

Reachmc(M) = PM ({π ∈ C(M) | π[ |π| ] is terminated }).

Since the set of paths of Definition 2.5 is a set of finite paths and the DTMCs
that we consider are finitely branching, the set of paths of Definition 2.5 is
countable. Indeed, it can be seen as

⋃
i{π | π[ |π| ] is terminated and |π| = i}.

It is worth mentioning that Reachmc(M) can be specified as a linear equation
system, similarly as for standard probabilistic reachability properties of the
logic PCTL. The system can be solved either by applying direct methods or
by computing the least fixpoint by means of standard iterative methods. For
more detail on probabilistic model checking we refer the interested reader to
[38, 31, 36].

In order to simplify the proofs, it is convenient to exploit the following
formulation of Reachmc(M) as a fixpoint equation. Let mc = (S,P,L,M0) be
a DTMC. Let us define the following order on pseudo-distributions ρ1, ρ2 ∈
SDistr(S), we say that ρ1 ⊆ ρ2 iff for each M ∈ S, ρ1(M) ≤ ρ2(M). ∪ stands
for the least upper bound with respect to the underlying order ⊆.

For each i ∈ N, we define a pseudo-distribution on S, ρimc ∈ SDistr(S), where
for each M ∈ S,

ρimc(M) =





1 if M is terminated,
0 if i = 0 ∧M is non-terminated,
ΣM ′∈SP(M)(M ′) · ρi−1

mc (M ′) otherwise.

Intuitively, ρimc(M) reports the probability to reach a terminated state,
starting from M , after at most i steps. Note that ∀i, ρimc ⊆ ρi+1

mc , this can
be proved by induction on i. Since the set of pseudo-distributions on S consti-
tutes a complete lattice, there exists the least fixpoint,

Reachmc(M) =
⋃
i∈{0,...,∞} ρ

i
mc(M)

2.3. Probabilistic Semantics
We define the probabilistic semantics of CGF, by giving a translation from

LTS into DTMC. In order to calculate the probability of moving from a state
M to a state M ′ we proceed as follows: (i) we extract the rate corresponding to
the move by exploiting the rate of each transition included in Ts(M,M ′); (ii)
then, we calculate the related probability taking into account the rate of all the
transitions exiting from M (contained in Ts(M)).
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Let (S,→,M0, E) be an LTS. We introduce functions rate, going from tran-
sitions → to R>=0, R : S × S → R>=0 and E : S → R>=0 such that, for each
t = M

Θ,∆,r−−−−→M ′ ∈→ and M,M ′ ∈ S,

rate(t) =





n · r Θ = λ, ∆ = n,
n · (m−̂1) · r Θ = (λ, µ), ∆ = (n,m), λ, µ ∈ L(E(X)),
n ·m · r Θ = (λ, µ), ∆ = (n,m),

λ ∈ L(E(X)), µ ∈ L(E(Y )), X 6= Y,

R(M,M ′) =
∑
t∈Ts(M,M ′) rate(t), E(M) =

∑
M ′′∈S R(M,M ′′).

As expected rate of a transition rate(t) is derived from the information
recorded on its transition label. For computing rate(t) it is necessary to take
into account the number of distinct transitions t that may occur in the multiset
M . Thus, the result depends on the rate r of the basic action, on the multi-
plicities of the reagents which participate (recorded by ∆) and on the type of
reaction (unary or binary) (recorded by Θ). If label Θ is a singleton then the
rate is obtained by multiplying r with the number of occurrences of the reagent
variable X, that is n. If label Θ is a pair, corresponding to an interaction be-
tween two distinct reagents X and Y , then the rate is obtained by multiplying
r with the number of occurrences of both reagent variables, that is n and m.
If X and Y coincide the calculation is similar taking into account that each
occurrence of reagent X cannot interact with itself. Notice that the resulting
rate may even be zero. This is the case, for example, whenever two reagents X
and Y interact and one of the two has multiplicity zero; or whenever a reagent
X with multiplicity 1 interacts with X itself.

Moreover, R(M,M ′) reports the rate corresponding to the move from M to
M ′, while E(M) is the exit rate. The probability of moving from M to M ′ is
computed from R(M,M ′) and from the exit rate E(M), in a standard way.

Definition 2.6 (Derivation of the DTMC). We define the probabilistic trans-
lation function H : LT S → MC such that H((S,→,M0, E)) = (S,P,L,M0),
where

1. P : S → Distr(S) is the probability transition function, such that for each
M,M ′ ∈ S:
a) if E(M) > 0, then P(M)(M ′) = R(M,M ′)/E(M);
b) if E(M) = 0, then P(M)(M) = 1 and P(M)(M ′) = 0 for M ′ 6= M .

2. L : S → (S → ℘(L̂)) is the labeling function, such that, for each M,M ′ ∈
S, L(M,M ′) = label({t ∈ Ts(M,M ′) | rate(t) > 0}).

Notice that in the translation the labels are transferred from the transitions
of the LTS to the DTMC. Due to the particular labeling of the LTS semantics,
also the DTMC, modeling the probabilistic semantics of a CGF process, satisfies
the property that all the moves leaving from a state, are decorated by disjoint
sets of labels.
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2.4. Abstract Interpretation
It is worth mentioning that in the Abstract Interpretation [17, 18] approach

to static analysis the choice of the concrete semantics is crucial. On one hand,
the concrete semantics typically influences the precision of the abstraction. On
the other hand, the abstract semantics has to be proved correct with respect to
the concrete version. Thus, it is convenient to adopt similar definitions both in
the concrete and in the abstract case. In our framework, this argument applies
both to the LTS semantics and to the probabilistic semantics.

As far as it concerns the LTS semantics, we have adopted an LTS semantics
where: the environment is annotated, the solutions are represented by multisets
and transition labels record a label (representing the tags of the actions which
participates in the move), the number of occurrences of the related reagent
variables and the rate of the basic action.

Such a semantics permits to prove in a simpler way the soundness of the
abstract LTS semantics. Specifically, the definition of function αlts used to
relate concrete and abstract LTS and the proof of soundness (Theorem 4.14).
Moreover, using an explicit representation of transitions having rate 0 simplifies
the definition of the approximation order v◦lts over abstract LTS.

Furthermore, since environments are well-formed the LTS semantics has a
particular labeling, as it is formalized by condition (ii) of Definition 2.2. This is
essential for capturing in the abstract case the conflict between abstract tran-
sitions. We also record on transition labels information about the multiplicity
of reagents and about the rate of the action in place of the rate of the transi-
tion (that is rate(t)). In the abstract case, this approach permits to maintain
relational information about the possible multiplicity of reagent variables. Both
features are profitably exploited in order to derive a more precise probabilistic
semantics, in particular they are used to limit the loss of information in the
calculation of the abstract probabilities (as it is commented in Sections 5 and
6).

Analogously in the case for the probabilistic semantics we adopt a labeled
version of DTMC in order to simplify the correspondence with the probabilistic
abstract model. Specifically, such a modification simplifies the definition of
function αMC used to relate concrete and abstract probabilistic models and the
proof of soundness (Theorems 6.4 and 6.5).

The LTS semantics originally proposed in [12] was simpler. The approach
uses a normal form for solutions and environments, based on indexing both
the basic actions and the occurrences of reagent variables (even of the same
variable). Transition labels record the index of the action (the indexes of the
actions) participating in the move and the associated rate, similarly as in our
definition. The main difference with our definition is that in that case each
transition describes exactly the delay of a given instance of a reagent variable
X or the synchronization between two instances of reagent variables X and Y .
However, the corresponding probabilistic semantics in terms of DTMC is equiv-
alent given that the rates of different transitions, modeling the same reaction,
are summed in order to derive the related probabilities.
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Figure 3: Groupie stochastic interacting automaton

3. A 2-way Oscillator

To illustrate probabilistic termination we consider a biochemical system that
exhibits an oscillatory behavior. The system, presented in [13], is composed by
a set of entities interacting with each other. The behavior of a single entity
can be represented by the stochastic interacting automaton in Fig. 3; it has two
possible states, X and Y . A single automaton performs no interaction, while it
may interact with other automata. Two automata in state X are stable since
they both offer !a and ?b and no interaction is possible. Analogously for two
automata in state Y . If one automata is in state X and another is in state Y
then either they can interact on channel a at rate ra, and both move to state
X, or they can interact on channel b at rate rb, and both move to state Y . Such
automata are called groupies because they aim to be similar: two automata
in different states switch to equal states. The system exhibits an oscillatory
behavior in the number of X and Y . However, when the groupies form a single
homogeneous population of all X or of all Y the system is terminated: no
automaton can further change state.

The following example shows a possible formalization of the system in CGF.

Example 3.1. The following environment models the 2-way oscillator,

E , X = aλr .X + b̄δr.Y, Y = āµr .X + bηr .Y.

Reagents X and Y may interact together in two possible ways: either along
channel a or along channel b (we assume that both reactions have the same rate
r). The former case models the reaction R1 : X +Y → X +X , while the latter
case models the reaction R2 : X + Y → Y + Y .

By considering the CGF (E,M3) with initial solution M3 = {(3, X), (3, Y )}
we obtain the LTS LTS((E,M3)) illustrated in Fig. 4 where

M2 = {(2, X), (4, Y )} M1 = {(1, X), (5, Y )} M0 = {(6, Y )}
M4 = {(4, X), (2, Y )} M5 = {(5, X), (1, Y )} M6 = {(6, X)}

and , for simplicity, we have omitted the transitions having at least one
multiplicity equal to 0. Note that this simplification will be adopted in all the
examples of the paper.
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Figure 4: The LTS semantics

The LTS reports for each state, except for states M0 and M6, two transitions:
the move with label (λ, µ) models reaction R1, while the move with label (δ, η)
models reaction R2. The transitions record also the multiplicities of reagents X
and Y , in each state, and the rate of basic actions r.
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Figure 5: The DTMC

Fig. 5 illustrates the DTMC H(LTS((E,M3))) derived from the LTS of Fig. 4,
where we have omitted the transitions having rate equal to 0. Note that this sim-
plification will be adopted in all the examples of the paper.

As expected, states M0 and M6 are terminated, while the other states have
two possible moves corresponding to reactions R1 and R2 which happen with the
same probability. The probability to reach a terminated state from the initial
solution M3 is exactly 1, showing a null probability to oscillate forever (thus the
system universally terminates).

�

In the previous example we have considered a simple experiment for a small
number of reagents X and Y and we have proved that the system universally
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terminates. It should be clear that an analogous probabilistic behavior can be
generalized to any initial concentration of reagents X and Y . Actually, the
concentrations of reagents X and Y modify the rate of reactions R1 and R2 but
not their probabilities. Thus, no matter how many reagents X and Y are present
in the initial solution, the system universally terminates. A similar argument
also applies to the experiments realized by varying the rate of the two reactions.

Notice that the initial concentration of reagents X and Y as well as the rates
of the reactions have a great impact on the amplitude of oscillations and the
time required by the oscillation to stop. The observation of these properties
requires to consider the Continuos-Time Markov Chain (in place of the DTMC)
and a continuos-time logic (such as CSL [29, 36]), as it is discussed in [3] for
similar oscillators.

Probabilistic model checking can also be applied to validate other probabilis-
tic reachability properties of the 2-way oscillator which yield a better understand-
ing of the dynamics of the system. For example, it is interesting to be able to
calculate the probability that the groupies form an homogeneous population of
all X or of all Y . For the initial concentrations of reagents X and Y considered
in Example 3.1, this is the probability to reach states M6 and M0, respectively;
thus, in this example where the initial concentrations of X and Y are equal, the
two configurations can be reached with the same probability 1

2 . Note, however,
that the probability of reaching one of the two configurations strictly depends
on the initial concentrations of reagents X and Y , therefore, in the general case
the probability that the groupies form an homogeneous population of all X or
of all Y can be different.

There has been considerable success recently in analyzing biological systems
using tools based on formal methods. The approach based on quantitative model
checking is exhaustive, that is all possible evolutions of the system are analyzed.
This formal verification technique has been applied to address a wide class of
quantitative behavioral queries about the dynamics of biological models. The
principal alternative relies on the application of simulation-based techniques.
The discrete stochastic approach, based on SSA [26], allows to observe possible
evolutions of a biochemical system, whose rates are controlled by exponential
distributions. Traditionally, time-dependent analysis of biological systems uses
a deterministic approach based on ordinary differential equations (ODE).

The probability of termination (as well as the probability to reach a given
configuration) cannot be inferred by applying discrete stochastic simulation
techniques, even by performing a large number of simulation runs. As it is
illustrated [11, 3, 2], these techniques are adequate for capturing other funda-
mental aspects about the dynamics of biochemical systems, which exhibit an
oscillatory behavior. Specifically, it is possible to deduce information about
the amplitude and regularity of the oscillations over time. The deterministic
approach, based on ODE, can give different results by considering the same
initial conditions. Cardelli [11] shows that the ODE extracted from automaton
of Fig. 3 describes a deterministic never stopping oscillator.

The relationship between deterministic and stochastic simulation techniques
for biological systems is still subject to research. In particular, [3, 11] investi-
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gate the application of these approaches to more complex variant of the 2-way
oscillator, described by the automaton of Fig. 3.

4. Abstract Labeled Transition System Semantics

We introduce the abstract LTS semantics which is based on the abstraction of
multisets, proposed in [15], where the multiplicities of reagents are approximated
by intervals of integers [16]. Moreover, we prove the soundness of the abstract
LTS w.r.t. the concrete LTS. In the style of [20], an approximation order over
abstract LTS is used for expressing precision and soundness of approximations.

4.1. Abstract States
We present the abstract states and we formalize the relation with multisets

as a standard Galois connection [18]. In order to approximate the information
related to the multiplicities of reagents present in a solution we adopt the domain
of intervals of integers [16]. In more detail, we adopt

I = {[m,n] | m ∈ N, n ∈ N ∪ {∞}, if m 6=∞ then m ≤ n}.

Note that intervals can never be empty. Over intervals we consider the order
vI , defined as [m,n] vI J iff m,n ∈ J . The least upper bound on I, denoted
here by tI , is the union of intervals. Moreover, the order vI extends naturally to
pairs of intervals; i.e. for intervals Ii, Ji ∈ I with i ∈ {1, 2}, (I1, I2) vI (J1, J2)
iff I1 vI J1 and I2 vI J2.

Over intervals I we use the following operations of sum and difference, for
I, J ∈ I with max(J) 6=∞,

I + J =

{
[min(I) +min(J),max(I) +max(J)] if max(I) 6=∞,
[min(I) +min(J),∞] otherwise.

I − J =

{
[min(I)−̂max(J),max(I)−̂min(J)] if max(I) 6=∞,
[min(I)−̂max(J),∞] otherwise.

Note the use of the max(J) in computing the minimum of the interval I−J
and, analogously, and the use of the min(J) in computing the maximum.

The abstract states are abstract multisets where multiplicities are replaced
by intervals of multiplicities.

Definition 4.1 (Abstract states). An abstract state is a function M◦ : X →
I. We also use M◦ for the set of abstract states.

Over abstract states, we introduce abstract operations of sum and difference,
such that ∀M◦, N◦ ∈M◦, ∀X ∈ X ,

(M◦⊕◦N◦)(X) = M◦(X) +N◦(X), (M◦	◦N◦)(X) = M◦(X)−N◦(X).
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In the following we use M◦[I/X] for denoting the abstract state obtained
from M◦ replacing the abstract multiplicity of reagent X ∈ X with the interval
I ∈ I.

Since an interval represents a set of multiplicities, it is immediate to define
the following approximation order over abstract states.

Definition 4.2 (Order on states). Let M◦1 ,M
◦
2 ∈M◦, we say that M◦1v◦M◦2

iff, for each reagent X ∈ X , M◦1 (X) vI M◦2 (X).

Obviously, given a multiset M there exists an abstract multiset which is its
best (most precise) approximation.

Definition 4.3 (Best approximation). The best approximations of a multi-
plicity n ∈ N, of a pair of multiplicities (n,m) ∈ N × N and of a multiset
M ∈M, are denoted by the symbol • and are defined as follows:

1. n• = [n, n],
2. (n,m)• = (n•,m•),
3. ∀X ∈ X ,M•(X) = M(X)•.

The relation between sets of multisets and abstract states is formalized as
a Galois connection [18]. The abstraction function α : P(M) → M◦ reports
the best approximation for each set of multisets S; that is, the abstract state
obtained as the least upper bound (denoted by t◦) of the best approximations
of each M ∈ S. Its counterpart is the concretization function γ :M◦ → P(M)
which reports the set of multisets represented by an abstract state. For example,
the abstract multiset {([1, 2], X)} represents the set of multisets {(1, X), (2, X)}.

Definition 4.4. We define α : P(M) →M◦ and γ :M◦ → P(M) such that,
for each S ∈ P(M) and M◦ ∈M◦:

1. α(S) =
⊔◦
M∈SM

•;
2. γ(M◦) = {M ′ |M ′•v◦M◦}.

The abstraction and concretization functions are a Galois connection.

Theorem 4.5. The pair (α, γ) is a Galois connection between (P(M),⊆) and
(M◦,v◦).

The proof of Theorem 4.5 is straight-forward and can be found in AppendixA.

4.2. Abstract transitions
We adopt an abstract transition relation of the form

M◦1
Θ,∆◦,r−−−−→

◦
M◦2

where Θ ∈ L̂ = L∪ (L×L), ∆◦ ∈ Q̂◦ = I ∪ (I ×I), with arity(Θ) = arity(∆◦),
and r ∈ R+. Similarly as in the concrete case, Θ ∈ L̂ is a label which describes
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the reaction and records either the tag of the action which changes after a
delay (a unary reaction) or the pair of tags of the actions which synchronize
(a binary reaction). The component ∆◦ ∈ Q̂◦ is either an interval or a pair of
intervals, representing the possible multiplicity of the reagent (reagents) which
participates (participate) in the reaction. As in the concrete case, r ∈ R+ is the
rate of the basic action.

In a naive approach (as the one proposed in [15]) an abstract transition is
intended to approximate all the concrete moves, corresponding to the reactions
associated to label Θ, for each multiset M1 approximated by the abstract state
M◦1 . This means that each concrete transition M1

Θ,∆,r−−−−→ M2 is such that: the
multiplicity (multiplicities) ∆ is included in the interval (intervals) ∆◦ and M2

is approximated by the abstract state M◦2 .
To illustrate the approach of [15], we can consider the environment E com-

mented in Example 3.1 which models reactions R1 : X + Y → X + X and
R2 : X + Y → Y + Y ,

E , X = aλr .X + b̄δr.Y, Y = āµr .X + bηr .Y.

Moreover, we consider a simple experiment represented by the abstract state

M◦5 = {([1, 3], X), ([1, 3], Y )}.

The abstract state M◦5 describes a set of 9 experiments; thus, the abstract
semantics has to model the system described by E w.r.t. all different initial
concentrations. For example, for approximating reaction R1, that is the syn-
chronization between X and Y along channel a, we would obtain the following
abstract transition labeled (λ, µ),

M◦5
(λ,µ),([1,3],[1,3]),r−−−−−−−−−−−−→

◦
M◦5
′ (1)

with M◦5
′ = {([2, 4], X), ([0, 2], Y )}. In this way, however, the abstract tran-

sition (1) introduces an hybrid state the abstract state M◦5
′ representing both

terminated states, where the concentration of reagent Y is zero and therefore
no reaction can longer be applied, and non-terminated states, where reagent Y
is still available.

It should be clear that the moves corresponding to reaction R1 could be
better approximated by adopting two different abstract transitions, such as

M◦5
(λ,µ),([1,3],[1,1]),r−−−−−−−−−−−−→

◦
M◦6 (2)

M◦5
(λ,µ),([1,3],[2,3]),r−−−−−−−−−−−−→

◦
M◦7 (3)

where M◦6 = {([2, 4], X), ([0, 0], Y )} and M◦7 = {([2, 4], X), ([1, 2], Y )}. Using
the abstract transitions (2) and (3), the moves corresponding to reaction R1

represented by (1) are split and the hybrid state is eliminated. Notice that the
transitions (2) and (3) share label (λ, µ) which identifies the reaction R1.
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In order to better handle probabilistic termination, we introduce here a
refinement of the LTS semantics, presented in [15], where hybrid states are
eliminated, following the ideas illustrated by the previous example. Notice that
abstract transitions and (2) and (3) can be obtained from transition (1), by
splitting the target state M◦5

′ and the interval of multiplicity for reagent variable
Y , recorded in the abstract transition label of (1).

Table 3 presents the abstract transition rules, reasoning with respect to an
environment E. Such rules can be thought as obtained by a two-steps process.
First, a simple version of the abstract transition is obtained similarly as the
corresponding concrete ones, by replacing multiplicities with intervals of multi-
plicities and the operations of sum and difference with their abstract versions
⊕◦ and 	◦. Then, the resulting abstract transition is refined in order to avoid
hybrid states.

(Delay-a)
τr
λ.Q ∈ E(X)

E `M◦ λ,Ix,r−−−−→
◦
M◦1

where

M◦1 ∈ 5ME ((M◦	◦{(1•, X)})⊕◦[[Q]]•) and

Ix = 5T (M◦(X), 1•, [[Q]]•(X),M◦1 (X)).

(Sync-a)
ar
λ.Q1 ∈ E(X) ār

µ.Q2 ∈ E(Y )

E `M◦ (λ,µ),(Ix,Iy),r−−−−−−−−−→
◦
M◦1

where, for Z ∈ {X,Y },
M◦1 ∈ 5ME (((M◦	◦{(1•, X)})	◦{(1•, Y )})⊕◦[[Q1]]•⊕◦[[Q2]]•) and

IZ = 5T (M◦(Z), ((1•, X)⊕◦(1•, Y ))(Z), ([[Q1]]•⊕◦[[Q2]]•)(Z),M◦1 (Z)).

Table 3: Abstract transition relation

The abstract transition rules of Table 3 exploit the following operators to
detect and split hybrid states. The idea is to use simple constraints to express
the applicability of the reactions modeled by an environment E and then test
the abstract states w.r.t. such constraints. To this aim we first define the domain
of simple inequality constraints over reagent variables X .

Definition 4.6 (Inequality constraints). We define the set V of inequality
constraints. Let X ∈ X and a ∈ {1, 2},

• the basic constraints X ≥ a belong to V,

• let v1, v2 ∈ V be basic constraint of the form X ≥ 1, the boolean conjunc-
tion of v1 and v2, denoted by v1 ∧ v2, is in V.
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Given an environment E it is easy to extract a set of inequality constraints
expressing the enabling of each reaction. Formally, we define a function Ap
which reports the environment constraints for an environment E,

Ap(E) = {X ≥ 1 | τrλ.Q ∈ E(X)} ∪
{X ≥ 2 | arλ.Q1 ∈ E(X), ārµ.Q2 ∈ E(X)} ∪
{X ≥ 1 ∧ Y ≥ 1 | arλ.Q1 ∈ E(X), ārµ.Q2 ∈ E(Y ), X 6= Y }.

An abstract state M◦ is hybrid if it represents (at least) a non-terminated
state and (at least) a terminated state. Thus, M◦ is hybrid if it represents: a
concrete state where at least one reaction is enabled and a concrete state where
all reactions are blocked. In order to capture these requirements by means of
the environment constraints Ap it is necessary to define whether an abstract
state satisfies a constraint v ∈ V or whether it satisfies its negation, denoted by
¬v.

Definition 4.7. Let M◦ ∈M◦ and v, v′ ∈ V be basic constraints, we say that

• M◦ |= v iff v = X ≥ a and max(M◦(X)) ≥ a,

• M◦ |= v ∧ v′ iff M◦ |= v and M◦ |= v′,

• M◦ |= ¬v iff v = X ≥ a and min(M◦(X)) < a,

• M◦ |= ¬(v ∧ v′) iff M◦ |= ¬v or M◦ |= ¬v′.

We say that M◦ 6|= v iff M◦ |= v does not hold, and M◦ 6|= ¬v iff M◦ |= ¬v
does not hold.

Intuitively, the abstract state M◦ satisfies a constraint on variable X if there
exists a value for X in the interval M◦(X) which satisfies such a constraint.
Note that it can be the case that both M◦ |= v and M◦ |= ¬v. Indeed, if
M◦(X) = [0, 1] and v = X ≥ 1, then M◦ |= v and M◦ |= ¬v.

Given an abstract state M◦ and an environment E, it is useful to denote the
subset of environment constraints Ap(E) which M◦ satisfies. For M◦ ∈ M◦,
with SE(M◦) we indicate a set of constraint V ⊆ Ap(E) such that ∀v ∈ V ,
M◦ |= v.

Definition 4.8 (Hybrid state). An abstract state M◦ ∈M◦ is hybrid w.r.t.
an environment E iff: (i) |SE(M◦)| > 0 and (ii) ∀v ∈ SE(M◦), M◦ |= ¬v.

Condition (i) assures that M◦ represents (at least one) non-terminated state,
while Condition (ii) assures that M◦ also represents (at least one) terminated
state. An abstract state M◦ is hybrid w.r.t. an environment E whenever there
exist values for reagent variables which enable at least a reaction of E and also
there exist (other) values which do not enable any reaction of E.

Once an hybrid state w.r.t. an environment E is detected, the idea is to split
it into a set of non-hybrid states, using the environment constraints Ap(E). To
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this aim, we introduce an operator 5ME : M◦ → P(M◦). The goal of this
operator is that, for each abstract state M ′◦ resulting from the partitioning of
an hybrid state M◦ (that is M ′◦ ∈ 5ME (M◦)) it must be the case that M ′◦

represents either non-terminated concrete states or terminated concrete states.
The partitioning of M◦ is realized using the inequality constraints SE(M◦) and
guarantees that each abstract state M ′◦, for each v ∈ SE(M◦), either satisfies
v or it satisfies its negation ¬v.

The main operator 5ME : M◦ → P(M◦) uses an auxiliary operator 5IE :
M◦ ×X → P(I) over intervals. The operator over intervals is applied in order
to partition the interval of multiplicity M◦(X) for each reagent variable X ∈ X ,
separately.

For each reagent variable X ∈ X , the interval of multiplicity M◦(X) is
partitioned using the basic constraints X ≥ a contained in SE(M◦). To simplify
the notation, in the following we write X ≥ a / V for V ⊆ V if X ≥ a appears
in V either as basic constraint or in a conjunction of basic constraints. The
result of the partitioning of the interval M◦(X) depends on the role of reagent
variable X in the reactions modeled by environment E. If X ≥ 1 ∈ SE(M◦) and
X ≥ 2 6∈ SE(M◦), then each reaction involving reagent X is unary or binary so
that it is enough to partition the interval [0, n]. By contrast, if X ≥ 2 ∈ SE(M◦)
then reagent X participates in a homeo reaction so that also the interval [1, n]
has to be partitioned.

Given an environment E, we define the operators 5ME :M◦ → P(M◦) and
5IE :M◦ ×X → P(I) as follows, for M◦ ∈M◦ and X ∈ X ,

5ME (M◦) =





{M◦1 |∀X ∈ X ,M◦1 (X) ∈ 5IE(M◦, X)} if M◦ is hybrid w.r.t. E,

{M◦} otherwise.

5IE(M◦, X) =

•
{
{[1, 1], [2, n]} if X ≥ 2 / SE(M◦) and M◦(X) = [1, n],
{[0, 0], [1, 1], [2, n]} if X ≥ 2 / SE(M◦) and M◦(X) = [0, n],

• {[0, 0], [1, n]} if X ≥ 1 / SE(M◦), X ≥ 2 6∈ SE(M◦) and M◦(X) = [0, n],

• {M◦(X)} otherwise.

Notice that when the target state of an abstract transition is partitioned,
the information about the multiplicity of reagent variables, recorded on abstract
transition labels, has to be split accordingly. To this aim the rules of Table 3
use the operator 5T : I × I × I × I → I, such that for I1, I2, I3, I4 ∈ I,

5T (I1, I2, I3, I4) = tI{I | I vI I1 such that I − I2 + I3 = I4}.

To illustrate the rules of Table 3 we consider again the environment E
commented in Example 3.1, the abstract state M◦5 = {([1, 3], X), ([1, 3], Y )}.
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The abstract transitions (2) and (3) can be obtained by applying rule (Sync-
a). In this case the inequality constraints, expressing the enabling of reactions
R1 : X + Y → X +X and R2 : X + Y → Y + Y , are

Ap(E) = X ≥ 1 ∧ Y ≥ 1.

Transition (1) is the result of the first step of the application of rule (Sync-
a) to state M◦5 . The target state M◦5

′ = {([2, 4], X), ([0, 2], Y )} is hybrid w.r.t.
E given that M◦5

′ |= X ≥ 1 ∧ Y ≥ 1 but also M◦5
′ |= ¬(X ≥ 1 ∧ Y ≥ 1) (since

M◦5
′ |= ¬(Y ≥ 1)).
The abstract state M◦5

′ is partitioned using the constraint X ≥ 1 ∧ Y ≥ 1.
We obtain

5ME (M5
′◦) = {M◦6 ,M◦7 }

where M◦6 = {([2, 4], X), ([0, 0], Y )} and M◦7 = {([2, 4], X), ([1, 2], Y )}. In this
case 5IE(M5

′◦, Y ) = {[0, 0], [1, 2]} since Y ≥ 1 /SE(M5
′◦) and M5

′◦(Y ) = [0, 2],
while 5IE(M5

′◦, X) = {[2, 4]}, since X ≥ 1 / SE(M5
′◦) but M5

′◦(X) = [2, 4].
Notice that the abstract states M◦6 and M◦7 are the target states of transitions
(2) and (3), respectively.

Finally, the intervals of multiplicity [1, 3] for reagent variables X and Y ,
recorded on the abstract transition label (1) have to partitioned accordingly.
For target state M◦6 we have that Iy = [1, 1], since [1, 1] is the biggest (therefore
also the upper bound) between the intervals I contained in M5

′◦(Y ) = [1, 3] such
that I − 1• = M◦6 (Y ) = [0, 0]. Analogously, Ix = [1, 3], since [1, 3] is the biggest
among the intervals I contained in M5

′◦(X) = [1, 3] such that I − 1• + 2• =
M◦6 (X) = [2, 4]. This yields to the intervals of multiplicity in the abstract
transition label of (2). The intervals of multiplicity reported on transition (3)
can be obtained in a similar way by considering the target state M◦7 .

Next result proves that the refinement operator5ME eliminates hybrid states.

Theorem 4.9. Let E be an environment and let M◦ ∈ M◦. Each M ′◦ ∈
5ME (M◦) is a non-hybrid state w.r.t. E.

The proof of Theorem 4.9 can be found in AppendixA.
We introduce the definition of an abstract LTS.

Definition 4.10 (Abstract LTS). An abstract labeled transition system is a
tuple (S◦,→◦,M◦0 , E) where:

i) S◦ ⊆M◦ is a set of abstract states and M◦0 ∈ S◦ is the initial state;

ii) →◦⊆ S◦ × L̂ × Q̂◦ × R+ × S◦ is the set of abstract transitions such that

M◦
Θ,∆◦1 ,r1−−−−−→

◦
M◦1 , M

◦ Θ,∆◦2 ,r2−−−−−→
◦
M◦2 , if M◦1 = M◦2 then also r1 = r2,

∆◦1 = ∆◦2.

In the following we use LT S◦ to denote the set of abstract LTS. We also
assume that all notations defined for LTS are adapted in the obvious way. Hence,
we write LTS◦((E,M◦0 )) = (S◦,→◦, M◦0 , E) for the abstract LTS, obtained from
the initial abstract state M◦0 by transitive closure of the rules in Table 3, w.r.t.
the environment E.
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Remark 4.11. In the abstract case, differently from the concrete one (presented
in Definition 2.2) it may be the case that different transitions exiting from an
abstract state M◦ share the same label Θ ∈ L̂, associated to a given reaction.
We call such a situation a conflict. Actually, each multiset M represented by the
abstract state M◦ has a move corresponding to reaction Θ which is approximated
by exactly one of those abstract moves. As an example, for the abstract state
M◦5 = {([1, 3], X), ([1, 3], Y )} and the environment E commented in Example
3.1, the abstract transitions (2) and (3) share the label (λ, µ) which identifies
the reaction R1. It should be clear that the label (λ, µ) captures the relevant
information: each multiset represented by M◦5 realizes a move corresponding to
label (λ, µ) which is abstracted either by (2) or by (3). This information recorded
by the labels is exploited in order to limit the non-determinism introduced by the
abstraction, following the methodology presented in Sections 5 and 6.

4.3. Soundness
We introduce the concepts necessary for reasoning about the soundness and

precision of the abstract LTS w.r.t. the concrete ones.
In the style of [20], we introduce an approximation order v◦lts over abstract

LTS in order to compare the behavior of two abstract LTS in terms of precision.
Intuitively, lts1

◦v◦lts lts2
◦ says that the abstract LTS lts2

◦ is coarser than the
abstract LTS lts1

◦ (or equivalently that it is a safe approximation).

Definition 4.12 (Order on abstract LTS). Let lts◦i = (S◦i ,→i
◦,M

◦
0,i, E) with

i ∈ {1, 2} be abstract LTS. For M◦1 ∈ S◦1 ,M◦2 ∈ S◦2 , we say that M◦′1 4lts M◦′2
iff there exists a relation R ⊆ S◦1 × S◦2 such that M◦′1RM

◦′
2 and if M◦1RM◦2

then:

1. M◦1v◦M◦2 ;
2. label(Ts(M1

◦)) = label(Ts(M2
◦));

3. there exists a function Ht : Ts(M1
◦) → Ts(M2

◦) such that, for each t◦1 ∈
Ts(M1

◦), t◦1 = M◦1
Θ,∆◦1 ,r−−−−→

◦
N◦1 , Ht(t◦1) = t◦2 where t◦2 = M◦2

Θ,∆◦2 ,r−−−−→
◦
N◦2 ,

∆◦1 vI ∆◦2, N◦1 6= M◦1 iff N◦2 6= M◦2 , N◦1RN
◦
2 .

We say that lts◦1v◦lts lts◦2 iff M◦0,1 4lts M◦0,2.

The approximation order for abstract LTS is based on a simulation between
abstract states. More in detail, we say that M◦2 simulates M◦1 (M◦1 4lts M◦2 )
whenever: 1) M◦2 approximates M◦1 ; 2) the set of labels of transitions leaving
from M◦1 is the same than the one of transitions leaving from M◦2 ; 3) there
exists a function Ht : Ts(M1

◦) → Ts(M2
◦) between the transitions of M◦1 and

M◦2 mapping target states different from the source state M◦1 in target states

different from M◦2 . In more detail, each move M◦1
Θ,∆◦1 ,r−−−−→

◦
N◦1 has to be matched

by a move M◦2
Θ,∆◦2 ,r−−−−→

◦
N◦2 , related to the same label Θ, and such that ∆◦1 vI ∆◦2,

showing that the interval of multiplicities are properly approximated and N◦2
simulates N◦1 . We also require that N◦1 6= M◦1 ⇔ N◦2 6= M◦2 in order to guarantee
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that approximations preserve the self-loops without introducing new ones. This
is a necessary condition for assuring the correctness in the case of termination
properties. It is worth noting that approximation without the previous condition
can be profitably used for proving simple reachability properties (see [15]).

We also introduce a function, called best abstraction, which can be used
to relate concrete LTSs to abstract LTSs. In detail, the best abstraction of a
concrete LTS lts gives an abstract LTS which is equivalent to the concrete lts.

Definition 4.13 (Best abstraction of LTS). We define αlts : LT S → LT S◦
such that

αlts((S,→,M0, E)) = ({M•}M∈S ,→•,M0
•, E)

where →• = {M• Θ,∆•,r−−−−→
◦
M•1 |M

Θ,∆,r−−−−→M1 ∈→}.

Note that αlts(lts) does not introduce any approximation, indeed, it has
exact intervals of multiplicities, both in states and transitions.

Using function αlts, we can formally define when an abstract LTS lts◦ safely
approximates a concrete lts, i.e., αlts(lts)v◦ltslts◦.

The following theorem shows that the abstract LTS derived from an ab-
stract state M◦ safely approximates the concrete LTS LTS((E,M)), for any M
represented by M◦. Specifically, the abstract LTS LTS◦((E,M◦)) safely approx-
imates (w.r.t. the order v◦lts) the best abstraction of LTS LTS((E,M)) for each
M represented by M◦.

Theorem 4.14 (Soundness of the LTS). Let E be an environment and M◦ ∈
M◦. For each M ∈ γ(M◦), we have

αlts(LTS((E,M)))v◦lts LTS◦((E,M◦)).

The proof of Theorem 4.14 can be found in AppendixA.

4.4. Complexity and widening operators
Let us now discuss the complexity of the proposed approach. First, we focus

on the complexity of finding and splitting hybrid states. To help the intuition,
in this presentation, to detect an hybrid state, splitting it, splitting the incoming
abstract transitions and then deriving the new abstract transitions leaving from
such a state, have been described as four separated steps. However, an efficient
implementation computes SE(M◦) and uses it to detect if the state is hybrid and,
at the same time, to determine which are the abstract transitions enabled for
that state. If the state is hybrid, the information on the split intervals is used to
determine directly the abstract transitions enabled for the split state. Moreover,
once an abstract rule is applied, allowing an abstract state M◦ to move into an
abstract state M◦1 , the information on the multiplicity of reagents that vary are
used, together with SE(M◦), to determine the new set of constraints SE(M1

◦).
More important is to give a bound on the number of states and tran-

sitions of the abstract LTS which models the semantics of a CGF process,
that is LTS◦((E,M◦)) for some environment E and initial abstract state M◦.
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LTS◦((E,M◦)) represents a set of concrete LTSs for all the multisets which are
approximated by M◦.

In it worth noting that the abstract LTS proposed in [15] has exactly as many
states and abstract transitions as the biggest LTS it represents. Moreover, in
such a semantics each abstract state M◦ has exactly n exiting transitions, where
n is the number of reactions in the environment E. Each abstract transition
is decorated by a distinct label Θ identifying the reaction of the environment
which is realized.

In the refined LTS proposed here each abstract transition (related to a label
Θ) can be approximated by several abstract transitions (related to label Θ) due
to the partitioning of hybrid states.

Given an abstract state which is hybrid w.r.t. the environment E it is
possible to give a bound on the number of abstract states obtained from the
splitting of M◦. Let n1 be the number of variables appearing in homeo reactions
enabled in M◦ and whose interval of multiplicity is actually split, while n2 is
the number of variables appearing just in unary or binary reactions enabled
in M◦ and whose interval of multiplicity is actually split. In the worst case
the abstract state M◦ is partitioned into (3)n1 × (2)n2 different abstract states.
Notice that (3)n1 × (2)n2 is also the maximum number of different transitions
with the same label leaving from an abstract state. Therefore, for all abstract
state M◦, the cardinality of Ts(M◦) is n× (3)n1 × (2)n2 , in the worst case.

More in detail, to give a bound on the number of variables that were actually
split, we have to compute the number of variables X such that M◦ |= (X ≥ a)
and M◦ |= ¬(X ≥ a) with (X ≥ a) / SE(M◦). In the worst case, whenever
no information on the set of variables X having the previous property can be
deduced from reactions of E, a bound for n1 + n2 can be computed considering
the number of different variables appearing in SE(M◦) and then, by further
approximations, of different reagents appearing in the inequality constraints of
Ap(E).

Finally, note that the set of states obtained by the splitting has some inter-
esting properties; (i) there is at least one terminated state; (ii) among the non-
terminated states obtained from the splitting, only one will have the same set
of enabled reactions than the original state, all the other non-terminated states
will have much less reactions enabled. In more detail, assuming no homeo reac-
tions enabled in M◦ and denoting with n the number of reactions enabled for
the original state, the splitting will originate

(
n
k

)
states with k reaction enabled,

for k ∈ {1, ...n}.
It should be clear that the complexity of the abstract model depends on the

number of hybrid states that are generated applying the rules of the abstract
semantics. Therefore it strictly depends on the characteristics of the system and
on the set of experiments we want to model. However, it can be useful to give
an upper bound on the number of states (and therefore of transitions) that our
abstract model will have in the worst case. Such bound can be used to decide
when it is the case to apply such method. For this reason, let us compare the
numbers of states of our abstract model (in the worst case) w.r.t. the number
of states of the biggest LTS it represent, let’s say lts. By our LTS semantics,
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each concrete state M of lts has exactly n exiting transitions and, in the worst
case, n different states (remember that n was the number of reactions in the
environment E). Of course, some of these transitions will have at least one
multiplicities equal to 0 and therefore could be omitted. Moreover, some of the
n states that we derive could be not new distinct states. However, in the worst
case, the biggest number of states of lts can be computed as Σhi=1n

i, where
h ∈ [0,∞] is the maximal distance3 from a state of the transition system to the
initial state. Let us consider now our abstract LTS model which represents a set
of concrete LTSs that include lts. If the set of concrete LTSs that we want to
approximate coincides with lts, then our abstract model substantially coincides
with lts. Otherwise, to give an upper bound in the worst case, we can count
the number of states obtained splitting each state right after the application of
each reaction. The worst case is obtained splitting each state according to the
reaction of E that produces more intervals. In this case such splitting, partitions
the hybrid state in a set of at most 4 states. In more detail, let m = 4 if the
environment E contains a binary reaction that consumes both reactant X and
Y without adding neither a new occurrence of X neither of Y , m = 3 if the
environment E contains at least an homeo reaction4, m = 2 in any other case.
Then Σhi=1(n × m)i constitute an upper bound on the number of states and
transitions of the abstract model. Note that Σhi=1(n ×m)i is a number that is
a lot greatest than the number of states and transitions in our abstract model
but it is the only one we can calculate considering a generic environment E,
moreover, it is obtained considering the splitting of each state according to the
worst case scenario without taking into account the terminated states. Actually,
in any case, the dimension (number of states and transitions) of the abstract
model we construct will be smaller than sum of all the states and transitions of
each LTS it represents.

In any case, in order to reduce the number of non-terminated abstract states,
several widening operators can be designed.

One idea is to define a widening operator that will allow us to more naturally
model reverse reactions, that are reactions that allows the system to return back
to a previously encountered state. The problem arises in the abstract setting
when we split an hybrid state and then apply a reverse reaction. Indeed, in
general, applying a reverse reaction to a split state will not lead to a previously
derived state. That is because the split state contains more precise information
w.r.t. the previously derived states.

To overcome this problem, here we propose the following widening operator.
Given a state M◦, we first compute the new abstract state M ′◦, result of the
application of the transition rules of Table 3. Then, if M ′◦ 6= M◦ and there

3The distance is defined as the minimal length of the path connecting two states.
4For a sake of simplicity, in this paper we have presented a splitting that partition an

interval in 3 for variables appearing in homeo reaction. A more efficient partitioning would
split the interval in 2 if a variables appears as premise of homeo reactions only and in 3 if it
appears as premise in homeo and binary or unary reaction. In that case, m become 2 also for
some environments containing homeo reactions.
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Figure 6: The LTS semantics.

exists one previously derived state along a path leading to M◦, let us call it
M◦1 , such that M◦1 6= M◦ and M◦1 AI M ′

◦5, we approximate M ′◦ by M◦1 . Of
course, this will reduce the number of new generated abstract states.

In the following we always assume the application of the previous widening
operator to each derivation step.

Example 4.15. We consider the environment E commented in Example 3.1
which models reactions R1 : X + Y → X +X and R2 : X + Y → Y + Y ,

E , X = aλr .X + b̄δr.Y, Y = āµr .X + bηr .Y.

Fig. 6 shows the complete abstract LTS for the initial abstract state M◦5 =
{([1, 3], X), ([1, 3], Y )}, where

M0
◦ = {([0, 0], X), ([2, 4], Y )} M6

◦ = {([2, 4], X), ([0, 0], Y )}
M4
◦ = {([1, 2], X), ([2, 4], Y )} M1

◦ = {([0, 0], X), ([3, 5], Y )}
M3
◦ = {([1, 1], X), ([3, 5], Y )} M2

◦ = {([0, 0], X), ([4, 6], Y )}
M7
◦ = {([2, 4], X), ([1, 2], Y )} M8

◦ = {([3, 5], X), ([0, 0], Y )}
M9
◦ = {([3, 5], X), ([1, 1], Y )} M10

◦ = {([4, 6], X), ([0, 0], Y )}

Note that, for each abstract state, the moves corresponding to reaction R1

are labeled by (λ, µ), while the moves corresponding to reaction R2 are labeled
by (δ, η). Finally, note the effect of the application of the widening operator.
For example, starting from state M4

◦, the move corresponding to reaction R1

(labeled (δ, η)) lead the system to state M3
◦. On the other hand, starting from

M3
◦, the move corresponding to reaction R2 (labeled (λ, µ)) allows the system to

5If more than one such state exists, the order v◦, a total order on variables of X and the
order vI on I can be used to deterministically choose one.
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go back in state M4
◦. Observe that this behavior ”mimic” the one of the concrete

LTS (see Fig. 5) and follows our intuition that R1 and R2 are, in some ways,
one the reverse reaction of the other. However, without the widening, from state
M3
◦ the system would not go back to state M4

◦ , but it would evolve (with a
transition labeled (λ, µ)) in a new state {([2, 2], X), ([2, 4], Y )}@◦M4

◦.

5. Labeled Interval Markov Chains

We present a generalization of Interval Markov Chains [51, 24], called Labeled
Interval Markov Chains (IMC6), and the related notion of probabilistic termi-
nation. Moreover, we introduce the concepts necessary to prove the soundness
of the abstract probabilistic semantics of CGF w.r.t. probabilistic termination
(presented in Section 6). The notions presented for IMC are adapted from those
proposed in [51, 24] for standard Interval Markov Chains and similarly in [22, 23]
for Markov Decision Process (MDP).

5.1. The probabilistic model
The model of Interval Markov Chains [51, 24] combines probabilistic and

non-deterministic steps. Thus, each state has associated a set of probability
distributions describing the probability to move in any other state. In the
standard model transitions report intervals of probability, which represent lower
and upper bounds on the concrete probabilities. Unfortunately, this model is not
adequate to abstract a set of DTMC. Indeed, it may give not accurate results for
probabilistic termination, even when considering a partitioning of the abstract
state space which does not contain hybrid states. As an example we consider
again the system commented in Examples 3.1 and 4.15.

Example 5.1. We examine the probabilistic behavior of the system considering
the initial abstract state

M◦5 = {([1, 3], X), ([1, 3], Y )}

w.r.t. the environment E, modeling reactions R1 : X + Y → X + X and
R2 : X + Y → Y + Y ,

E ::= X = aλr .X + b̄δr.Y, Y = āµr .X + bηr .Y.

We recall that the abstract states M◦6 , M◦7 , M◦0 and M◦4 are reachable from
M◦5 , where

M6
◦ = {([2, 4], X), ([0, 0], Y )} M7

◦ = {([2, 4], X), ([1, 2], Y )}
M0
◦ = {([0, 0], X), ([2, 4], Y )} M4

◦ = {([1, 2], X), ([2, 4], Y )}.

6Note that the acronym IMC is also used in the literature to indicate Hermanns’ Interactive
Markov Chains.
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The fragment of LTS reporting the transitions exiting from the abstract state
M◦5 is shown in Fig. 7(a).

In order to reason which intervals of probability could be (safely) assigned
to the moves of M◦5 , it is convenient to examine the set of concrete probability
distributions, for each concrete multiset M5, abstracted by M◦5 , that is for each
concrete multiset M5 ∈ γ(M◦5 ). For the initial solution, containing exactly 3
occurrences of reagents X and Y , the probabilistic semantics is illustrated by the
DTMC, shown in Fig. 5 and commented in Example 3.1. Other concentrations
of reagents X and Y show analogous behaviors.

We observe that, for each M5 ∈ γ(M◦5 ), there are two possible synchroniza-
tions between reagents X and Y : one corresponding to reaction R1 and the other
one corresponding to reaction R2. For each multiset, the two alternative moves
always happen with probability 1/2.

Moreover, each multiset M5 by realizing reaction R1 evolves into a solution,
which is abstracted either by M◦7 (where reagent Y is still available) or by M◦6
(where reagent Y is consumed). Analogously, for reaction R2 and the abstract
states M◦4 and M◦0 .

As a consequence, the abstract probability distributions which can be assigned
to the abstract state M◦5 and which over-approximate (include) the concrete
probability distributions for each multiset M5 ∈ γ(M◦5 ) are:

ρ1(M◦7 ) = 1/2, ρ1(M◦6 ) = 0, ρ1(M◦0 ) = 1/2, ρ1(M◦4 ) = 0,
ρ2(M◦7 ) = 1/2, ρ2(M◦6 ) = 0, ρ2(M◦0 ) = 0, ρ2(M◦4 ) = 1/2,
ρ3(M◦7 ) = 0, ρ3(M◦6 ) = 1/2, ρ3(M◦0 ) = 1/2, ρ3(M◦4 ) = 0,
ρ4(M◦7 ) = 0, ρ4(M◦6 ) = 1/2, ρ4(M◦0 ) = 0, ρ4(M◦4 ) = 1/2.

It should be clear that intervals of probabilities representing the abstract prob-
ability distributions ρi with i ∈ {1, . . . , 4} could be obtained by considering the
minimum and maximum probability, for each move. The intervals we would
obtain in this way are illustrated in Fig. 7(b).

Notice that the intervals of probability in Fig. 7(b) represent in addition to
the probability distributions ρi, with i ∈ {1, . . . , 4}, also the following abstract
probability distributions,

ρ5(M◦7 ) = 1/2, ρ5(M◦6 ) = 1/2, ρ5(M◦0 ) = 0, ρ5(M◦4 ) = 0,
ρ6(M◦7 ) = 0, ρ6(M◦6 ) = 0, ρ6(M◦0 ) = 1/2, ρ6(M◦4 ) = 1/2.

The probability distributions ρ5 and ρ6 do not describe any concrete behavior
for a concrete state M5 ∈ γ(M◦5 ). Probability distribution ρ5 models a proba-
bilistic choice between two moves corresponding to reaction R1, corresponding
to different concentrations of reagent variables X and Y . Similarly, probability
distribution ρ6 models a probabilistic choice between two moves corresponding
to reaction R2, corresponding to different concentrations of reagent variables X
and Y .

Note that there is a conflict between the transitions (t◦1) and (t◦2) (see Fig.7(a))
and between the transitions (t◦3) and (t◦4), respectively. This information about
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{(λ,µ)},([1,2],[1,1]),r
33

{(λ,µ)},([1,2],[2,2]),r //

{(δ,η)},([1,1],[1,2]),r ++
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''

M◦7 (t◦2)

M◦0 (t◦3)

(a) M◦4 (t◦4)

M◦6

M◦5

[0,1/2]
77

[0,1/2] //

[0,1/2] ''
[0,1/2]

��

M◦7

M◦0

(b) M◦4

M◦6

M◦5

{(λ,µ)},[1/2,1/2]
66

{(λ,µ)},[1/2,1/2]//

{(δ,η)},[1/2,1/2] ((
{(δ,η)},[1/2,1/2]

""

M◦7

M◦0

(c) M◦4

Figure 7: The intervals of probabilities and the labeled transitions for M◦5 .

conflict is represented in the abstract LTS semantics by means of labels: the
transitions abstracting reaction R1 are decorated by label (λ, µ) and the moves
abstracting reaction R2 are decorated by label (δ, η). �

The previous example shows that standard Interval Markov Chains typically
introduce a serious loss of information w.r.t. the concrete behavior, even if we
consider the most precise intervals of probability which over-approximates the
set of concrete probability distributions of a move (namely their best abstrac-
tion). Notice that the methodology explained in the Example 5.1 for computing
the intervals of probability of a move is not effective given that it requires to
calculate for each multiplicity of reagent variables, abstracted by intervals, all
the concrete probability distributions, e.g. the values of concrete rates of all
transitions.

Since labels in the abstract LTS precisely represent conflicting moves, the
idea is to enrich with labels the standard model of Interval Markov Chains.
Using labels and a corresponding notion of conflict, it is possible to more accu-
rately represent the set of probability distributions represented by intervals of
probability.

Definition 5.2 (IMC). A Labeled Interval Markov Chain is a tuple (S◦,P−,P+,L,M◦0 )
where

1. S◦ ⊆M◦ is a countable set of abstract states and M0
◦ ∈ S◦ is the initial

state;
2. P−,P+ : S◦ → SDistr(S◦) are the lower and upper bounds on probabili-

ties, such that for each M1
◦,M2

◦ ∈ S◦, P−(M1
◦)(M2

◦) ≤ P+(M1
◦)(M2

◦);
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3. L : S◦ → (S◦ → ℘(L̂)) is a labeling function.

As in the standard model, P−(M1
◦)(M2

◦) and P+(M1
◦)(M2

◦) define the
lower and upper bound probability, for the move from M1

◦ to M2
◦, respectively.

In addition, L(M1
◦)(M2

◦) reports the set of labels corresponding to the move.
In the following we use IMC◦ to denote the set of IMC.

Intervals of probability represent sets of admissible distributions. Obviously,
the notion of admissible distribution has to be slightly adapted from the one
given for the standard model [51, 24]. Actually, it is necessary to take into
account the conflict between (sets of) labels.

Definition 5.3 (Conflict of labels). Let α, β ∈ ℘(L̂) be sets of labels. We
say that α is in conflict with β iff there exists ϑ ∈ L̂ such that α = {ϑ} = β.

Note that to be in conflict two sets of labels has to be singleton. To help
the intuition, consider the two sets of labels {α, β} and {β}. The set {α, β}
should not be considered in conflict with the set {β} since the move associated
to {α, β} may approximate a move labeled α while the move associated to {β}
may approximate a move labeled β of the same concrete state M represented
by M◦.

The notion of conflict between labels induces a corresponding notion of con-
flict between states. Let (S◦,P−,P+,L,M◦0 ) be an IMC and M◦ ∈ S◦. We
say that NS◦ ⊆ S◦ is a set of consistent states w.r.t. M◦ iff: (i) for each
M◦1 ,M

◦
2 ∈ NS◦, there is no conflict between the sets of labels L(M◦)(M◦1 ) and

L(M◦)(M◦2 ); (ii) NS◦ is a maximal set of states satisfying (i).

Definition 5.4 (Admissible distribution). Let mc◦ = (S◦,P−,P+,L,M◦0 )
be an IMC and let M◦ ∈ S◦. We say that a probability distribution ρ ∈ Distr(S◦)
is admissible for M◦ iff there exists a set of consistent states NS◦ ⊆ S◦ such
that, for each M◦1 ∈ S◦: if M◦1 ∈ NS◦, then P−(M◦)(M◦1 ) ≤ ρ(M◦1 ) ≤
P+(M◦)(M◦1 ); ρ(M◦1 ) = 0, otherwise. We use ADistrmc◦(M◦) for the set of
admissible distributions for M◦.

Intuitively, an admissible distribution for an abstract state M◦ corresponds
to a set of consistent states NS◦ and reports a value included in the interval of
probability, for each state contained in NS◦ and zero otherwise.

Example 5.5. We consider the abstract states M◦5 , M◦6 , M◦7 , M◦0 and M◦4 ,
commented in Example 5.1.

The IMC illustrated in Fig. 7(c) reports four consistent sets of states w.r.t.
M◦5 : (1) {M◦6 ,M◦0 }, (2) {M◦6 ,M◦4 }; (3) {M◦7 ,M◦0 } and (4) {M◦7 ,M◦4 }. Thus,
the admissible distributions for M◦5 , corresponding to (1)-(4), are exactly the
distributions ρ1 − ρ4, discussed in Example 5.1.

Notice that the combinations (1)-(4) represent the probabilistic choices be-
tween reactions R1 and R2, corresponding to different concentrations of reagent
variables X and Y . As a consequence, the IMC of Fig.7(c) not only over-
approximates the probabilistic semantics for each concrete multiset represented
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by M◦5 , but also it is their most precise approximation. The advantages of the
new IMC model with respect to the standard one in terms of precision become
clear by comparing the IMC of Fig. 7(c) with the model without labels Fig. 7(b).�

In an IMC, for each state, there is a choice between the distributions yielding
the probability to reach successor states. This non-determinism is resolved by
means of a scheduler, that can be defined similarly as in [51, 24].

The notions of paths Paths(), finite paths FPaths() and cylinder for IMC
are analogous to the ones presented for DTMC (see Section 2.2). We therefore
adopt similar notations.

Definition 5.6 (Scheduler). Let mc◦ = (S◦,P−,P+,L,M◦0 ) be an IMC, a
scheduler is a function A : FPaths(S◦)→ Distr(S◦) such that A(π◦) ∈ ADistrmc◦(π◦[|π◦|])
for any abstract path π◦ ∈ FPaths(S◦). We use Adv(mc◦) to denote the set of
schedulers.

Given a scheduler which resolves the non-determinism, a probability space
over paths can be defined analogously as for DTMC (see Definition 2.4). In
the following, we use PA

M◦ for denoting the probability space, starting from the
abstract state M◦ w.r.t. the scheduler A ∈ Adv(mc◦).

An IMC gives both lower and upper bounds for probabilistic termination
which can be computed by considering the worst and best scenarios w.r.t. all
the schedulers. For capturing probabilistic termination we have to introduce
the concept of terminated abstract state.

Given an IMC mc◦ = (S◦,P−,P+,L,M◦0 ), it holds that a state M◦ ∈ S◦
is ∀-terminated iff for each ρ ∈ ADistrmc◦(M◦) ρ(M◦) = 1, while M◦ is ∃-
terminated iff there exists a ρ ∈ ADistrmc◦(M◦) such that ρ(M◦) = 1.

The lower bound for probabilistic termination is obtained by minimizing the
probability of the paths reaching a ∀-terminated state, while the upper bound
for probabilistic termination is obtained by maximizing the probability of the
paths reaching a ∃-terminated state.

Definition 5.7 (Probabilistic termination). Consider the following IMC,
mc◦ = (S◦,P−,P+,L,M◦0 ). The lower and upper bound for probabilistic ter-
mination, starting from M◦ ∈ S◦, are

Reach−mc◦(M
◦) = infA∈Adv(mc◦) PA

M◦({π◦ ∈ C(M◦) | π◦[i] is ∀-terminated
for some i ≥ 0})

Reach+
mc◦(M

◦) = supA∈Adv(mc◦) PA
M◦({π◦ ∈ C(M◦) | π◦[i] is ∃-terminated

for some i ≥ 0})

Similarly as for DTMC, both Reach−mc◦(M
◦) and Reach+

mc◦(M
◦) can be cal-

culated by a fixpoint computation. We refer the interested reader to [5, 22, 23,
24] for more detail.

In order to simplify the proofs, it is convenient to exploit the following
formulation of Reach−mc◦(M

◦) and Reach+
mc◦(M

◦) as fixpoint equations.
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Let mc◦ = (S◦,P−,P+,L, ,M◦0 ) be an IMC. For each i ∈ N, we define
pseudo-distributions on S◦, ρ−,imc◦ , ρ

+,i
mc◦ ∈ SDistr(S), where for each M◦ ∈ S◦,

ρ−,imc◦(M
◦) =





1 if M◦ is ∀-terminated,

0 if i = 0 and

M◦ is non ∀-terminated,

inf
ρ∈ADistrmc◦ (M◦)

∑

M◦1∈S◦
ρ(M◦1 ) · ρ−,i−1

mc◦ (M◦1 ) otherwise.

ρ+,i
mc◦(M

◦) =





1 if M◦ is ∃-terminated,

0 if i = 0 and

M◦ is non ∃-terminated,

sup
ρ∈ADistrmc◦ (M◦)

∑

M◦1∈S◦
ρ(M◦1 ) · ρ+,i−1

mc◦ (M◦1 ) otherwise.

By induction on i, it can be proved that ∀i, ρ−,imc◦ ⊆ ρ−,i+1
mc◦ and ρ+,i

mc◦ ⊆ ρ+,i+1
mc◦ .

Since the set of pseudo-distributions on S constitutes a complete lattice, the
following least fixpoints exist,

Reach−mc◦(M
◦) =

⋃
i∈{0,...,∞} ρ

−,i
mc◦(M

◦),
Reach+

mc◦(M
◦) =

⋃
i∈{0,...,∞} ρ

+,i
mc◦(M

◦).

Finally, notice that the problem of model checking our IMC can be reduced,
as in the case of standard Interval Markov Chains, to the verification of a corre-
sponding MDP obtained by exploiting the labels and considering the so-called
extreme distributions. Roughly speaking, such MDP has the same abstract
states than the corresponding IMC. Moreover, the set {ρ1, ...., ρn} of distribu-
tions associated to an abstract state M◦ can be computed in the following way;
for each combination of moves (from M◦) with non conflicting labels, for each
move of the selected combination except one, the probability value of distribu-
tion ρi for the move has to coincides with one of two bounds of the interval of
probabilities for such move. Note that the probability value for the remaining
move is univocally determined by the property that ρi ∈ Distr. In Section 7.3
we will show that the complexity of this reduction from the IMC to the MDP
model is comparable to the analogous one for standard Interval Markov Chains.
Analogously to the case of Interval Markov Chains, more efficient iterative algo-
rithms, which construct a basic feasible solution on-the-fly, can also be defined
to model check IMC (see [51, 24] and [33] where transition probabilities of a
uniform CTMC are abstracted by intervals and then interpreted as a CTMDP).

5.2. Soundness and Precision of Approximations
We now introduce the notions necessary for reasoning on the soundness and

precision of IMC w.r.t. the property of probabilistic termination.
In the style of [51, 24, 22, 23], and analogously to what we have done for

abstract LTSs in Section 4.3, we introduce an approximation order v◦mc in
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order to compare the behavior of two IMC in terms of precision. Intuitively,
mc1

◦v◦mcmc2◦ says that the IMC mc2
◦ is coarser than the IMC mc1

◦ (or
equivalently that it is a safe approximation).

Definition 5.8 (Order on IMC). Let mc◦i = (Si◦,P−i ,P
+
i ,L,M

◦
0,i) be two

IMC and let M◦i ∈ S◦i , for i ∈ {1, 2}. We say that M◦′1 4mc M◦′2 iff there
exists a relation R ⊆ S◦1 × S◦2 such that M◦′1RM

◦′
2 and if M◦1RM

◦
2 then:

1. M◦1v◦M◦2 ;
2. for each distribution ρ1 ∈ ADistr(M◦1 ) there exists a pseudo-distribution
δ ∈ Distr(S◦1 × S◦2 ) and a distribution ρ2 ∈ ADistr(M◦2 ) such that, for any
N1
◦ ∈ S1

◦ and N2
◦ ∈ S2

◦:
(a) ρ1(N◦1 ) =

∑
N◦2∈S◦2 δ(N

◦
1 , N

◦
2 ) and ρ2(N◦2 ) =

∑
N◦1∈S◦1 δ(N

◦
1 , N

◦
2 );

(b) if δ(N◦1 , N
◦
2 ) > 0 then

i. M◦1 6= N◦1 iff M◦2 6= N◦2 ;
ii. N◦1 4mc N◦2 .

We say that mc1◦v◦mcmc2◦ iff M◦0,1 4mc M◦0,2.

The approximation order v◦mc is based on a sort of probabilistic simulation
between abstract states. In particular, an abstract state M◦2 simulates an ab-
stract state M◦1 (M◦1 4mc M◦2 ) provided that: 1. M◦2 approximates M◦1 ; 2. the
set of admissible distributions for M◦2 over-approximates that of M◦1 . Condition
2. requires that each probability distribution ρ1, associated to M◦1 , is matched
by a corresponding probability distribution ρ2, associated to M◦2 . Given that
different abstract states of S◦1 can be abstracted by the same abstract state
of S◦2 , then their values of probability reported by ρ1 have to be summed up
in the probability distribution ρ2. This calculation is realized by means of a
pseudo-distribution δ ∈ Distr(S◦1 ×S◦2 ), as it is captured by requirement (a). As
in the case of Definition 4.12, requirement (b) assures us that approximations
preserves the self-loops without introducing new ones.

The following theorem shows that the notion of approximation order v◦mc is
sound for the property of probabilistic termination. If mc2◦ safely approximates
mc1

◦, that is mc1◦v◦mcmc2◦, then the lower and upper bounds for probabilistic
termination over mc1◦ are finer than those over mc2◦. Obviously, this result
refers to the values of probability calculated for two abstract states M◦1 and M◦2
of mc1◦ and mc2

◦ such that M◦1 4mc M◦2 (thus, including the initial states).

Theorem 5.9 (Soundness of the order). Let mc◦i = (Si◦,P−i ,P
+
i ,Li,M

◦
0,i)

be two IMC and let Mi
◦ ∈ Si◦, for i ∈ {1, 2}. If M1

◦ 4mc M2
◦, then

Reach−mc◦2 (M2
◦) ≤ Reach−mc◦1 (M1

◦) ≤ Reach+
mc◦1

(M1
◦) ≤ Reach+

mc◦2
(M2

◦).

The proof of Theorem 5.9 can be found in AppendixB.
Similarly as in the case of abstract LTS, we introduce a best abstraction

function which can be used to relate DTMC and IMC.
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Definition 5.10 (Best abstraction). We define αMC : MC → IMC◦ such
that

αMC((S,P,L,M0)) = ({M•}M∈S ,P−α ,P+
α ,L,M0

•),

where P−α (M1
•,M2

•) = P+
α (M1

•,M2
•) = P(M1)(M2).

Also in this case, the IMC αMC(mc) which is the best approximation of a
DTMC mc, gives a representation equivalent to mc. In particular, αMC(mc)
has exact intervals of multiplicity in the abstract states and exact intervals of
probability on transitions. As a consequence of the previous definition and of
the Condition iii) of Definition 2.3, we can state the following proposition.

Proposition 5.11. Let mc = (S,P,L,M0) be a DTMC. For all M ∈ S,

Reachmc(M) = Reach+
αMC(mc)(M

•) = Reach−αMC(mc)(M
•)

Using function αMC , we can formally define when an IMC mc◦ safely ap-
proximates a DTMC mc, i.e., αMC(mc)v◦mcmc◦.

6. Abstract Probabilistic Semantics

We define the abstract probabilistic semantics of CGF, by giving a system-
atic method for deriving an IMC from an abstract LTS. Moreover, we prove
the soundness of the abstract probabilistic semantics with respect to the set of
DTMC which are approximated. The main result shows that abstract proba-
bilistic model checking reports lower and upper bounds for probabilistic termi-
nation which are conservative with respect to the concrete ones.

6.1. Derivation of the IMC
The abstract LTS semantics reports on transitions a label representing the

reaction (obtained from the tags of the basic actions which participate in the
move), intervals of multiplicity representing a possible range of multiplicities
for the related reagent variables, and the rate of the basic action. Therefore,
the IMC derived from an abstract LTS will have for each move a set of labels,
corresponding to the set of reactions, and a related interval of probability. Ob-
viously, the difficult part of the translation consists in computing the intervals
of probability for each move from the information recorded on the associated
abstract transition labels.

The methodology that is applied for calculating the intervals of probability
corresponding to a move from an abstract state M◦ to an abstract state M ′◦ is
similar to the one used in the concrete case. First, the abstract rate of the move
from M◦ to M ′◦ is derived from the abstract rates of the abstract transitions
from M◦ to M ′◦ (reported by Ts(M◦,M ′◦)). Then, the related interval of
probability is calculated by taking into account the abstract rate of the abstract
transitions exiting from M◦ (reported by Ts(M◦)).

We recall that in the concrete case, the exit rate for a multiset M represents
precisely the rate of all the transitions exiting from M (reported by Ts(M)). In
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the abstract case, however, the conflict expressed by labels shows that not all
the abstract transitions exiting from an abstract state M◦ approximate moves
of the same multiset M that is represented by M◦ (e.g. M ∈ γ(M◦)). It should
be clear that the information on conflicting labels has to be profitably exploited
in order to limit the non-determinism introduced by the abstraction and thus
to derive more precise intervals of probability.

A possible strategy for exploiting the labeling of the abstract LTS consists
of considering, for any abstract state M◦, different abstract exit rates, each cor-
responding to a maximal set of transitions of Ts(M◦) having non conflicting
labels. In this case, the interval of probability for the move from M◦ to an ab-
stract state M ′◦ requires to take into account all the abstract exit rates for M◦

which contain a transition of Ts(M◦,M ′◦). Intuitively, the interval of probabil-
ity can be calculated by combining the abstract rate of the move Ts(M◦,M ′◦)
with each abstract exit rate for M◦ that includes a transition of Ts(M◦,M ′◦).

Note that, in the abstract case, the abstract rate of a transition will be an
interval of rates that can be derived from the information recorded on abstract
transition labels, similarly as in the concrete case. Intuitively, the abstract rate
of a transition can be obtained, by multiplying the rate r of the basic action
with the minimum and the maximum multiplicities of the reagent variables,
which participate in the move.

In order to illustrate the proposed technique for calculating the intervals of
probability we consider again the system commented in Examples 3.1, 4.15 and
5.1 and we examine the situation for the abstract state M◦5 ,

M◦5 = {([1, 3], X), ([1, 3], Y )}.

The fragment of abstract LTS reporting the transitions exiting from M◦5
(denoted by t◦1, t◦2, t◦3 and t◦4) is illustrated in Fig. 7(a), where

M6
◦ = {([2, 4], X), ([0, 0], Y )} M7

◦ = {([2, 4], X), ([1, 2], Y )}
M0
◦ = {([0, 0], X), ([2, 4], Y )} M4

◦ = {([1, 2], X), ([2, 4], Y )}

We also recall that the environment E models the reactions R1 : X + Y →
X + X and R2 : X + Y → Y + Y . The transitions modeling reaction R1 are
decorated by label (λ, µ), while those modeling reaction R2 are decorated by
label (δ, η).

For M◦5 there are four combinations of transitions with non conflicting labels:
(a) t◦1 and t◦3, (b) t◦1 and t◦4, (c) t◦2 and t◦3, (d) t◦2 and t◦4. Each combination
(a), (b), (c) or (d) lead to a different abstract exit rate for M◦5 , denoted by
E◦a(M◦5 ),E◦b(M

◦
5 ), E◦c(M

◦
5 ) and E◦d(M

◦
5 ), respectively.

The abstract exit rates E◦a(M◦5 ),E◦b(M
◦
5 ), E◦c(M

◦
5 ) and E◦d(M

◦
5 ) can be used

in order to calculate the interval of probability associated to the abstract transi-
tions t◦1, t◦2, t◦3 and t◦4. As an example, we explain how the interval of probability
for the move from M◦5 to M◦6 (corresponding to transition t◦1) can be derived.
In this case, we have to take into account two abstract exit rates, corresponding
to combinations (a) and (b), that include transition t◦1.
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The calculation requires to compute the abstract rates of transitions t◦1,t◦3
and t◦4. For each transition the abstract rate can easily be derived by multiplying
the rate r of both reactions with the minimum and the maximum multiplicities
of reagents X and Y , in the corresponding intervals of multiplicity. Thus, we
obtain the following intervals of rates

rate◦(t1◦) = [1 · r, 2 · r]
rate◦(t3◦) = [1 · r, 2 · r]
rate◦(t4◦) = [2 · r, 4 · r]

Then, for the abstract exit rates E◦a(M◦5 ) and E◦b(M
◦
5 ) related to combina-

tions (a) and (b), we have the following intervals of rates,

E◦a(M◦5 ) = rate◦(t1◦) + rate◦(t3◦) = [2 · r, 4 · r]

E◦b(M
◦
5 ) = rate◦(t1◦) + rate◦(t4◦) = [3 · r, 6 · r].

Now, the interval of probability for the move corresponding to t◦1 can easily
be derived from the previous information. For each combination i ∈ {a, b}, by
minimizing and maximizing the expression rate◦(t1

◦)
E◦i (M◦5 ) we obtain a lower and an

upper bound for the probability of the move t◦1 w.r.t. to combination (i). Hence,
the interval of probability for the move t◦1 can be derived from the lower and
upper bounds of each combination. We obtain

min(
rate◦(t1◦)
E◦a(M◦5 )

) = 1/4 max(
rate◦(t1◦)
E◦a(M◦5 )

) = 1 (4)

min(
rate◦(t1◦)
E◦b(M

◦
5 )

) = 1/6 max(
rate◦(t1◦)
E◦b(M

◦
5 )

) = 2/3. (5)

Thus, the interval of probability for the move t◦1 is [1/6,1].
The technique illustrated by the previous example has two main drawbacks:

(i) the intervals of probability obtained are not accurate; (ii) it is computation-
ally very expensive.

As far as it concerns (i), the technique uses a direct calculation of the abstract
rates of transitions which introduces a clear loss of information. For example,
let us consider the interval of probability [1/4, 1] for the move t◦1, corresponding
to combination (a), as it illustrated in (4). The minimum and maximum values
for the expression (4) do not correspond to any coherent values for the reagent
variables X and Y appearing in reactions R1 and R2. In other words, in this
calculation, the relational information about the concentrations of reagents X
and Y is lost.

Hence, we propose a symbolic approach for computing the abstract rates that
better exploits the information on the possible multiplicity of reagents, recorded
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on abstract transition labels. The idea is that the abstract rate assigned to a
transition will be represented by a symbolic expression on reagent variables,
expressing again an interval of rates.

By applying a symbolic approach, we will obtain for the move t◦1 and com-
bination (a) the following expression

rate◦(t1◦)
E◦a(M◦5 )

=
X · Y · r

X · Y · r +X · Y · r where X ∈ [1, 2], Y ∈ [1, 2] (6)

Expression (6) is derived from the abstract rates of transitions t◦1 and t◦3,
similarly as it is explained in the calculation of (4). Moreover, for each transition
the abstract rate can easily be computed from the information reported on the
abstract transition labels: the number of reagent variables X and Y , which
interact in reactions R1 and R2, the related intervals of multiplicity representing
their possible number of occurrences and the rate of the basic action r.

Then, by minimizing and maximizing expression (6) we will obtain lower
and upper bound for the probability of the move t◦1 related to combination (a),

min(
rate◦(t1◦)
E◦a(M◦5 )

) = max(
rate◦(t1◦)
E◦a(M◦5 )

) = 1/2 (7)

The minimum of the symbolic expression corresponds to the values X = 1
and Y = 1, while the maximum corresponds to the values X = 2 and Y =
2. Notice that the interval of probability [1/4, 1] for the move t◦1, related to
combination (a), calculated in (4) using a direct calculation of abstract rates, is
much less precise than the corresponding exact interval [1/2, 1/2], obtained in
(7).

As far as it concerns (ii), the previously proposed methodology for computing
the interval of probability for the moves from an abstract state M◦ requires to
calculate different abstract exit rates, each corresponding to a maximal set of
transitions included in Ts(M◦) with non conflicting labels. In particular, the
derivation of the interval of probability for the move from M◦ to M ′◦ requires to
take into account all the abstract exit rates for M◦ which contain a transition
of Ts(M◦,M ′◦). Specifically, the abstract rate of the move Ts(M◦,M ′◦) has
to be combined with each abstract exit rate for M◦ that includes a transition
of Ts(M◦,M ′◦). In order to reduce the complexity of the calculation of the
intervals of probability we propose a more efficient approximated calculation,
based on the idea of computing, for an abstract state M◦, a unique exit rate
for each abstract state M ′◦. The abstract exit rate of M◦ with respect to M ′◦,
denoted by E◦M ′◦(M

◦), reports the abstract rate of all the transitions, contained
in Ts(M◦), which may appear in parallel with the transitions of Ts(M◦,M ′◦).
In this case, the interval of probability for the move from M◦ to M ′◦ can be
derived from the abstract rate of the move Ts(M◦,M ′◦) and from the abstract
exit rate of M◦ with respect to M ′◦.

We now introduce the concepts that are necessary to formally define the
abstract probabilistic function that translates an abstract LTS into an IMC.
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In order to simplify the presentation we introduce the formal definition of the
translation from abstract LTS to IMC, for a particular class of LTS. More in de-
tail, we consider abstract LTS where more than one transition may be decorated
by the same label but the following condition on labels holds

∀M◦, N◦1 , 6 ∃t◦ ∈ Ts(M◦, N◦2 ),max(rate◦(t◦)) > 0, N◦2 6= N◦1 , such that
label({t◦ ∈ Ts(M◦, N◦1 ) | max(rate◦(t◦)) > 0}) ⊃ label(t◦) ⊃ ∅ (8)

Roughly speaking the previous condition avoids the situation illustrated in
Fig.8

M◦

t◦1
++

t◦2

33

t◦3 ..

N◦1

N◦2

with label(t◦2) = label(t◦3) and label(t◦1) 6= label(t◦2).

Figure 8: A LTS not satisfying Condition(8)

This case complicates the calculation of the exit rate, corresponding to the
move from M◦ to N◦1 , because the rates of transitions t◦1 and t◦2 cannot simply
be summed up. Actually, the conflict between the labels of t◦2 and t◦3 has to be
taken into account.

Note that we need the set inclusion to be strict in the Condition(8), indeed,
if label({t◦ ∈ Ts(M◦, N◦1 ) | max(rate◦(t◦)) > 0}) was equal to label(t◦) ⊃ ∅,
then we were in the standard case where two different transitions share the same
label, and in this case, the conflict can be well captured by the labeling function
label(.).

In AppendixB, we will discuss how to cope with the more general situation
illustrated in Fig.8.

In order to express the abstract rates (representing intervals of rates) in a
symbolic way we adopt the following domain of constrained symbolic expressions
(expression for short) E . An expression e ∈ E is a pair (z, c) : Z × C such that

1. z ∈ Z is a term over reagent variables X and the arithmetic operators
{+, ·, /, −̂},

2. c ∈ C is a set of membership constraints of the form X ∈ I, where X ∈ X
and I ∈ I .

We require that each expression (z, c) ∈ E is well-formed meaning that, for each
variable X occurring in z, there exists exactly one constraint X ∈ I occurring
in c.

Moreover, we define the operators +◦ and /◦ on expressions of E as follows,

(z1, c1)+◦(z2, c2) = (z1 + z2,
⋃
X∈X {X ∈

⋃◦
(X∈I)∈ci,i∈{1,2}I}),

(z1, c1)/◦(z2, c2) = (z1 / z2, c1 ∪ {(X ∈ I) ∈ c2 | 6 ∃(X ∈ I ′) ∈ c1}).
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Then, similarly as in the concrete case we introduce functions that calculate
the abstract rate of an abstract transition, the abstract rate of a move and the
abstract exit rate for an abstract state.

Let (S◦,→◦,M0
◦, E) be an abstract LTS, M ′◦ ∈ S◦ be an abstract state and

Ts◦ ⊆ →◦ be a set of abstract transitions. We define functions rate◦ : TS◦ → E ,
R◦ : S◦ × S◦ → E and E◦M ′◦ : S◦ → E , such that for each M◦ ∈ S◦ and

t◦ = M◦
Θ,∆◦,r−−−−→

◦
M ′◦ ∈ →◦,

rate◦(t◦) =





(X · r, {X ∈ I}) Θ = λ,∆◦ = I, λ ∈ L(E(X)),

(X · (X−̂1) · r, {X ∈ I}) Θ = (λ, µ),∆◦ = (I, I), λ, µ ∈ L(E(X)),
(X · Y · r, {X ∈ I, Y ∈ I ′}) Θ = (λ, µ),∆◦ = (I, I ′), λ ∈ L(E(X)),

µ ∈ L(E(Y )), X 6= Y.

R◦(M◦,M ′◦) =
∑◦
t◦∈Ts(M◦,M ′◦)rate

◦(t◦)

E◦M ′◦(M
◦) =

∑◦
(z,c)∈rate(Ts\M′◦ (M◦)∪Ts(M◦,M ′◦))(z, c)

rate(Ts◦) = {rΘ | Θ ∈ L̂, rΘ =
⋃◦
{t◦∈Ts◦,label(t◦)=Θ}rate(t◦)}

Ts\M ′◦(M◦) = {t◦ ∈ Ts(M◦) | target(t◦) 6= M ′◦, label(t◦) not in conflict
with label(Ts(M◦,M ′◦))}

Similarly as in the concrete case, the expression rate◦(t◦) reports the abstract
rate (representing an interval of rates) of transition t◦ that depends on the rate
r of the basic action, on the intervals of multiplicities of the reagents which
participate (recorded by ∆◦) and on the type of reaction (recorded by Θ).

Function R◦(M◦,M ′◦) reports the abstract rate (representing an interval of
rates) of the move from M◦ to M ′◦. This is calculated by summing up the
expressions representing the interval of rates for all transitions from M◦ to M ′◦

(reported by Ts(M◦,M ′◦)).
Moreover, E◦M ′◦(M

◦) gives the abstract exit rate of an abstract state M◦

with respect to an abstract state M ′◦. This is the abstract rate of all the
transitions exiting from M◦ which may appear in parallel with the transitions
in Ts(M◦,M ′◦). In particular, Ts\M ′◦(M◦) ⊆ Ts(M◦) reports the transitions
which may appear in parallel with a transition of Ts(M◦,M ′◦). In the calcu-
lation of E◦M ′◦(M

◦) the abstract rates of transitions with the same label are
merged (namely approximated) by taking the union of the membership con-
straints.

In conclusion, the interval of probability for the move from an abstract
state M◦ to an abstract state M ′◦ can be calculated from the expressions
R◦(M◦,M ′◦) and E◦M ′◦(M

◦). Intuitively, the lower and upper bounds for the
probability of that move are obtained by minimizing and maximizing the solu-
tion of the expression R◦(M◦,M ′◦)/◦E◦M ′◦(M

◦), respectively.

Definition 6.1. We define the abstract probabilistic translation function H◦ :
LT S◦ → IMC◦ such that H◦((S◦,→◦,M0

◦, E)) = (S◦,P−,P+,L,M◦0 ) where
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• P−, P+ : S◦ → SDistr(S◦) are the lower and upper probability functions,
such that for each M◦ ∈ S◦:

a) for each M ′◦ ∈ S◦, such that max(E◦M ′◦(M
◦)) > 0, if min(R◦(M◦,M ′◦)) =

0, then also P−(M◦)(M ′◦) = 0, otherwise, P−(M◦)(M ′◦) = min(R◦(M◦,M ′◦)/◦E◦M ′◦(M
◦)).

Analogously, the P+ function is obtained by substituting in the pre-
vious definition, the min function with the max function;

b) if, for each M ′◦ ∈ S◦, max(E◦M ′◦(M
◦)) = 0, then P+ = P−, P+(M◦)(M◦) =

1, and ∀M ′◦ 6= M◦, P+(M◦), (M ′◦) = 0;

c) if, ∃M ′◦ ∈ S◦, such that max(E◦M ′◦(M
◦)) > 0 and min(E◦M ′◦(M

◦)) =
0 then P+(M◦)(M◦) = 1, and P−(M◦), (M◦) = 0.

• L : S◦ → (S◦ → ℘(L̂)) is a labeling function such that ∀M◦1 ,M◦2 ∈ S◦,
L(M◦1 ,M

◦
2 ) = label({t◦ ∈ Ts(M◦1 ,M

◦
2 ) | max(rate◦(t◦)) > 0}).

The lower and upper bound probabilities for the move from M◦ to M ′◦ are com-
puted by minimizing and maximizing the solution of the expression R◦(M◦,M ′◦)/◦E◦M ′◦(M

◦),
respectively. This reasoning has to be properly combined with the special cases
when max(E◦M ′◦(M

◦)) = 0 or min(E◦M ′◦(M
◦)) = 0. When max(E◦M ′◦(M

◦)) =
0 all the states represented byM◦ are terminated, while whenmin(E◦M ′◦(M

◦)) =
0 at least one state represented by M◦ is terminated.

In order to find the maximum and minimum of an expression e = (z, c) ∈ E ,
when it’s not trivial, it’s sufficient to evaluate the symbolic term z for the
stationary points (that can be found by differentiate z and by setting the result
equal to 0) and for the boundaries of the intervals in c constraining variables of
z.

Remark 6.2. It is worth stressing the role of the information recorded on ab-
stract transition labels in the calculation of the abstract probabilistic semantics.

We adopt abstract transitions such as M◦1
Θ,∆◦,r−−−−→

◦
M◦2 where r ∈ R+, Θ ∈ L̂ and

∆◦ ∈ Q̂◦ = I ∪ (I ×I). Similarly as in the concrete case, Θ is a label reporting
the tag (the tags) of the basic action (actions), which participate (participates)
in the move, ∆◦ reports consistent intervals of multiplicity, while r is the rate
of the basic action.

The label Θ identifies the reaction and it allows us to observe the cases of
conflicting labels. This information not only is translated into the corresponding
probabilistic semantics but also it is exploited in order to calculate the intervals
of probability corresponding to the move.

Moreover, the components r and ∆◦ record the rate of the basic action and
the intervals of multiplicity of the reagent variables, which participate in the
move. This information supports the symbolic approach in the calculation of
abstract rates which gives finer intervals of probability w.r.t. the approach based
on the direct calculation of rates.
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6.2. Soundness with respect to Probabilistic Termination
We prove the soundness of the abstract probabilistic semantics of CGF with

respect to probabilistic termination.
The following theorems show properties of the probabilistic translation func-

tion H◦ : LT S◦ → IMC◦ which are used for proving the main theorem (The-
orem 6.5). Theorem 6.3 shows that function H◦ preserves the approximation
order. If an abstract LTS lts◦2 safely approximates an abstract LTS lts◦1, then
the IMC derived from lts◦2 safely approximates the one derived from lts◦1.

Theorem 6.3. Let lts◦i = (Si◦,→i
◦,M0,i

◦, E) be two abstract LTS. If lts◦1v◦lts lts◦2
then H◦(lts◦1)v◦mc H◦(lts◦2).

Theorem 6.4. Let E be an environment and M0 ∈M be a multiset. We have

αMC(H(LTS((E,M0))))v◦mc H◦(αlts(LTS((E,M0)))).

Next main result derives directly from Theorem 6.4 and the soundness of
the abstract LTS semantics (given in Theorem 4.14). The theorem shows the
soundness of the IMC describing the abstract probabilistic semantics of an ab-
stract state M◦0 , H◦(LTS◦((E,M◦0 ))), with respect to the set of DTMCs that
are represented. For each multiset M0 represented by the abstract state M◦0
(that is M0 ∈ γ(M◦0 )) the corresponding DTMC is given by H(LTS((E,M0))).
Thus, we prove that the IMC H◦(LTS◦((E,M◦0 ))) safely approximates (w.r.t.
the approximation order v◦mc)) the IMC, which is the best abstraction of the
DTMC H(LTS((E,M0))).

Theorem 6.5 (Soundness of IMC). Let E be an environment and M◦0 ∈
M◦ be an abstract state. For each multiset M0 ∈ γ(M◦0 ) we have

αMC(H(LTS((E,M0))))v◦mc H◦(LTS◦((E,M◦0 ))).

The proof of Theorems 6.3, 6.4 and 6.5 can be found in AppendixB.
Moreover, Theorem 5.9, Proposition 5.11 and Theorem 6.5 guarantee that

the approach is sound for probabilistic termination meaning that the abstract
probabilistic model gives conservative lower and upper bounds for probabilis-
tic termination. More in detail, the lower and upper bounds for probabilistic
termination calculated over the IMC H◦(LTS◦((E,M◦0 ))) include the value for
probabilistic termination calculated over the DTMC H(LTS((E,M0))), for each
multiset M0 represented by M◦0 (that is M0 ∈ γ(M◦0 )).

It is worth discussing the complexity of the IMC that models the abstract
probabilistic semantics of abstract CGF systems. For each environment E
and abstract state M◦0 , the IMC H◦(LTS◦((E,M◦0 ))) has the same number of
states than the corresponding abstract LTS LTS◦((E,M◦0 )). The dimension of
LTS◦((E,M◦0 )) is discussed in Section 4.4 considering both the number of ab-
stract states and the number of transitions. Moreover, in the IMC for each
abstract state there is exactly one move into any another state that is decorated
by the union of labels associated to the corresponding LTS transitions. Finally,
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for each abstract state M◦ the cost of computing the intervals of probability
for each move is linear in the dimension of Ts(M◦). Hence, the main source
of complexity of the derivation and of the dimension of the IMC resides in the
dimension of the corresponding abstract LTS LTS◦((E,M◦0 )).

Notice that, in general, for computing the upper (resp. lower) bound for
probabilistic termination, we have to consider the computations reaching a ∃-
terminated state (resp. ∀-terminated state). However, by construction, the IMC
modeling the semantics of CGF has no hybrid abstract states, hence, in our case,
∃-terminated and ∀-terminated states coincide. Therefore, in the following we
will call a ∀ − ∃-terminated state simply terminated state.

Example 6.6. We consider the environment E, introduced in Example 3.1
which models the reaction R1 : X + Y → X + X and R2 : X + Y → Y + Y of
the the 2-way oscillator,

E , X = aλr .X + b̄δr.Y, Y = āµr .X + bηr .Y.

Fig. 9 shows the IMC H◦(LTS◦((E,M◦5 ))), called here mc◦, modeling the
abstract probabilistic semantics of the biological system for the initial abstract
state M◦5 = {([1, 3], X), ([1, 3], Y )}, where

M0
◦ = {([0, 0], X), ([2, 4], Y )} M6

◦ = {([2, 4], X), ([0, 0], Y )}
M4
◦ = {([1, 2], X), ([2, 4], Y )} M1

◦ = {([0, 0], X), ([3, 5], Y )}
M3
◦ = {([1, 1], X), ([3, 5], Y )} M2

◦ = {([0, 0], X), ([4, 6], Y )}
M7
◦ = {([2, 4], X), ([1, 2], Y )} M8

◦ = {([3, 5], X), ([0, 0], Y )}
M9
◦ = {([3, 5], X), ([1, 1], Y )} M10

◦ = {([4, 6], X), ([0, 0], Y )}

The IMC mc◦ is derived from the corresponding abstract LTS LTS◦((E,M◦5 ))
which is shown in Fig. 6 and commented in Example 4.15.

In the IMC of Fig. 9 the intervals of probability are exact. Thus, the admis-
sible distributions associated to each abstract state correspond precisely to the
combinations of moves with non conflicting labels. More in detail, mc◦ reports:
for the initial state M◦5 four admissible distribution, for the abstract states M◦4
and M◦7 two admissible distributions and for any other abstract state exactly one
admissible distribution. In particular, the abstract states M◦0 , M◦1 , M◦2 ,M◦6 , M◦8
and M◦10 are terminated.

The abstract model mc◦ does not introduce any loss of information for prob-
abilistic termination w.r.t. the concrete behavior. In fact, we have for the lower
and upper bound of probabilistic termination Reach−mc◦(M

◦
5 ) = Reach+

mc◦(M
◦
5 ) =

1. This says that each system with initial concentrations of reagents X and Y
varying inside interval [1,3] universally terminates.

Notice that in the IMC mc◦ the intervals of probability (and thus the corre-
sponding set of admissible distributions) not only over-approximates the concrete
behavior but they are also the most precise. As an example, let us discuss the
case of the initial abstract state M◦5 , similar arguments can be applied to any
other abstract state. The IMC mc◦ reports for M◦5 the same situation of the
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Figure 9: The IMC mc◦ for the 2-way oscillator

IMC which is illustrated in Fig. 7(c) and commented in Example 5.5. As it
is discussed in Examples 5.1 and 5.5, the IMC gives for M◦5 four admissible
distributions, corresponding to the combinations of moves with non conflicting
labels, which are precisely the probability distributions ρ1, ρ2, ρ3 and ρ4. Such
probability distributions represent the most precise representation of the concrete
probability distributions, corresponding to each exact concentration of reagents
X and Y , varying into the intervals [1, 3].

In this case, however, the intervals of probability of the IMC of Fig. 9 are
calculated in an effective way from the information reported on abstract transi-
tion labels. Nonetheless, the result obtained is the same that we would obtain
by building the concrete probability distributions from the rates corresponding to
reactions R1 and R2, for each concentration of reagents X and Y , varying into
the corresponding intervals. �

Example 6.7. We modify the biological system modeling the 2-way oscillator,
commented in Example 6.6 , by introducing a new ”doping” reaction for reactant
Y (in the style of [11]) : R3 : X +DY → Y + Y .

The reaction R3 is called a doping reaction since it allows the production
of a molecule Y even in absence of reactant Y , indeed now a new molecule of
Y can be produced also from one molecule X and a new doping substance DY .
The environment E1 models the new system,

E1 , X = aλr .X + b̄δr.Y + c̄νr .Y Y = āµr .X + bηr .Y, DY = cγr .DY .

Fig. 11 describes the IMC H◦(LTS◦((E1,M
◦
5 ))), called here mcd◦, obtained from
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the corresponding abstract LTS LTS◦((E1,M
◦
5 )) of Fig. 10, for the initial ab-

stract state
M◦5 = {([1, 3], X), ([1, 3], Y ), ([1, 1], DY )}

where

M4
◦ = {([1, 2], X), ([2, 4], Y ), ([1, 1], DY )}

M0
◦ = {([0, 0], X), ([2, 4], Y ), ([1, 1], DY )}

M6
◦ = {([2, 4], X), ([0, 2], Y ), ([1, 1], DY )}

M1
◦ = {([0, 0], X), ([3, 5], Y ), ([1, 1], DY )}

M3
◦ = {([1, 1], X), ([3, 5], Y ), ([1, 1], DY )}

M7
◦ = {([3, 5], X), ([0, 1], Y )), ([1, 1], DY )}

M2
◦ = {([0, 0], X), ([4, 6], Y ), ([1, 1], DY )}

M8
◦ = {([4, 6], X), ([0, 0], Y )), ([1, 1], DY )
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Figure 10: The LTS for the doping of Y

The abstract LTS for the biological system modeled by environment E1 is
quite different w.r.t. the abstract LTS for the standard 2-way oscillator which is
depicted in Fig. 6 and commented in Example 4.15. Specifically, in this case,
much less abstract states are hybrid and need to be partitioned, since reaction
R3 (labeled by (γ, ν)) is enabled also when reactant Y is not available.

Similarly as in Example 6.6, the IMC of Fig. 11 approximates the set of
DTMCs modeling the same biological system with respect to different initial
concentrations. In this case, however, the probability of reactions depends on
concentrations of reagents X, Y and DY . As a consequence, the intervals of
probability of the IMC mcd◦ are not exact and represent for each move a possible
range for the probability of that move, for all concentrations of reagents X and
Y included in the corresponding intervals of multiplicity. Therefore, to each
combination of moves with non conflicting labels is associated here a set of

47



5

6
{(!,")} ,[1/3,3/7]

0

{(#,$),(%,&)},[4/7,2/3]

4

{(#,$),(%,&)},[4/7,2/3]

{(#,$),(%,&)},[3/5,1]

7

{(!,")},[0,2/5]

{}, 1

{(!,")},[2/5,4/9]

3{(#,$),(%,&)},[5/9,3/5]

1

{(#,$),(%,&)},[5/9,3/5]

{(!,")},[3/7,5/11]

2
{(#,$),(%,&)},[6/11,4/7]

{},1

{}, 1

  {(#,$),(%,&)},[2/3,1] 8
{(!,")},[0,1/3]

{(%,&)},[1,1]

Figure 11: The IMC mcd◦ for the doping of Y

admissible distributions rather than a unique admissible distribution (as it is
the case in the IMC of Example 6.6).

Nonetheless, similarly as in Example 6.6, the intervals of probability of mcd◦

and thus also the associated set of admissible distributions are the most precise
w.r.t. the concrete behavior. In this case, the lower and upper bounds for the
probability of a move coincide with the minimum and maximum probability for
that move for all concentrations of reagents X and Y varying in the correspond-
ing intervals of multiplicities.

Even if the intervals of probability of mcd◦ are not exact, the abstract model
does not introduce any loss of information for probabilistic termination: we
have Reach−mcd◦(M

◦
5 ) = Reach+

mcd◦(M
◦
5 ) = 1. Analogously as in Example 6.6,

this shows that also for the version with the doping Y , for each initial concentra-
tions of reagents X and Y varying inside interval [1,3], the system universally
terminates. �

7. Abstract Probabilistic Model Checking

In this section we illustrate the application of the proposed abstract proba-
bilistic model checking technique. We revisit the standard and partially doped
versions of the 2-ways oscillator already presented in Examples 6.6 and 6.7,
considering wider intervals of concentrations in the initial abstract state. More-
over, we introduce a new fully doped version in the style of [11, 3]. For these
systems we investigate probabilistic termination and some probabilistic reach-
ability properties (the IMC is also sound w.r.t. simple reachability properties,
as it is proved in [15]). In this section, the PRISM model checker is used to
formally prove probabilistic properties on the MDPs derived from the corre-
sponding IMCs. The translation of an IMC into an MDP is realized as already
discussed in Section 5.1 by computing the extreme distributions from the inter-
vals of probability.

48



7.1. The standard 2-way oscillator
The 2-way oscillator, commented in Examples 3.1, 4.15 and 6.6 is modeled

by the following environment,

E , X = aλr .X + b̄δr.Y, Y = āµr .X + bηr .Y.
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Figure 12: The IMC for the 2-ways oscillator

Fig. 127 shows the IMC modeling the abstract probabilistic semantics for the
initial abstract state which has wider intervals of concentrations w.r.t. Example
6.6,

M◦11 = {([1, 6], X), ([1, 6], Y )}.
Here, we have chosen to consider the IMC approximating 36 DTMCs, be-

cause the abstract model obtained is still manageable, easy to depict. However
note that analogous results can be obtained for IMCs approximating a bigger
number of DTMC, as we will discuss later in Section 7.3.

The abstract model checking of the previous IMC can be realized by trans-
lating it into a MDP, as explained in Section 5. Thus, the MDP (depicted in
Fig. 14) is obtained by calculating, for each abstract state, the set of extreme
distributions corresponding to each combination of non conflicting labels. Then,
the PRISM model checker is used to verify the resulting MDP.

The encoding of the MDP in PRISM consists in encoding the states, the
transitions between states and the information on the concentration of reagents

7To improve the reading, the label (λ, µ) is abbreviated simply by λ and the label (δ, η) by
δ.
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mdp

const int N=12;
const int M= 6;

module oscillator

s : [0..22] init 11;
minX:[0..N] init 1;
maxX:[0..N] init M;
minY: [0..N] init 1;
maxY: [0..N] init M;

Figure 13: The PRISM code

in each state. In more detail, using variable definitions (see Fig. 13 for the
PRISM code), we record for each state:

• information about the abstract state, specifically the variable s ∈ [0...22]
identifies the abstract state;

• information on the concentration of the reagents, in particular the vari-
ables minX and maxX are used to define the interval of concentration
for reagent X, while minY and maxY are used to define the interval of
concentration for Y .

It is worth noting that information on the abstract state (i.e. variable s) is
redundant and could be omitted: any property can be expressed just in terms
of the variables describing the concentrations of reagents X and Y . However, it
is convenient to maintain this information in order to more easily address some
termination properties.

We first verify if there are in our model some reachable terminated states.
For this purpose we verify the following formula for k = [0, 22],

Pmax =?[F (P >= 1[G(s = k)])] (9)

That is, we ask for the maximum probability to reach a state where there is
a self- loop with probability 1 . The result of verification of Formula (9) referred
to the initial state M◦11 is shown in Fig. 15.

This shows that there are 12 reachable terminated states, i.e. the states
reachable with probability greater than 0 and in which the system loops forever.

Using the information about the terminated states we could verify the fol-
lowing formula to calculate the lower bound for probabilistic termination

Pmin =?[F ((s = 0)|...|(s = 5)|(s = 12)|(s = 14)|(s = 16)|(s = 18)|(s = 20)|(s = 22)]
(10)
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Figure 14: The MDP for the 2-ways oscillator

The result for the minimum probability being 1 assures us that the 2-ways
oscillator system with any initial concentration of reagents X ∈ [1, ..., 6], Y ∈
[1, ..., 6] universally terminates.

Probabilistic termination can also be observed using a simpler formulation:
we ask for the abstract states where either the concentration of reagent X or the
concentration of reagent Y is 0. This, for this version of the 2-ways oscillator,
guarantees that the oscillation has finished. Formally, the lower and upper
bound for probabilistic termination can be formalized as follows,

Pmin =?[F (maxX = 0|maxY = 0)] (11)
Pmax =?[F (maxX = 0|maxY = 0)] (12)

In both cases, the computed result is exactly 1.
Finally, we consider the following probabilistic reachability property (com-

mented in Section 3): what is the probability that the oscillation terminates in
a state which contains all reagents Y ? Or analogously in a state which contains
all reagents X?.
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Figure 15: The terminated states of the 2-ways oscillator

In order to guarantee that an abstract state contains reagent X only it is
enough to ask whether maxY = 0 holds. Thus, the lower and upper bound for
the probabilistic property can be expressed by

Pmin =?[F (maxY = 0)] (13)
Pmax =?[F (maxY = 0)] (14)

In this case, the probability that the oscillation terminates in a state, which
contains reagentX only, strictly depends on the initial concentrations of reagents
X and Y . Since our abstract model approximate 36 experiments that differ for
the initial concentration of X and Y , it should be clear that we will not obtain
the same result for Formulas (13) and (14). In particular, the result of the
verification of Formula (13) will give the lower bound by considering the worst
case scenario for the probability to terminate in a state which contains reagent
X only. Symmetrically, the result of the verification of Formula (14) will give
the upper bound on the probability to terminate in a state containing reagent
X only, by considering the best case scenario. Calculating the probabilities
of (13) and (14) for the abstract state M◦11 we obtain Pmin = 0.142856 and
Pmax = 0.185714.

Note that these results are the most precise w.r.t. the set of DTMCs that
are approximated by the IMC of Fig. 12. Indeed, the values of Pmin and
Pmax computed on our abstract model exactly correspond to the results of the
verification of formula P =?[F (Y = 0)] for particular DTMCs that the IMC of
Fig. 12 approximates.

In particular, Pmin = 0.142856 is precisely the result of the verification
of formula P =?[F (Y = 0)] for the DTMC related to the experiment with
initial concentration 1X and 6Y . Such system is depicted in Fig. 168, where
the state formula (Y = 0) is satisfied by state M7 = {(7, X), (0, Y )} only. On
the other hand, Pmax = 0.185714 is precisely the result of the verification of
formula P =?[F (Y = 0)] for the DTMC with initial concentration 6X and 1Y .

8As before, (λ, µ) is abbreviated by λ and (δ, η) by δ.
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Such DTMC can be obtained from the DTMC of Fig. 16 exchanging the role
of variable X with variable Y , thus, model checking formula P =?[F (Y = 0)]
on the DTMC with initial concentrations 6X and 1Y is equivalent to model
checking P =?[F (X = 0)] on the DTMC of Fig. 16, where, in this case, the
state formula (X = 0) is satisfied by state M0 = {(0, X), (7, Y )} only.
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Figure 16: The DTMC for the initial state {(1, X), (6, Y )}

7.2. Adding doping reactions
In this section we investigate the effects of adding doping reactions to the

previously illustrated system.
We first consider the partially doped system (already introduced in Example

6.7) obtained by adding the doping for reagent Y only. Thus, we consider again
environment E1 of Example 6.7,

E1 , X = aλr .X + b̄δr.Y + c̄νr .Y Y = āµr .X + bηr .Y, DY = cγr .DY

Fig. 179 shows the IMC which describes the probabilistic abstract seman-
tics for the abstract initial state which has wider intervals of concentrations
w.r.t. Example 6.7,

M◦11 = {([1, 6], X), ([1, 6], Y ), ([1, 1], DY )}.

The Fig. 1810 depicts the corresponding MDP, whose encoding in PRISM is
analogous to the one of the 2-ways oscillator.

As before, we first verify if there are some reachable terminated states, by
verifying Formula (9). The results, shown in Fig. 19, confirms that the system
still has 5 (states 0, ..., 5) terminated states.

Then, we verify Formulas (11) and (12) in order to establish the lower and
upper bounds of probabilistic termination. Also for the environment E1 we
obtain both for Formulas (11) and (12) exactly 1. This proves that each concrete

9As before, labels (λ, µ) and (δ, η) are abbreviated by λ and δ, respectively, and, analo-
gously, label (γ, ν) is abbreviated by γ.

10To improve the reading, the values of the probabilities are cut to the third decimal digit.

53



0 {}, 1

1 {},1

2 {}, 1

3 {},1

4 {},1

5 {},1

6

{!,"},[12/23,7/13]

7

{#},[6/13,11/23] {!,"},[11/21,6/11]{!,"},[11/21,6/11]

8

{#},[5/11,10/21] {!,"},[10/19,5/9]  {!,"},[10/19,5/9]

9

{#},[4/9,9/19] {!,"},[9/17,4/7]{!,"},[9/17,4/7]

10

{#},[3/7,8/17] {!,"},[8/15,3/5]{!,"},[8/15,3/5]

11

{#},[2/5,7/15] {!,"}, [7/13,2/3 ] {!,"},  [7/13,2/3]

12

{#},[1/3,6/13] {!,"},[6/11,1]

13

{#},[0,5/11] {!,"},[5/9,1]

14

 {#},[0,4/9]  {!,"},[4/7,1]

15

{#},[0,3/7] {!,"},[3/5,1]

16

{#},[0,2/5]  {!,"},[2/3,1]

17

 {#},[0,1/3]  {"},[1,1]

Figure 17: The IMC for the doping of Y

system, represented by the abstract system in Fig. 18, still universally terminates
in spite of the presence of the doping reaction for Y .

Then, we consider a fully doped version by introducing in the previous sys-
tem a doping reaction also for reagent X. Analogously to the case for Y , a
doping reaction for X allows the production of a new molecule X from one of Y
and a new doping substance DX . This is modeled by the following environment
E2,

E2 , X = aλr .X + b̄δr.Y + c̄νr .Y, Y = āµr .X + bηr .Y.+ d̄ψr .X
DY = cγr .DY , DX = dθr.DX .

Fig.2011 shows the IMC which describes the abstract probabilistic semantics
for the initial abstract state

M◦6 = {([1, 6], X), ([1, 6], Y ), ([1, 1], DY )}.

The abstract probabilistic model, in this case, has even less states w.r.t. the
one for the standard 2-ways oscillator since none of them is hybrid. Fig. 2112

11As before, labels (λ, µ), (δ, η), (γ, ν) are abbreviated by λ, δ, γ, respectively, and label
(θ, ψ) is abbreviated by θ.

12To improve the reading, the values of the probabilities are cut to the third decimal digit.
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Figure 18: The MDP for the doping of Y

depicts the corresponding MDP, whose encoding in PRISM is analogous to the
one of the 2-ways oscillator.

The addition of a doping reaction for X deeply modifies the behavior of
the system w.r.t. probabilistic termination. Indeed, by verifying Formula (9),
we derive that this abstract model no longer has terminated states (as it is
shown in Fig. 22). As suggested by the previous result, for the environment
E2 we obtain both for Formulas (11) and (12) exactly 0. This proves that each
concrete system, represented by the abstract system in Fig. 20, oscillates forever.

7.3. Addressing precision and complexity issues
We discuss the advantages of abstract probabilistic model checking w.r.t.

probabilistic model checking each DTMC, separately. In particular we examine
the biological systems commented in Sections 7.1 and 7.2. The MDPs of Fig. 14,
18 and 21 approximate the behavior of the three biological systems having non
exact initial concentrations of reagents X and Y , indeed, X,Y ∈ [1, 6]. Thus,
each abstract probabilistic model approximates 36 different DTMCs correspond-
ing to exact initial concentrations of reagents X and Y .

In all examples, the validation over the abstract probabilistic model (MDP)
gives the same result for probabilistic termination that one would obtain by
model checking each DTMC corresponding to exact values for reagents X and
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Figure 19: The terminated states of the standard 2-ways oscillator with doping of Y

Y . Therefore, in these cases, the abstraction does not introduce any loss of
information and the value for probabilistic termination is exact. In particular,
we are able to prove that for all 36 different initial concentrations for reagents
X and Y : both the 2-ways oscillator and the partially doped version universally
terminate, while the fully doped version oscillates forever.

Moreover, in all examples the abstract probabilistic model provides an effi-
cient representation of the corresponding set of DTMCs in terms of number of
abstract states and of associated probability distributions. Actually, the number
of the abstract states of the MDPs is substantially reduced w.r.t. the number
of states of all DTMCs and the probability distributions associated to each ab-
stract state represents in a very efficient way the set of probability distributions
associated to concrete states. Note that, in the concrete validation, it is neces-
sary to calculate the probability distributions associated to each multiset. This
requires to extract the rates of all reactions (that depend on the concentrations
of reagents X and Y ) and then to calculate the corresponding probability, for
each exact concentrations of reagents X and Y with X,Y ∈ [1, 6].

We recall that the MDPs of Fig. 14, 18 and 21 are derived from the cor-
responding IMCs, by computing for each abstract state a set of probability
distributions that represents in an effective way the set of all admissible distri-
butions of the corresponding IMC. More in detail, the probability distributions
associated to an abstract state are precisely the set of extreme distributions, cor-
responding to each combination of moves with non conflicting labels. For each
combination of moves with non conflicting labels, the extreme distributions are
the ones that take the values on one of the two bounds of the interval of prob-
ability and can be calculated starting from the two bounds of the intervals of
probability, as it is explained in Section 5.1.

The IMC of Fig. 12 generalizes the 2-ways oscillator examined in Example
6.6, while, in analogous way, the IMC of the Fig. 17 generalizes the partially
doped system examined in Example 6.7. Note that these more complex models
still maintain the main features of the smaller corresponding ones. Moreover,
the IMC of Fig. 21 models the probabilistic behavior of the fully doped system.
In all three cases, the intervals of probability associated to each abstract state in
the IMC are the most precise w.r.t. the set of concrete probability distributions
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Figure 20: The IMC for the doping of Y and X

of the DTMCs which are represented.
In more detail, in the IMC for the 2-ways oscillator of Fig. 12 (similarly

as for the smaller IMC of Example 6.6), for each abstract state, the intervals
of probability are exact and there are at most 4 different combinations of non
conflicting labels. This yields an MDP (see Fig. 14) that has, for each abstract
state, at most 4 probability distributions. In the IMC for the partially doped
system of Fig. 17 (similarly as for the smaller IMC of Example 6.7), the intervals
of probability are not exact and there are at most 2 different combinations of
non conflicting labels. Therefore, the corresponding MDP (see Fig. 18) has, for
each abstract state, at most 4 probability distributions. In the IMC for the fully
doped system of Fig. 21, the intervals of probability are not exact and there is
just 1 possible combination of non conflicting labels. This yields an MDP (see
Fig. 20) that has, for each abstract state, at most 2 probability distributions.

Finally, it is worth noting that the previously discussed complexity and
precision issues for the biological systems considered in Sections 7.1 and 7.2.,
do not depend on the initial concentrations of reagents X and Y . Therefore, we
could consider the 2-ways oscillator system, its partially doped and fully doped
version with wider intervals for reagents X and Y , let us say [1,m] and [1, n]
for a generic m and n, thus modeling more experiments. Also in that case we
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Figure 21: The MDP for the doping of Y and of X.

would obtain analogous results. In particular, the IMC for the standard and
partially doped version, modeling, in that case, m× n experiments will have at
most 2×(m+n)+1 states and about 4×(m+n+1) transitions, m+n+1 being
the number of states of the biggest DTMC that it represents and 2×(m+n+1)
being its number of transitions.

While the IMC for the fully doped version will have exactly m + n + 1
states and 2× (m+n+ 1) transitions, the same number of states and transition
than the biggest DTMC that it represents. Moreover, for each abstract state,
the number of combinations of non conflicting labels as well as the number of
probability distributions of the related MDP do not vary w.r.t. the ones of the
corresponding smaller abstract system previously commented.

In all these more general cases, the validation of probabilistic termination
would give the same precise results, as for the abstract systems with intervals
[1, 6] for reagents X and Y . Note that to prove analogous results on termination
for the previous systems using a concrete approach would have required to
construct m×n DTMCs, each one modeling the selected system with a different
combination of initial concentrations for reagents X and Y and then model check

Figure 22: The terminated states of the standard 2-ways oscillator with doping of Y and X
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each obtained DTMC separately.
The previous discussion shows that for these classes of systems our method

can scale up quite well as long as the dimension of the concrete DTMC modeling
the biggest experiment (i.e., the one with concentrations X = m,Y = n) can
be managed.

For the biological examples commented in Sections 7.1 and 7.2, the cost of the
derivation of the MDP from the corresponding IMC, its dimension and therefore
the complexity of abstract probabilistic model checking the obtained MDP are
very efficient. In order to discuss these aspects in general, it is convenient to
describe the number of states and the number of probability distributions for
an MDP that represents the probabilistic semantics of an abstract CGF system.
The number of states of the derived MDP will be the same as the one of the
corresponding IMC H◦(LTS◦((E,M◦0 ))) (and, therefore, of the corresponding
abstract LTS LTS◦((E,M◦0 ))).

Moreover, in the MDP, an abstract state has associated a set of probability
distributions that are precisely the set of extreme distributions, corresponding
to each combination of moves with non conflicting labels. The extreme distribu-
tions are computed starting from the two bounds of the intervals of probability.
We recall that (3)n1 × (2)n213, is the maximum number of different transitions
with the same label exiting from an abstract state M◦ in the abstract LTS
LTS◦((E,M◦0 )). Therefore, this is also the maximum number of moves with
the same label from the abstract state M◦ in the corresponding IMC. From
the discussion of Section 4.4 it follows that the maximum number of different
combinations of moves with non conflicting labels is ((3)n1 × (2)n2)n, where
n is the number of different reactions in the environment E. Since the maxi-
mum number of extreme distributions related to each combination is 2n, then,
the number of probability distributions associated to each abstract state of the
MDP is, at most, 2n × ((3)n1 × (2)n2)n = (2 × (3)n1 × (2)n2)n, in the worst
case. It is worth noting that such number is exponential in n as in the case of
standard Interval Markov Chains [24]. More in detail, the number of extreme
distributions (2 × (3)n1 × (2)n2)n is smaller than the number of extreme dis-
tributions (2)(3)n1×(2)n2×n we would have deriving an MDP from a standard
Interval Markov Chain with the same number of states and transitions.

In conclusion, the complexity of deriving an MDP from the IMC and the
dimension of such MDP is comparable to (actually is even smaller than) the
complexity of deriving the MDP from a standard Interval Markov Chain with
the same number of states and transitions. Hence, once again, the main source
of complexity resides in the dimensions of the abstract model. As we have
already discussed in Section 6.2, an IMC H◦(LTS◦((E,M◦0 ))) has the same
number of states and (even less) transitions of the corresponding abstract LTS,
LTS◦((E,M◦0 )). Therefore, an upper bound for the number of states (and of

13Here, n1 was the number of variables appearing in homeo reactions enabled in M◦ and
whose interval of multiplicity is actually split, n2 was the number of variables appearing just
in unary or binary reactions enabled in M◦.
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transitions) of the IMC can be found in the discussion of Section 4.4.
We believe that such complexity issues together with a careful analysis of

the set of experiments that one wants to validate (e.g., weather it is convenient
to express the different concentrations of reagents in the experiments by means
of intervals) can guide the application of the abstract model checking technique
to more complex biological systems.

8. Related Work

The design of abstractions for probabilistic or stochastic models has been
widely investigated over the last few years.

Most of the proposals study abstractions able to deal with the traditional
state-explosion problem, which limits the practical application of probabilistic
model checking. The proposals of [22, 23, 24, 51] present similar approaches
for approximating probabilistic models, by means of MDP and standard In-
terval Markov Chains, respectively. In this methodology the abstract proba-
bilistic model is derived from the probabilistic model which has to be approx-
imated, by considering a partition of the concrete state space. The abstract
probabilistic model is constructed by computing, for each abstract state, the
abstract probabilities from the concrete probabilities. The proposal of [37] ex-
tends the approaches of [22, 23] in order to better approximate MDP. The ab-
stract model is based on two-player stochastic games that are able to separate
the non-determinism introduced by the abstraction from the non-determinism
present in the concrete MDP. De Alfaro [1] proposes an original method for the
abstraction of finite state MDP, based on regions. Katoen et al. [33] proposes
approximation techniques for CTMC along the lines of [24]. The key idea is to
apply the abstraction to uniform CTMC and to abstract transition probabilities
by means of intervals.

The drawback of these approaches is that they require to compute the full
concrete model which is then reduced to the abstract model. Consequently,
these techniques can only be applied to (finite) concrete models with a limited
number of states.

The proposals of [52, 34] investigate the implementation of the abstraction
techniques for MDP, proposed by [22, 23, 37] respectively. The approach applies
predicate abstraction to PRISM models and supports the effective construction
of an abstract model, using an extension of the PRISM-language.

Huth [32] proposes a framework for approximation based on standard In-
terval Markov Chains, where the abstraction of states is formalized using a
sort of abstract interpretation. The framework is quite general and applies also
to infinite DTMC; however, the method is not effectively applied to any real
specification language.

An interesting application of abstract interpretation to biological system
models, specifically signaling pathways, is presented in [21]. The proposed anal-
ysis calculates information about the reachable complexes which could be gen-
erated at run-time. Monnieux [40] proposes an approximation method, based
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on abstract interpretation, for the validation of trace properties of probabilistic
and non-deterministic concurrent programs.

9. Conclusions

In this paper we have applied abstract interpretation techniques in order to
analyze probabilistic termination of CGF systems. The methodology proposed
supports probabilistic model checking of a set of experiments that represent a
biological system w.r.t. different initial concentrations of reagents. The set of
experiments is represented by an abstract GCF system having initial concen-
trations of reagents which are not exact but vary in intervals. The abstract
probabilistic model of an abstract CGF system, modeled as an IMC, safely ap-
proximates the set of DTMCs, describing the probabilistic semantics of each
concrete CGF system. The validation of probabilistic termination (and also
of probabilistic reachability properties) over the abstract probabilistic model
reports conservative lower and upper bounds with respect to the set of CGF
systems which are approximated.

The main novelty of the proposed technique is that the abstract probabilistic
model (IMC) is derived through an approximation of the semantics following
the approach based on abstract interpretation [17, 18]. In this application, the
abstract probabilistic semantics is obtained from an abstract LTS semantics,
by calculating the intervals of probability associated to each move from the
information recorded on abstract transition labels. The method is systematic
and effective given that: (i) the state space of the IMC is constructed without
building the state space of the DTMCs which are approximated; (ii) the intervals
of probability associated to each move are calculated from abstract rates (that is
intervals of rates), without computing all the corresponding concrete probability
distributions.

In this approach, the design of the abstract LTS semantics is critical. We
have proposed a semantics where hybrid states, representing both terminated
and non terminated states, are properly partitioned in order to more precisely
address probabilistic termination properties. Moreover, the abstract transition
labels record information about the reaction, which is realized by the move,
and about the abstract rate of the move. The former is represented by a label
which identifies the reaction and allows us to observe possible cases of conflict
between abstract transitions. The latter uses a representation of the interval
of rates corresponding to a move by means of the rate of the reaction and of
the intervals of multiplicity of the reagent variables, which participate to the
reaction.

The information maintained on abstract transition labels is profitably used in
the derivation of the corresponding IMC in order to limit the non-determinism
introduced by the abstraction over the state space. Specifically, they are ex-
ploited in the calculation of the abstract probability distributions, which are
assigned to each abstract state. Not only the labels expressing conflict are
translated into the corresponding IMC but also they are used in the calcula-
tion of the interval of probability, corresponding to each move. Moreover, the
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derivation of the intervals of probability from the abstract rates is based on
symbolic approach which permits to maintain more precise information about
the possible multiplicity of reagent variables.

It should be clear that the choice of Labeled Interval Markov Chains (IMC), a
variant of standard Interval Markov Chains [51, 24], is essential in this approach.
As we have discussed in Section 5, the labels representing conflict provide more
accurate information about the set of probability distributions, represented by
the corresponding intervals of probability.

To illustrate the interest of the proposed technique we have investigated the
property of probabilistic termination for a simple 2-way oscillator in standard
and doped versions (in the style of [11, 3]). The IMC obtained for each of the
three abstract experiments approximates a set of DTMCs, corresponding to all
combinations of concentrations for reagent variables, which are included in the
corresponding intervals of multiplicity. In order to realize abstract probabilistic
model checking of the abstract systems we have used PRISM by encoding the
IMC into a corresponding MDP, in which each abstract state has associated a
set of probability distributions, the so called extreme distributions. The extreme
distributions are extracted from the intervals of probability of the IMC by gen-
eralizing the methodology proposed [51, 24, 32] for standard Interval Markov
Chains. In these three examples, the obtained MDP provides an efficient repre-
sentation of the corresponding set of DTMCs, considering both the number of
abstract states and the number of probability distributions, which are associated
to each abstract state. Moreover, the abstract validation of probabilistic termi-
nation does not introduce any loss of information w.r.t. the concrete validation.
Actually, probabilistic model checking of the abstract model gives an exact value,
showing that for all the concentrations of reagent variables included in the inter-
vals of multiplicity: both the standard 2-way oscillator and the partially doped
version universally terminate while the fully doped version oscillates forever.
As we have commented in Section 7 these results for probabilistic termination
can be easily extended to more complex versions of the systems, by considering
abstract systems with wider intervals of multiplicity for reagent variables.

In our opinion the design of techniques able to deal with uncertainty is funda-
mental in the analysis of biological systems. The framework, based on abstract
interpretation, is rather flexible and can easily be adapted to similar applica-
tions. Barbuti et al. [4] propose an adaptation of the approach presented in [15]
which supports probabilistic model checking of biological models with uncertain
rates, e.g. where rates may vary over intervals. In this case, standard Interval
Markov Chains are adequate for approximating the infinite set of DTMCs, cor-
responding to all the possible choices of rates. The abstract model is derived,
in a fully automatic way, from an abstract LTS semantics. A related tool has
been implemented using a translation from standard Interval Markov Chain
into MDP, based on the calculation of extreme distributions. The technique
has been successfully applied to detect probabilistic reachability properties of a
model of tumor growth.

In the future work, we intend to investigate the implementation of the ab-
stract probabilistic model checking methodology. The approach illustrated for
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the examples in Section 7 is based on PRISM and could be implemented, in a
natural way, along the lines of [4]. More efficient algorithms which construct
the extreme distributions on-the-fly could also be developed for model check-
ing an IMC (following the ideas discussed in [51, 24]). It is not clear whether
our abstraction could be formalized using predicate abstraction and therefore
whether related tools could be applied, such as the one proposed in [34].

Moreover, future work will involve studying how the efficiency and scala-
bility of the approach can be improved. To this aim, it seems fundamental to
investigate more efficient techniques to partition hybrid states and new widen-
ing operators that would allow the technique to scale up to much more complex
systems. Note that the definition of a new abstract LTS semantics would not
change the overall construction presented in this paper. Hence, we could re-use
all theoretical concepts: the abstraction functions, the model IMC, the ap-
proximation orders on abstract LTS and IMC as well as the definition of the
probabilistic translation function, mapping an abstract LTS into an IMC.

We also would like to apply the proposed abstract model checking tech-
nique to more complex biological systems and to further investigate the advan-
tages/disadvantages w.r.t. the application of stochastic simulation techniques.

Furthermore, in this paper we have focused on the validation of probabilistic
termination for finite systems. In the future work, we intend to investigate the
extension of the technique to infinite CGF systems by considering an approach
based on widening operators similarly as [15]. We also intend to study whether
other probabilistic properties, expressible in the logic PCTL, could be validated
by applying the proposed abstract model checking technique. In particular, it
would be interesting to consider the properties of oscillators, concerning the
periodicity and amplitude of oscillations, which are discussed in [3, 2].

Moreover, we would like to investigate the extension of the proposed ap-
proach to continuos-time, that is to the abstraction of the CTMC modeling the
behavior of a CGF system. The adaption of existing techniques, such as [33], is
not trivial, given that it requires to develop methods which are able to derive an
approximated uniform CTMC from an abstract LTS. We also leave for future
work the extension of the framework to the full calculus with communication
[44].

AppendixA. Proofs of Section 4

Proof of [Theorem 4.5] We have to prove that the pair of functions (α, γ) of
Definition 4.4 is a Galois connection.

• α : P(M)→M◦ and γ :M◦ → P(M) are obviously monotone.

• for each S ∈ P(M), γ(α(S)) ⊇ S. We have α(S) =
⊔◦
M∈SM

• and
γ(α(S)) = {M ′ | M ′•v◦⊔◦M∈SM•}. Now it is worth noting that {M ′ |
M ′•v◦⊔◦M∈SM•} ⊇ {M ′ |M ′ ∈ S}.
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• for eachM◦ ∈M◦, α(γ(M◦))v◦M◦. We have γ(M◦) = {M ′ |M ′•v◦M◦}
and α(γ(M◦)) =

⊔◦
M∈{M ′|M ′•v◦M◦}M

•. Now it is easy to see that⊔◦
M∈{M ′|M ′•v◦M◦}M

•v◦M◦. �

Lemma AppendixA.1. Let op ∈ {	,⊕}. For each M,N ∈ M, we have
α(M opN) = M• op◦ α(N).

Proof of For all X ∈ X ,α(M 	 N)(X) = [M(X)−̂N(X),M(X)−̂N(X)], by
definition of 	 and α. Moreover, by definition of 	◦ and α, for all X ∈ X ,
M•	◦N•(X) = [M(X)−̂N(X),M(X)−̂N(X)]. We can reason analogously
for ⊕. �

Proof of [Theorem 4.9] Assume, by contradiction, that there exists an M ′◦ ∈
5ME (M◦) that is hybrid. Then, by Definition 4.8, there exists a v ∈ SE(M ′◦)
such that M ′◦ |= v and M ′◦ |= ¬v. We have two cases.

• v = X ≥ 2, for some X ∈ X . By definition of 5IE(M◦, X) the interval
for X was partitioned so that either M ′◦ |= v or M ′◦ |= ¬v. This gives a
contradiction.

• v = X ≥ 1 or v = X ≥ 1 ∧ Y ≥ 1 and M ′◦ |= ¬(X ≥ 1), for some
X,Y ∈ X . In this case if also X ≥ 2 ∈ SE(M ′◦) then the interval for
X was partitioned so that either M ′◦ |= (X ≥ 1) or M ′◦ |= ¬(X ≥ 1).
Moreover, if X ≥ 2 6∈ SE(M ′◦), by definition of 5IE(M◦, X), the interval
for X was partitioned in a different way but always guaranteeing that
either M ′◦ |= (X ≥ 1) or M ′◦ |= ¬(X ≥ 1). This gives a contradiction.

Proof of [Theorem 4.14] We have to prove that, for each M◦ ∈M◦ and M ′ ∈
γ(M◦),

αlts(LTS((E,M ′)))v◦lts LTS◦((E,M◦)).

Let LTS((E,M ′)) = (S,→,M ′, E), then, by definition of αlts,

αlts(LTS((E,M ′))) = ({M•}M∈S , α(→),M ′•, E)

where α(→) = {M1
• Θ,∆•,r−−−−→

◦
M2
• |M1

Θ,∆,r−−−−→M2 ∈→}.
Let LTS◦((E,M◦)) = (S◦,→◦,M◦, E). Hence, by definition of v◦lts we have

to prove M ′• 4lts M◦. Note that, since M ′ ∈ γ(M◦), by definition of γ, we
have M ′•v◦M◦. Therefore, it is convenient to prove a more general property:
if M ′•v◦M◦, then we have M ′• 4lts M◦, for each M ′ ∈ S and M◦ ∈ S◦.

According to Definition 4.12, we have condition (i) by hypothesis, e.g. M ′•v◦M◦.
In order to prove condition (ii) we have to find a surjective function Ht :

Ts(M ′•) → Ts(M◦), such that, for each t◦1 ∈ Ts(M ′•), t◦1 = M ′•
Θ,∆1

•,r−−−−−→
◦
N1
•,

Ht(t◦1) = t◦2, where t◦2 = M◦
Θ,∆◦2 ,r−−−−→

◦
N◦2 , ∆•1 ≤I ∆◦2 and N1

• 4lts N◦2 .

First, we show that, for each t◦1 ∈ Ts(M ′•) there exists a corresponding
transition t◦2 ∈ Ts(M◦). We observe that transition t◦1 is the abstraction of a
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concrete transition t1 so that t1 ∈ Ts(M ′). Hence, transition t1 could have been
obtained either by applying rule Sync or rule Delay. We discuss the case of
Sync, the other is analogous.

Since rule Sync has been applied, it must be the case that: (a) Θ = (λ, µ),
(b) ∆1 = (M ′(X),M ′(Y )), (c) arλ.Q1 ∈ E(X) and ār

µ.Q2 ∈ E(Y ), and (d)
N1 = (M ′ 	 (1, X)	 (1, Y ))⊕ [[Q1]]⊕ [[Q2]].

Given (c), we can apply rule Sync-a for M◦ and derive a set of transi-

tions t◦2 with the same label Θ. More in detail, we have t◦2 = M◦
Θ,(Ix,Iy),r−−−−−−−→

◦
N◦ ∈ 5ME (N◦2 ) where: N◦2 = (M◦	◦{(1•, X)})	◦{(1•, Y )})⊕◦[[Q1]]•⊕◦[[Q2]]•,
Ix = 5T (M ′◦(X), ((1•, X) + (1•, Y ))(X), ([[Q]]•1 + [[Q]]•2)(X), N◦2 (X)) and Iy =
5T (M ′◦(Y ), ((1•, X) + (1•, Y ))(Y ), ([[Q]]•1 + [[Q]]•2)(Y ), N◦2 (Y )).

Using (d) and Lemma AppendixA.1, we have thatN1
•v◦N◦2 . Moreover, note

that the multiplicities of variables in N1
• are represented by exact intervals, i.e.,

n• for some n ≥ 0. If 5ME splits state N◦2 it does it, partitioning the intervals
of some variables of N◦2 . However, by definition of 5IE , there will exist a N ′◦ ∈
5ME (N◦2 ) such that N1

•v◦N ′◦ . Moreover, we recall that M ′•v◦M◦, thus we
have M ′•(X) ≤I M◦(X) as well as M ′•(Y ) ≤I M◦(Y ). Since also the intervals
in M ′•(X) and M ′•(Y ) are exact, by definition of 5T , reasoning as before, we
have that ∆1

• ≤I (I1, I2) with I1 = 5T (M◦(X), ((1•, X)+(1•, Y ))(X), ([[Q]]•1 +
[[Q]]•2)(X), N ′◦(X)) and I2 = 5T (M◦(Y ), ((1•, X)+(1•, Y ))(Y ), ([[Q]]•1+[[Q]]•2)(Y ), N ′◦(Y )).
Moreover, note that if N1 = (M ′	 (1, X)	 (1, Y ))⊕ [[Q1]]⊕ [[Q2]] 6= M ′, then by
definition of	◦ and	◦ alsoN◦2 = (M◦	◦{(1•, X)})	◦{(1•, Y )})⊕◦[[Q1]]•⊕◦[[Q2]]• 6=
M◦. As a consequence, also N ′◦ ∈ 5T (N◦2 ) 6= M◦.

Finally, note that the transitions of both Ts(M ′•) and Ts(M◦) are dictated
by the common environment which determine univocally the label o f the transi-
tions and that the refinement operator does not change transition labels. Indeed,
every label of transitions in Ts(M◦) has a corresponding labeled transition in
Ts(M ′•) eventually with some multiplicities equal to zero. �

AppendixB. Proofs of Sections 5 and 6

Proof of [Theorem 5.9] Let mc◦i = (Si◦,P−i ,P
+
i ,Li,M

◦
0,i) be two IMC and let

Mi
◦ ∈ Si◦, for i ∈ {1, 2}. We have to show that M◦1 4mc M◦2 implies

Reach−mc◦2 (M◦2 ) ≤ Reach−mc◦1 (M◦1 ) ≤ Reach+
mc◦1

(M◦1 ) ≤ Reach+
mc◦2

(M◦2 ).

In particular, we examine the case of Reach−mc◦2 (M◦2 ) ≤ Reach−mc◦1 (M◦1 ). The
case of Reach+

mc◦1
(M◦1 ) ≤ Reach+

mc◦2
(M◦2 ) can be proved by applying similar ar-

guments. We recall that, for j ∈ {1, 2},

Reach−mc◦j (Mj
◦) =

⋃
i∈{0,∞} ρ

−,i
mc◦j

(M◦j )

65



where

ρ−,imc◦j
(M◦j ) =





1 if M◦j �∀ A,
0 if i = 0 ∧M◦j 6�∀ A,

inf
ρj∈ADistrmc◦

j
(Mj

◦)

∑

N◦j ∈S◦j

ρj(N◦j ) · ρ−,i−1
mc◦j

(N◦j ) otherwise.

Therefore, it is enough to show that ρ−,imc◦2
(M◦2 ) ≤ ρ−,imc◦1

(M◦1 ), for each i ≥ 0.
The proof proceeds by induction.

(i = 0) There are two possibilities for ρ−,0mc◦2
(M◦2 ). Either M◦2 is ∀-terminated

and the result is 1 or M◦2 is non ∀-terminated and the result is 0.

Since we want to prove that ρ−,0mc◦2
(M◦2 ) ≤ ρ−,0mc◦1

(M◦1 ), the latter case is
trivial.

For the former case, we will prove thatM◦1 is non ∀-terminated implies that
also M◦2 is non ∀-terminated. Assume then that M◦1 is non ∀-terminated.
This means, by definition, that there exists a a ρ1 ∈ ADistrmc◦(M◦1 )
such that ρ1(N1

◦) > 0 with N1 6= M◦1 . Since M◦1 4mc M◦2 , by Def-
inition 5.8, there exists a corresponding ρ2 ∈ ADistrmc◦(M◦2 ) and δ ∈
Distr(S◦1 × S◦2 ) such that ρ1(N◦1 ) =

∑
N◦2∈S◦2 δ(N

◦
1 , N

◦
2 ). By hypothesis,

ρ1(N1
◦) > 0 then ρ1(N◦1 ) =

∑
N◦2∈S◦2 δ(N

◦
1 , N

◦
2 ) > 0. Let us choose a

particular N◦2 so that δ(N◦1 , N
◦
2 ) > 0. For such abstract state N◦2 , also∑

N◦1∈S◦1 δ(N
◦
1 , N

◦
2 ) is greater than 0 since at least one of its addend is

indeed δ(N◦1 , N
◦
2 ) which was greater than 0. Then, by definition, also

ρ2(N◦2 ) =
∑
N◦1∈S◦1 δ(N

◦
1 , N

◦
2 ) > 0. Moreover, since δ(N◦1 , N

◦
2 ) > 0 and

N1 6= M◦1 , by (a) of Definition 5.8, we know that N◦1 6= M◦2 . But this
implies that M◦2 is non ∀-terminated.

(i > 0) There are two possibilities for ρ−,imc◦2
(M◦2 ). Either M◦2 �∀ A and result is

1 or the result is computed by

ρ−,imc◦2
(M◦2 ) = inf

ρ2∈ADistrmc◦2
(M2

◦)

∑

N◦2∈S◦2

ρ2(N◦2 ) · ρ−,i−1
mc◦2

(N◦2 ) (B.1)

The case of M◦2 �∀ A is trivial, because we have M◦1 �∀ A, as we have
explained in the case of i = 0. In case (B.1), we observe that for ρ−,imc◦1

(M◦1 )
there are two possibilities. Either M◦1 �∀ A and result is 1 or the result is

ρ−,imc◦1
(M◦1 ) = inf

ρ1∈ADistrmc◦1
(M1

◦)

∑

N◦1∈S◦1

ρ1(N◦1 ) · ρ−,i−1
mc◦1

(N◦1 ) (B.2)

The case of M◦1 �∀ A is trivial. By contrast, in the other case we have to
compare (B.1) and (B.2). For these purposes, we recall that M◦1 4mc M◦2
guarantees a correspondence between the distributions ADistrmc◦1 (M1

◦)
and ADistrmc◦2 (M2

◦).
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More in detail, by applying Definition 5.8, for each distribution ρ1 ∈
ADistr(M◦1 ), there exist distributions δ ∈ Distr(S◦1×S◦2 ) and ρ2 ∈ ADistr(M◦2 )
such that, for anyN◦1 ∈ S◦1 andN◦2 ∈ S◦2 : (a) ρ1(N◦1 ) =

∑
N2
◦∈S2

◦ δ(N1
◦, N◦2 );

(b) ρ2(N◦2 ) =
∑
N1
◦∈S1

◦ δ(N1
◦, N◦2 ); and (c) if δ(N◦1 , N

◦
2 ) > 0 thenN◦1 4mc

N◦2 .

We show that, for distributions ρ1 ∈ ADistrmc◦1 (M1
◦) and ρ2 ∈ ADistrmc◦2 (M2

◦),
we have

∑

N◦2∈S◦2

ρ2(N◦2 ) · ρ−,i−1
mc◦2

(N◦2 ) ≤
∑

N◦1∈S◦1

ρ1(N◦1 ) · ρ−,i−1
mc◦1

(N◦1 )

This obviously guarantees that (B.1) ≤ (B.2). By exploiting (a), we obtain

∑
N◦1∈S◦1 ρ1(N◦1 ) · ρ−,i−1

mc◦1
(N◦1 )

=
∑
N◦1∈S◦1 (

∑
N◦2∈S◦2 δ(N

◦
1 , N

◦
2 )) · ρ−,i−1

mc◦1
(N◦1 )

Moreover, by exploiting (c) we have that δ(N◦1 , N
◦
2 ) > 0 ensures N1 4mc

N◦2 . Then, by inductive hypothesis, we have also ρ−,i−1
mc◦2

(N◦2 ) ≤ ρ−,i−1
mc◦1

(N◦1 ).
Hence, by exploiting also (b), we obtain

∑
N◦1∈S◦1 (

∑
N◦2∈S◦2 δ(N

◦
1 , N

◦
2 )) · ρ−,i−1

mc◦1
(N◦1 ) ≥∑

N◦1∈S◦1 (
∑
N◦2∈S◦2 δ(N

◦
1 , N

◦
2 )) · ρ−,i−1

mc◦2
(N◦2 ) =∑

N◦2∈S◦2
∑
N◦1∈S◦1 δ(N

◦
1 , N

◦
2 ) · ρ−,i−1

mc◦2
(N◦2 ) =∑

N◦2∈S◦2 ρ2(N2) · ρ−,i−1
mc◦2

(N◦2 ).

�

In order to incrementally construct the proof of Theorem 6.3 we proceed
as follows. We first present a simplified method (Definition AppendixB.1) for
deriving an IMC for a particular subset of LTS’s. Once we have introduced
the method and prove it correct (see Theorem AppendixB.3) for such subset,
we consider the more general case of LTS’s satisfying Condition 8. Finally, the
extension to function H◦ to all LTS is discussed at the end of this section.

Consider first LT S◦ ⊂ LT S◦ the domain of LTS = (S◦,→◦,M◦0 , E) such
that ∀M◦ ∈ S◦, |label(Ts(M◦))| = |Ts(M◦)|.

We introduce the functions R◦ : S◦ × S◦ → E , and E◦ : S◦ → E ,

R◦(M◦,M ′◦) =
∑◦
t◦∈Ts(M◦,M ′◦)rate

◦(t◦) E◦(M◦) =
∑◦
M ′◦∈S◦R

◦(M◦,M ′◦)

Definition AppendixB.1 (Derivation of IMC - The simple case). We de-
fine an abstract probabilistic translation function H◦ : LT S◦ → IMC◦ such
that H◦((S◦,→◦,M0

◦, E)) = (S◦,P−,P+,L,M◦0 ) and P−,P+ : S◦ → SDistr(S◦)
are the lower and upper probability functions, such that for all M1

◦ ∈ S◦

1. if max(E◦(M◦1 )) = 0, then P+(M◦1 )(M◦2 ) = P−(M◦1 )(M◦2 ) = 0, for each
M◦1 6= M◦2 , and P+(M◦1 )(M◦1 ) = P−(M◦1 )(M◦1 ) = 1;
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2. if max(E◦(M◦1 )) > 0 then
(a) if min(E◦(M◦1 )) = 0 then P+(M◦1 )(M◦1 ) = 1 and P−(M◦1 )(M◦1 ) = 0,
(b) for each M◦2 , if min(R◦(M◦1 ,M

◦
2 )) = 0 then P−(M◦1 )(M◦2 ) = 0 else

P−(M◦1 )(M◦2 ) = min(R◦(M◦1 ,M
◦
2 )/◦E◦(M◦1 )),

(c) for each M◦2 , if max(R◦(M◦1 ,M
◦
2 )) = 0 then P+(M◦1 )(M◦2 ) = 0 else

P+(M◦1 )(M◦2 ) = max(R◦(M◦1 ,M
◦
2 )/◦E◦(M◦1 )).

L : S◦ → (S◦ → ℘(L̂)) is a labeling function defined as ∀M◦1 ,M◦2 ∈ S◦,
L(M◦1 ,M

◦
2 ) = label({t◦ ∈ Ts(M◦1 ,M

◦
2 ) | max(rate◦(t◦)) > 0}).

Before proving the correctness of the previous method we prove some proper-
ties which compare the abstract rates of transitions leaving from state M◦1 with
the abstract rates of transitions leaving from state M◦2 when M◦1 4lts M◦2 . For
this reasons, we recall that an abstract rate is expressed by a pair (z, c), where
e is a symbolic expression and c is a membership constraint. In the following,
with an abuse of notation, we say that (z1, c1) is an approximation of (z2, c2),
(z1, c1) ≤I (z2, c2), iff e1 = e2 and c1 ≤ c2 (e.g. for each X ∈ I1 ∈ c1, there
exists X ∈ I2 ∈ c2 such that I1 ≤I I2).

Lemma AppendixB.2. Let lts◦i = (Si◦,→i
◦,M0,i

◦) ∈ LT S for i ∈ {1, 2},
such that lts◦1 vlts lts◦2, and let M◦1 ∈ S◦1 ,M◦2 ∈ S◦2 . If M◦1 4lts M◦2 , then there
exists a bijective function Ht : Ts(M◦1 )→ Ts(M◦2 ) and

1. min(E(M◦2 )) ≤ min(E(M◦1 )) ≤ max(E(M◦1 )) ≤ max(E(M◦2 ));
2.

∀N◦2 ∈ S◦2
∑◦
N◦1∈S◦1 R◦|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 ) ≤I

∑◦
t◦2∈Ts(M◦2 ,N

◦
2 )rate

◦(t◦2)
∀N◦1 ∈ S◦1 R◦(M◦1 , N

◦
1 ) =

∑◦
N◦2∈S◦2 R◦|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 )

where R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ) =

∑◦
{t◦1∈Ts(M◦1 ,N

◦
1 )|Ht(t◦1)∈Ts(M◦2 ,N

◦
2 )}rate

◦(t◦1).

Proof of [Lemma AppendixB.2]
Since M◦1 4lts M◦2 , by Definition 4.12, there exists a function Ht : Ts(M◦1 )→

Ts(M◦2 ) such that, for each t◦1 ∈ Ts(M◦1 ), t◦1 = M◦1
Θ,∆◦1 ,r−−−−→

◦
N◦1 , Ht(t◦1) = t◦2 with

t◦2 ∈ Ts(M◦2 ), t◦2 = M◦2
Θ,∆◦2 ,r−−−−→

◦
N◦2 , ∆◦1 ≤I ∆◦2, N◦1 6= M◦1 implies that N◦2 6= M◦2 ,

N◦1RN
◦
2 and label(Ts(M1

◦)) = label(Ts(M2
◦)).

Observation 1:
Note that label(Ts(M1

◦)) = label(Ts(M2
◦)) together with the restriction that

lts◦i ∈ LT S implies that the function Ht defined above is indeed a bijective
function.

In order to prove 1. and 2. we have to calculate the abstract rates of the
transitions in Ts(M◦1 ) and Ts(M◦2 ).

Let us consider t◦1 ∈ Ts(M◦1 ) and its image t◦2 ∈ Ts(M◦2 ), such that Ht(t◦1) =

t◦2. It must be the case that t◦1 = M◦1
Θ,∆◦1 ,r−−−−→

◦
N◦1 and t◦2 = M◦2

Θ,∆◦2 ,r−−−−→
◦
N◦2
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with ∆◦1 ≤I ∆◦2. Since t◦1 and t◦2 are decorated by the same label Θ, there is
an important relation between rate◦(t◦1) and rate◦(t◦2). More in detail, we have
rate◦(t◦1) = (zt◦1 , ct◦1 ) and rate◦(t◦2) = (zt◦1 , ct◦2 ), e.g. the abstract rates share the
same symbolic expression and differ only for the membership constraints. By
exploiting ∆◦1 ≤I ∆◦2, we derive also an approximation between the membership
constraints; indeed, we have ct◦1 ≤I ct◦2 , and thus rate◦(t◦1) ≤I rate◦(t◦2).

Then, we examine the abstract rates of M◦1 and M◦2 , namely

R◦(M◦i , N
◦
i ) =

∑◦
t◦i ∈Ts(M◦i ,N

◦
i )rate

◦(t◦i )

E◦(M◦i ) =
∑◦
N◦i ∈S◦i

R◦(M◦i , N
◦
i ).

Since there is a one to one correspondence between the transitions of Ts(M◦2 )
and the ones of Ts(M◦1 ), it should be clear that, for each i ∈ {1, 2}, we have

E◦(M◦i ) = (
∑◦

t◦i ∈Ts(M◦i )
et◦i ,

∑◦

t◦i ∈Ts(M◦i )
ct◦i ) = (zi, ci)

where the symbolic expressions coincide and the constraints are approximated,
that is e1 = e2 and c1 ≤I c2. Hence, we can conclude that min(E(M◦2 )) ≤
min(E(M◦1 )) ≤ max(E(M◦1 )) ≤ max(E(M◦2 )).

In order to prove 2. we have to focus on the abstract rate of a move from
M◦2 and N◦2 , for N◦2 ∈ S◦2 . Using again the correspondence between the abstract
rates of the transitions of Ts(M◦2 ) and of Ts(M◦1 ), we have

R◦(M◦2 , N
◦
2 ) =

∑◦
t◦2∈Ts(M◦2 ,N

◦
2 )rate

◦(t◦2) ≥I ∑◦t◦2∈Ts(M◦2 ,N
◦
2 )rate

◦(H−1
t (t◦2))

We recall that Ht is bijective and that, for each t◦2 ∈ Ts(M◦2 , N
◦
2 ), we have

H−1
t (t◦2) ∈ Ts(M◦1 , N

◦
1
′) for some N◦1

′ ∈ S◦1 (possibly different from N◦1 ). As a
consequence, we obtain

∑◦
t◦2∈Ts(M◦2 ,N

◦
2 )rate

◦(H−1
t (t◦2)) =

∑◦
N◦1∈S◦1

R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ) with

R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ) =

∑◦
{t◦1∈Ts(M◦1 ,N

◦
1 )|Ht(t

◦
1)∈Ts(M◦2 ,N

◦
2 )}rate

◦(t◦1).

Finally, we note that R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ) sum up the rates of transitions from

state M◦1 to state N◦1 , which are mapped through Ht into transition going from
M◦2 to N◦2 . Since Ht is an injective function, it should be clear that

∑◦

N◦2∈S◦2
R◦|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 ) = R◦(M◦1 , N

◦
1 )

�

Theorem AppendixB.3. Let lts◦i = (Si◦,→i
◦,M0,i

◦) ∈ LT S be two abstract
LTS, for i ∈ {1, 2}. If lts◦1v◦lts lts◦2, then also H◦(lts◦1)v◦mc H◦(lts◦2).

Proof of [Theorem AppendixB.3] Let lts◦i = (S◦i ,M
◦
0,i, E) ∈ LT S, for i ∈

{1, 2}, such that lts◦1v◦lts lts◦2. We have to prove that mc◦1v◦mcmc◦2, where mc◦i =
H◦(lts◦i ) = (S◦i ,P

−
i ,P

+
i ,L,M

◦
0,i); thus, we have to prove that M◦0,1 4mc M◦0,2,

according to Definition 5.8. We recall that, by Definition 4.12, lts◦1v◦lts lts◦2
ensures that M◦0,1 4lts M◦0,2. Therefore, it is convenient to show that: for each
M◦1 ∈ S◦1 and M◦2 ∈ S◦2 , if M◦1 4lts M◦2 , then also M◦1 4mc M◦2 .
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In order to obtain M◦1 4mc M◦2 we have to demonstrate that: (i) M◦1v◦M◦2 ;
and (ii) for each distribution ρ1 ∈ ADistr(M◦1 ) there exist distributions δ ∈
Distr(S◦1×S◦2 ) and ρ2 ∈ ADistr(M◦2 ) such that, for any N1

◦ ∈ S1
◦ and N2

◦ ∈ S2
◦:

1. ρ1(N◦1 ) =
∑
N◦2∈S◦2 δ(N

◦
1 , N

◦
2 ) and ρ2(N◦2 ) =

∑
N◦1∈S◦1 δ(N

◦
1 , N

◦
2 ).

2. if δ(N◦1 , N
◦
2 ) > 0 then

(a) M◦1 6= N◦1 implies that M◦2 6= N◦2 ;
(b) N◦1 4mc N◦2 .

It should be clear that (i) follows immediately from M◦1 4lts M◦2 by def-
inition of the approximation order (see Definition 4.12). For (ii) we observe
that an admissible distribution ρi ∈ ADistr(M◦i ), for i ∈ {1, 2}, satisfies, for
each N◦i ∈ S◦i , P−i (M◦i )(N◦i ) ≤ ρi(N◦i ) ≤ P+

i (M◦i )(N◦i ). Note indeed that if
lts◦1 = (S1

◦,→1
◦,M0,1

◦) ∈ LT S, then all the outgoing transitions from M◦1
have different distinct labels, therefore the set of no-conflict states coincides
with Ts(M◦1 ). Analogously, Ts(M◦2 ) is the set of no-conflict states for M◦2 . More-
over, for each i ∈ {1, 2} the lower bound P−i (M◦i )(N◦i ) and the upper bound
P+
i (M◦i )(N◦i ) are derived from the abstract rates of the transitions in Ts(M◦i ).

More in detail, according to the probabilistic translation function of Definition
AppendixB.1, for most of the cases, the lower and upper bound probabilities
for the move from M◦i to N◦i are computed by minimizing and maximizing the
solution of R◦(M◦i , Ni

◦)/◦E◦(M◦i ), respectively.
Let us consider an admissible distribution ρ1 ∈ ADistr(M1

◦). Since M◦1 4lts
M◦2 we can use the properties of Lemma AppendixB.2 in order to properly
relate Ts(M◦1 ) and Ts(M◦2 ). In particular, we recall that there exists a one
to one function Ht : Ts(M◦1 ) → Ts(M◦2 ) (see Observation 1 of proof of
LemmaAppendixB.2).

Our goal is to find distributions δ ∈ Distr(S◦1 × S◦2 ) and ρ2 ∈ ADistr(M◦2 ),
which satisfy conditions 1. and 2. Intuitively, for each N◦i ∈ S◦i with i ∈ {1, 2},
δ(N◦1 , N

◦
2 ) says how much N◦2 approximates N◦1 . In order to compute δ, we

have to consider the rate of the transitions from M◦1 to N◦1 which are mapped
through Ht into transitions from M◦2 to N◦2 . Using Lemma AppendixB.2, this
rate is R◦|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 ) =

∑◦
{t◦1∈Ts(M◦1 ,N

◦
1 )|Ht(t◦1)∈Ts(M◦2 ,N

◦
2 )}rate

◦(t◦1).
Based on R◦|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 ) we define corresponding distributions σN◦1 ∈

Distr(S◦2 ) such that L(N◦1 , N
◦
2 ) ≤ σN◦1 (N◦2 ) ≤ U(N◦1 , N

◦
2 ), where

L(N◦1 , N
◦
2 ) =





0 if min(R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 )) = 0

min(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 )

) otherwise

U(N◦1 , N
◦
2 ) =





0 if max(R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 )) = 0

max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 )

) otherwise

Any distribution σN◦1 ∈ Distr(S◦2 ) tells us at what extent N◦2 approximates
N◦1 (regarding the set of transitions starting from M◦1 , only). This is the ratio
between the rates of the set of transitions of Ts(M◦1 , N

◦
1 ) which have a corre-

sponding transition in Ts(M◦2 , N
◦
2 ) on the rates of all transitions of Ts(M◦1 , N

◦
1 ).
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Now, the proof proceeds by considering three different cases for E◦(M◦1 ).
This is because P−1 (M◦1 )(N◦1 ) and P+

1 (M◦1 )(N◦1 ) are set to 0 or1 or computed
using R◦(M◦1 , N1

◦)/◦E◦(M◦1 ) depending on E◦(M◦1 ).

• Assume that min(E◦(M◦1 )) 6= 0. We define distributions δ ∈ Distr(S◦1 ×
S◦2 ) and ρ2 ∈ Distr(S◦2 ), such that

δ(N◦1 , N
◦
2 ) = ρ1(N◦1 ) · σN◦1 (N◦2 )

ρ2(N◦2 ) =
∑
N◦1∈S◦1

δ(N◦1 , N
◦
2 )

We have to show that δ and ρ2 satisfy conditions 1. and 2. For 2. we
observe that, by definition of δ, if δ(N◦1 , N

◦
2 ) > 0, it must be the case that

σN◦1 (N◦2 ) > 0. This means that max(R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 )) 6= 0, e.g. there

exists a transition t◦1 ∈ Ts(M◦1 , N
◦
1 ) such that Ht(t◦1) ∈ Ts(M◦2 , N

◦
2 ). By

definition of 4lts, we have N◦1 4lts N◦2 , and thus N◦1 4mc N◦2 by inductive
hypothesis.
For 1. we have that
∑

N◦2∈S◦2

δ(N◦1 , N
◦
2 ) =

∑

N◦2∈S◦2

ρ1(N◦1 )·σN◦1 (N◦2 ) = ρ1(N◦1 )·
∑

N◦2∈S◦2

σN◦1 (N◦2 ) = ρ1(N◦1 )

Thus, we are left to prove that ρ2 is an admissible distribution for M2
◦

i.e for each N◦2 ∈ S◦2 , P−2 (M◦2 )(N◦2 ) ≤ ρ2(N◦2 ) ≤ P+
2 (M◦2 )(N◦2 ).

For simplicity, we examine the case of ρ2(N◦2 ) ≤ P+
2 (M◦2 )(N◦2 ); the other

is analogous. We have:

ρ2(N◦2 ) =
∑

N◦1∈S◦1

δ(N◦1 , N
◦
2 ) =

∑

N◦1∈S◦1

ρ1(N◦1 ) · σN◦1 (N◦2 )

Since σN◦1 (N◦2 ) may be equal to 0, by definition of U , we have
∑
N◦1∈S◦1

ρ1(N◦1 ) · σN◦1 (N◦2 ) =
∑
{N◦1∈S◦1 |σN◦1

(N◦2 )>0} ρ1(N◦1 ) · σN◦1 (N◦2 ) ≤
∑
{N◦1∈S◦1 |σN◦1

(N◦2 )>0} ρ1(N◦1 ) ·max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 )◦ )

Since ρ1(N◦1 ) may be equal to 0, we have

∑
{N◦1∈S◦1 |σN◦1

(N◦2 )>0} ρ1(N◦1 ) ·max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 )◦ ) =

∑
{N◦1∈S◦1 |σN◦1

(N◦2 )>0 and ρ1(N◦1 )>0} ρ1(N◦1 ) ·
max(R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 )◦

We have assumed that, in this case, min(E◦(M◦1 )) 6= 0, then, by definition
of the translation function H◦, and by Lemma AppendixB.2,

ρ1(N◦1 ) ·max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N

◦
1 )

R◦(M◦1 ,N
◦
1 )◦ )

= max(R◦(M◦1 ,N
◦
1 )

E◦(M◦1 )◦ ) ·max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N

◦
1 )

R◦(M◦1 ,N
◦
1 )◦ )

≤ max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N

◦
1 )

E◦(M◦1 )◦ )

≤ max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N

◦
1 )

E◦(M◦2 )◦ )
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By definition of R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ), and by Lemma AppendixB.2,

∑
{N◦1∈S◦1 |σN◦1

(N◦2 )>0,ρ1(N◦1 )>0}max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N

◦
1 )

E◦(M◦2 )◦ )

= max(R◦(M◦2 ,N
◦
2 )

E◦(M◦2 )◦ )
= P+(M◦2 )(N◦2 ).

• Assume that min(E◦(M◦1 )) = 0 but max(E◦(M◦1 )) > 0. We define distri-
butions δ ∈ Distr(S◦1 × S◦2 ) and ρ2 ∈ Distr(S◦2 ), such that

δ(N◦1 , N
◦
2 ) =





ρ1(N◦1 ) · σN◦1 (N◦2 ) if N◦1 6= M◦1
ρ1(M◦1 ) if N◦1 = M◦1 and N◦2 = M◦2
0 otherwise

ρ2(N◦2 ) =
∑
N◦1∈S◦1

δ(N◦1 , N
◦
2 )

Note that the only difference w.r.t. the previous case is when N◦1 = M◦1 . In-
deed, in this case, by definition of the translation function H◦, P+(M◦1 )(M◦1 )=1.
Then, ρ1(M◦1 ) ≤ 1 assumes, in general a value which is not strictly related
to R◦|(M◦2 ,N◦2 )(M

◦
1 ,M

◦
1 ). This could lead to a ρ2 which is not admissible, i.e.,

ρ2(N◦2 ) 6≤ P+(M◦2 )(N◦2 ).

We have to show that new δ and ρ2 satisfy conditions 1. and 2. The reasoning
showing that δ ∈ Distr(S◦1 × S◦2 ) satisfies also 2. is similar as in the previous
case for each N◦1 6= M◦1 . Instead, when N◦1 = M◦1 , we exploit the fact that
M◦1 4lts M◦2 .

For 1. we observe that

∀N◦1 6= M◦1 ,
∑
N◦2∈S◦2

δ(N◦1 , N
◦
2 ) =

∑
N◦2∈S◦2

ρ1(N◦1 ) · σN◦1 (, N◦2 ) = ρ1(N◦1 )

for N◦1 = M◦1 ,
∑
N◦2∈S◦2

δ(M◦1 , N
◦
2 ) = δ(M◦1 ,M

◦
2 ) = ρ1(N◦1 )

Thus, we are left to prove that ρ2 is an admissible distribution for M2
◦, i.e.

for each N◦2 ∈ S◦2 P−2 (M◦2 )(N◦2 ) ≤ ρ2(N◦2 ) ≤ P+
1 (M◦2 )(N◦2 ). It is convenient to

distinguish two cases.

For N◦2 ,N◦2 6= M◦2 , ρ2(N◦2 ) =
∑

N◦1∈S◦1

δ(N◦1 , N
◦
2 ) =

∑

N◦1∈S◦1 ,N◦1 6=M◦1

δ(N◦1 , N
◦
2 )

Hence, we can follow the guidelines of the proof in the previous case.

Consider now N◦2 , such that N◦2 = M◦2 , since min(E◦(M◦1 )) = 0 then, by
Lemma AppendixB.2, also min(E◦(M◦2 )) = 0. Therefore, by definition of H◦,
P−(M◦2 )(M◦2 ) = 0 and P+(M◦2 )(M◦2 ) = 1.

• Assume that max(E◦(M◦1 )) = 0. We define distributions δ ∈ Distr(S◦1 × S◦2 )
and ρ2 ∈ Distr(S◦2 ), such that

δ(N◦1 , N
◦
2 ) =

{
1 if N◦1 = M◦1 and N◦2 = M◦2
0 otherwise

ρ2(M◦2 ) = 1 and ∀N◦2 6= M◦2 , ρ2(N◦2 ) = 0

We have to show that new δ and ρ2 satisfy conditions 1. and 2. For proving
δ ∈ Distr(S◦1 × S◦2 ) satisfies 2. we exploit the fact that M◦1 4lts M◦2 . Moreover,
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it is easy to verify that the previously defined δ and ρ2 satisfy 1, recalling
that max(E◦(M◦1 )) = 0 implies, by definition of H◦, ρ1(M◦1 ) = 1 and ∀N◦1 6=
M◦1 , ρ1(N◦1 ) = 0.

Thus, we are left to prove that ρ2 is an admissible distribution forM2
◦. max(E◦(M◦1 )) =

0 implies that alsomin(E◦(M◦1 )) = 0. Hence, by Lemma AppendixB.2, min(E◦(M◦2 )) =
0. Then, by definition of H◦, P+(M◦2 )(M◦2 ) = 1. Moreover, min(E◦(M◦2 )) = 0
implies that min(R◦(M◦2 , N

◦
2 )) = 0, for all N◦2 . Hence, by definition of the

translation function H◦, for all N◦2 , P−(M◦2 )(N◦2 ) = 0. �

Finally, M◦1 6= N◦1 implies that M◦2 6= N◦2 follows directly from the definition of
order on LT S and therefore on LT S.

We now extend the previous results to LTS’s satisfying Condition 8.

Lemma AppendixB.4. Let lts◦i = (Si◦,→i
◦,M0,i

◦) ∈ LT S for i ∈ {1, 2},
such that lts◦1 vlts lts◦2, and let M◦1 ∈ S◦1 ,M◦2 ∈ S◦2 . If M◦1 4lts M◦2 , then there
exists a function Ht : Ts(M◦1 )→ Ts(M◦2 ) and

1. min(EN◦2 (M◦2 )) ≤ min(EN◦1 (M◦1 )) ≤ max(EN◦1 (M◦1 )) ≤ max(EN◦2 (M◦2 ))
where N◦1 and N◦2 are such that t◦ ∈ Ts(M◦1 , N

◦
1 ) and Ht(t◦) ∈ Ts(M◦2 , N

◦
2 );

2. Let S◦1 a be a maximal set of states such that ∀N◦ ∈ S◦1 , it does not
exist N◦1 ∈ S◦1, N◦ 6= N◦1 such that label(Ts(M◦1 , N

◦) is in conflict with
label(Ts(M◦1 , N

◦
1 ). Let S◦2 =

⋃
{t◦ | t◦∈(Ts(M◦1 ,N

◦),N◦∈S◦1} target(Ht(t◦)).
Then

∀N◦2 ∈ S◦2
∑◦
N◦1∈S◦1R

◦
|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 ) ≤I

∑◦
t◦2∈Ts(M◦2 ,N

◦
2 )rate

◦(t◦2)
∀N◦1 ∈ S◦1 R◦(M◦1 , N

◦
1 ) =

∑◦
N◦2∈S◦2R

◦
|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 )

where R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ) is defined as in Lemma AppendixB.2.

Proof of [Lemma AppendixB.4] Since M◦1 4lts M◦2 , by Definition 4.12, there
exists a function Ht : Ts(M◦1 ) → Ts(M◦2 ) such that, for each t◦1 ∈ Ts(M◦1 ),

t◦1 = M◦1
Θ,∆◦1 ,r−−−−→

◦
N◦1 , Ht(t◦1) = t◦2 with t◦2 ∈ Ts(M◦2 ), t◦2 = M◦2

Θ,∆◦2 ,r−−−−→
◦
N◦2 ,

∆◦1 ≤I ∆◦2, N◦1 6= M◦1 implies that N◦2 6= M◦2 , N◦1RN
◦
2 and label(Ts(M1

◦)) =
label(Ts(M2

◦)).
In order to prove 1. and 2. we have to calculate the abstract rates of the

transitions in Ts(M◦1 ) and Ts(M◦2 ).
Let us consider t◦1 ∈ Ts(M◦1 ) and its image t◦2 ∈ Ts(M◦2 ), such that Ht(t◦1) =

t◦2. It must be the case that t◦1 = M◦1
Θ,∆◦1 ,r−−−−→

◦
N◦1 and t◦2 = M◦2

Θ,∆◦2 ,r−−−−→
◦
N◦2

with ∆◦1 ≤I ∆◦2. Since t◦1 and t◦2 are decorated by the same label Θ, there is
an important relation between rate◦(t◦1) and rate◦(t◦2). More in detail, we have
rate◦(t◦1) = (zt◦1 , ct◦1 ) and rate◦(t◦2) = (zt◦1 , ct◦2 ), e.g. the abstract rates share the
same symbolic expression and differ only for the membership constraints. By
exploiting ∆◦1 ≤I ∆◦2, we derive also an approximation between the membership
constraints; indeed, we have ct◦1 ≤I ct◦2 , and thus rate◦(t◦1) ≤I rate◦(t◦2).
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Then, we examine the abstract exit rates of M◦1 and M◦2 , namely

E◦N◦i (M◦i ) =
∑◦

(z,c)∈rate(Ts\N◦
i

(M◦i )∪Ts(M◦i ,N
◦
i ))

(z, c).

Since there is the function Ht which relates (as described before) t◦1 ∈
Ts(M◦1 , N

◦
1 ) with its image t◦2 ∈ Ts(M◦2 , N

◦
2 ) and we have the condition that

label(Ts(M1
◦)) = label(Ts(M2

◦)), we can conclude that

label(Ts\N◦1 (M◦1 )) = label(Ts\N◦2 (M◦2 ))

Then, let Θ ∈ L̂ and i ∈ {1, 2}, let

riΘ =
⋃◦
{t◦∈Ts\N◦

i
(M◦i )∪Ts(M◦i ,N

◦
i ),label(t◦)=Θ}

rate(t◦) = (zΘ
i , c

Θ
i )

then the symbolic expression eΘ
1 and eΘ

2 coincide while the constraints are ap-
proximated, i.e., cΘ1 ≤I cΘ2 .

Recall that label(Ts(M1
◦)) = label(Ts(M2

◦)), as a consequence, also in

E◦N◦i (M◦i ) =
∑◦

(z,c)∈rate(Ts\N◦
i

(M◦i )∪Ts(M◦i ,N
◦
i ))

(z, c) = (zi, ci)

the symbolic expression e1 and e2 coincide while the constraints c1 ≤I c2. Hence,
we can conclude that min(EN◦2 (M◦2 )) ≤ min(EN◦1 (M◦1 )) ≤ max(EN◦1 (M◦1 )) ≤
max(EN◦2 (M◦2 )).

Before proving 2. observe that, by definition, S◦1 will be a set of non-conflict
states w.r.t. M◦1 in the derived IMC, while S◦2 will be a set of non-conflict states
w.r.t. M◦2 . Then, we focus on the abstract rate of a move from M◦2 to N◦2 , for
N◦2 ∈ S◦2. Once again, we use the correspondence between the abstract rates of
the transitions of Ts(M◦2 ) and of Ts(M◦1 ). Moreover, note that while Ht is not in
general a bijective function, it becomes bijective when we restrict the function to
the domain

⋃
N◦1∈S◦1 Ts(M◦1 , N

◦
1 )→ ⋃

N◦2∈S◦2 Ts(M◦2 , N
◦
2 ) once that Condition

8 holds. Therefore, we can reason as in the proof of Lemma AppendixB.2, once
we recall that we have supposed that N◦1 ∈ S◦1 and N◦2 ∈ S◦2. we have

R◦(M◦2 , N
◦
2 ) =

∑◦
t◦2∈Ts(M◦2 ,N

◦
2 )rate

◦(t◦2) ≥I ∑◦t◦2∈Ts(M◦2 ,N
◦
2 )rate

◦(H−1
t (t◦2))

As a consequence, we obtain
∑◦
t◦2∈Ts(M◦2 ,N

◦
2 )rate

◦(H−1
t (t◦2)) =

∑◦
N◦1∈S◦1

R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ) with

R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ) =

∑◦
{t◦1∈Ts(M◦1 ,N

◦
1 )|Ht(t

◦
1)∈Ts(M◦2 ,N

◦
2 )}rate

◦(t◦1).

Finally, we note that R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ) sum up the rates of transitions from

state M◦1 to state N◦1 , which are mapped through Ht into transition going from
M◦2 to N◦2 . Since Ht is an injective function, it should be clear that

∑◦

N◦2∈S◦2
R◦|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 ) = R◦(M◦1 , N

◦
1 )
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Proof of [Theorem 6.3] Let lts◦i = (S◦i ,M
◦
0,i, E), for i ∈ {1, 2}, such that

lts◦1v◦lts lts◦2. We have to prove that mc◦1v◦mcmc◦2, where mc◦i = H◦(lts◦i ) =
(S◦i ,P

−
i ,P

+
i ,L,M

◦
0,i); thus, we have to prove that M◦0,1 4mc M◦0,2, according to

Definition 5.8.
Reasoning as in the proof of Theorem AppendixB.3, we have to show that

for each M◦1 ∈ S◦1 and M◦2 ∈ S◦2 , if M◦1 4lts M◦2 , then also M◦1 4mc M◦2 .
In order to obtain M◦1 4mc M◦2 we have to demonstrate that: (i) M◦1v◦M◦2 ;

and (ii) for each distribution ρ1 ∈ ADistr(M◦1 ) there exist distributions δ ∈
Distr(S◦1×S◦2 ) and ρ2 ∈ ADistr(M◦2 ) such that, for any N1

◦ ∈ S1
◦ and N2

◦ ∈ S2
◦:

1. ρ1(N◦1 ) =
∑
N◦2∈S◦2 δ(N

◦
1 , N

◦
2 ) and ρ2(N◦2 ) =

∑
N◦1∈S◦1 δ(N

◦
1 , N

◦
2 ).

2. if δ(N◦1 , N
◦
2 ) > 0 then

(a) M◦1 6= N◦1 implies that M◦2 6= N◦2 ;
(b) N◦1 4mc N◦2 .

As before, (i) follows immediately from M◦1 4lts M◦2 by definition of the
approximation order (see Definition 4.12). For (ii) let us choose a an admissible
distribution ρ1 ∈ ADistr(M◦1 ), such that for all N1 ∈ S◦1, S◦1 a given set of
no-conflict states, P−1 (M◦1 )(N◦1 ) ≤ ρ1(N◦1 ) ≤ P+

1 (M◦1 )(N◦1 ) and (ρ1(N◦)) = 0,
otherwise. By Definition 4.12, it is easy to see that there exists a corresponding
set of no-coflict states S◦2 such that for all N2 ∈ S◦2, P−2 (M◦2 )(N◦2 ) ≤ ρ2(N◦2 ) ≤
P+

2 (M◦2 )(N◦2 ) and (ρ2(N◦)) = 0, otherwise. Hence, in the following we restrict
ourself to consider N1 ∈ S◦1 and N2 ∈ S◦2.

More in detail, according to the probabilistic translation function of Defini-
tion 6.1, for most of the cases, the lower and upper bound probabilities for the
move from M◦i to N◦i are computed by minimizing and maximizing the solution
of R◦(M◦i , Ni

◦)/◦E◦N◦i (M◦i ), respectively.
Let us consider then the admissible distribution ρ1 ∈ ADistr(M1

◦). Since
M◦1 4lts M◦2 we can use the properties of Lemma AppendixB.4 in order to
properly relate Ts(M◦1 ) and Ts(M◦2 ). In particular, we recall that there exists
a function Ht : Ts(M◦1 )→ Ts(M◦2 ).

Our goal is to find distributions δ ∈ Distr(S◦1 × S◦2 ) and ρ2 ∈ ADistr(M◦2 ),
which satisfy conditions 1. and 2. As before, for each N◦i ∈ S◦i with i ∈
{1, 2}, δ(N◦1 , N◦2 ) says how much N◦2 approximates N◦1 , if N◦1 6∈ S◦1 or N◦2 6∈
S◦2 then δ(N◦1 , N

◦
2 ) = 0. Therefore, here, we look for a δ ∈ Distr(S◦1 ×

S◦2) which can be easily extended to a δ ∈ Distr(S◦1 × S◦2 ) as described be-
fore. In order to compute δ, we have to consider the rate of the transitions
from M◦1 to N◦1 which are mapped through Ht into transitions from M◦2 to
N◦2 . From Lemma AppendixB.2, this rate is denoted by R◦|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 ) =∑◦

{t◦1∈Ts(M◦1 ,N
◦
1 )|Ht(t◦1)∈Ts(M◦2 ,N

◦
2 )}rate

◦(t◦1).
Based on R◦|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 ) we define corresponding distributions σN◦1 ∈

75



Distr(S◦2) such that L(N◦1 , N
◦
2 ) ≤ σN◦1 (N◦2 ) ≤ U(N◦1 , N

◦
2 ), where

L(N◦1 , N
◦
2 ) =





0 if min(R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 )) = 0

min(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 )

) otherwise

U(N◦1 , N
◦
2 ) =





0 if max(R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 )) = 0

max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 )

) otherwise

As before, any distribution σN◦1 ∈ Distr(S◦2) tells us at what extent N◦2 ap-
proximates N◦1 .

Now, the proof proceeds by considering several different cases for E◦(M◦1 ) .
The proofs of such cases is very similar to proof of Theorem AppendixB.3, once
Lemma AppendixB.2 have been generalized as Lemma AppendixB.4. We prove
the first case as an example.

Assume that min(E◦N◦1 (M◦1 )) 6= 0. We define distributions δ ∈ Distr(S◦1 ×
S◦2) and ρ2 ∈ Distr(S◦2), such that

δ(N◦1 , N
◦
2 ) = ρ1(N◦1 ) · σN◦1 (N◦2 )

ρ2(N◦2 ) =
∑
N◦1∈S◦1

δ(N◦1 , N
◦
2 )

We have to show that δ and ρ2 satisfy conditions 1. and 2. For 2. we observe
that, by definition of δ, if δ(N◦1 , N

◦
2 ) > 0, it must be the case that σN◦1 (N◦2 ) > 0.

This means that max(R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 )) 6= 0, e.g. there exists a transition

t◦1 ∈ Ts(M◦1 , N
◦
1 ) such that Ht(t◦1) ∈ Ts(M◦2 , N

◦
2 ). By definition of 4lts, we have

N◦1 4lts N◦2 , and thus N◦1 4mc N◦2 by inductive hypothesis.
For 1. we have that
∑

N◦2∈S◦2

δ(N◦1 , N
◦
2 ) =

∑

N◦2∈S◦2

ρ1(N◦1 ) · σN◦1 (N◦2 ) = ρ1(N◦1 ) ·
∑

N◦2∈S◦2

σN◦1 (N◦2 ) = ρ1(N◦1 )

Thus, we are left to prove that ρ2 is an admissible distribution for M2
◦ i.e for

each N◦2 ∈ S◦2, P−2 (M◦2 )(N◦2 ) ≤ ρ2(N◦2 ) ≤ P+
2 (M◦2 )(N◦2 ).

For simplicity, we examine the case of ρ2(N◦2 ) ≤ P+
2 (M◦2 )(N◦2 ); the other is

analogous. We have:

ρ2(N◦2 ) =
∑

N◦1∈S◦1

δ(N◦1 , N
◦
2 ) =

∑

N◦1∈S◦1

ρ1(N◦1 ) · σN◦1 (N◦2 )

Since σN◦1 (N◦2 ) may be equal to 0, by definition of U , we have
∑
N◦1∈S◦1

ρ1(N◦1 ) · σN◦1 (N◦2 ) =
∑
{N◦1∈S◦1|σN◦1

(N◦2 )>0} ρ1(N◦1 ) · σN◦1 (N◦2 ) ≤
∑
{N◦1∈S◦1|σN◦1

(N◦2 )>0} ρ1(N◦1 ) ·max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 )◦ )

Since ρ1(N◦1 ) may be equal to 0, we have

∑
{N◦1∈S◦1|σN◦1

(N◦2 )>0} ρ1(N◦1 ) ·max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 )◦ ) =

∑
{N◦1∈S◦1|σN◦1

(N◦2 )>0 and ρ1(N◦1 )>0} ρ1(N◦1 ) ·
max(R◦|(M◦2 ,N◦2 )(M

◦
1 ,N
◦
1 )

R◦(M◦1 ,N
◦
1 ))◦
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We have assumed that, in this case, min(E◦N◦1 (M◦1 )) 6= 0, then, by definition of
the translation function H◦, and by Lemma AppendixB.4,

ρ1(N◦1 ) ·max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N

◦
1 )

R◦(M◦1 ,N
◦
1 )◦ ) = max(R◦(M◦1 ,N

◦
1 )

E◦(M◦1 )◦ )·
max(

R◦|(M◦2 ,N◦2 )(M
◦
1 ,N

◦
1 )

R◦(M◦1 ,N
◦
1 )◦ ) ≤ max(

R◦|(M◦2 ,N◦2 )(M
◦
1 ,N

◦
1 )

E◦
N◦1

(M◦1 )◦ ) ≤ max(
R◦|(M◦2 ,N◦2 )(M

◦
1 ,N

◦
1 )

E◦
N◦2

(M◦2 )◦ )

By definition of R◦|(M◦2 ,N◦2 )(M
◦
1 , N

◦
1 ), and by Lemma AppendixB.4,

∑

{N◦1∈S◦1|σN◦1
(N◦2 )>0,ρ1(N◦1 )>0}

max(
R◦|(M◦2 ,N◦2 )(M

◦
1 , N

◦
1 )

E◦N◦2
(M◦2 )◦

) = max(
R◦(M

◦
2 , N

◦
2 )

E◦N◦2
(M◦2 )◦

) = P+(M◦2 )(N◦2 ).

Proof of [Theorem 6.4] We have to show that

αMC(H(LTS((E,M0)))) = H◦(αlts(LTS((E,M0)))).

Let lts = LTS((E,M0) = (S,→,M0, E). On the one hand, by Definition

4.13, we have αlts(lts) = ({M•}M∈S , α(→),M0
•, E) where α(→) = {M• Θ,∆•,r−−−−→

◦

M ′• | M Θ,∆,r−−−−→ M ′ ∈→} and ∆• is the best abstraction of ∆. Note that
αlts(LTS((E,M0))) ∈ LT S, then, by applying the abstract probabilistic func-
tion (see Definition 6.1 which coincides with Definition AppendixB.1, in this
case) we obtain

H◦(αlts(lts)) = ({M•}M∈S ,P−1 ,P+
1 ,L,M0

•)

where P−1 ,P
+
1 are the lower and upper probability functions. We recall that,

for each M ∈ S, both P−1 (M•) and P+
1 (M•) are calculated from the abstract

rate of the transitions in Ts(M•).
On the other hand, by applying the probabilistic function (see Definition

2.6), we obtain H(lts) = (S,P,L,M0) where P is the probability transition
function which is calculated, for each M ∈ S, from the rate of the transitions
in Ts(M). Then, by Definition 5.10 we have,

αMC(H(lts)) = ({M•}M∈S ,P2
−,P2

+,L,M0
•)

where P2
−(M•,M ′•) = P2

+(M•,M ′•) = P(M1)(M2), for each M1,M2 ∈ S.
It should be clear that, for each M ∈ S, and for each transition α(t) ∈

Ts(M•), the solution of rate◦(α(t)) is an exact value which is equal to rate(t),
where t ∈ Ts(M) is the corresponding concrete transition. As a consequence, for
each M,M ′ ∈ S, we have P1

−(M•,M ′•) = P1
+(M•,M ′•) = P2

−(M•,M ′•) =
P2

+(M•,M ′•). �

Proof of [Theorem 6.5] By Theorem 6.4, we have that αMC(H(LTS((E,M0))))v◦mc H◦(αlts(LTS((E,M0)))).
Hence we have to prove that H◦(αlts(LTS((E,M0))))v◦mc H◦(LTS◦((E,M◦0 ))).
By Theorem 4.14 , we have that αlts(LTS((E,M0)))vlts◦ LTS◦((E,M◦0 )), there-
fore, by Theorem 6.3, we can conclude that H◦(αlts(LTS((E,M0))))v◦mc H◦(LTS◦((E,M◦0 ))).
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We are left now with the generalization of the function H◦ also to LTSs
which do not satisfy Condition 8. As we have already pointed out the diffi-
culty in this case resides in summing up rates of transitions, one of which shares
the same label with some other transition leaving from the same M◦. For-
mally the problem arises when (i) |label({t◦ ∈ Ts(M◦, N◦1 ) | max(rate◦(t◦)) >
0})| > 1 and (ii) there exists a transition t◦ ∈ Ts(M◦, N◦1 ) such that label(t◦) ∈
label(Ts\N◦1 (M◦)). Indeed, note that if (i) holds, by definition, we are not able to
represent in the derived IMC the notion of conflict between the transition t◦ and
the other transitions of Ts\M◦(N◦1 ) with label label(t◦), therefore, the minimum
of and the maximum probability to reach N◦1 has to be adjusted consequently
exploiting the worst and best case scenario.

Let us consider the LTS in Figure AppendixB, where label(t◦2) = label(t◦3) =
(λ, µ) and label(t◦1) = (δ, η).

M◦

t◦1
++

t◦2

33

t◦3 ..

N◦1

N◦2

Figure B.23: An LTS not satisfying Condition 8

Notice that label of the transition from M◦ to N◦1 , i.e., {(λ, µ), (δ, η)} will
not be in conflict with {(λ, µ)} in the derived IMC. Therefore, looking for a safe
approximation of the probabilities to reach N◦1 we have to consider the worst
case scenario for the minimum probability and the best case scenario for the
maximum probability. Since t◦2 and t◦3 share the same label, this means that
either one or the other transition is taken. Therefore, for the minimum proba-
bility to reach N◦1 we consider transition t◦3 (which does not reach N◦1 ) while for
the maximum probability we consider transition t◦2. In other words the abstract
probabilistic translation function H◦ of Definition 6.1 has to be applied to two
different LTS’s. The abstract probabilistic translation function H◦ of Defini-

M◦

t◦1
++

t◦3 ..

N◦1

N◦2

Figure B.24: The worst case scenario

tion 6.1 have to be applied to the LTS of Figure AppendixB when considering
P−(M◦, N◦1 ) while it has to be applied to the LTS of Figure AppendixB

when considering P+(M◦, N◦1 ). Note that the previous reasoning applies
even when t◦2 share the same label with more than one other transition leaving
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M◦

t◦1
++

t◦2

33 N◦1

N◦2

Figure B.25: The best case scenario

from M◦.
Here, we briefly discuss the correctness of this approach. Intuitively the first

point of Lemma AppendixB.4 can easily be extended since it does not require
Condition 8 to hold. In the second part such Condition is instead used to assure
that the function Ht is bijective. Note however, that using two different LTS
for the best and worst case scenario, allows us to prove that the function Ht

restricted to a set a non-conflict states is indeed bijective.
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