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ABSTRACT

We prove that a hyperbolic monic polynomial whose coefficients are func-

tions of class Cr of a parameter t admits roots of class C1 in t, if r is the

maximal multiplicity of the roots as t varies. Moreover, if the coefficients

are functions of t of class C2r , then the roots may be chosen two times

differentiable at every point in t. This improves, among others, previous

results of Bronštĕın, Mandai, Wakabayashi and Kriegl, Losik and Michor.
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1. Introduction

The problem of finding regular roots of polynomials whose coefficients depend on

parameters has been long studied. Apart from its intrinsic interest, its solution

could help shed some light on problems in several fields ranging from algebraic

geometry to partial differential equations.

A real polynomial whose roots are all real is called hyperbolic. In this paper

we consider polynomials whose coefficients depend on one real parameter t and

that are hyperbolic for all the values of the parameter.

Maybe the first classical result in this field can be considered Glaeser’s the-

orem in [8]: the square root of a nonnegative function of class C∞ is locally

Lipschitz continuous, and in general it is not possible to have higher regular-

ity. Some better results can be found if we are allowed to choose carefully the

(square) root as t varies: for some results, see [10, 3, 4, 5].

Another interesting result is contained in the Fefferman and Phong proof of

their famous inequality on positive operators in [7]: a nonnegative function of

any number of variables of class C3,1 can be written as a finite sum of squares

of functions of class C1,1. It is in general not possible to do better than that,

but for an improvement in dimensions 1 and 2, see [2].

Generalizing the problem to an arbitrary hyperbolic polynomial depending

on one parameter, we consider a system of roots, i.e., a set of real functions

of the parameter, maybe only defined near some value t0, that enumerate the

roots of the polynomial (with multiplicity) as the parameter varies.

The most important and well-known result in this case is probably that of

Bronštĕın (in [6]): it is possible to find a system of locally Lipschitz continuous

roots of such a polynomial provided its coefficients are at least of class Cr

where r is the maximal multiplicity of the roots over all values of t. For each

t0 a system of roots differentiable at t0 is also found.

Later, a different proof of this statement was given by Wakabayashi [14]; for

another result in the same line, see also Tarama [13].

A stronger result, with heavier hypotheses, was proved by Mandai in [10]: if

the coefficients are of class C2r it is possible to find a global system of roots of

class C1 (here global means that the roots are defined on the same domain of

parameters as the coefficients of P ). Kriegl, Losik and Michor in [9] proved also

that if the coefficients are of class C3n (where n is the degree of the polynomial)

it is possible to find a global system of roots twice differentiable at every point.
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We refine here the results of Bronštĕın, Mandai and Kriegl, Losik and Michor.

Indeed, we prove

Theorem 1.1: Let us consider a monic hyperbolic polynomial

P (t, τ) = τm + a1(t)τ
m−1 + a2(t)τ

m−2 + · · ·+ am(t),

with coefficients a1, . . . , am ∈ Cr(R), where r is the maximal multiplicity of the

roots of P . Then it is possible to find a system of roots τ1, . . . , τm : R → R of

class C1.

and

Theorem 1.2: Let us consider a monic hyperbolic polynomial

P (t, τ) = τm + a1(t)τ
m−1 + a2(t)τ

m−2 + · · ·+ am(t),

with coefficients a1, . . . , am of class C2r on R, where r is the maximal mul-

tiplicity of the roots of P . Then it is possible to choose a system of roots

τ1, . . . , τm : R → R so that they are twice differentiable at every point.

Section 2 and Section 3 are devoted respectively to these two results. These

are somehow the best possible results with these hypotheses; in Section 4 we

give some examples to show that they cannot be improved.

2. Roots of class C1

In this paper f ′−(t0) (resp. f ′+(t0)) will denote the left (resp. right) derivative

of function f at point t0 (if it exists).

First, we recall the following well-known results (see, e.g., Mandai [10] and

Bronštĕın [6]) that we will need below.

Theorem 2.1: Let

P (t,X) = Xm +B1(t)X
m−1 + · · ·+Bm(t)

be a hyperbolic polynomial for every t in the interval I = (a, b). Assume that

the multiplicity of its roots does not exceed r and Bj ∈ Cr(I), j = 1, . . . ,m.

Then the following hold:

(1) If λ(t) ∈ C0(I) and P (t, λ(t)) = 0 on I, then for any t0 ∈ I there exist

λ′±(t0). Further, for any compact set K ⊂ I, the set {λ′±(t), t ∈ K} is

bounded.
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(2) Let the multiplicity of X = λ(t0) be q. If

λj(t) ∈ C0(I), λj(t0) = λ(t0), j = 1, . . . , q

and P (t,X) is divisible by (X−λ1(t)) · . . . · (X−λq(t)) as a polynomial

of X , then the sets D+ and D− defined as

D± = {λ′
j
±(t0), j = 1, . . . , q}

are respectively the roots of the same equation

a0X
q + a1X

q−1 + · · ·+ aq = 0

where ai = ∂i
t∂

q−i
X P (t0, λ(t0))/(q − i)!i!, i = 0, 1, . . . , q.

(3) There exist λ1, . . . , λm ∈ C0(I) such that

P (t,X) = (X − λ1(t)) · · · (X − λm(t))

and λj , j = 1, . . . ,m are differentiable on I.

From part two we easily deduce

Corollary 2.2: Let τ11, . . . , τ1m and τ21, . . . , τ2m be two systems of differen-

tiable roots of P (t,X) on a neighbourhood of a point t0. Then there exists a

bijection g : {1, . . . ,m} → {1, . . . ,m} such that τ ′1j(t0) = τ ′2g(j)(t0) for every

j = 1, . . . ,m.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. It follows from Theorem 2.1 that under our hypotheses

it is possible to find a system of differentiable roots τ1, . . . , τm; if we prove that

for every j the function τ ′j has a limit at every point t0, the thesis will follow

by well-known results on differentiability.

Hence, we can take t0 = 0 and restrict ourselves to an interval Uδ = [−2δ, 2δ],

for a sufficiently small δ (positive and smaller than 1/2) which will be deter-

mined below.

It is also well-known that if δ is small enough, in Uδ we may “separate” the

roots according to their values at 0; that is, if x1, . . . , xk are the distinct roots

of P (0, τ), we can write

P (t, τ) = P1(t, τ) · · ·Pk(t, τ),

choosing factors so that each Pi is monic, has xi as its unique root at t = 0 and

its coefficients are still functions of class Cr of t. This implies that those τj ’s
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such that τj(0) = xi can be chosen also as differentiable roots of Pi (note also

that the degree of each of these factors is ≤ r by our hypothesis).

The proof is then mostly contained in the following two lemmas, where we

suppose without loss of generality that x1 = 0.

Lemma 2.3: Let P (t, τ) be a polynomial of degree m in τ with coefficients of

class Cm in t for t near 0, such that P is hyperbolic for every t and has 0 as

unique root for t = 0; let τ1, . . . , τm be a differentiable system of roots of P .

Suppose that τ ′j(0) = λ for j = 1, . . . , q and τ ′j(0) �= λ for j > q; then, for every

sufficiently small δ the polynomial

Q(t, τ) =

q∏
j=1

(τ − τj(t) + λt) = τq + b1(t)τ
q−1 + · · ·+ bq(t)

satisfies:

(1) the coefficients bj ∈ Cj(Uδ) ∩ Cm(Uδ \ {0});
(2) the ratio b

(k)
j (t)/tj−k has a finite limit as t → 0 for j = 1, . . . , q, k =

0, . . . ,m, and for k ≤ j this limit is 0.

Proof of Lemma. Up to a linear change of variables, we may reduce ourselves

to the case where λ = 0. We take δ sufficiently small so that in Uδ \ {0} the

roots τj with j ≤ q never take the same value as those with j > q (recall that

the two groups have different derivatives at 0).

Writing P (t, τ) = τm + a1(t)τ
m−1 + · · ·+ am(t), since all the roots vanish at

0, a
(k)
i (0) = 0 for i = 1, . . . ,m, k < i; moreover, under our hypotheses (see [6]),

a
(i)
i (0) = 0 for i = m− q+1, . . . ,m. Indeed, looking at the Taylor expansion of

ai, it is easy to show that, more generally,

lim
t→0

a
(k)
i (t)

ti−k

exists and is finite for i = 1, . . . ,m, k = 0, . . . ,m.

Define for j = 1, . . . , q

cj(t) =
1

2πi

∫
Ct

∂τP (t, ζ)

P (t, ζ)
ζjdζ

where Ct is the circle ζ = ε|t|eis, 0 ≤ s ≤ 2π for some small ε > 0 and ∂τ

denotes as usual the partial derivative with respect to τ ; we have that

cj(t) = τ j1 (t) + · · ·+ τ jq (t),
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since for small ε these are the only roots of P inside Ct.

Claim: There exists some δ > 0 such that cj ∈ Cj(Uδ) ∩ Cm(Uδ \ {0}) and

c
(h)
j (t)/tj−h has a finite limit, say γjh, as t → 0 for j = 1, . . . , q, h = 0, . . . ,m.

Indeed, take any value of ε smaller than half of the minimum value of |τ ′i(0)|
for i > q and δ so small that for every t �= 0 in Uδ all the roots with i < q

are contained in the interior of Ct; every cj is then obviously of class Cm on

Uδ \ {0}, since P (t, ζ) does not vanish on Ct for t �= 0, and is of class Cj on

Uδ thanks to the presence of the ζj , as one can easily see making the change of

variable ζ = εteis.

To make computations easier, we observe that if we fix any point t different

from 0 and take t′ in a neighbourhood of t, we can assume that Ct′ = εteis;

indeed, the value of the integral is the same as long as these circumferences

contain the same roots of P (t′, ζ). Thus, to compute the derivatives of cj we

need only take care of the derivatives of the quotient ∂τP
P . If we differentiate

it h times with respect to t we get (for some choice of the constants CH where

H = (h1, . . . , hl) is an l-tuple)

∂h
t

[
∂τP (t, ζ)

P (t, ζ)

]
=

h∑
l=1

∑
h1+···+hl=h

CH
∂τ∂

h1
t P

P
· ∂

h2
t P

P
· · · ∂

hl
t P

P
.

We thus obtain a sum of integrals of the form

(2.1)

∫
Ct

CH
∂τ∂

h1
t P

P
· ∂

h2
t P

P
· · · ∂

hl
t P

P
ζjdζ.

Now

P (t, ζ) = (ζ − τ1(t)) · · · (ζ − τm(t)) = tm
(
εeis − τ1(t)

t

)
· · ·
(
εeis − τm(t)

t

)
,

and so

∂τP (t, ζ) =mζm−1 + (m− 1)a1(t)ζ
m−2 + · · ·+ am−1(t)

=tm−1

(
m(εeis)m−1 + (m− 1)

a1(t)

t
(εeis)m−2 + · · ·+ am−1(t)

tm−1

)
,

∂τ∂
h1
t P (t, ζ) =(m− 1)a

(h1)
1 (t)ζm−2 + (m− 2)a

(h1)
2 (t)ζm−3 + · · ·+ a

(h1)
m−1(t)

=tm−1−h1

(
(m− 1)

a
(h1)
1 (t)

t1−h1
(εeis)m−2 + · · ·+ a

(h1)
m−1(t)

tm−1−h1

)
,
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and

∂
hj

t P (t, ζ) =a
(hj)
1 (t)ζm−1 + a

(hj)
2 (t)ζm−2 + · · ·+ a(hj)

m (t)

=tm−hj

(
a
(hj)
1 (t)

t1−hj
(εeis)m−1 + · · ·+ a

(hj)
m (t)

tm−hj

)
.

Note that by hypothesis each ratio τi(t)/t admits a finite limit at 0 (whose

value is τ ′i(0)) as also does each ratio a
(hj)
i /ti−hj , as noted above; moreover, the

factor ζjdζ provides an additional term tj+1, hence we can write each integrand

in (2.1) as

t−h+jgjH(t, s)

for suitable continuous functions gjH ; if we call γjH =
∫ 2π

0
gjH(0, s)ds and set

γjh =
∑

l,H CHγjH , we have that

lim
t→0

c
(h)
j (t)

tj−h
= γjh,

which proves our claim.

We stress the fact that this holds for 0 ≤ h ≤ m, even in the cases where

h > j, as we will indeed use this below.

Now, b1, . . . , bq are the elementary symmetric functions in τ1, . . . , τq. The

functions cj and the functions bj are homogeneous of degree j in the τi’s and, as

is well-known, the bj ’s may be written as polynomials in the cl’s, with constant

coefficients, involving only those cl’s with l ≤ j: this proves in particular that

bj ∈ Cm(Uδ \ {0}), a part of property (1). Each monomial of these polynomials

is a coefficient times cd1
1 cd2

2 · · · cdj

j (where d1 + 2d2 + · · · + jdj = j): let us call

D = d1 + · · ·+ dj its degree.

In order to compute the k-th derivative of bj we have to differentiate

cd1
1 cd2

2 · · · cdj

j k times which, for suitable constants C′
K , produces

∑
K

C′
Kc

(k1)
1 c

(k2)
1 · · · c(kd1

)
1 c

(kd1+1)
2 · · · c(kd1+d2

)
2 · · · c(kd1+···+dj

)

j

where we sum over theD-tuples K of integers such that ki ≥ 0 and
∑D

i=1 ki = k.

But since we can factor ti−h from each term c
(h)
i , we can divide each summand

by

(t1−k1)(t1−k2)· · ·(t1−kd1 )(t2−kd1+1)· · ·(t2−kd1+d2 )· · ·(tj−kD )= t
∑

ldl−
∑

ki = tj−k,
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obtaining a finite limit at t = 0; therefore, summing up we have that

lim
t→0

b
(k)
j (t)

tj−k

exists for any j = 1, . . . , q, k = 0, . . .m, which is the first part of property (2).

As for the second part, now we know that these limits exist, we obtain them

for k ≤ j by l’Hôpital’s rule from the case k = 0, since

lim
t→0

bj(t)

tj
= 0

because the functions bj are symmetric functions of degree j of the roots τi and

τi(0) = τ ′i(0) = 0 for all i.

Finally, from what we just proved we deduce that for k ≤ j

lim
t→0

b
(k)
j = 0

and so, since bj(0) = 0 for every j, bj ∈ Cj(Uδ), which was the part of property

(1) that remained to be proved.

Lemma 2.4: In the hypotheses of Lemma 2.3, let us call τ̄1, . . . , τ̄q the system

of (continuous) roots of Q(t, τ) chosen in increasing order at every point; then

there exist monic polynomials Qε(t, τ) of degree q (whose coefficients as ε → 0

converge uniformly on Uδ to the coefficients of Q(t, τ)) with differentiable roots

τj,ε converging uniformly to the τ̄j ’s and such that

lim
δ→0

lim sup
ε→0

sup
[−δ,δ]

|τ ′j,ε(t)| = 0.

Proof of Lemma. Let

Qε(t, τ) = Q(t, τ) + C1εt∂τQ(t, τ) + · · ·+ Cq−1ε
q−1tq−1∂q−1

τ Q(t, τ);

by [11], [14] and [12] there exist suitable constants C,C1, . . . , Cq−1 such that

for every sufficiently small ε, δ > 0, Qε(t, τ) is a strictly hyperbolic polynomial

when t �= 0; there is therefore a unique system of continuous roots τj,ε that turn

out to be differentiable and, if appropriately reordered, satisfy also

(2.2) |τj,ε(t)− τ̄j(t)| ≤ Cε|t|.

It is therefore clear that the coefficients bi,ε(t) of Qε and its roots converge

uniformly on Uδ respectively to the corresponding coefficients of Q and to the
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roots of Q as ε → 0, since

(2.3) bi,ε(t) =

i∑
k=0

(q − i+ k)!

(q − i)!
Ckε

ktkbi−k(t)

(here we have set C0 = 1 and b0 ≡ 1).

It only remains to prove the statement on the derivatives τ ′j,ε. Let us fix from

now on an index j, a point t0 �= 0 in [−δ, δ], and let

Qε,t0(t, τ) = Qε

(
t, τ +

τj,ε(t0)

t0
t
)
;

if we call its coefficients bi,ε,t0 , we have

(2.4) bi,ε,t0(t) =

i∑
h=0

(
q − i+ h

q − i

)(
τj,ε(t0)

t0
t

)h

bi−h,ε(t)

and, if τl,ε,t0 are the roots of Qε,t0(t, τ),

τl,ε,t0(t) = τl,ε(t)− τj,ε(t0)

t0
t

and so there is now a unique l̄ such that τl̄,ε,t0(t0) = 0.

Let us denote by ‖ · ‖ the uniform norm on Uδ and set

ωε,t0(δ) = ‖b′1,ε,t0‖+ ‖b(2)2,ε,t0
‖1/2 + · · ·+ ‖b(q)q,ε,t0‖1/q.

It is easy to see that this quantity does not vanish for δ �= 0: indeed, otherwise

Qε,t0(t, τ) would not be strictly hyperbolic outside 0.

Setting σ = τ/ωε,t0(δ) (and as a consequence defining the function σl̄ by

σl̄(t) = τl̄,ε,t0(t)/ωε,t0(δ)) the polynomial equation Qε,t0(t, τ) = 0 becomes

ωε,t0(δ)
qσq + ωε,t0(δ)

q−1b1,ε,t0(t)σ
q−1 + · · ·+ bq,ε,t0(t) = 0

or, equivalently,

Q̃ε,t0(t, σ) = σq +
b1,ε,t0(t)

ωε,t0(δ)
σq−1 + · · ·+ bq,ε,t0(t)

ωε,t0(δ)
q
= 0.

Using (2.3), (2.4) and property (2) in Lemma 2.3, we have that∣∣∣∣ b
(k)
i,ε,t0

(t)

ωε,t0(δ)
i

∣∣∣∣ ≤ 1

for t ∈ Uδ and k ≤ i. We can then apply Lemma 4 in [6] that we will call
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Bronštĕın’s Lemma: We consider the polynomial

P (t,X) =

m−r−1∑
j=0

Bj(t)X
m−j +

r∑
j=0

Aj(t)X
r−j ,

which is hyperbolic for all t ∈ [−1, 1] where Bi(t) are bounded functions of

t∈[−1, 1] and Ai(t) are i-times differentiable functions. LetA0(t) �=0 ∀ t∈ [−1, 1],

Ar−1(0) �= 0, Ar(0) = 0. Then for some constant C > 0 depending only on the

degree of the polynomial P ,∣∣∣∣ A′
r(0)

Ar−1(0)

∣∣∣∣ ≤ ( sup
i,t

|Bi(t)|+max
i,j,t
j≤i

|A(j)
i (t)|+max

t
|A0(t)|−1 + 2

)C
.

We apply this lemma to the polynomial Q̃ε,t0(t0+s, σ) (with Bi ≡ 0, Ai(s) =

bi,ε,t0(t0 + s)/ωε,t0(δ)
i, s ∈ [−1, 1]).

A close inspection of the proof of Bronštĕın’s Lemma shows that the estimate

holds actually using the maximum attained by the coefficients Ai on an interval

of radius ∣∣∣∣ A1(0)

M1A0(0)

∣∣∣∣ = |b1,ε,t0(t0)|
M1ωε,t0(δ)

if
|b2,ε,t0(t0)|
ωε,t0(δ)

2
≤
(
b1,ε,t0(t0)

ωε,t0(δ)

)2

,

or of radius∣∣∣∣ A2(0)

M2
2A0(0)

∣∣∣∣
1/2

=
|b2,ε,t0(t0)|1/2
M2ωε,t0(δ)

if
|b2,ε,t0(t0)|
ωε,t0(δ)

2
≥
(
b1,ε,t0(t0)

ωε,t0(δ)

)2

,

where M1,M2 ≥ 1 are suitable constants.

Since here |t0| ≤ δ, a quick verification shows that

|b1,ε,t0(t0)|
ωε,t0(δ)

≤ δ and
|b2,ε,t0(t0)|
ωε,t0(δ)

2
≤ δ2;

therefore the estimate takes into consideration only points in the interval

|t− t0| ≤ δ, which is contained in Uδ.

Now, since Q̃ε,t0(t0 + s, σl̄(t0 + s)) vanishes identically, we get that

d

ds
Q̃ε,t0(t0 + s, σl̄(t0 + s))

= ∂tQ̃ε,t0(t0 + s, σl̄(t0 + s)) + ∂τ Q̃ε,t0(t0 + s, σl̄(t0 + s))σ′̄
l(t0 + s) = 0,

hence

|σ′̄
l(t0 + s)| =

∣∣∣∣∣ ∂tQ̃ε,t0(t0 + s, σl̄(t0 + s))

∂τ Q̃ε,t0(t0 + s, σl̄(t0 + s))

∣∣∣∣∣
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which for s = 0 corresponds exactly to the quotient
∣∣∣ A′

q(0)

Aq−1(0)

∣∣∣; we can then write,

independently of ε and δ,

|σ′̄
l(t0)| ≤ 4C = M.

Using the definition of σ we see that

|τ ′̄
l,ε,t0

(t0)|
ωε,t0(δ)

≤ M,

that is,

|τ ′̄l,ε,t0(t0)| ≤ Mωε,t0(δ).

But τ ′j,ε(t0) = τ ′̄
l,ε,t0

(t0) +
τj,ε(t0)

t0
, so that

|τ ′j,ε(t0)| ≤ Mωε,t0(δ) +

∣∣∣∣τj,ε(t0)t0

∣∣∣∣ .
Setting

ωε(δ) = ‖b′1,ε‖+ ‖b(2)2,ε‖1/2 + · · ·+ ‖b(q)q,ε‖1/q,
we have

ωε,t0(δ) ≤ ωε(δ) + sup
Uδ\{0}

{∣∣∣∣τj,ε(t0)t0

∣∣∣∣ ,
∣∣∣∣τj,ε(t0)t0

∣∣∣∣
1/q
}
φε(δ),

where the supremum is finite for given ε and δ, since τj,ε is differentiable,

and φε(δ) is a positive constant taking into account combinatorial factors, the

Ci’s and all the uniform norms
∥∥∥ b

(k)
i (t)

ti−k

∥∥∥ (that are indeed bounded thanks to

Lemma 2.3); note that this constant is globally bounded for ε and δ small and

is independent of t0.

We conclude that for ε and δ small and t ∈ [−δ, δ]

|τ ′j,ε(t)| ≤ M ′
(
ωε(δ) + sup

Uδ\{0}

{∣∣∣∣τj,ε(t0)t0

∣∣∣∣
1/q
})

= Ωj(δ, ε).

Note that this expression holds also in the case t = 0 and that, since the right-

hand side does not depend on t, it gives indeed an estimate for sup[−δ,δ] |τ ′j,ε(t)|.
Now, looking at the expression of the bi,ε’s, we see that

lim
ε→0

ωε(δ) = ω0(δ) = ‖b′1‖+ ‖b(2)2 ‖1/2 + · · ·+ ‖b(q)q ‖1/q,
while by (2.2)

lim
ε→0

sup
Uδ\{0}

∣∣∣∣τj,ε(t0)t0

∣∣∣∣ = sup
Uδ\{0}

∣∣∣∣ τ̄j(t0)t0

∣∣∣∣ .
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We have then proved that

lim
δ→0

lim sup
ε→0

sup
[−δ,δ]

|τ ′j,ε(t)| ≤ M ′ lim
δ→0

(
ω0(δ) + sup

Uδ\{0}

∣∣∣∣ τ̄j(t0)t0

∣∣∣∣
1/q )

.

But on one side, by Lemma 2.3, limδ→0 ω0(δ) = 0; on the other side, by Theorem

2.1, the ordered roots τ̄j have right and left derivatives at 0 that coincide (as a

set) with the set of derivatives at 0 of the differentiable roots τj of Q(t, τ) and

all these derivatives are 0, therefore

lim
t0→0

τ̄j(t0)

t0
= 0

and so also

lim
δ→0

sup
[−δ,δ]

∣∣∣∣ τ̄j(t0)t0

∣∣∣∣ = 0,

which ends our proof of Lemma 2.4.

We now come back to the proof of Theorem 1.1: thanks to our reductions, it

is sufficient to study the roots of the polynomial Q(t, τ) relative to one value of

λ (namely, we shall take λ = 0), where we can use Lemma 2.3 and Lemma 2.4.

Now we have that the functions τj,ε (roots of Qε(t, τ)) are Lipschitz continu-

ous on [−δ, δ] with a Lipschitz constant Ω(δ, ε) that can be taken independent

of j; and so also the ordered roots τ̄j are Lipschitz continuous with Lipschitz

constant limε→0 Ω(δ, ε) = Ω(δ), which implies that for every t ∈ [−δ, δ]

|τ̄ ′j−(t)| ≤ Ω(δ) and |τ̄ ′j+(t)| ≤ Ω(δ).

But since the set of derivatives is the same, then also

|τ ′j(t)| ≤ Ω(δ)

in [−δ, δ], and since limδ→0 Ω(δ) = 0,

lim
t→0

τ ′j(t)

exists (and is 0) for every j, which ends our proof.

Remark 2.5: It may be worth noting that we have indeed proved that in these

hypotheses any system of differentiable roots is already of class C1: in this sense,

this result improves the corresponding one in [10], where coefficients needed be

of class C2r.
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3. Twice differentiable roots

In this section we will consider a monic hyperbolic polynomial

P (t, τ) = τm + a1(t)τ
m−1 + a2(t)τ

m−2 + · · ·+ am(t),

with coefficients a1, . . . , am of class C2r on R, where r is the maximal multi-

plicity of the roots of P as t varies.

We start with a few lemmas; first, a very simple one about continuous func-

tions.

Lemma 3.1: Let f ∈ C0((0, 1)) and hi ∈ C0([0, 1)) for i = 1, . . . , k; set xi =

hi(0) and suppose that, for every t ∈ (0, 1), f(t) equals some hi(t)(t). Then

limt→0+ f(t) exists and equals one of the xi’s.

If all the xi’s coincide this holds even without the assumption of continuity

on f .

Moreover, suppose that fi ∈ C0((0, 1)) for i = 1, . . . , k and that for every

t ∈ (0, 1) there exists a bijection gt : {1, . . . , k} → {1, . . . , k} such that fi(t) =

hgt(i)(t); if there are exactly n functions hi with the same value x̄ at 0, there

are exactly n functions fi with that value as a limit at 0.

Proof. The first two statements follow directly applying the definition of conti-

nuity.

The third then also follows since for small t the bijection gt would not exist

if the number of functions fi having limit x̄ at 0 were more than n; and since

by the first part all the fi’s have a limit whose value is among the xi’s, their

number cannot be less than n either.

If the hypotheses of Lemma 3.1 are fulfilled, we will say that f is pinned

by the hi’s (the same applies also to the functions fi of the third part of the

Lemma).

Now we establish a few properties of roots and of systems of roots of P (t, τ).

Lemma 3.2: For every point t0 there exists a system of roots τ1,t0 , . . . , τm,t0

defined in a neighbourhood of t0 and twice differentiable at that point.

Proof. We take as always t0 = 0 and suppose that 0 is the only root of P (t, τ)

for t = 0 (and so degP ≤ r), which is not restrictive up to separating the roots

as in the proof of Theorem 1.1.
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Now we notice that each ratio ai(t)/t
i has a finite limit at t = 0 (see Lemma

2.3) and so it is possible to extend it as a function āi of class C2r−i ⊂ Cr on

R; therefore we can find by Theorem 1.1 a system of roots σj of class C1 of the

polynomial

σm + ā1(t)σ
m−1 + ā2(t)σ

m−2 + · · ·+ ām(t)

and so the functions τj,0 defined as τj,0(t) = tσj(t) are obviously a system of

roots of P twice differentiable at t = 0.

Remark 3.3: In fact the system of roots of Lemma 3.2 could be found of class C1

on all R; anyway, we cannot ensure that these roots will be twice differentiable

at any point except that at t0.

Lemma 3.4: Let τ̃ be a root of P (t, τ) of class C1 on an interval (t0, t1). Then

it is possible to extend it to a root of class C1 on the interval [t0, t1).

Proof. The proof is similar to that of Corollary 2.2: since by Theorem 1.1 there

is a system of roots τj of class C
1, again by Theorem 2.1, at every point near t0

their derivatives satisfy also a polynomial (with coefficients depending on the

point); but the same polynomial must be satisfied also by the derivative of τ̃

at all those points, that is, τ̃ ′ is pinned by the τ ′j ’s and we conclude by Lemma

3.1.

Lemma 3.5: Let τ̃ be a root of P (t, τ) of class C1 on an interval (t0, t1). Then

the left and right second derivatives of τ̃ exist at every point t ∈ (t0, t1); more-

over, if τ̃ is suitably extended to [t0, t1], the right second derivative exists at t0

and the left second derivative exists at t1.

Proof. Since we proved that systems of roots τj,t0 with second right (left) de-

rivative at a certain point t0 exist, the first part of the statement follows by

Lemma 3.1 after we note that the function

τ̃ ′(t)− τ̃ ′(t0)
t− t0

,

that is continuous outside t0, is pinned by the functions

τj,t0(t)− τj,t0(t0)

t− t0
,

that are continuous also at t0, if we define them there as τ ′′j,t0(t0).
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As for the second part, Lemma 3.4 shows that we can extend τ̃ to a func-

tion of class C1 on [t0, t1] and the same proof applies to right (or left) second

derivatives.

Corollary 3.6: Let τ11, . . . , τ1m and τ21, . . . , τ2m be two systems of roots of

class C1 of P (t, τ) on a neighbourhood of a point t0. Then there exist bijections

g−, g+ : {1, . . . ,m} → {1, . . . ,m} such that for every j = 1, . . . ,m

τ ′′−1j (t0) = τ ′′−2g−(j)(t0) and τ ′′+1j (t0) = τ ′′+2g+(j)(t0).

Proof. The argument used in the proof of Lemma 3.5 proves this statement if

we now use the third part of Lemma 3.1.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let us prove our statement arguing by induction on the

maximal multiplicity k of the roots of P on any given open interval I (obviously,

k ≤ r).

To start with, if k = 1 we know that continuous roots are automatically

of class C2r: indeed, this is more generally true whenever the multiplicity is

constant on I. Namely, the set of points where the multiplicity of each root is

locally minimal is open (by the semicontinuity of multiplicity) and so on any

open interval contained in it any system of continuous roots will be of class C2r.

Now, suppose we have already proved the theorem for all the intervals where

the maximal multiplicity is at most k− 1 and take an open interval I where the

multiplicity of the roots is at most k.

For every point t̄ ∈ I we can again factor P to separate the roots, with the

new coefficients in the same class as the old ones, in a suitable open interval

It̄ ⊂ I.

First step. In each It̄ it is possible to find a system of twice differentiable

roots.

For this, we can suppose that the polynomial has degree k and has just one

root of multiplicity k at t̄ (if the multiplicity were less than k we would conclude

by the induction hypothesis).

Let us callX the set of t’s in It̄ at which the multiplicity of the roots is exactly

k; X is closed in It̄ (though in general not closed in R, because we ignore what

happens outside I). Let us write X = X1 ∪X2, where X1 is the set of isolated

points of X and X2 is its complement in X ; X2 is closed in It̄, too.
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Up to the translation τ → τ − 1
ka1(t), we can assume that a1 ≡ 0 on It̄,

which means, in particular, that at all points of X in this interval all the roots

coincide and are equal to 0.

Now let us write

It̄ \X =
⋃
α

Iα

and

It̄ \X2 =
⋃
β

Jβ

for suitable disjoint open intervals Iα and Jβ ; note that on each Iα the maximal

multiplicity is at most k − 1.

Claim: On every Jβ there is a system of twice differentiable roots.

Indeed, by our hypotheses each interval Jβ is a union of intervals Iα and

points of X1 (that cannot accumulate). In particular, for every β we can choose

a point tβ ∈ Jβ \X1. Now, tβ belongs to some Iα, where by induction there is

a system of k twice differentiable roots.

For every point t in Jβ the interval [tβ , t] (or [t, tβ ]) is covered by a finite

number of intervals Iα and points of X1. We use induction on the number of

points of X1: clearly, if Jβ ∩ X1 = ∅, we already have the roots on the whole

Jβ .

Thanks to Lemmas 3.2—3.6, if on the left and on the right of a point t1 of

X1 we have systems of twice differentiable roots σ−
j , σ

+
j of P (defined, say, on

two intervals Iα− and Iα+), there is a bijection gt1 : {1, . . . ,m} → {1, . . . ,m}
such that the functions τj defined as

τj(t) =

⎧⎪⎪⎨
⎪⎪⎩
σ−
j (t) if t ∈ Iα− ,

limt→t1 σ
−
j (t) if t = t1,

σ+
gt1 (j)

(t) if t ∈ Iα+ ,

are a system of twice differentiable roots of P on Iα− ∪ {t1} ∪ Iα+ . Indeed, the

σ−
j ’s and σ+

j ’s can be extended with second derivative to t1 and their derivatives

and their left and right second derivatives are pinned by the corresponding

derivatives of the system of twice differentiable roots existing near t1: therefore

they must be the same on the left and on the right of t1, up to a reordering.

This proves our claim.
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To complete the first step in the proof, we now have to deal with points

t2 ∈ X2 (let us suppose t2 = 0 as usual).

We cannot use the same argument as above, since there could be no interval on

the left or on the right of 0 where we know that the roots are twice differentiable:

indeed, the roots at the moment could even be not defined at infinitely many

points accumulating at 0.

Anyway, we can extend them to functions τj defined also at points of X2 in

It̄ with the value 0. Since we have chosen twice differentiable (hence contin-

uous) roots on every interval Jβ , these functions are pinned by any system of

continuous roots near 0 and so are continuous on their part on the whole It̄ by

Lemma 3.1.

Since now all the τj ’s vanish simultaneously infinitely many times near 0 (and

hence so does each of the twice differentiable roots τj,0 given by Lemma 3.2), if

we denote by Δf(t) the difference quotient of the function f calculated between

t and 0, we have that

lim
t→0

Δτj,0(t) = lim
t→0

τj,0(t)

t
= 0

because τj,0 is twice differentiable; but each Δτj is pinned by the functions

Δτj,0(t), so also

lim
t→0±

Δτj(t) = lim
t→0

τj(t)

t
= 0.

Thus, τ ′j exists in It̄ and vanishes on X2.

Similarly, we see that the τ ′j ’s are pinned by the τ ′j,0’s that share the same

limit at 0 and therefore, by the second part of Lemma 3.1, τ ′j is continuous

(also) at the points of X2: τj is then indeed of class C1 on It̄.

But again, since τj,0 (and hence τ ′j,0) vanishes infinitely many times near 0

and τj,0 is twice differentiable,

lim
t→0

τ ′j,0(t)
t

= 0;

now, since the value τ ′j(t)/t must be among the values τ ′j,0(t)/t at every point

t �= 0 (we already know it outside X2, and on X2 \ {0} all these values are 0),

again by Lemma 3.1 also

lim
t→0±

τ ′j(t)
t

= 0.

Thus τj is twice differentiable at points of X2 and our first step is completed.

Second step. There is a global system of twice differentiable roots on I.
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For this, we first choose a subcovering {Itγ}γ∈Γ ⊂ {It̄}t̄∈I of I (where Γ is a

finite or infinite interval of Z containing 0) whose members satisfy:

(1) no one of them is contained in the union of the others, and

(2) no one of them intersects more than two of the others.

Let us reorder the Itγ so that the indices respect the ordering of R.

We prove the following statement by induction on N : there is a system of

twice differentiable roots on the interval
⋃

|γ|<N Itγ . Note that the “first step”

above covers the case N = 1.

Choose a point (say 0) that belongs only to It0 and a point sγ in every inter-

section Itγ ∩Itγ+1 : at these points we use the same argument as above for points

of X1, this time to connect the roots defined on
⋃

|γ|<N Itγ to those defined on

ItN and It−N . Indeed, we have again two systems of twice differentiable roots

on intervals on the sides of sγ , except that in this case we have to take also care

of many possible different limits xj (which is nevertheless easily done thanks to

the third part of our usual Lemma 3.1). Also the second step is then proved.

This ends also the inductive step on the multiplicity k; of course, when we

reach the maximal multiplicity r of P , we can take I = R and our thesis

follows.

Remark 3.7: In the previous section we proved that differentiable roots were

indeed of class C1 on R; in this section, instead, to have roots twice differentiable

at every point we might be forced to choose them more carefully. For example,

the choice of τj(t) = ±t|t| as a system of roots of τ2 − t4 is legitimate in

Bronštĕın’s theorem and in Theorem 1.1, but gives only roots of class C1; to

obtain a system of twice differentiable roots the choice of τj(t) = ±t2 must be

made instead.

4. Counterexamples

In [1] the following examples are given, which show that the regularity assump-

tions in Theorem 1.1 cannot be weakened, even in the simple case P (t, τ) =

τ2 − f(t) (whose roots will be called admissible square roots of f):

Example 4.1: Let

f(t) =

⎧⎨
⎩t2 sin2(log |t|) if t �= 0,

0 if t = 0.
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Then f ∈ C1,1 (and f �∈ C2) but no admissible square root of f is differentiable.

Example 4.2: Let

f(t) =

⎧⎨
⎩t4 sin2(log |t|) if t �= 0,

0 if t = 0.

Then f ∈ C3,1 (and f �∈ C4), but its admissible square roots (that can be of

class C1) are never twice differentiable.

Analogously, for equations of degree three we can give the following examples:

Example 4.3: In the equation

τ3 − t2τ =
t3

3
sin(log |t|)

the coefficients are of class C2,1, but not of class C3, and no root is of class C1.

Example 4.4: In the equation

τ3 − t4τ =
t6

3
sin(log |t|)

the coefficients are of class C5,1, but not of class C6, and no root is twice

differentiable at t = 0.

Moreover, it is possible to find examples of equations for which the lack of

regularity of the solutions is due to the low regularity of the coefficient of some

monomial of positive degree. For example, if the equation is of degree two and

there is a term of degree one whose coefficient is not of class C2, it is possible

that the roots cannot be differentiable.

Example 4.5: In the equation

τ2 + (t2 sin2(log |t|)− 2)τ + 1 = 0

the coefficients are of class C1,1, but no root is differentiable at t = 0.

In a similar way it is possible to give an example of an equation of degree

three where the term of degree two is “responsible” for the low regularity of the

roots.

Example 4.6: In the equation

(τ + 1)3 − t2(τ + 1) =

(
t3

3
sin(log |t|)

)
τ2
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the coefficients are of class C2,1, but no root is differentiable at t = 0.

Proof. Replacing τ + 1 with τ we have

τ3 − t2τ =

(
t3

3
sin(log |t|)

)
(τ − 1)2.

If t = 0 then τ = 0 is a triple root; putting σ = τ/t, that is, τ = tσ, we have

the equation

σ3 − σ =

(
1

3
sin(log |t|)

)
(tσ − 1)2.

This equation has three real roots for t near 0, but they do not have limit as

t → 0, since in the neighbourhood of 0 they take as values, e.g., both the roots

of

σ3 − σ =
1

3
(e−

4k+3
2 πσ − 1)2

and the roots of

σ3 − σ = −1

3
(e−

4k+1
2 πσ − 1)2,

that by continuity converge respectively to the roots of

σ3 − σ =
1

3
and of σ3 − σ = −1

3

as the natural number k goes to infinity.

Going back to P (t, τ) = τ2 − f(t), the following examples show that, on the

other hand, even for smooth functions f the results given by Theorems 1.1 and

1.2 cannot be improved.

In [8] there is a well-known example of a function of class C∞ whose square

root is not of class C2. A very similar function can be chosen to show that it is

possible that no admissible square root be of class C1,α for any α: namely (see

[3]), we can set

f(t) =

⎧⎨
⎩e−1/|t|(sin2( π

|t|) + e−1/t2) if t �= 0,

0 if t = 0.

Indeed, grossly speaking, the smaller are the positive minimum values near

0, the less regular are the admissible square roots. This observation leads to

a refinement of the previous result: let us fix a positive real number λ and

a continuous, increasing, concave function ω : [0, λ] → R such that ω(0) = 0

(which we assume satisfies ω(s) ≥ s). If I ⊂ R is an interval, a function
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f : I → R will be called ω-continuous on I if there is a positive constant C

such that for any |s| ≤ λ when t, t+ s ∈ I

|f(t+ s)− f(t)| ≤ Cω(|s|),

and ω in this case will be called a modulus of continuity for f .

We then have

Theorem 4.7 (see [3]): Given a function ω as above there exists a nonnegative

function f ∈ C∞(R) that vanishes only at 0 and such that h = (
√
f)′ is not ω-

continuous on R and therefore f has no admissible square root whose derivative

is ω-continuous.
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