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Abstract—Assume that a multi-user multiple-input multiple-
output (MIMO) communication system must be designed to
cover a given area with maximal energy efficiency (bits/Joule).
What are the optimal values for the number of antennas, active
users, and transmit power? By using a new model that describes
how these three parameters affect the total energy efficiency of
the system, this work provides closed-form expressions for their
optimal values and interactions. In sharp contrast to common
belief, the transmit power is found to increase (not decrease) with
the number of antennas. This implies that energy efficient systems
can operate at high signal-to-noise ratio (SNR) regimes in which
the use of interference-suppressing precoding schemes is essential.
Numerical results show that the maximal energy efficiency
is achieved by a massive MIMO setup wherein hundreds of
antennas are deployed to serve a relatively many users under
the assumption that regularized zero-forcing precoding is used.

I. INTRODUCTION

The design of current wireless networks (e.g., based on
the Long-Term Evolution (LTE) standard) have been mainly
driven by enabling high spectral efficiency due to the spectrum
shortage and rapidly increasing demand for data services [1].
As a result, these networks are characterized by poor energy
efficiency (EE) and large disparity between peak and average
rates. The former is defined as the number of bits transferred
per Joule of energy and it is affected by many factors such as
(just to name a few) network architecture, spectral efficiency,
radiated transmit power, and circuit power consumption [1]–
[3]. Motivated by environmental and economical costs, green
radio is a new research direction that aims at designing
wireless networks with better coverage and higher EE [2].

In this work, we consider the downlink of a multi-user
MIMO system (broadcast channel) and aim at bringing new
insights on how the number M of base station (BS) antennas,
the number K of active user equipments (UEs), and the
transmit power must be chosen in order to maximize EE. As
discussed in [1], a precise power consumption model is crucial
to obtain reliable guidelines for EE optimization. For example,
the total consumption has been traditionally modeled as a
linear or affine function of the transmit power [3]. However,
this simple model cannot be adopted in systems where M
might be very large as it would lead to an unbounded EE when
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M →∞ [4]. This is because the circuit power consumed by
digital signal processing and analog filters for radio-frequency
(RF) and baseband processing scales with M and K. Hence, it
can be taken as a constant in small multi-user MIMO systems
while the variability plays a key role in so-called massive
MIMO systems in which M � K � 1 [4]–[6].

The impact of the circuit power consumption on M was
recently investigated in [7]–[10]. In particular, in [7] the author
focuses on the power allocation problem in the uplink of multi-
user MIMO systems and shows that the EE is maximized
when specific UE antennas are switched off. The downlink
was studied in [8]–[10], whereof [8], [9] show that the EE is
a concave function of M and [10] shows a similar result for K.
Unfortunately, these behaviors are proven only using simula-
tions that (although useful) do not provide a complete picture
of how the EE is affected by different system parameters.

In this work, we aim at closing this gap and derive closed-
form expressions not only for the EE-optimal M , but also
for K and the transmit power ρ. These expressions provide
valuable design insights about the interplay between M , K,
and ρ, and the impact of the propagation environment as well
as coefficients in the power consumption model. To ensure
highly reliable results, the expressions are derived using a
new power consumption model that includes high-order terms
that describe how the signal processing complexity in MIMO
systems scales faster than linear with M and K. The results
are derived for zero-forcing (ZF) precoding, but simulations
show similar results for other common precoding schemes.

II. PROBLEM FORMULATION

As depicted in Fig. 1, we consider the downlink of a multi-
user MIMO system in which the BS makes use of M antennas
to communicate with K single-antenna UEs. The flat-fading
channel hk ∈ CM between the BS and the kth active UE is as-
sumed to be Rayleigh block fading as hk ∼ CN (0, λkIk). This
amounts to saying that it is maintained constant for T channel
uses and then updated randomly from the circular-symmetric
complex Gaussian distribution. The K active UEs change over
time and are selected in a round-robin fashion from some large
set of UEs that are moving around within the coverage area.
For notational convenience, the active UEs are numbered as
1, 2, . . . ,K so that the channel variances λ1, λ2, . . . , λK are
independent random variables that originate from some pdf
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Fig. 1. Illustration of the multi-user MIMO scenario: An M -antenna BS
transmits to K single-antenna UEs. The users are selected randomly from a
user distribution characterized by the pdf fλ(x) of the channel variances.

fλ(x) describing the user distribution in the coverage area
together with some location-based path loss model.

To enable acquisition of instantaneous channel state infor-
mation (CSI) at the BS when M is large, we consider a
time-division duplex (TDD) protocol in which K orthogonal
uplink pilot signals are transmitted over K channel uses at
the beginning of each coherence block. By exploiting channel
reciprocity, using Gaussian codebooks, and treating inter-user
interference as noise, the average achievable information rate
(in bits/channel use) of the kth UE is given by

Rk =
(

1− K

T

)
E

{
log2

(
1 +

|hHk vk|2
K∑

`=1, 6̀=k
|hHk v`|2 + σ2

)}
(1)

where σ2 is the noise variance and the pre-log factor (1− K
T )

accounts for pilot overhead. The direction vk
‖vk‖ and power

‖vk‖2 of the precoding vector vk ∈ CM are computed on
the basis of the instantaneous CSI at the BS, while UEs have
perfect CSI. The expectation in (1) is taken with respect to
{hk}, {vk}, and {λk}.

While conventional systems have large disparity between
peak and average rates, we aim at designing the system so
as to guarantee a uniform rate for any selected UE; that is,
Rk=R for some R≥0. More specifically, our goal is to find
the values of M , K and R that maximize the EE of the system.

A. General Energy Efficiency Metric

The EE of a communication system is measured in
bits/Joule [2] and equals the ratio between the average achiev-
able information rate (in bits/channel use) and the total average
power consumption (in Joule/channel use). Observe that the
power consumption of conventional macro BSs is roughly
proportional to the radiated transmit power [3]. However, this
assumption does not hold in general. Indeed, making such an
assumption in massive MIMO systems can be very misleading
since an infinite EE can be achieved as M →∞ [4]. This calls
for a more detailed and realistic model.

Apart from the power consumed by the RF power amplifier,
there is a circuit power consumption of digital signal process-
ing and analog filters used for RF and baseband processing.
Inspired by features of the power consumption models in [1],
[3], [10], [11], we propose a new model that specifies how the

power scales with M and K. The total power consumption (in
Joule/channel use) is1

P total =

K∑
k=1

E{‖vk‖2}
η

+

3∑
i=0

Ci,0K
i +

2∑
i=0

Ci,1K
iM (2)

where 0 < η ≤ 1 is the efficiency of the power amplifier and
the expectation is taken with respect to channel realizations
and user locations. The term C0,0 ≥ 0 is the static hard-
ware power consumption that does not scale with M or K.
The remaining power consumption terms are of the structure
Ci,jK

iM j for some coefficient Ci,j ≥ 0 and different integer
values on i, j. The range of high-order terms is motivated in
Section II-B. We can now define the EE metric.
Definition 1. The average energy efficiency (EE) is

EE =

∑K
k=1Rk
P total

(3)

where Rk and P total are given in (1) and (2), respectively.

B. Example: Parameters in the Power Consumption Model

To motivate (2), we give a brief summary of different as-
pects that contribute to the total downlink power consumption.

1) Transceiver Chains: The typical MIMO transceivers in
[12] have a power consumption of MPtx + KPrx + Psyn

Joule/channel use. Ptx is the power of the BS components
attached to each antenna: converters, mixers, and filters. A
single oscillator with power Psyn is used for all BS antennas.
Since we consider single-antenna UEs, Prx is the power of all
receiver components: amplifiers, mixer, oscillator, and filters.

2) Coding and Decoding: The BS applies channel coding
to K sequences of information symbols and each UE applies
some suboptimal fixed-complexity algorithm for decoding its
own sequence. Therefore, the power consumption is K(Pcod+
Pdec) Joule/channel use, where Pcod and Pdec are the coding
and decoding powers, respectively.

3) Channel Estimation and Precoding: Let the computa-
tional efficiency be L operations per Joule at the BS (also
known as flops/Watt). The uplink CSI estimation consists of
receiving M signals per UE and scaling each one by a factor
that depends on the estimator. Since estimation takes place
once per coherence period, it uses MK

LT Joule/channel use.
The precoding is precomputed once per coherence period.

Computing maximum ratio transmission (MRT) [4] costs 2MK
LT

Joule/channel use (due to normalization), while ZF and regu-
larized ZF cost 3K2M+2KM

LT + 2K3

3LT Joule/channel use (due to
LU-based matrix inversion) [13]. During data transmission, the
precoding matrix is multiplied with the vector of information
symbols, which costs (1− K

T )MK
L Joule/channel use.

4) Architectural Costs: The system architecture incurs a
fixed power consumption P0 that does not scale with neither
M nor K. This term can, for example, include the fixed power
consumption of control signaling, backhaul infrastructure, and
the load-independent consumption of baseband processors.

1This is the power consumed by the system, but there are also losses in the
power supply and due to cooling [3]. These losses are typically proportional
to (2) and can thus be neglected in the analysis without loss of generality.



5) Summary: The hardware characterization above gives a
power consumption of the form in (2). The coefficients under
ZF precoding are C0,0 = P0 +Psyn, C1,0 = Pcod +Pdec +Prx,
C2,0 = 0, C3,0 = 2

3LT , C0,1 = Ptx, C1,1 = 3+T
LT , C2,1 = 2

LT .

III. OPTIMAL EE WITH ZERO-FORCING PRECODING

Next, we optimize the EE metric in (3) for the realistic
case of M ≥ K and under the simplifying assumptions of ZF
precoding and that the pilot signaling provides the BS with
perfect CSI. The following result is found.

Lemma 1. Consider a channel realization H = [h1 h2 . . .hK ]
and assume that ZF precoding is used to give each active UE
an information rate of

(
1− K

T

)
log2

(
1+ρ(M−K)

)
for some

(normalized) transmit power ρ > 0.2 The total transmit power
is
∑K
k=1 ‖vk‖2 = ρ(M −K)tr

(
(HHH)−1

)
and the average

total transmit power is
K∑
k=1

E{‖vk‖2} = ρKAλ (4)

where Aλ = E{σ
2

λ } =
∫∞

0
σ2

x fλ(x)dx is given by the
propagation environment.

Proof: The given rate is achieved by the ZF precoding
V = [v1 v2 . . .vK ] =

√
ρσ2(M −K)H(HHH)−1 using

power tr(VHV) = ρσ2(M −K)tr
(
(HHH)−1

)
. To compute

(4), note that HHH ∈ CK×K has a complex Wishart distri-
bution with M degrees of freedom and the parameter matrix
Λ = diag(λ1, λ2, . . . , λK). By using [14, Eq. (80)], the inverse
first-order moment is thus E{tr

(
(HHH)−1

)
} = E{ tr(Λ−1)

M−K },
where the remaining expectation with respect to λk is com-
puted using fλ(x).

For ZF precoding, the EE metric in (3) reduces to

EE =
K
(
1− K

T

)
log2

(
1 + ρ(M −K)

)
ρKAλ
η +

∑3
i=0 Ci,0K

i +
∑2
i=0 Ci,1K

iM
. (5)

This tractable expression is used herein to compute the values
of M , K, and ρ that maximize the EE. Although ZF precoding
is highly suboptimal at low SNRs, we will show by simulation
that this is not the optimal operating regime and that the
guidelines derived in this section have general implications.

Remark 1. The user distribution and propagation environment
is characterized by Aλ in Lemma 1. As an example, suppose
the UEs are uniformly distributed in a circular cell with radius
dmax and minimum distance dmin. Let λ = D

dκ where D > 0
is the fixed channel attenuation, d is the distance from the BS,
and κ > 0 is the path loss exponent. It is straightforward to
show that Aλ = E{σ

2

λ } = σ2

C(1+κ
2 )

dκ+2
max−d

κ+2
min

d2max−d2min
.

A. Preliminaries

The Lambert W function appears repeatedly in this work.

Definition 2. The Lambert W function W (x) is defined by the
equation x = W (x)eW (x) for any x ∈ C.

2The effective channel is hHk vk =
√
ρσ2(M −K) irrespective of the

channel realizations, thus the UE needs no instantaneous CSI for decoding.

The following lemma is of main importance herein.

Lemma 2. Consider the optimization problem

maximize
z

f log2(a+ bz)

c+ dz
(6)

with constants a, c ≥ 0 and b, d, f > 0. The objective function
is strictly quasi-concave and (6) has the unique solution

zopt =
eW( bc−adde )+1 − a

b
(7)

where e is the natural number. The objective function is
increasing for z < zopt and decreasing for z > zopt.

Proof: The proof is given in the appendix.
The following lemma (based on inequalities in [15]) brings

some insight on how the optimal solution zopt in (6) behaves.

Lemma 3. The Lambert W function W (x) satisfies W (0) = 0,
is increasing for x ≥ 0, and fulfills the inequalities

x e

loge(x)
≤ eW (x)+1 ≤ x

loge(x)
(1 + e) for all x ≥ e. (8)

This implies that eW (x)+1 is approximately equal to e for
small x and increases almost linearly with x for large x.

B. Optimal System Parameters

Next, we find the value of either M , K, or ρ that maximizes
the EE metric, when the other two parameters are fixed.

1) Optimal Number of BS Antennas: The optimal value of
M is provided by the following theorem.

Theorem 1. The EE optimization problem

maximize
M≥K

K
(
1− K

T

)
log2

(
1 + ρ(M −K)

)
ρKAλ
η +

∑3
i=0 Ci,0K

i +
∑2
i=0 Ci,1K

iM
(9)

is solved by

Mopt =
e
W

 ρ2KAλ
η

+ρ
∑3
i=0 Ci,0K

i

e
∑2
i=0

Ci,1K
i +Kρ−1

e

+1

+Kρ− 1

ρ
. (10)

Proof: Follows from Lemma 2 for a = 1−Kρ, b = ρ, c =
ρKAλ
η +

∑3
i=0 Ci,0K

i, d =
∑2
i=0 Ci,1K

i, and f = K
(
1−K

T

)
.

Mopt is in the feasible set K ≤ M < ∞ since the objective
is quasiconcave and equals zero at M = K and M →∞.

This theorem provides an explicit guideline on how many
antennas should be used at the BS to maximize the EE. Using
Lemma 3 we have that: 1) M increases sublinearly with the
(normalized) transmit power ρ but almost linearly when ρ is
large; 2) M increases with the circuit coefficients Ci,0 that are
independent of M and decreases when increasing the circuit
coefficients Ci,1 that are multiplied with M in the EE metric;
3) M increases almost linearly with Aλ. Recall from Remark 1
that Aλ is proportional to dκmax in circular cells, where dmax

is the radius and κ is the path loss exponent.
Note that Theorem 1 typically gives a non-integer value on

Mopt, but the quasiconcavity of the problem (9) implies that
the optimal M is attained at one of the two closest integers.



2) Optimal Transmit Power: The transmit power is ρKAλ
and the optimal ρ is given by the next theorem.

Theorem 2. The EE optimization problem

maximize
ρ≥0

K
(
1− K

T

)
log2

(
1 + ρ(M −K)

)
ρKAλ
η +

∑3
i=0 Ci,0K

i +
∑2
i=0 Ci,1K

iM
(11)

is solved by

ρopt =
e
W

(
(M−K)η(

∑3
i=0 Ci,0K

i+
∑2
i=0 Ci,1K

iM)

KAλe
− 1
e

)
+1
− 1

M −K
. (12)

Proof: Follows from Lemma 2 for a = 1, b = M−K, c =∑3
i=0 Ci,0K

i +
∑2
i=0 Ci,1K

iM , d = KAλ
η , and f = K

(
1 −

K
T

)
. The value ρopt is always positive since the objective is

quasiconcave and equals zero at ρ = 0 and when ρ→∞.
This theorem provides the transmit power ρoptKAλ that

maximizes the EE. Recall from Lemma 3 that eW (x)+1 is
monotonically increasing with a sublinear slope that becomes
almost linear when x is large. Consequently, (12) shows that
the optimal SINR increases with the circuit powers (i.e., the
coefficient Ci,j). This might seem counterintuitive but actually
makes much sense: if the fixed circuit power is large we can
afford more transmit power before that it has a non-negligible
impact on the total power consumption.

It has recently been shown in [4]–[6] that massive MIMO
systems permit a power reduction proportional to 1/M (or
1/
√
M with imperfect CSI) while maintaining non-zero UE

rates as M →∞. Although this is a remarkable result, Theo-
rem 2 shows that this is not the most energy efficient strategy
in practice. In fact, the EE metric is generally maximized by
more-or-less the opposite strategy (i.e., increase ρ with M ).

Corollary 1. For large M , the optimal value in (12) satisfies

ρopt ≥
(C̃0 + C̃1M)− loge((M−K)(C̃0+C̃1M)−1)

M−K

loge((M −K)(C̃0 + C̃1M)− 1)− 1

=

O
(

M
loge(M)

)
, C̃1 > 0,

O
(

1
loge(M)

)
, C̃1 = 0,

(13)

where C̃0 =
η
∑3
i=0 Ci,0K

i

KAλ
and C̃1 =

η
∑2
i=0 Ci,1K

i

KAλ
. The

growth rates are stated using conventional big-O notation.

Proof: Follows by applying the lower bound in Lemma 3
(which holds when M is large) and some simple algebra.

This corollary reveals that the transmit power should in-
crease almost linearly with M to maximize the EE metric.
The explanation is the same as above: if the circuit power
grows with M we can afford using more transmit power before
that it becomes the limiting factor for the EE. In the special
case when the circuit power is independent of the number of
antennas (i.e., Ci,1 = 0 for all i), the power should instead
be reduced proportional to loge(M). This power reduction is
however much slower than the linear reduction reported in [5],
[6]—such scalings are only obtained in the unrealistic case
when there is no circuit power consumption whatsoever.

3) Optimal Number of UEs: The optimal K is given by
the next theorem. For analytical tractability, we let the total
transmit power be fixed such that ρtot = Kρ and the number
of antennas per UE be fixed as β = M

K .
Theorem 3. The EE optimization problem

maximize
K≥0

K
(
1− K

T

)
log2

(
1 + ρtot(β − 1)

)
ρtotAλ
η +

∑3
i=0 Ci,0K

i +
∑2
i=0 Ci,1βK

i+1

(14)
is quasiconcave and solved by a root to the quartic polynomial

bc3K
4 − 2c3aK

3 − (ac2 + bc1)K2 − 2bc0K + c0a (15)

where a = log2

(
1 + ρtot(β − 1)

)
, b = a

T , c0 = C0,0 + ρtotAλ
η ,

c1 = C1,0 +βC0,1, c2 = C2,0 +βC1,1, and c3 = C3,0 +βC2,1.
In the special case of c3 = 0, the optimal solution is

Kopt =

√(
bc0

ac2 + bc1

)2

+
c0a

ac2 + bc1
− bc0
ac2 + bc1

. (16)

Proof: The problem objective is obtained from (5) by
substituting ρ = ρtot

K and M = βK. It has the structure g(K) =
aK−bK2∑3
i=0 ciK

i and is a strictly quasiconcave function since the

level sets Sα = {K : g(K) ≥ α} = {K : α
∑3
i=0 ciK

i +
bK2−aK ≤ 0} are strictly convex for any α ∈ R [16, Section
3.4]. The global optimum satisfies the stationarity condition
g′(K) = 0, which is equivalent to finding roots of (15).

There are closed-form expressions for the roots of quartic
polynomials (such as (15)), but the expressions are lengthy and
not given here for brevity. We refer to [17] for a summary
of root computation methods. The EE-maximizing root is
typically not an integer, but the quasiconcavity of (14) implies
that the optimal K is attained at one of the two closest integers.

To gain insight, we focus on the special case of C3,0 =
C2,1 = 0 (i.e., ignoring the power terms in (2) with the
highest orders) and recall that the ratio β = M

K is fixed. The
optimal number of UEs in (16) is a decreasing function of
C1,0, C2,0, C0,1, C1,1, which are the coefficients of the circuit
power terms that scale with M and/or K. On the contrary,
we can afford more UEs (and BS antennas) when the power
consumption is dominated by terms that are independent of M
and K; that is, Kopt increases with the static hardware power
C0,0 and the propagation environment parameter Aλ (which
scales with the coverage area; see Remark 1).

C. Joint and Sequential Optimization of M,K, ρ

Theorems 1–3 provide simple expressions that enable EE-
maximization by optimizing M , ρ, or K separately when the
other parameters are fixed. Ideally, one would like to find the
joint global EE optimum (M∗,K∗, ρ∗). Since M and K are
integers, the optimum can be obtained by an exhaustive search
over the reasonable combinations of M,K and computing the
optimal power allocation in Theorem 2 for each combination.

The exhaustive algorithm is feasible for offline cell plan-
ning, but a low-complexity approach is of interest for adapta-
tion to changes in propagation environment (i.e., user distribu-
tion and path loss model specified by fλ(x)). For any initial
set (M,K, ρ), we can optimize the parameters sequentially:



TABLE I
SIMULATION PARAMETERS

Parameters Value Parameters Value
Cell size: dmin, dmax 35 m, 250 m η 0.3

Pathloss at distance d: λ 10−3.53

d3.76
P0 2W · S

Coherence bandwidth: B 180 kHz Psyn 2W · S
Coherence time: T 32ms ·B Pcod 4W · S

Symbol time: S 1
9·106 Pdec 0.5W · S

Operations/Joule: L 109 Ptx 1W · S
Noise variance: σ2 10−20J Prx 0.3W · S

1) Update the number of UEs K according to Theorem 3;
2) Replace M by the optimal value from Theorem 1;
3) Optimize the transmit power by using Theorem 2;
4) Repeat 1)–3) until convergence.
Since the EE metric has a finite upper bound (when some

Ci,j is strictly positive) and the EE is nondecreasing in each
step, the sequential algorithm is guaranteed to converge but not
necessarily to the global optimum. Convergence has occurred
when the integers M and K are not changed in an iteration.

IV. NUMERICAL ILLUSTRATIONS

This section illustrates some system design guidelines ob-
tained from Theorems 1–3. To compute the power consump-
tion in a realistic way, we use the hardware characterization
described in Section II-B. The corresponding parameter values
are inspired by [3], [18] and summarized in Table I. We assume
a uniform user distribution in a circular cell of radius 250 m
and use a typical 3GPP distance-dependent path loss model.
The propagation parameter Aλ is computed as in Remark 1.

Fig. 2 shows the set of achievable EE values under ZF
precoding and different values of M and K (note that M ≥ K
due to ZF). Each point uses the EE-maximizing value of
ρ from Theorem 2. The figure shows that there is a global
optimum at M = 165 and K = 85 (with ρ = 4.6097), which
we interpret as being a massive MIMO setup. The surface in
Fig. 2 is concave and quite smooth; thus, there is a variety
of system parameters that provide close-to-optimal EE and
the results appear to be robust to small changes in the circuit
power coefficients. The sequential optimization algorithm from
Section III-C was applied with a starting point in M = 3,
K = 1, and ρ = 1. The algorithm converged after 7 iterations
to a suboptimal solution in the vicinity of the global optimum.

As a comparison, Fig. 3 shows the corresponding set of
achievable EE values under MRT. Fig. 3 was generated by
Monte Carlo simulations, while Fig. 2 was computed using
our analytic results. Interestingly, Fig. 3 shows a completely
different behavior: the highest EE is achieved using a small
number of BS antennas and only one active UE, which is
due to strong inter-user interference. Such interference reduces
with the number of BS antennas since the channels decorrelate
as M → ∞ [5], but this effect is not dominating over the
increased cost in computational/circuit power of increasing M .

Fig. 4 shows the transmit power that maximizes the EE for
different M (using the corresponding optimal K). We consider
three precoding schemes with perfect CSI: ZF, regularized
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Fig. 2. Energy efficiency (in Mbits/Joule) with ZF precoding for different
combinations of M and K (with the optimal ρ from Theorem 2). The global
optimum is marked with a star, while the convergence of the sequential
optimization algorithm from Section III-C is indicated with circles.
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ZF (RZF), and MRT. We also show ZF with imperfect CSI
from uplink MMSE estimation [4]–[6]. In all cases, the most
energy efficient strategy is to increase the transmit power with
M . This is in line with Corollary 1 but stands in contrast to
the results in [4]–[6] which indicated that the transmit power
should be decreased with M . The similarity between RZF and
ZF shows an optimality of operating at high SNRs.

Finally, Fig. 5 shows the maximum EE for different number
of BS antennas and the corresponding spectral efficiencies.
We consider the same precoding schemes as in the previous
figure. Firstly, we see that ZF performs similarly to the close-
to-optimal RZF scheme. Secondly, Fig. 5 shows that there
is a 3-fold difference in optimal EE between RZF/ZF and
MRT under perfect CSI, while there is a 100-fold difference
in spectral efficiency at the EE-maximizing operating points.
The majority of this huge gain is achieved also under im-
perfect CSI, which shows that massive MIMO with proper
interference-suppressing precoding can achieve both great
energy efficiency and unprecedented spectral efficiencies.
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Fig. 4. EE-maximizing transmit power for different number of BS antennas.
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Fig. 5. Maximal energy efficiency and the corresponding spectral efficiency
for different number of BS antennas and different precoding schemes.

V. CONCLUSIONS

This work analyzed how to select the number of BS
antennas M , number of UEs K, and (normalized) transmit
power ρ to maximize the EE in the downlink of multi-user
MIMO systems. Contrary to most prior works, we used a
realistic power consumption model that explicitly describes
how the total power depends on M , K, and ρ. Simple closed-
form scaling laws for the EE maximizing parameter values
were derived under ZF precoding with perfect CSI and verified
by simulations for other precoding schemes and imperfect CSI.

The EE (in bits/Joule) is a quasiconcave function of M and
K, which have therefore finite global optima. Our numerical
results show that deploying hundreds of antennas to serve
a relatively large number of UEs is the EE-optimal macro-
cell solution using today’s circuit technology. Contrary to
common belief, the transmit power should increase with M
(to compensate for higher circuit power) and not decrease.
Energy efficient systems are therefore not operating in the low
SNR regime and MRT should not be used. In other words,
massive MIMO is an answer to the EE issues of current
cellular networks, but only if proper interference-suppressing
precoding (e.g., ZF or RZF) is applied.

The numerical results appear to be stable to small changes
in the circuit power coefficients, but can otherwise change
drastically. One can expect the circuit coefficients to decrease
with time (in accordance to Moore’s law) which implies that
the transmit power at the EE-optimal operating point will also
decrease. In the meantime, the most urgent bottleneck might be
to find processors that are both highly energy efficient and are
fast enough to compute ZF/RZF precoding almost instantly.

APPENDIX: PROOF OF LEMMA 2
The objective g(z) = f log2(a+bz)

c+dz is quasiconcave since the
level sets Sα = {z : g(z) ≥ α} = {z : α(c+dz)−f log2(a+
bz) ≤ 0} are strictly convex for any α ∈ R [16, Section
3.4]. If there exists a point zopt such that g′(zopt) = 0, the
quasiconcavity implies that zopt is the global maximizer and
that the function is increasing for z < zopt and decreasing for
z > zopt. To prove the existence of zopt, we note that

g′(z) = 0 ⇔ 1

loge(2)

b(c+ dz)

a+ bz
− d log2(a+ bz) = 0

by removing the non-zero denominator of g′(z) and terms that
cancel out. This condition can be further rewritten as

(bc− ad)

a+ bz
= d (loge(a+ bz)− 1) . (17)

The substitution x = loge(a+ bz)− 1 transforms (17) into
(bc−da)
de =xex. The solution (7) is obtained since z= ex+1−a

b .
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