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ABSTRACT

In this work, we consider the downlink of a single-cell multi-user

multiple-input multiple-output system in which zero-forcing precod-

ing is used at the base station (BS) to serve a certain number of user

equipments (UEs). A fixed data rate is guaranteed at each UE. The

UEs move around in the cell according to a Brownian motion, thus

the path losses change over time and the energy consumption fluc-

tuates accordingly. We aim at determining the distribution of the

energy consumption. To this end, we analyze the asymptotic regime

where the number of antennas at the BS and the number of UEs

grow large with a given ratio. It turns out that the energy consump-

tion is asymptotically a Gaussian random variable whose mean and

variance are derived analytically. These results can, for example, be

used to approximate the probability that a battery-powered BS runs

out of energy within a certain time period.

1. INTRODUCTION

The data traffic in cellular networks has increased exponentially for

a long time and is expected to continue this trend, at least for the

next five years [1]. Currently, one of the biggest challenges related

to the traffic growth is the increasing energy consumption of the cel-

lular infrastructure equipments [2]. This means that the energy con-

sumption must be taken into account from the very beginning when

designing cellular networks of the future. This is particularly impor-

tant when deploying BSs in new rural regions of the world, where

the electrical grid is unreliable or even non-existing. Off-grid de-

ployments rely on combinations of diesel generators, batteries, and

local energy harvesting (e.g., from solar panels) [2]. Since the sup-

ply of energy is either limited or fluctuates with the harvesting, it is

of paramount importance to operate the BS such that it will not run

out of energy, also known as power outage.

Most of the existing works dealing with the development of

energy-efficient transmission schemes rely on extensive Monte-

Carlo simulations that do not provide valuable insights on the in-

terplay between the different system parameters and the impact of

the propagation environment. To partially bridging this gap, in [3]

the authors make use of stochastic geometry to model the energy

consumption of a cellular network where each UE is connected to
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its closest BS equipped with a single antenna. The energy consump-

tion is expressed as a function of the distance between BSs and UEs,

while taking into account the interference from other BSs. In [4], the

authors go a step further in this direction when considering a refined

energy consumption model that includes the energy of broadcast

messages, traffic activity, and user mobility. Instead of relying on

simulation results, as was done in [3], closed-form formulas for dif-

ferent statistical properties of the energy consumption are derived.

From a network deployment perspective, [5] shows how the number

of BS antennas, number of active UEs, and the data rates can be ana-

lytically optimized for high energy efficiency. This is achieved using

a refined energy consumption model where the three optimization

variables appears explicitly.

In this work, we consider the downlink of a single-cell multi-

user multiple-input multiple-output (MIMO) system. The BS is

equipped with an array of N antennas and serve K UEs simultane-

ously by using zero-forcing (ZF) precoding. The UEs are assumed

to move around in the cell according to a Brownian motion model.

Based on this mobility pattern, we aim at determining the statistical

distribution of the energy consumption required to guarantee a given

data rate at all UEs. By considering the asymptotic regime where K
and N grow large with a given ratio, we prove that energy consump-

tion statistics converge in distribution to a Gaussian random variable

whose mean and variance can be analytically derived using random

matrix theory tools and standard central limit theoretic results. It

turns out in the large limit the variance of the energy consumption

is dominated by the fluctuations induced by user mobility. The ana-

lytical expressions are shown to closely match the numerical results

for different settings. Finally, we exemplify how the new statistical

characterization can be used to characterize the probability that a

battery-powered BS runs out of energy within a certain time period.

The following notation is used throughout this work. Ez[·],
COVz[·] and VARz[·] indicate that the expectation, covariance and

variance are respectively computed with respect to z. The notation

|| · || stands for the Euclidean norm whereas Jn(·) denotes the n-

order Bessel function. We call IK the K × K identity matrix and

δ(t) the Dirac delta function. We denote by Q(z) the Gaussian tail

function and use Q−1(z) to indicate its inverse.

2. SYSTEM AND SIGNAL MODEL

We consider the downlink of a single-cell multi-user MIMO system

in which the BS makes use of N antennas to communicate with K
single-antenna UEs. The K active UEs change over time and are

randomly selected from a large set of UEs that are moving around

within the coverage cell A of area A. We assume that the user den-



sity ν and the number of UEs K can increase arbitrarily, while the

area A is maintained fixed. This amounts to saying that K/ν is

constant and equal to A. To simplify the computations, we assume

that the UEs are uniformly distributed in a circular cell with radius

R such that A = πR2 and adopt a Brownian motion (or random

walk mobility) model with diffusion constant D and constrained in

the circular region A [6]. The location of UE k at time t is denoted

by xk(t) ∈ R
2. The BS is located in the centre of the cell and

its N transmit antennas are adequately spaced apart such that the

channel components to any UE are uncorrelated. We assume that N
increases as K becomes larger while the ratio K/N is kept constant

and equal to c with 0 < c < 1. Perfect channel state information is

assumed to be available at the BS and the same rate is guaranteed to

each UE [5].

We call s(t) ∈ C
N×1 the signal transmitted at (slotted) time

t and denote by G(t) ∈ C
N×N its precoding matrix. We assume

that s(t) originates from a Gaussian codebook with zero mean and

covariance matrix Es[s(t)s
H(t)] = IK . Letting y(t) ∈ C

K×1 be

the vector collecting the samples received at the UEs, we may write

y(t) = H(t)G(t)s(t) + n(t) (1)

where n(t) ∈ C
K×1 is a circularly-symmetric complex Gaussian

random vector with zero-mean and covariance matrix σ2IK and

H(t) ∈ C
K×N is the channel matrix at time t. The (k, n)th entry

[H(t)]
k,n

accounts for the channel propagation coefficient between

the nth antenna at the BS and the kth UE. In particular, we assume

[H(t)]
k,n

=
√

g(xk(t)) [W(t)]
k,n

(2)

where g(·) is the path-loss function and the entries [W(t)]
k,n

account for the fast fading component and are modelled as inde-

pendent and identically distributed circularly-symmetric complex

Gaussian random variables with zero-mean and unit variances, i.e.,

[W(t)]
k,n

∼ CN (0, 1). The temporal correlations of W(t) are

modelled according to the Jakes model [7]. We assume that

g(xk(t)) =
1

‖xk(t)‖β + rβ0
(3)

with β and r0 being the path-loss exponent and some cutoff param-

eter, respectively. As seen, g(xk(t)) is assumed to be independent

over n. This is a reasonable assumption since the distances between

UEs and BS are much larger than the distance between the antennas.

For analytical convenience, we consider the ZF precoding ma-

trix

G(t) =
√
ρHH(t)

(

H(t)HH(t)
)−1

(4)

where ρ is a design parameter. Substituting G(t) into (1) the achiev-

able data rate of the kth UE is

rk = log2

(

1 +
ρ

σ2

)

. (5)

Note that we assume that the same rate is achieved by each UE [5].

The extension to the case in which different rates are required by

different UEs can be easily handled by combining ZF with a proper

power allocation [8].

The power consumption P (t) = Es[||G(t)s(t)||2] at time t is

given by

P (t) = ρ tr

(

(

H(t)HH(t)
)−1

)

(6)

while the energy consumption ET for a given time interval [0, T ] is

ET =

∫ T

0

P (t)dt =

∫ T

0

ρ tr

(

(

H(t)HH(t)
)−1

)

dt. (7)

3. MAIN RESULTS

The energy ET is clearly a random quantity, which depends (through

H(t)) on the realizations of W(t) as well as on the user positions

{xk(t)} throughout the period 0 ≤ t ≤ T . We aim at determining

the statistics of ET in the large system limit, i.e., K,N → ∞ with

K/N = c. For notational convenience, we denote by ki the ith zero

of the first derivative of J1(·) and call

φi = 2

∫ 1

0

J0(kit)t
β+1dt. (8)

Observe that the values of {ki} and {φi} can be calculated explicitly

as illustrated in [9].

The following theorem summarizes the main results of this

work.

Theorem 1 In the large system limit, if ZF precoding is used then

the following convergence holds true:

ET − E [ET ]
√

VAR [ET ]
−→

K,N→∞
N (0, 1) (9)

where the mean is given by

E [ET ] = T
ρcRβ

1− c

(

2

β + 2
+

rβ0
Rβ

)

(10)

while the variance depends on the user mobility model and takes the

form

VAR [ET ] =
TR2

DK

ρ2c2R2β

(1− c)2
Θ+O(K−2) (11)

with Θ =
∑∞

i=1

2φ2

i

k2

i
J2

0
(ki)

∫ 1

0
(1− e

−
k
2
i
DTt

R2 )2dt.

3.1. Sketch of proof

The complete proof of Theorem 1 is omitted for space limitations.

In the sequel, we describe the main steps.

We begin by observing that when K,N → ∞ with 0 < c < 1,

the average of P (t) with respect to the fast fading channel W(t)
hardens to a deterministic scalar given by [10, 11]

EW [P (t)]− ρc

1− c

1

K

K
∑

k=1

1

g(xk(t))
→ 0. (12)

Since the path-loss functions g(xk(t)) are independent of each other,

from (12) it follows that in the large system limit

Ex,W [P (t)]− ρc

1− c
Ex

[

1

g(xk(t))

]

→ 0 (13)

from which using (3) the result in (10) easily follows. Observe that

the exceedingly simple form in (10) hold true only for ZF precoding

technique. It becomes more involved if other precoding techniques

(such as the regularized ZF) are considered.



The variance of the energy ET can be rewritten (using the co-

variance decomposition formula) as VAR [ET ] = A1 +A2 with

A1 =

∫ T

0

∫ T

0

Ex

[

COVW

[

P (t), P (t′)
]]

dtdt′ (14)

A2 =

∫ T

0

∫ T

0

COVx

[

EW [P (t)] ,EW

[

P (t′)
]]

dtdt′. (15)

Let us start with the computation of A1. For this purpose, we ob-

serve that according to the Jakes model [7], the correlation time

τd = 1/fd (with fd being the Doppler frequency) is exceed-

ingly small compared to the typical times related with the UE

movements. This means that we can reasonably assume that the

power is δ-correlated or, equivalently, that COVW [P (t), P (t′)] =
VARW [P (t)] τdδ(t − t′). As a result, the fluctuation term A1 in

the energy can be approximated as A1 ≈ TτdEx [VARW [P (t)]].
From [12], using (3) we obtain

Ex [VARW [P (t)]]− ρ2c3

(1− c)3
Tτd
K2

Ex

[

1

g2(xk(t))

]

→ 0 (16)

with

Ex

[

1

g2(xk(t))

]

=
R2β

2β + 2
+

4rβ0R
β

β + 2
+ r2β0 (17)

as obtained using (3). Plugging the above results into (14) reveals

that A1 decreases proportionally to K−2 when K → ∞.

We are now left with the computation of A2 in (15), which is

due to the fluctuations induced by the UE mobility in the cell. In

particular, it turns out that

A2 =
ρ2c2

K(1− c)2

∫ T

0

∫ T

0

COVx

[

‖x(t)‖β ,
∥

∥x(t′)
∥

∥

β
]

dtdt′.

(18)

According to the Brownian motion model, averaging over the ini-

tial positions of the UE (or random walkers in the Brownian motion

parlance) yields

COVx

[

‖x(t)‖β ,
∥

∥x(t′)
∥

∥

β
]

= (19)
∫∫

x,x′∈A

‖x‖β
∥

∥x
′
∥

∥

β (

F (x,x′; t− t′)− F (x,x′; t+ t′)
)

dxdx′

with F (x,x′; t) being the probability that a random walker at po-

sition x′ reaches position x at time t. Denote now by ξ the time

of each step of the random walker (or, equivalently, the “forgetting

time”—the time after which the walker forgets his original direction)

and call ℓ the spatial length of each step. For values of t much larger

than ξ, F (x,x′; t) can be obtained in the continuum limit by solving

a diffusion equation, whose corresponding diffusion constant turns

out to be equal to D = ℓ2/(4ξ). The diffusion equation can be

solved very simply in the circular domain by providing the proper

initial condition F (x,x′, t = 0) = δ(x − x′). To impose the con-

dition that the random walker does not exit the domain, we need to

set the derivative along the radial direction at the boundary equal to

zero, i.e., r̂T∇F (x,x′)|‖x‖=R
= 0 with r̂ being the unit vector

along the radial direction. As a result, an eigenfunction expansion

for F (x,x′) can be obtained and used to compute (19) from which

using (18) the result in (11) follows.

In writing (11) we have taken into account that A1 is ∝
τdTR

2β/K2 while A2 is ∝ TR2β+2/(DK). This difference
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Fig. 1. Histogram of (ET − E [ET ])/
√

VAR [ET ] in comparison

with the normal distribution N (0, 1) for T = 10, K = 16, N = 32
and β = 4.

in scaling arises from two different effects. Firstly, the extra factor

of K−1 in the former is due to the fact that the singular values of

W(t) are strongly correlated, while the positions of the UEs are

independent. Secondly, the decorrelation time for the fading is τd,

while that for the user mobility is R2/D, which is much larger

than τd. Hence, both factors make the variability of the fast fading

channel less important for the analysis.

From the results of Theorem 1, it is seen that both the mean and

the variance of ET (at least for long enough time interval T such that

DT ≫ R2) are proportional to T . This means that the variability of

energy consumption will be less important as T becomes larger.

Finally, it can be shown that all higher-order moments of ET

asymptotically vanish for large values of K. In particular, tools from

random matrix theory [10,11] can be used to control the variations of

the fast fading channel while standard central limit theoretic results

are needed to prove the convergence of the fluctuations arising from

user movements.

3.2. Numerical Validation

The accuracy of the results in Theorem 1 are now validated numer-

ically by Monte-Carlo simulations for 10000 different initial posi-

tions of the UEs. For illustration purposes, we simply set R = 1,

r0 = 0.1, ρ = 1, ℓ = 0.05 and ξ = ℓ2 = 0.0025.

Fig. 1 depicts the histogram of (ET − E [ET ])/
√

VAR [ET ]
when T = 10, K = 16, N = 32 and β = 4. Comparisons are made

with the Gaussian distribution N (0, 1). The good match between

the two curves validates the results of Theorem 1.

Figs. 2 and 3 show the cumulative distribution function (CDF)

of ET /T for different values of K, N , T and β. The values of

E [ET ] and VAR [ET ] as obtained with (10) and (11), respectively,

are given in Table 1 for completeness. From Figs. 2 and 3, it is seen

the numerical results match very well with the theoretical ones for

all the investigated scenarios. The small discrepancy observed for

T = 2 vanishes if a smaller step is used in the random walk model.

3.3. Application: Dimensioning of Cell Batteries

A possible application of the results of Theorem 1 is as fol-

lows. Assume that the energy level η of a battery-powered BS



Table 1. Numerical values of E [ET ] and VAR [ET ] for the parameter setting in Figs. 2 and 3

Fig. 2 E [ET ] VAR [ET ] Fig. 3 E [ET ] VAR [ET ]
T = 2, N = 32 1.33 0.015 T = 2, β = 4 0.889 0.0067
T = 2, N = 64 0.889 0.0067 T = 2, β = 6 1 0.0029
T = 10, N = 32 6.668 0.0891 T = 10, β = 4 4.445 0.0396
T = 10, N = 64 4.445 0.0396 T = 10, β = 6 5 0.0169
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with K = 16, β = 4 and N = 32 or 64.

has to be designed such that the achievable rate of each UE is

rk = log2
(

1 + ρ/σ2
)

and the probability of running out of energy

(before replacement or reloading) is smaller than some given thresh-

old ǫ. Mathematically, this amounts to saying that Pr (ET > η) ≤ ǫ.
From the results of Theorem 1, we have that

Pr (ET > η) = Q

(

η − E [ET ]
√

VAR [ET ]

)

(20)

from which it follows that

η ≥
√

VAR [ET ]Q
−1 (ǫ) + E [ET ] . (21)

Consider for example a cell operating over a bandwidth B = 10
MHz with a radius R = 1 km and a cut-off parameter r0 = 50
m. Assume K = 32, N = 64 and β = 4. If the noise power is

σ2 = 10−14 W/Hz and ρ is chosen equal to 3× 10−14 W/Hz, then

the achievable data rate of each UE is rk = log(1 + ρ/σ2) = 2
bit/s/Hz. Set ℓ = 10 m and ξ = 1 minute such that D = ℓ2/(4ξ) =
25 m2/minute. Assume that the replacing (or recharging) time T is

1 day. In the above circumstances, from (10) and (11) we obtain

E [ET ] = 1.73 × 103 J and VAR [ET ] = 5.65 × 104 J2. Plugging

these values into (21) and setting ǫ = 1% shows that the battery level

must satisfy

η ≥ 2.28 × 103 J. (22)

Notice that the condition that ǫ = 1% makes the necessary battery

level η be substantially higher than E [ET ]. It is also worth observing

that the above value accounts only for the energy required to trans-

mit the signal s(t) within the time interval T . The design of the bat-

tery level must also take into account the energy required for digital
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signal processing, channel coding and decoding, channel estimation

and pre-coding, and so forth (see [5] for more details). However, all

these quantities can be somehow quantified off-line and easily added

to η for a correct design.

4. CONCLUSIONS

In this work, we have studied the energy consumption dynamics in

the large limit for a MIMO cellular network in which the UEs move

around according to a Brownian motion model. In particular, we

have shown that the energy consumption converges in distribution

to a Gaussian random variable and we have computed its mean and

variance analytically. We have shown that user mobility plays a key

role in determining the fluctuations of energy consumption. Numer-

ical results have been used to show that the analytical expressions

yield accurate approximations for different settings. As an applica-

tion of these results, we have dimensioned a battery-powered BS so

as to satisfy a certain probability of running out of energy. The re-

sults of this work could also be used to get some insights on how

designing the number of cells required to cover a given area while

taking into account the implementation costs.

It is worth observing that the simplicity of the analytical results

comes from the adoption of a ZF precoding technique at the BS. The

use of different techniques (such as the regularized ZF) makes the

computations much more involved and is currently under investiga-

tion. The way different user mobility models impact energy con-

sumption dynamics is also an ongoing research activity.
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