
Chapter 4

Heavy-tailed distributions

for agent-based economic

modelling

4.1 Introduction

This chapter is devoted to the parametric statistical distributions of economic
size phenomena of various types.

Probability distributions of size variables are usually taken as the first quan-
titative characterization of complex systems, allowing one to detect the possible
occurrence of regularities and to identify the underlying mechanisms at their
origin—and thus at the origin of the behaviour of the complex system under
study.

A rapid survey covers the class of “heavy-tailed” distributions decreasing
slower than exponentially at infinity. The fascination for “power laws” is then
explained, starting from the statistical approaches for quantifying and testing a
power-law distribution from your data, and ending with a (not exhaustive) list of
mechanisms leading to power-law distributions. The description of distributions
is ultimately enlarged by proposing the Laplace distribution, which has both
tails—the upper and the lower—heavier than a standard Gaussian.

Exposition is conveyed by means of computer-based examples designed to
assist the reader in understanding of the broad topics that are touched on in
other parts of this book. Full code for examples using the R software environment
(R Core Team, 2015) can be found on the book’s website.

Here are some notations and vocabulary that will be useful in the remainder
of the chapter.

• Probability density function. Consider a random variable X whose out-
come is a real number x. The probability density function (PDF) of X,
p (x), is such that the probability that X is found in a small interval ∆
around x is p (x) ∆. The probability that X is between x and x + ∆ is

1
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therefore given by the integral of p (x) between x and x + ∆, that is

p (x) = lim
∆→0+

Pr (x ≤ X < x + ∆)

∆
=

x+∆
∫

x

p (x) d x. (4.1)

The PDF p (x) depends on the measurement unit used to quantify x and
has the dimension of the inverse of x, such that p (x) ∆—being a prob-
ability, i.e. a number between 0 and 1—is dimensionless. The empirical
estimation of the PDF p (x) is usually plotted with the horizontal axis
scaled as a graded series for the variable under consideration and the ver-
tical axis scaled for the values of p (x).

• Cumulative distribution function. In many cases it is useful to consider
the cumulative distribution function (CDF) of X, P≤ (x), defined by

P≤ (x) = Pr (X ≤ x) =

x
∫

−∞

p (y) d y. (4.2)

The CDF P≤ (x) gives the fraction of events with values less than (or
equal) to x and increases monotonically with x from 0 to 1.

• Complementary cumulative distribution function. This is defined by

P> (x) = Pr (X > x) = 1 − Pr (X ≤ x) =

∞
∫

x

p (y) d y. (4.3)

The complementary cumulative distribution function (CCDF) gives the
fraction of events with values greater than x and decreases monotonically
with x from 1 to 0.

4.2 Heavy-tailed distributions

Heavy-tailed distributions are probability distributions whose tails decay to 0
far slower than exponentially. In many applications it is the right tail of the
distribution that is of interest, but a distribution may have a heavy left tail or
both of its tails might be heavy.

The exponential distribution given by the PDF

p (x) = λe−λx, x ≥ 0, λ > 0, (4.4)

is often considered as the boundary between classes of heavy-tailed and light-
tailed distributions—although occasionally the term “heavy-tailed” is used for
any distribution that has heavier tails than the Gaussian distribution. Typical
examples of heavy- and light-tailed distributions are given in Table 4.1. Their
(right) tail behaviour is compared in Figure 4.1.

The class of heavy-tailed distributions comprises, among others, the sub-
set of distributions with regularly varying tails (Bingham et al., 1987). Intu-
itively, a “regularly varying” distribution of a real variable is a distribution
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Table 4.1 Examples of heavy- and light-tailed distributions

Heavy-tailed Lognormal, Weibull with exponent less
than 1, power laws (with regularly
varying tails)

Light-tailed Exponential, Gaussian, Weibull with
exponent greater than 1
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Gaussian (µ =  1.0 and σ = 2.0)

Exponential (λ = 0.1)
Lognormal (µ = 1.0 and σ = 1.0)

Weibull (a = 0.4 and λ = 1.0)
Pareto (k = 1.0 and α = 1.0)

Figure 4.1 Heavy- and light-tailed distributions: comparison of right tail behaviour

whose behaviour near infinity is similar to the behaviour of a power-law func-
tion. Regularly varying distributions (also commonly referred to as “fat-tailed”
distributions) are always heavy-tailed. Some distributions, however, have a tail
which goes to zero slower than an exponential function (meaning they are heavy-
tailed) but faster than a power (meaning they are not fat-tailed). An example
is the lognormal distribution. Many other heavy-tailed distributions—in primis
the power-law distributions—are, instead, also fat-tailed.

For light-tailed distributions and distributions with no regularly varying
heavy tails, all moments exist and are finite. In contrast, for regularly varying
distributions the moments exist only up to (and excluding) their tail indices.

Some more details about specific examples of heavy-tailed distributions are
given in the following list.
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• The lognormal distributionLognormal distribution. This is given by the
PDF

p (x) =
1

xσ
√

2π
e− [ln(x)−µ]2

2σ2 , x > 0, (4.5)

for parameters µ ∈ R and σ > 0. All moments of the lognormal distri-
bution are finite. The obvious advantage of the lognormal distribution is
that, following a simple transformation, the enormous armature of infer-
ence for Gaussian distributions is readily available: indeed, a (positive)
random variable X has a lognormal distribution with parameters µ and
σ if and only if ln (X) has a Gaussian distribution with mean µ and vari-
ance σ2. Hence, by taking the logarithm of the data points, the tech-
niques developed for the Gaussian distribution can be used to estimate
the parameters of the lognormal distribution. In particular, the location
parameter µ is equal to the mean of the logarithm of the data points, and
the shape parameter σ is equal to the standard deviation of the data set
after transformation. The lognormal distribution has been widely used in
many applications.1

• The Weibull distribution. It has the PDF

p (x) = aλxa−1e−λxa

, x ≥ 0, (4.6)

where a, λ > 0. The exponent a controls the thin versus heavy nature of
the right tail; in particular:

– for a = 2, the Weibull distribution has the same asymptotic right tail
as the Gaussian distribution;

– for a = 1, expression (4.6) recovers the pure exponential distribution;

– for a < 1, the right tail of the Weibull is fatter than an exponential.

Hence, the Weibull is a versatile distribution “interpolating” between thin-
tailed distributions—such as the Gaussian or the exponential—when a ≥ 1
and heavy-tailed distributions if (and only if) a < 1. Although there
are many ways to estimate the parameters a and λ based on a random
sample X = (x1, . . . , xn), maximum likelihood estimation is generally the
most popular method. However, the maximum likelihood estimators of
the Weibull parameters are not available in closed form, which implies
that no explicit solution to the likelihood equations exists and numerical

1In the economic field, for example, Gibrat (1931) observed that the size distribution of
French manufacturing establishments closely resembled the lognormal distribution. This led
him to suggest a “law of proportionate effect” (see Section 4.3.5). Later, Aitchison and Brown
(1954, 1957) argued that the lognormal hypothesis is particularly appropriate for the distri-
bution of incomes, although much depends on the definition of income and the particular
part of the distribution in which one happens to be interested—indeed, the above-cited au-
thors consider the lognormal functional form most appropriate for modelling the distribution
of earnings in fairly homogeneous sections of the workforce, but when examining the dis-
tribution of income from all sources they find in many instances that lognormality remains
a reasonable assumption for the bulk of the incomes, whereas the upper tail appears to be
governed by a different probabilistic law.
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methods have to be used. In contrast, notwithstanding its heavy-tailed
nature, the Weibull distribution has all its moments finite.2

• The power-law distributions. These are the canonical example of heavy-
tailed distributions. Power-law distributions occur in many areas of scien-
tific interest, including economic analysis, and their identification in em-
pirical data is often interpreted as evidence for (or suggestion of) complex
underlying processes. Although power law-distributions are attractive for
their simplicity—they are straight lines on log-log plots—a technical dif-
ficulty is that not all moments exist for these distributions, which means,
among other things, that the central limit theorem can no longer hold.
Also, demonstrating that data do indeed follow a power-law distribution
is not as straightforward as it might appear, as it involves more than
simply fitting. Indeed, several alternative functional forms can appear to
follow a power-law form over some extent, such as the above-mentioned
lognormal and Weibull distributions. Thus, validating a power-law distri-
bution as a possible adequate representation of a given data set requires
more sophisticated statistics. For these reasons, in the following section
we shall review the basic definitions and properties of power-law distribu-
tions as well as the commonly used statistical methods for discerning and
quantifying them in empirical data. We shall also focus on some of the
underlying generative models that lead to these distributions.

Table 4.2 summarizes the basic properties for the above-listed distributions
and other parametric models that will be touched upon later on.

4.3 Power-law distributions

A first goal of research on economic complexity has been the determination
of the ways in which complex systems represent an alternative to standard
(neoclassical) economic theory. At the same time, economic complexity has
from its inception been strongly motivated by the desire to explain empirical
phenomena.

One of the main areas of work on the complexity/empirical interface con-
sists of the identification of data patterns that conform with the features of
complex systems (Durlauf, 2005). Specifically, a major effort of this work has
been devoted to detect where power laws, which represent a particular class of
probability distributions, occur in various economic data (Brock, 1999).

The power-law literature has identified a number of interesting statistical
properties of different economic data and has made a valuable contribution in

2The Weibull distribution has received maximum attention in the engineering literature.
In physics, it is known as the “stretched exponential distribution”. In the economic literature
the Weibull is probably less prominent, but D’Addario (1974) noticed its potential for income
data—although it has been used only sporadically as an income distribution (some applica-
tions can be found in Bartels and van Metelen, 1975, Bartels, 1977, Espinguet and Terraza,
1983, McDonald, 1984, Atoda et al., 1988, Bordley et al., 1996, Brachmann et al., 1996, and
Tachibanaki et al., 1997). The Weibull has also been used by Di Guilmi et al. (2004, 2005) to
study the empirical distribution of business cycle phases, that is of expansions and contrac-
tions. The authors find that in both cases the best fitting distribution is Weibull, although
the parameters identifying the Weibull fitting models differ between upturn and downturn
episodes.
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Table 4.2 Statistical distributions mentioned in this chapter. For each distribution
we give the basic functional form of the probability density/mass function, p (x), the
cumulative distribution function, P≤ (x), and the raw moment, 〈Xr〉

Distribution p (x) P≤ (x)

〈

Xr
〉

Gaussiana
1

σ
√

2π
e

− (x−µ)2

2σ2 , 1
2

[

1 + erf

(

x−µ

σ
√

2

)] 1√
π

∫ ∞
−∞

xre−u2
d u,

x ∈ R, µ ∈ R, σ > 0 r ≥ 0

Exponentialb
λe−λx,

1 − e−λx
Γ(r+1)

λr ,

x ≥ 0, λ > 0 r ≥ 0

Lognormala
1

xσ
√

2π
e

− [ln(x)−µ]2

2σ2 , 1
2

{

1 + erf

[

ln(x)−µ

σ
√

2

]}

e
rµ+ r2σ2

2 ,

x > 0, µ ∈ R, σ > 0 r ≥ 0

Weibullb
aλxa−1e−λxa

1 − e−λxa λ
− r

a Γ

(

1 + r
a

)

,

x ≥ 0, a > 0, λ > 0 r ≥ 0

Pareto
αkα

xα+1 ,
1 −

(

x
k

)−α αkr

α−r
,

x ≥ k, k, α > 0 r < α

Laplacec
1

2λ
e

− |x−θ|
λ , x ≤ θ : 1

2
e

− |x−θ|
λ r!

r
∑

j=0

1+(−1)j+r

2j!
θj λr−j ,

x ∈ R, θ ∈ R, λ > 0 x ≥ θ : 1 − 1
2

e
− |x−θ|

λ r ≥ 0

C
o

n
t
in

u
o

u
s

Zipfd
x−s

ζ(s)
, Hx,s

ζ(s)

ζ(s−r)
ζ(s)

,

x ∈ Z>0, s > 1 r < s − 1

D
is

c
r
e

t
e

a erf (·) denotes the error function (http://mathworld.wolfram.com/Erf.html)
b Γ (·) denotes the gamma function (http://mathworld.wolfram.com/GammaFunction.html)
c r! denotes the factorial of the non-negative integer r, defined as r! ≡ r × (r − 1) × · · · × 2 × 1
(http://mathworld.wolfram.com/Factorial.html)
d Hx,α is a generalized harmonic number (http://mathworld.wolfram.com/HarmonicNumber.html);
ζ (·) is the Riemann zeta function (http://mathworld.wolfram.com/RiemannZetaFunction.html)

identifying a range of “facts” that should help constrain theoretical modelling,
such as the presence of skewed and thick tailed densities in data that points
toward the existence of pervasive heterogeneity over individual agents. The at-
tempt to identify the presence of such statistical properties in economic data has
to a substantial extent led by physicists, whose attention was primarily focused
on analysis of financial markets because of the large quantities of data available
at high frequencies.3 However, power laws have also fascinated economists of
successive generations, due to their occurrence in varied economic contexts such
as income and wealth, the size of cities and firms, stock market returns, trading
volume, international trade and executive pay.4

Power laws have both practical importance and theoretical implications for
economic research. For instance, a central argument maintained by Gabaix
(2011) is that in an economy with fat-tailed distributions of agents’ character-
istics individual shocks do not die out in the aggregate, but create an amount
of volatility that can be held responsible for a large part of macroeconomic
fluctuations. This contrasts with existing research, which has focused on using

3Indeed, starting in the mid-1990s a new field of research has emerged within the physics
community that has come to be known as “econophysics”, where a major research activity is
represented by efforts to find power laws in different socio-economic data sets. This literature
is well surveyed by Sǎvoiu and Simǎn (2013).

4See Gabaix (2009) for a survey of various power laws both within and outside economics.

http://mathworld.wolfram.com/Erf.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/Factorial.html
http://mathworld.wolfram.com/HarmonicNumber.html
http://mathworld.wolfram.com/RiemannZetaFunction.html
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economy-wide shocks to explain fluctuations of economic aggregates, arguing
by the central limit theorem that shocks at the micro-level average out in the
aggregate.

Roughly, the central limit theorem (CLT ) states that the mean of n indepen-
dent and identically distributed (i.i.d.) terms with a finite variance converges to
a Gaussian distribution for an asymptotically large value of n regardless of the
original distribution (e.g. Feller, 1971). To be more precise, let X1, . . . , Xn be
a sequence of i.i.d. random variables with mean µ and variance σ2. The CLT
states that the distribution of the centred and normalized mean will have the
standard Gaussian shape with zero mean and unit variance as n goes to infinity,
that is

X̄n − µ

σ/
√

n

d−→ N (0, 1) , (4.7)

where X̄n = (X1 + · · · + Xn) /n and
d−→ denotes convergence in distribution.

Hence, in an economy where n agents have independent shocks, aggregate fluc-
tuations should have a size proportional to n− 1

2 . Given that modern economies
can have millions of agents, this suggests that micro-level fluctuations will have
a negligible aggregate effect if the fundamental hypotheses of the CLT are ver-
ified—i.e. if both independence and finite variance conditions of the n random
variables Xi are satisfied—as aggregate volatility decays according to n− 1

2 .
When agents’ characteristics are power-law distributed, however, the finite

variance assumption cannot always be achieved and the main conditions under
which the CLT holds are not satisfied. Therefore, other existing limit theorems
must be considered when fat-tailedness makes the classical CLT break down.
Lévy (1954) discovered that, in addition to the Gaussian law, there is a rich class
of probability distributions allowing for fat tails and sharing the convergence
condition. Accordingly, a less well-known version of the CLT, the generalized
central limit theorem (GCLT ), shows that if the finite variance assumption is
dropped, the only possible resulting limit is a “Lévy α-stable law” (Nolan, 2015).
To be more rigorous, suppose X1, . . . , Xn is a sequence of non-negative i.i.d.
random variables having power-law tails with exponent 1 < α ≤ 2 (implying
finite mean but infinite variance). Then, as n → +∞,

X̄n − µ

an

d−→ Lα (1, β, 0) , (4.8)

where the normalizing coefficient can be taken as an ∝ n−(1− 1
α )

(Uchaikin and Zolotarev, 1999, p. 62). In the equation above, Lα (1, β, 0) is
the four-parameter Lévy α-stable distribution with location parameter δ ∈ R

equal to zero and scale parameter γ > 0 equal to 1. β ∈ [−1, 1] is the skewness
parameter quantifying the asymmetry of the distribution, which is symmetric
around zero when β = 0. The exponent α ∈ (0, 2], a.k.a. the index of stabil-
ity, determines the rate at which the tails of the distribution taper off. The
GCLT (4.8) applies under the same restrictions (except for the finiteness of the
variance when α > 2) of independence and of large n, but an important dif-
ference is observed between the Gaussian and stable non-Gaussian attractors:
as n → +∞, the Gaussian law “attracts” all the probability density functions
decaying as |x|−α

at large |x| for α ≥ 2; similarly, as n gets large, all probability
density functions whose tails decay according to a power law with exponent
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α < 2 are attracted to the Lévy law. Therefore, there is an abrupt change in
the tail behaviour of Lévy α-stable laws at the borderline case with exponent
α = 2: while for α < 2 all the Lévy distributions are heavy-tailed, the case
α = 2 is special and represents the familiar, not heavy-tailed, Gaussian distri-
bution—i.e. L2 (1, 0, 0) = N (0, 1), and the classical CLT (4.7) is recovered with
the replacement α = 2 in Equation (4.8).

By the above reasoning, the fat-tailed (power-law) nature of individual-level
shocks is important theoretically, as it determines whether the classical CLT
applies. Indeed, Equation (4.7) states that if the distribution of agents’ char-
acteristics has thin tails, then aggregate volatility decays according to n− 1

2 . In
contrast, Equation (4.8) states that if the agents’ characteristics distribution
has fat tails (α < 2), then aggregate volatility decays much more slowly than

n− 1
2 : it decays as n−(1− 1

α ). Hence, purely microeconomic shocks do not die out
in the aggregate, but have a rather concrete possibility to propagate throughout
the economy so as to generate non-trivial macroeconomic fluctuations.

The rest of this section is structured as follows. Section 4.3.1 provides some
basis for the analysis of power-law distributed data. Section 4.3.2 illustrates how
to recognize power laws in empirical data, whereas Section 4.3.3 presents the
main statistical techniques for identifying the lower bound to the power-law be-
haviour (Section 4.3.3) and fitting the power-law form to empirical distributions
(section 4.3.3). Then, Section 4.3.4 shows how to test the power-law hypothesis
quantitatively and how to compare it with alternative distributions. Finally,
Section 4.3.5 describes some of the mechanisms by which power-law behaviour
can arise.

4.3.1 Some basic definitions and properties

A non-negative random variable X is said to obey a power law if its realizations
are drawn from a probability distribution

p (x) ∝ x−(α+1), (4.9)

where α > 0 is a constant parameter of the distribution known as the scaling
exponent.5 At the most basic level, there are two types of power-law distribu-
tions: continuous, governing continuous real numbers, and discrete, where the
quantity of interest can take only a discrete set of values—typically positive
integers.

The continuous version, known as the Pareto distribution, is well studied in
the literature and has the PDF

p (x) =
αkα

xα+1
, x ≥ k, (4.10)

5What is usually called a power-law distribution is simply the PDF associated with the
CDF of the Pareto distribution, i.e.

p (x) ∝ x−(α+1) = x−ζ .

Then, the exponent of the power-law distribution is ζ = α + 1, where α is the Pareto distribu-
tion shape parameter. To add to the confusion, some authors call α + 1 the scaling exponent,
that is the exponent of the density (4.9), while others find it easier to work with the exponent
α of the CCDF P> (x) ∝ x−α. For the purposes of this chapter, we will not change here the
nomenclature but will refer to the Pareto distribution shape parameter α as the power-law
scaling exponent, with the hope that this caveat is sufficient to avoid confusion.
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Figure 4.2 Power-law probability density/mass functions with scale parameter k = 1
and different values of the shape parameters α and s. In panel (b), the connecting
lines do not indicate continuity

where k > 0 is the scale parameter and α > 0 is the shape parameter (e.g.
Kleiber and Kotz, 2003, and Arnold, 2015).6 The discrete case has probability
mass function (PMF)

p (x) = Pr (X = x) =
x−(s+1)

ζ (s + 1, k)
, x ∈ Z>0, k > 0, s > 0, (4.11)

where

ζ (s + 1, k) =

∞
∑

n=0

1

(n + k)
s+1 (4.12)

is the generalized zeta function.7 For k = 1, ζ (s + 1, k) reduces to the standard
zeta function

ζ (s + 1) =

∞
∑

n=1

n−(s+1) (4.13)

and the distribution (4.11) becomes known as the Zipf (or zeta) distribution—in
honour of the American linguist Zipf (1949).

Figure 4.2 visualizes the Pareto (a) and Zipf (b) probability density/mass
functions with scale parameter k = 1 and different values of the shape parame-
ters α and s. Clearly, both the distributions are highly skewed to the right with
a heavy tail. It is therefore reasonable to assume that a random variable follow-
ing the Pareto/Zipf distribution contains extreme values. The effect of changing
the shape parameters α and s is visible in the plots at the scale parameter k:

6The statistical distribution (4.10), usually referred to as the strong Pareto law

(Mandelbrot, 1960), has 100-year-plus history that dates back to the work of the Italian
economist Pareto (1895). In his pioneering contributions at the end of the nineteenth century,
Pareto (1896, 1897a,b) also suggested two variants of his distribution, occasionally called the
three-parameter Pareto distributions. These further Pareto distributions, however, have not
been used much in empirical economic (and other) studies.

7See http://mathworld.wolfram.com/HurwitzZetaFunction.html.

http://mathworld.wolfram.com/HurwitzZetaFunction.html


10 CHAPTER 4. HEAVY-TAILED DISTRIBUTIONS

the higher (lower) α and s, the higher (lower) the probability density/mass at
k, and thus the thinner (fatter) the right tail.8

In many cases it is useful to consider the cumulative distribution function
(CDF) of power-law distributed variables. In the continuous (Pareto) case, the
CDF has the relatively simple structure

P≤ (x) = 1 −
(x

k

)−α

, (4.14)

whilst for the discrete (Zipf) version it is given by

P≤ (x) =
Hx,s+1

ζ (s + 1)
, (4.15)

where Hx,s+1 is a generalized harmonic number.9 Figure 4.3 charts the
Pareto/Zipf CDF for different values of α and s. As can be seen, the higher
(lower) the value of α and s, the more (less) rapidly the CDF trends to 1.

The moments of power-law distributions are also of particular interest. For
instance, in the Pareto case the rth moment equals

〈Xr〉 =
αkr

α − k
(4.16)

and exists only if r < α. Therefore, when

• 0 < α ≤ 1, the mean and higher-order moments diverge, i.e. 〈X〉 = ∞;

• 1 < α ≤ 2, the second and higher-order moments diverge, i.e.
〈

X2
〉

= ∞;

• 2 < α ≤ r, the rth and higher-order moments diverge, i.e. 〈Xr〉 = ∞.

To understand the meaning of Paretian (power) laws with infinite population
moments, one can use the sequential moment estimation method (Mandelbrot,
1963; Willinger et al., 2004). This method plots the running moment estimates,
that is the value of a moment estimate of the data is plotted as a function of

8At times, a power-law distribution is also called a scale-free distribution, because it is the
only distribution that is the same whatever scale one looks at it on (e.g. Sornette, 2012). To
illustrate this fact, one can suppose to have some probability distribution p (x) for a quantity
x and to discover or somehow deduce that it satisfies the property that

p (kx) = kp (x)

for any k. That is, if one increases the scale or unit by which x is measured by a factor of k,
the shape of the distribution p (x) is unchanged, except for an overall multiplicative constant.
Thus, for instance, an immediate consequence of the presence of the power-law tail in the
probability distribution of incomes is that the probability that a random person from the
richer part of the society is k times richer than another person with income x is independent
of x, i.e.

p (kx)

p (x)
= k−(α+1).

Therefore, the power-law distribution is scale-free, reflecting a certain “self-similarity” of the
structure of the richest class. The scale appears in the problem through the parameter k: for
example, if k = 10 and α = 2, then the power law predicts that the number of people ten
times richer is roughly one thousand (10−3) times smaller. The suppression factor is very
sensitive to α. If the value of α moves toward unity, the suppression factor decreases, and for
k = 10 it is only 10−2. In other words, in economies with a smaller value of α the tail of the
distribution is fatter. This leaves more space for rich individuals.

9See http://mathworld.wolfram.com/HarmonicNumber.html.

http://mathworld.wolfram.com/HarmonicNumber.html
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Figure 4.4 Running moment estimates corresponding to same-sized (N = 1, 000)
distinct samples of a Paretian random variable with k = 2 and α = 1 (left y-axis
scale) and a Gaussian random variable with µ = 2 and σ = 1 (right y-axis scale): (a)
mean; (b) standard deviation. The figure gives an idea of how erratic and sample-
dependent the moments of Paretian variables can be expected to be

the number of observations used in the estimation of the moment. For example,
Figure 4.4 shows the sequential mean and standard deviation plots correspond-
ing to same-sized (N = 1, 000) distinct samples of a Paretian random variable
with k = 2 and α = 1 and a Gaussian random variable with µ = 2 and σ = 1,
obtained by simply inverting series of random variables uniformly distributed in
the interval (0, 1).10 As one can easily recognize, while in the Gaussian case the
mean and standard deviation estimates exist, are finite, and converge robustly
to their theoretical value as the number of observations increases, in the Pare-

10The “inversion method” relies on the principle that continuous CDFs range uniformly
over the open interval (0, 1). If u is a uniform random number on (0, 1), then x = P −1 (u)
generates a random number x from any continuous distribution with the specified CDF P .
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tian case the sample mean and standard deviation estimates do not converge as
n increases, even if they always exist for any fixed n. This fact confirms that
for a Paretian random variable with α = 1 the first and second moments do
not exist, i.e the computer-simulated data set is a sample from an underlying
distribution having mean and variance infinite.

Finally, power laws are conserved with respect to addition, multiplication,
power transformation, minimization and maximization (e.g. Gabaix, 2009, and
Sornette, 2012). In particular, it can be proven that when two power-law dis-
tributed random variables are combined via the above algebraic transforma-
tions a new power law is generated from old ones whose exponent is preserved
from the fatter-tailed power law, that is the one with the smallest exponent
(Jessen and Mikosch, 2006). For instance, if X is a power-law distributed ran-
dom variable with αX < ∞ and Y is another power-law variable with an expo-
nent ∞ > αY ≥ αX , then X + Y , X · Y or max (X, Y ) are still power laws with
the same exponent αX . This property also holds when Y is normal, lognormal
or exponential, whose right tail is thinner than any power law.

4.3.2 Recognizing power-law distributions

Given a sample of data, the most common approach followed to probe for the
power-law form of the empirical distribution is from visual inspection of a plot
where the logarithm of data is plotted against the logarithm of their comple-
mentary cumulative probabilities, defined as

P̂ n
> (x) =

1

N

N
∑

i=1

1 {Xi > x} , (4.17)

where

1 {Xi > x} =

{

1 if Xi > x,

0 otherwise.
(4.18)

This is a natural estimator of the true CCDF (4.3) and it is essentially the
CCDF of a distribution that puts mass 1/n on each data point.

If in doing a log-log plot of P̂ n
> (x) as a function of x one discovers a dis-

tribution that approximately falls on a straight line, then one can assert that
the distribution follows a power law. For the specific case of a Paretian random
variable, the plot will be exactly linear, as

ln [P> (x)] = α ln (k) − α ln (x) = Cα − α ln (x) , (4.19)

where

P> (x) =
(x

k

)−α

(4.20)

is the CCDF for the Pareto distribution.
Figure 4.5 shows the log-log scaled empirical CCDFs of two large data sets

(N = 10, 000) drawn from a Pareto distribution with k = 1 and α = 1.5 and an
exponential distribution with parameter λ = 0.125. As one can easily recognize,
for the Paretian random variable the log-log plot exhibits a linear decrease by
several orders of magnitude, whereas for the exponential case it shows a faster-
than-linear decrease of the distribution, especially at the right-end tail.
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Figure 4.5 Log-log scaled CCDFs of two large samples (N = 10, 000) drawn from
different continuous distributions: (a) Pareto distribution with k = 1 and α = 1.5; (b)
exponential distribution with parameter λ = 0.125

Another graphical method for the identification of power-law probability dis-
tributions using random samples is the Pareto quantile plot (e.g. Beirlant et al.,
1996a, 2004). Since a log-transformed Pareto random variable is exponentially
distributed,11 the Pareto quantile plot compare the log-transformed data to the
corresponding quantiles of a standard exponential distribution (i.e. an expo-
nential distribution with parameter λ = 1) by plotting the former versus the
latter. The quantiles of the standard exponential distribution are given by

− ln

(

1 − i

N + 1

)

, i = 1, . . . , N, (4.21)

thus yielding as coordinates for the Pareto quantile plot
{

− ln

(

1 − i

N + 1

)

, ln (xi)

}

, i = 1, . . . , N. (4.22)

If the resulting plot suggests that the plotted points converge to a straight line,
as in Figure 4.6(a), then a Pareto power-law distribution should be suspected.

The mean excess plot is an alternative way of graphically examining
power-law probability distributions—a detailed description can be found in
Beirlant et al. (1996b, 2004). This method consists of first sorting the data,
such that x1 ≤ . . . ≤ xn, and then computing for each observation xi the em-
pirical excess function

en (xi) :=
1

N − i

N
∑

j=i+1

(xj − xi) , i = 1, . . . , N − 1, (4.23)

where N is the size of the random sample. The values of (4.23) are thus plotted
against the corresponding xi, and if the data follows a Pareto power-law distri-

11Formally, the Pareto distribution is related to the exponential distribution as follows: if X

is Pareto-distributed with scale k and shape α, then Y = ln
(

X
k

)

is exponentially distributed

with parameter λ = 1/α.
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Figure 4.6 Pareto quantile plot (a) and mean excess plot (b) for a large sample
(N = 10, 000) drawn from a Pareto distribution with k = 1 and α = 1.5

bution the plotted points will exhibit a positive linear trend, as shown in Figure
4.6(b).

4.3.3 Estimating power-law distributional parameters

Finding the threshold

When power laws are used in practice, it is usually the case that only the
upper tail of the empirical distribution follows a power law. Therefore, before
estimating the scaling parameter α, all observations below some minimum point
xmin need to be discarded, so that one is left with only those observations for
which the power-law model is a valid one. Estimating the scale parameter k of
the Pareto/Zipf distribution and finding the threshold xmin directly corresponds
with each other, and since the estimate of α will be conditioned on the choice
of xmin—choosing too low a value for xmin reduces the statistical error on the
scaling parameter α because more data are used, but it increases its bias because
the power law normally holds only in the tail—it becomes clear that some care
must be taken when choosing this value.

The most common ways of estimating xmin are either to select visually the
point beyond which the empirical CCDF of the distribution becomes roughly
straight on a log-log plot, or using a Hill plot as in Figure 4.7(a), which involves
estimating the α parameter for all candidate values of xmin and choosing the
smallest value of xmin beyond which the estimated parameter stabilizes to a
constant.12 Clearly, these graphical methods are highly subjective and error
prone, and the same can be held true when judging by eye the degree of linearity
on a Pareto quantile plot or mean excess plot and using as an estimate of

12See e.g. Drees et al. (2000) for more details about the Hill plot. The Hill estimator and
other methods for estimating the scaling parameter α once the threshold xmin has been fixed
will be discussed in Section 4.3.3. Figure 4.7(a) was obtained using random numbers from a
composite lognormal-Pareto distribution, which takes a lognormal density up to an unknown
threshold value θ and a two-parameter Pareto density with scaling parameter α thereafter.
The idea of such a composite model comes from Cooray and Ananda (2005), to whom we
refer the reader for technical details.
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Figure 4.7 Methods for finding the threshold. (a) Hill plot for 10,000 random ob-
servations from the composite lognormal-Pareto distribution with θ = 2 and α = 1.
Notice that the left side of the graph clearly indicates the correct value of α in prox-
imity of a threshold value equal to (or more than) θ. (b) K-S statistic versus ordered
sample values for 5,000 random observations from the composite lognormal-Pareto
distribution with θ = 2 and α = 1. Notice that the K-S statistic yielding the best fit
to the tail data is very close to the true value of θ

the threshold xmin the leftmost point beyond which these plots form almost a
straight line.

In the case of a strong discontinuity at the threshold, using traditional graph-
ical diagnostics would lead to a discernible kink so that it would be easy to choose
(with little uncertainty) a lower bound xmin for power-law behaviour in the data.
In the more realistic case of a smooth transition at the threshold, however, the
traditional diagnostics would be harder to interpret, and hence their results
should not be trusted. Therefore, more objective and accurate approaches have
been sought. Among these, the method put forward by Clauset et al. (2007,
2009) determines the optimal choice of xmin by minimizing the distance between
the probability distributions of the data and the best-fit power-law model. The
measure used for quantifying the distance between the two probability distribu-
tions is the Kolmogorov-Smirnov (K-S) statistic

D = max
x≥xmin

∣

∣

∣P̂ n
≤ (x) − P≤ (x)

∣

∣

∣ , (4.24)

which is simply the maximum distance between the data and fitted model CDFs
(for x ≥ xmin). The optimal estimate of the lower bound is then the value of xmin

where D attains the minimum.13 An example of application of this technique
is given in Figure 4.7(b), which shows the K-S statistic as a function of the
assumed value of xmin for 5,000 random observations drawn from a composite

13As suggested by Clauset et al. (2009), the uncertainty in the estimate for xmin can be
derived by making use of a non-parametric bootstrap method (Efron and Tibshirani, 1993).
That is, given a data set with sample size N , one can generate a synthetic data set by drawing
uniformly at random from the original data a new sequence of points xi, i = 1, . . . , N . Using
the method described above, one then estimates xmin for this surrogate data set. By taking
the standard deviation of all the estimates over a large number of repetitions of this process,
the uncertainty in the original estimated parameter can thus be quantified.
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lognormal-Pareto distribution with θ = 2 and α = 1 (see footnote 12).14 As the
figure shows, the K-S statistic that yields the best fit to the tail data is very
close to the true value of θ.15

Estimation of the scaling parameter

To estimate the scaling parameter α once the threshold xmin has been fixed is
relatively straightforward.16 Typically this parameter is extracted by observing
that the Pareto power law implies the linear form (4.19).17 Thus, if the doubly
logarithmic plot of the empirical CCDF appear roughly straight above xmin,
then a straight line can be fitted to the data points beyond xmin using least
squares (LS) linear regression, with the estimate of the scaling parameter α
given by the absolute slope of the fitted straight line.18 For example, the LS fit
of a straight line to Figure 4.8(a) gives α = 0.985, which is clearly compatible
with the known value of α = 1 from which the data were generated.

An alternative, simple and reliable method for extracting α is to employ the
formula

αHill =
k

∑k

i=1 ln (xN−k+i) − k ln (xN−k)
, i = 1, . . . , N, k ≤ N. (4.25)

Here the quantities xi are the sample elements put in descending order and k is
the number of observations larger than xmin. Equation (4.25) was introduced
by Hill (1975) and is referred to as the Hill estimator , which is well-known to
be asymptotically normal (Hall, 1982) and consistent—meaning that αHill → α
as N → ∞ (Mason, 1982). It is constructed as a maximum likelihood estimator

14For the ease of presentation, the limits of the horizontal axis in panel (b) of the figure
have been adjusted so as to visually magnify the first part of the graph.

15Several other statistically principled methods for the estimation of the threshold xmin have
been proposed in the literature. For instance, Beirlant et al. (1996a,b) developed a procedure
that analytically determines the optimal choice of xmin by minimizing a non-parametric esti-
mate of the asymptotic mean squared error (AMSE) for the maximum likelihood estimator of
α proposed by Hill (1975; see also Section 4.3.3). Furthermore, Danielsson et al. (2001) pro-
posed a bootstrap method to find the optimal xmin for the Hill estimator with respect to the
AMSE, which has less analytical requirements than the approach proposed by Beirlant et al.
(1996a,b). Finally, a robust criterion for choosing xmin and estimating the scaling parameter
was developed by Dupuis and Victoria-Feser (2006). Nevertheless, these techniques are com-
putationally time consuming and sometimes unstable, and are therefore not further discussed
here.

16Parameter estimation for power-law type distributions is covered in depth in Johnson et al.
(1994) and Arnold (2015). Here we shall only include the classical regression-type estimator
and maximum likelihood estimation. For the method of moments, quantile and Bayes esti-
mators, as well as methods based on order statistics, we refer the interested reader to the
above-mentioned works. Some recent developments are also discussed by Alfons et al. (2013).

17Here we limit our attention to the methods for estimating the scaling parameter that are
specific to continuous data. The discrete counterpart follows similar arguments, except for
some additional technical conditions. A review of estimation methods that work for discrete
data is contained in Clauset et al. (2009). We do not even consider the case of binned data
sets —i.e. sequences of counts of observations over sets of non-overlapping ranges—which
occur when direct measurements are unavailable (because impractical or impossible) and this
is simply the form of the data received, or when one recovers measurements from existing
histograms. Readers interested in pursuing the topic further are encouraged to consult the
work by Virkar and Clauset (2014), who adapt the statistical framework of Clauset et al.
(2009) to the less common but important case of binned empirical data

18Many software packages exist that can perform this kind of fitting, provide estimates and
standard errors for the slope, as well calculate indicators for the quality of the fit.
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Figure 4.8 Estimation of the scaling parameter. Points represent the complemen-
tary cumulative distribution for 5,000 random observations distributed according to
a composite lognormal-Pareto distribution with θ = 2 and α = 1. Solid lines repre-
sent the Pareto power-law fits to the data using the methods described in the text.
Dashed lines denote the lower threshold estimated using a Kolmogorov-Smirnov ap-
proach (Clauset et al., 2007, 2009)

conditional on some known threshold level xmin, and coincides exactly with the
maximum likelihood estimator for the shape parameter of the Pareto distribu-
tion when xmin corresponds to the smallest value of x, i.e. when k = N . An
error estimate for αHill can be derived by exploiting the asymptotic distribution
theory of the Hill estimator as αHill√

k
(e.g. Lux, 1996). Applying Equation (4.25)

to 5,000 lognormal-Pareto distributed random numbers as in Figure 4.8(b) gives
an estimate of α = 0.988, which agrees well with the known value of 1.

4.3.4 Testing a set of data for power-law distribution

Since it is possible to fit a power-law distribution to any data set, it is ap-
propriate to test whether the observed data could plausibly be considered to
follow a power law. Many empirical studies of power-law distributed data have
attempted to test the power-law hypothesis qualitatively, based for instance on
graphical visualizations of the data such as a log-log plot of their complementary
cumulative distribution. But this could lead to claims of power-law behaviour
that do not hold up under closer scrutiny, because even data that are drawn
from a non-power-law distribution can produce samples that resemble power-
law distributions on a log-log plot. This is the case, for instance, with data
drawn from a lognormal distribution, where a log-log plot may appear linear for
several orders of magnitude if the variance of the corresponding normal distri-
bution is large (Mitzenmacher, 2004). Therefore, to say with certainty whether
a power law is a plausible hypothesis for the data, a more quantitative approach
is desirable.

A standard way for testing empirical data against a hypothesized power-law
distribution is to use a goodness-of-fit test based on the K-S statistic (4.24),
which generates a p-value that quantifies the plausibility of the hypothesis.19

19Other measures for quantifying the “distance” between the distribution of the em-
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Since the distribution of the K-S statistic is hard to obtain analytically, the
p-value for the fit can be found by bootstrapping, i.e. by generating a large
number of power-law distributed data sets with scaling parameter α and lower
bound xmin equal to those of the distribution that best fits the observed data
and then “re-inferring” the model parameters (Clauset et al., 2009).20 When
testing against the power-law distribution, the hypotheses are

H0 : data are generated from a power-law distribution,

H1 : data are not generated from a power-law distribution.
(4.26)

Therefore, if the resulting p-value is larger than the chosen significance level,
then the power law is a plausible hypothesis for the data; otherwise, if it is
smaller, the model is rejected and another distribution may be more appropriate.

As a demonstration of this approach, we consider a data set with N = 1, 000
observations drawn at random from a composite lognormal-Pareto distribution
with θ = 2 and α = 1. For fitting a power-law model to the distribution’s upper
tail, we use the distance-based method for automatically identifying the point
xmin above which the power-law behaviour holds and the Hill estimator for α
(see Section 4.3.3). We calculate that xmin = 1.01 and αHill = 1.00. Given
this hypothesized model, we compute the distance D between the estimated
model and the original data set using the K-S goodness-of-fit statistic (4.24),
which yields D = 0.02. Then, using a semi-parametric bootstrap, we generate
100 data sets with N values that follows a Pareto power-law distribution with
parameter αHill at and above the estimated threshold xmin, but follows the
original distribution below xmin. After fitting the Pareto power-law model to
each generated data set and calculated the associated K-S statistic, we are left
with a p-value for the goodness-of-fit test equal to 0.78, meaning that the original
data can be firmly considered to follow the Pareto power-law distribution in the
upper tail at any of the usual significance levels (1%, 5%, and 10%).21

A large p-value for the power-law model, however, provides no information
about whether some other distributions might be an equally plausible (or even
a better) explanation. Hence, demonstrating that such alternatives are worse
models of the data can strengthen the statistical argument in favour of the
power law. As a way to accomplish this task, the test proposed by Vuong
(1989) examines if the differences between a fitted model and the others are
statistically significant. The approach is based on testing the null hypothesis
H0 that the competing models are equally close to the true data generating
process against the alternative hypothesis H1 that one model is closer. The test
statistic is

R =

N
∑

i=1

ln

[

p1 (xi; θ1)

p2 (xi; θ2)

]

, (4.27)

pirical data and the hypothesized model have been proposed and are in common use.
Readers interested in pursuing the subject further may wish to consult the review by
D’Agostino and Stephens (1986).

20For each generated data set the K-S statistic must to be computed relative to the best-fit
power-law model for that data set, not relative to the original distribution from which the data
set was drawn. In this way, it is ensured that the same calculation that has been performed for
the real data set is performed also for each generated data set. This is a crucial requirement
if an unbiased estimate of the p-value is sought (Capasso et al., 2009).

21The p-value is simply the fraction of the times the resulting K-S statistic is larger than
the value for the original data.



4.3. POWER-LAW DISTRIBUTIONS 19

θj=1,2 being the maximum likelihood estimator of the unknown parameters for
the model j, and is asymptotically distributed as a standard normal under the
null hypothesis, that is

under H0 : V =
R

σ
√

N

d−→ N (0, 1) , (4.28)

where

σ =

√

√

√

√

1

N

N
∑

i=1

{

ln

[

p1 (xi; θ1)

p2 (xi; θ2)

]}2

−
{

1

N

N
∑

i=1

ln

[

p1 (xi; θ1)

p2 (xi; θ2)

]

}2

. (4.29)

Hence, chosen a critical value z from the standard normal distribution corre-
sponding to the desired level of significance, if |V | ≤ z the null that models are
the same cannot be rejected, whereas if V > z model 1 can be considered better
than model 2, and the reverse is true if V < −z.

An example of comparing competing distributions is shown in Figure 4.9,
where the best-fit Pareto, lognormal and exponential models (all with xmin =
1.30) have been found for the randomly generated data of the previous exam-
ple.22 As can be seen, the Pareto and lognormal distributions perform equally
well, whereas the exponential model is a poor fit for the tail data. Investigat-
ing this formally by means of the method proposed by Vuong (1989) gives a
p-value of 0.90 and a test statistic that is close to zero (-0.13), which means
we cannot reject the null hypothesis that the Pareto and lognormal models are
observationally equivalent, whereas in the case of the exponential distribution
the Vuong test gives a p-value and a test statistic of, respectively, 0.00 and 4.14,
meaning we can reject the null hypothesis and conclude that the Pareto model
is closer to the true distribution than the exponential one.

4.3.5 Models of generation of power-law distributions

There is a large body of models capable of explaining the processes of gen-
eration of power-law distributions that span from physics (Bouchaud, 2001;
Mitzenmacher, 2004; Newman, 2005; Sornette, 2006) to economics (Gabaix,
2009). Here we shall explore the role of random multiplicative processes as key
mechanisms that explain distributional power laws. Readers interested in pur-
suing the topic further may consult the above references for a review of other
mechanisms by which power-law behaviour can arise.

22Parameter estimation for the Pareto distribution uses the Hill estimator conditional on
xmin = 1.01 (see Section 4.3.3). For the lognormal and exponential distributions, an appropri-

ate normalization constant C is used so that
∫ ∞

xmin
Cp (x) d x = 1. The normalization constant

does not count as a parameter, because it is fixed once the values of the other parameters
are estimated, and xmin does not count as a parameter because we know its value from the
distance-based approach proposed by Clauset et al. (2007, 2009). Normalization constants for
both the lognormal and the exponential distributions can be found in Clauset et al. (2009).
Once we are given with the value of xmin, the method of “matching moments”—which sets
the distribution moments equal to the data moments and solves to obtain estimates for the
distribution parameters—is used to calculate our estimates. For the lognormal, the location
parameter µ is equal to the mean of the logarithm of the data points, and the shape parameter
σ is equal to the standard deviation of the data set after transformation (see Section 4.2). For
the exponential, the estimate of λ is just the reciprocal of the sample mean.
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Figure 4.9 Log-log scaled CCDF for 1,000 random observations distributed according
to a composite lognormal-Pareto distribution with θ = 2 and α = 1. Red, blue and
green solid lines represent, respectively, the Pareto, lognormal and exponential best
fits. Dashed line denotes the lower threshold estimated using a Kolmogorov-Smirnov
approach (Clauset et al., 2007, 2009)

Multiplicative processes

Power-law distributions can be obtained as steady-state solutions of stochastic
processes. The stochastic theory, one of the oldest (and still popular) theories
of distribution, relies for the skewed shape of economic distributions mainly or
solely on chance, luck and random occurrences. The main authorship of this
theory is attributed to Gibrat (1931), who viewed the evolution of firms’ size
(sales, employees, valued added, assets) as a multiplicative random process in
which the product of a large number of individual random variables tends to
the lognormal distribution.

The connection between multiplicative processes and the lognormal distri-
bution can be described as follows. Suppose that

xi
t =

(

1 + ri
t−1

)

xi
t−1, (4.30)

where xi
t is the size of firm i at time t and

{

ri
t

}

t=0,1,...,T −1
are the per-period

rates of growth in firm’s size. Denoting the firm’s per-period growth factors by
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λi
t =

(

1 + ri
t

)

, the above expression can be rewritten as

xi
t = λi

t−1xi
t−1, (4.31)

where
{

λi
t

}

t=0,1,...,T −1
are independent, identically distributed, continuous and

non-negative random variables. Taken literally with no other ingredient, ex-
pression (4.31) leads to an ensemble of values xi

t over all possible realizations of
the multiplicative factors

{

λi
t

}

t=0,1,...,T −1
which is distributed according to the

lognormal distribution. Indeed, by iterating (4.31), the firm’s size at time T is

xi
T = xi

0λi
0λi

1λi
2 · · · λi

T −1 = xi
0

T −1
∏

j=0

λi
j , (4.32)

where xi
0 represents the starting size of firm i. If the λi

t’s are all governed by
independent lognormal distributions Λi (λ), then xi

T is approximately lognormal
as the product of lognormal distributions is again lognormal. However, lognor-
mal distributions may be obtained even if the λi

t’s are not themselves lognormal
by the additive form of the CLT. Indeed, from the logarithm of (4.32)

ln
(

xi
T

)

= ln
(

xi
0

)

+
T −1
∑

j=0

ln
(

λi
j

)

(4.33)

one gets via the CLT that
∑T −1

j=0 ln
(

λi
j

)

converges to a Gaussian distribution

for sufficiently large t if the ln
(

λi
j

)

’s are independent and identically distributed

variables with finite mean and variance; hence, for large times t, xi
T is well

approximated by a lognormal distribution.

In the industrial organization and economic geography literature this result
is also known as the Gibrat “law of proportionate effect”, stating that if growth
rates of firms’ size in a fixed population (i.e. abstracting from entry and exit
dynamics) are independent of size and uncorrelated, the resulting distribution
is lognormal. This is clearly seen in Figure 4.10, which exhibits the simulated
distribution for the multiplicative system (4.31) at time T = 100, where λi

t is a
random draw from a Gaussian distribution with µ = 1.02 and σ = 0.05.23 The
simulation has been run for N = 10, 000 firms, whose size has been initialized
to 100. As one can easily recognize, both the panels of Figure 4.10 show every
sign of being lognormal.24

Lognormal and power-law distributions are intrinsically connected. Indeed,
small variations in the underlying model can change the result from one to the

23The value µ = 1.02 ensures that the experimentally observed firms’ size increases in the
overall system at each time step of the simulation, whereas the standard deviation σ = 0.05
is large enough to enable occasionally values which are smaller than 1.

24Since a random variable X has the lognormal distribution with parameters µ ∈ R and
σ ∈ (0, ∞) if ln (X) has the Gaussian distribution with mean µ and standard deviation σ,
the lognormal density in panel (a) of Figure 4.10 uses parameter estimates obtained by first
taking logarithms of the simulated data and then equating µ and σ to the mean and standard
deviation of the log-transformed simulated data (see Section 4.2). The lognormal quantile
plot in panel (b), instead, has been drawn by first taking logarithms of the simulated data
and then using the Gaussian quantile plot with the same parameter estimates.
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Figure 4.10 The final time step distribution obtained from the simulation of the mul-
tiplicative stochastic process (4.31). The solid line in panel (a) denotes the lognormal
density with parameter values obtained by “matching moments” (see footnote 24)

other.25 As a consequence, many variations of the model (4.31) have been de-
veloped in the literature. The main result of this strand of research was to show
that even small variations from the pure multiplicative stochastic process lead
to a power-law distribution. As a matter of example, Champernowne (1953)
offered an explanation for the Pareto power-law distribution of income similar
in character to the “law of proportionate effect”. His model, later on general-
ized and extended by Simon (1955), views income determination as a Markov
process—income for the current period depends only on one’s income for the
last period and random influence—and relies upon the subdivision of incomes
into discrete ranges as well as the specification of a constant matrix of transi-
tion probabilities—otherwise, no stationary distribution will emerge from the
Markov process. Champernowne showed that if the income intervals defining
each class are assumed to form a geometric progression, then the equilibrium
distribution of income tends to that given by a discrete Pareto distribution.

The main difference between the multiplicative model (4.31) and the Cham-
pernowne model is that while in the former income can become arbitrarily close
to zero through successive decreases, in the latter model there is a minimum
income corresponding to the lowest class below which one cannot fall. Gener-
ally, for each economic system one can assume the existence of a positive cut-off
x∗

t−1 > 0 for the minimal income of each individual, i.e. there is some threshold
income which one has to posses to fulfil minimal needs and function in the sys-
tem. In welfare economies it is provided by the social security system through
the economic effects of subsidies, securities, and services.

A very general extension to Champernowne model is contained in
Levy and Solomon (1996a,b), who showed that a power-law distribution can be
obtained by adding a reflection condition to the stochastic multiplicative model

25A rich and long history about generative models leading to either power-law or lognor-
mal distributions, spanning many fields, can be found in work from decades ago. See, for
instance, Aitchison and Brown (1957) and Sahota (1978); see also Kleiber and Kotz (2003),
Mitzenmacher (2004) and Newman (2005) for pointers to some of the recent and historically
relevant scientific literature on the subject.
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(4.31), i.e. by assuming that each xi
t−1 is bounded from below to a threshold

x∗
t−1 =

c

N

N
∑

i=1

xi
t−1 = c 〈Xt−1〉 (4.34)

proportional to current average income 〈Xt−1〉. Operationally, each time the
generic multiplicative process (4.31) returns a value xi

t smaller than x∗
t−1, the

actual value of xi
t is restored to

xi
t = x∗

t−1 = c 〈Xt−1〉 , (4.35)

where the fraction c is fixed in time.26 This mechanism can be also viewed as
a way of killing off an individual and introducing a new one at the same time,
thus incorporating a perfectly balancing “birth and death” process. Then, the
multiplicative model (4.31) formally changes to

xi
t =

{

λi
t−1xi

t−1 if xi
t ≥ c 〈Xt−1〉,

c 〈Xt−1〉 if xi
t < c 〈Xt−1〉.

(4.36)

Numerical results probing the properties of the multiplicative stochastic model
with reflecting lower bound are shown in Figure 4.11 for the final time step T =
100 and values c = 0.9, N = 10, 000 and xi

0 = 100. As in the previous simulation,
the random factor λi

t is extracted from a Gaussian probability distribution with
µ = 1.02 and σ = 0.05. One can see that the lower cut-off in fact works, and
the resulting distribution is no longer lognormal but can be approximated by a
Pareto power-law function.

Kesten (1973) considered the following mixture of multiplicative and additive
processes

xi
t = λi

t−1xi
t−1 + bi

t−1, (4.37)

with
{

λi
t

}

t=0,1,...,T −1
and

{

bi
t

}

t=0,1,...,T −1
being positive independent random

variables. Clearly, for bi
t−1 = 0 the simple linear stochastic equation (4.37)

recovers the model (4.31); for bi
t−1 6= 0, it generates an ensemble of values xi

t

for which the power-law tail behaviour

p (xt) ∝ x
−(1+α)
t (4.38)

can be observed. The term bi
t−1 can be thought of as an effective repulsion from

the origin—i.e. a re-injection of the dynamics—and thus acts similarly to the
barrier x∗

t−1 in the previous model (4.36), making the multiplicative process with
the reflective barrier and the Kesten model deeply related.27 The reconstructed
final time step (T = 100) density of the Kesten process (4.37) for λi

t−1 and
bi

t−1 uniformly sampled in the intervals [0.48, 1.48] and [0, 1], respectively, and
values N = 10, 000 and xi

0 = 100 is shown in Figure 4.12, where a clear power-
law behaviour in the tail can be observed from the double logarithmic plot of
the cumulative distribution.

26Clearly, if c is time independent, x∗ varies in time.
27See Sornette (1998) on this subject; see also Sornette and Cont (1997) and Takayasu et al.

(1997).
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Figure 4.11 Pareto quantile plot for the final time step distribution obtained from
the simulation of the multiplicative stochastic process (4.36)

Finally, Blank and Solomon (2000) incorporate both entry and exit dynam-
ics by assuming that agents disappear from the system if they fall below the
threshold (4.34) and that at each period t

∆N = Nt+1 − Nt = K





Nt+1
∑

i=1

xi
t+1 −

Nt
∑

i=1

xi
t



 = K
(

xtot
t+1 − xtot

t

)

(4.39)

new individuals enter the system with the size x∗
t−1. This model—with a vari-

able number of components whose size evolves according to the multiplicative
stochastic rule—also leads to a power-law distribution, as one can easily rec-
ognize from Figure 4.13, which shows the Pareto quantile plot comparing the
distribution of the simulated data to the power-law distribution for T = 100.

4.4 The Laplace distribution

In recent years part of the research in macroeconomics has analysed the sta-
tistical properties of aggregate output growth-rate distribution in a cross sec-
tion of countries, i.e. ignoring time dimension. In particular, works belonging
to this line of research have shown that GDP log growth rates have a tent-
shaped distribution, which is characterized by a high singular mode and heavy
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Figure 4.12 The final time step distribution obtained from the simulation of the
Kesten process (4.37). The solid line represents the Pareto power-law fit to the simu-
lated data using the Hill estimator described in Section 4.3.3. The dashed line denotes
the lower threshold estimated using a Kolmogorov-Smirnov approach (Clauset et al.,
2007, 2009)

tails similar to the Laplace distribution (e.g. Canning et al., 1998, Lee et al.,
1998, and Castaldi and Dosi, 2004).28 This kind of evidence was also found at
lower levels of aggregation, namely in the case of the cross-sectional distribu-
tion of firms’ growth rates, where the observed tent-shaped Laplace distribu-
tion appears robust to various measures of growth indicators—including value
added, sales and employment—as well as over different levels of industry aggre-
gation (see, among others, Stanley et al., 1996, Amaral et al., 1997, Lee et al.,
1998, Bottazzi and Secchi, 2003a,b, Castaldi and Dosi, 2004, Fu et al., 2005,
Sapio and Thoma, 2006, and Dosi and Nelson, 2010).29 Since the Laplace has

28More recently, the research on the subject has expanded to investigate the distributional
properties of aggregate output growth-rate time series, i.e. for individual countries over time
(see Fagiolo et al., 2007a,b, 2008). The main finding from these studies is that in many
industrialized countries the growth-rate time-series distribution can be well approximated by
a Laplace density with tails much fatter than those of a Gaussian distribution. This implies
that the pattern of economic growth over time tends to be quite lumpy: large growth events,
either positive or negative, seem to be more frequent than what a Gaussian model would
predict.

29There are, however, some documented variations in the observed tent-shaped distribution
of firms’ growth rates. In a study on Danish firms, for instance, Reichstein and Jensen (2005)
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Figure 4.13 Pareto quantile plot for the final time step distribution of the simulated
Blank and Solomon (2000) model with c = 0.4, K = 0.1, xi

0 = 100 and N0 = 100. The
λi

t’s have been drawn from a Gaussian distribution with µ = 1.02 and σ = 0.05. The
final system size is N = 121, 185

higher spike and thicker tails compared to the Gaussian distribution, these re-
sults indicate that—no matter the level of aggregation—the growth dynamics of
complex organizations such as countries and firms is characterized by gains or
losses from growth episodes that play a role statistically more significant than
expected from a Gaussian distribution.30

More precisely, if the annual growth rate is ri
t = ln

(

xi
t

xi
t−1

)

, where xi
t−1 is

provide evidence of substantial skewness along with signs of heavier tails than are accounted
for by the Laplace distribution—especially for the right tail containing the fastest growing
firms. Tails fatter than those of a Laplace were also found in studies such as Bottazzi et al.
(2011), who remark that «[. . .] the Laplace distribution of growth rates cannot be considered
as a universal property valid for all sectors. Looking at French manufacturing, we observe
growth rates distributions with tails that are consistently fatter than those of the Laplace»
(Bottazzi et al., 2011, p. 2). In their investigation, Bottazzi et al. (2011) use a more general
group of probability densities, known as the Subbotin (1923) family of distributions, which al-
lows for both skewness and “super-Laplace” tails in growth-rate distributions and encompasses
both the Laplace and the Gaussian functions as special cases.

30Delli Gatti et al. (2005) present an agent-based model that replicates the Laplace distri-
bution of both the firms’ and aggregate output growth rates. They show that the power-law
of firms’ size implies that growth is Laplace distributed and also that small micro-shocks can
aggregate into macro-shocks to generate recessions.
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Figure 4.14 Laplace density function for different values of location (a) and scale (b).
Note the appearance of a “tent shape” when the y-axis is expressed in logs

the GDP of a country or the size of a firm in year t − 1, then for all years the
probability density of r is consistent with a Laplace distribution given by the
function

p (r) =
1

2λ
e− |r−θ|

λ , −∞ < r < ∞, (4.40)

where θ ∈ (−∞, ∞) and λ > 0 are location and scale parameters, respectively.
From Figure 4.14(a), it is apparent that changing the location simply shifts the
probability density curve to the right or to the left. From Figure 4.14(b), we
see that the scale parameter determines the width of the distribution.31

The distribution is symmetric about θ, i.e. for any real r we have

p (θ − r) = p (θ + r) . (4.41)

Consequently, as in the case of other symmetrical distributions, Laplace’s lo-
cation is the same as its mean, median, and mode. Figure 4.15 compares the
Laplace against the Gaussian distribution. Recall that the Gaussian distribu-
tion has an expected value of µ and a variance equal to σ2. Suppose we fix the
mean of the Gaussian to equal the mean of the Laplace distribution, and then
also match the variances of the two. In Figure 4.15, both the distributions have
an expected value of 4 and variance equal to 8.32 As can be seen, the Laplace
has higher spike and slightly thicker tails compared to the Gaussian. The lat-
ter property is particularly visible in panel (b) of the figure, which provides a
magnification of the right tail on (8, 20).

Parameter estimation for the Laplace model presents few difficulties. Given
a sample R = (r1, . . . , rN ) coming from the Laplace distribution (4.40), the
maximum likelihood estimator of θ is the sample median, whereas the maximum

31The Laplace distribution is the distribution of differences between two independent vari-
ates with identical exponential distributions (e.g. Kotz et al., 2001). It is also sometimes
called the double exponential distribution, because its shape reminds one of two exponential
distributions (with an additional location parameter) spliced together back-to-back.

32The variance of the Laplace distribution is 2λ2, hence the scale parameter has been taken
equal to 2 for the Laplace density of Figure 4.15.
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Figure 4.15 Laplace and Gaussian densities

likelihood estimator of λ is

λ =
1

N

N
∑

i=1

|ri − θ| . (4.42)

Figure 4.16 provides an example using 10,000 random observations generated
from a Laplace-distributed population with parameters θ = 1 and λ = 2.
Clearly, the estimated values of the Laplace parameters are very close to the
“true” values from which the data were generated. For comparison, a Gaussian
distribution with the same mean and standard deviation as the simulated data
is superimposed on the plot. However, while the Gaussian distribution is ex-
pressed in terms of the squared difference from the mean, the Laplace density is
expressed in terms of the absolute difference from the median. Consequently, the
Laplace distribution has a steeper peak and tails that asymptotically approach
zero more slowly than the Gaussian.

To test whether a given data set is plausibly drawn from a Laplace distribu-
tion, one can use the K-S statistic (4.24). The hypothesis regarding the Laplace
distributional form is rejected if the statistic D is greater than the critical value
obtained from a table. For example, the calculated value of the K-S statistic that
quantifies the distance between the estimated Laplace model and the simulated
data of Figure 4.16 is 0.72, whereas the critical value at the 5% significance
level is approximately 0.91.33 Hence, as expected, the null hypothesis is not
rejected for the Laplace-distributed data, while it is rejected for the Gaussian
distribution—the corresponding value of D is 6.71, which is far beyond the 5%
critical value of around 0.9.34

Finally, distribution selection criteria can be used to distinguish between
the Laplace and a number of alternative models. Among these criteria, the
negative log-likelihood value l = − ln (L), minimized to determine the values for
the free parameters, as well as the values of Akaike (1973) and Schwarz (1978)
information criteria (AIC and BIC) typically provide a way to judge whether

33For the tables of critical values, see Puig and Stephens (2000).
34For a practical guide to testing for normality by means of the K-S statistic, see Stephens

(1974).
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Figure 4.16 Histogram with superimposed Laplace and Gaussian densities for 10,000
random observations from the Laplace distribution with θ = 1 and λ = 2

a distribution is a better explanation of the data than some other reasonable
alternatives. Model selection criteria such as the AIC and BIC will select, when
comparing models with the same number of parameters, the model with the
largest l according to the formula

(2 × l) + (d × k) , (4.43)

where k represents the number of parameters in the fitted model and d = 2
for the usual AIC or d = ln (N), N being the number of observations, for the
so-called BIC. When comparing models fitted by maximum likelihood to the
same data, the smaller the AIC or BIC the better the fit. When comparing
models using the log-likelihood criterion, the larger the l the better the fit. As a
matter of example, Table 4.3 reports the values of l, AIC and BIC obtained for
the same simulated data as in Figure 4.16. As expected, it emerges that all the
selection criteria agree on the Laplace distribution as the one to be preferred
over the Gaussian.

We want to conclude this part by trying to answer a question the reader may
have at this point. The literature seems often to suggest the Pareto distribution
as a good approximation of firms’ size and the Laplace distribution for growth
rates. Is there a link between the two or are they separated phenomena? The
second explanation may certainly be a possibility that we have followed in the



30 CHAPTER 4. HEAVY-TAILED DISTRIBUTIONS

Table 4.3 Selection criteria for Laplace and Gaussian distributions using 10,000 ran-
dom observations generated from a Laplace-distributed population with parameters
θ = 1 and λ = 2

Laplace Gaussian

l -23,797 -24,526
AIC 47,597 49,056
BIC 47,612 49,070

presentation of this chapter, as there are separate stochastic processes generating
the two distributions.

Regarding the first possibility, the existence of a link, a possible starting
point is a couple of well-known statistical theorems that we have briefly men-
tioned before: (i) the logarithm of a Pareto random variable follows an ex-
ponential distribution (see footnote 11); (ii) the difference of two independent
exponential random variables generates a Laplace distribution (see footnote 31).
In other words, if we generate two independent Pareto distribution, say X1 in
period 1 and X2 in period 2, then taking the logs x1 = ln (X1) and x2 = ln (X2)
the difference

l = x2 − x1 (4.44)

follows a Laplace (or double exponential) distribution. The problem with this
theorem is the independence assumption. Can this theorem be generalized to the
case involving dependent random variables? The analysis in Palestrini (2007)
shows that the way of generating a double exponential random variable35 by
subtracting two exponential random variables can be generalized to dependent
random variables having the (t, t + 1) joint distribution

Pr (xt > x1, xt+1 > x2) = e−α1x1−α2x2−λ max(x1,x2), (4.45)

where λ is a measure of dependence. In other terms, λ = 0 means independence,
whereas with λ > 0 there is positive dependence as it is the case with firms’ log
size.

The distribution (4.45) is known as the Marshall-Olkin bivariate exponential
distribution after the analysis in Marshall and Olkin (1967), who proved that
(i) this joint distribution has exponential marginals and, more important, (ii) it
is the distribution satisfying the bivariate version of the “memoryless property”
of exponential random variables, i.e.

Pr (xt > x̄1 +k, xt+1 > x̂1 + k|xt > k, xt+1 > k) =

= Pr (xt > x̄1, xt+1 > x̂1) .
(4.46)

Summarizing the theorem in Palestrini (2007), the Pareto distribution to-
gether with the memoryless property are compatible with double exponential
growth rates. As noted by the author, this theorem is very sensitive to the
hypotheses. The scaling free property is not always a feature of the entire sup-
port of the firms’ size distribution and the memoryless property may be a bad

35This double exponentiality means that the tails have exponential shape but the distribu-
tion has a positive probability mass at zero because the generating joint probability distribu-
tion explained below has a singularity when x2 = x1. The probability mass at zero can be
computed as in Bottazzi (2008).
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approximation of actual data. For this reason, we have chosen in this chapter
to explain these two important stylized facts as separated.

Exercises

Exercise 4.1 Suppose to have a set of 5,000 observations, which have been
randomly generated from a composite lognormal-Pareto distribution with θ = 2
and α = 1 (see footnote 12 and various examples throughout the text; also look
at the source codes of the relevant examples available on the book’s website).
Obtain parameters via a maximum-likelihood estimation procedure for the dis-
tributions listed in Table 4.1. Plot the complementary CDF of the data and
the fitted models on log-log axes. [Hint: in R, functions for fitting by maximum
likelihood the non-power-law distributions of Table 4.1 are implemented in the
package fitdistrplus (Delignette-Muller and Dutang, 2015), the documenta-
tion of which the reader is referred to for more details. For the power-law model,
use the methods of Section 4.3.3.]

Exercise 4.2 In R, load the example data set Labour from package Ecdat. The
data set consists of 569 Belgian firms and includes information for 1996 on the
total number of employees, their average wage, the amount of capital and a
measure of output (Verbeek, 2012, ch. 4). Consider both the total number of
employees and the amount of capital as proxies for size of firms and perform
some exploratory graphical analysis of the data using the methods of Section
4.3.2. Does the data appear visually to follow a power law?

Exercise 4.3 Consider the same data of the previous exercise and assume the
amount of capital—measured by total fixed assets (in million euros) at end of
1995—as a proxy of firm size. Estimate the lower bound xmin on power-law
behaviour using the distance-based approach described in Section 4.3.3 and the
scaling parameter α using the Hill estimator (4.25). Next, calculate the goodness
of fit between the original data and the estimated power law using the method
described in Section 4.3.4. Is the fit a good match to the tail data? Finally,
fit the lognormal and exponential distributions to the data above the value
of xmin for the power-law model and compare the latter with such alternative
hypotheses using the method proposed by Vuong (1989). Can these alternatives
be ruled out as a fit to your data or, if neither is ruled out, which one is the
better fit? [Hint: see footnote 22 and look at the source code for Figure 4.9
available on the book’s website.]

Exercise 4.4 Repeat the same exercise as above, but assume the total number
of employees as a proxy of firm size. Summarize/discuss the results you get.
[Hint: the number of workers in a factory is a discrete numerical variable, hence
the appropriate discrete counterparts of the methods presented in the relevant
parts of the chapter should be used. These are readily implemented in the R

software package poweRlaw (Gillespie, 2015), the documentation of which the
reader is referred to for more details. For further guidance, see also Clauset et al.
(2009).]

Exercise 4.5 Using the R script available from the book’s website, simulate the
multiplicative stochastic process (4.31) for N = 10, 000, T = 100, µ = 1.02 and
σ = 0.05. Provide a graphical comparison of the density curves estimated for
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time steps t = 25, t = 50, t = 75 and T = 100. Do they resemble a lognormal
distribution? Which difference is more apparent when comparing the shape of
the plotted densities? [Hint: find the parameter values of the lognormals by
“matching moments” (see Section 4.2 and footnote 24).]

Exercise 4.6 In R, load the example data set siemens from package evir.
These data are the daily log returns on Siemens share price from Tuesday 2nd

January 1973 until Tuesday 23rd July 1996. Find which distribution the data fits
more between a Laplace and a Gaussian. Provide the corresponding histogram
with fitted density curves and compare the candidate distributions using se-
lection criteria. [Hint: to improve performance of fitting functions, consider
centring and scaling your data.]
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Y. Lee, L. A. N. Amaral, D. Canning, M. Meyer, and H. E. Stanley. Universal
features in the growth dynamics of complex organizations. Physical Review
Letters, 81:3275–3278, 1998.

M. Levy and S. Solomon. Power laws are logarithmic Boltzmann laws. Inter-
national Journal of Modern Physics C, 7:595–601, 1996a.

M. Levy and S. Solomon. Spontaneous scaling emergence in generic stochastic
systems. International Journal of Modern Physics C, 7:745–751, 1996b.
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1954.

T. Lux. The stable Paretian hypothesis and the frequency of large returns:
an examination of major German stocks. Applied Financial Economics, 6:
463–475, 1996.
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