© 2016 The Authors. Published by the British Institute of Radiology

Evaluation of background parenchymal enhancement on breast MRI:

a systematic review

Short title: BPE on breast MRI: a systematic review

Type of manuscripts: Full paper

Bianca Bignotti¹, Alessio Signori², Francesca Valdora³, Federica Rossi⁴, Massimo

Calabrese⁵, Manuela Durando⁶, Giovanna Mariscotti⁶, Alberto Tagliafico³

(1) Department of Health Sciences, University of Genova, Via A. Pastore 1, 16132

Genova, Italy

(2) Institute of Statistics, Department of Health Sciences, University of Genoa, Via Pastore,

16132 Genoa, Italy

(3) Institute of Anatomy, Department of Experimental Medicine, University of Genoa, Via

L.B. Alberti, 16132 Genoa, Italy

(4) School of Medicine, Genoa, Italy

(5) Department of Diagnostic Senology, Ist Istituto Nazionale per la Ricerca sul Cancro,

IRCCS Azienda Ospedaliera Universitaria San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy

(6) Department of Diagnostic Imaging and Radiotherapy, A. O. U. Città della Salute e della Scienza of Turin, Breast Imaging Service, Radiology - University of Turin, Via Genova 3, 10126, Torino, Italy Corresponding Author: Bignotti Bianca, MD Department of Health Sciences (DISSAL) University of Genoa Largo Rosanna Benzi 8 16132 Genoa Italy tel:+390103537882 fax:+390103537885 Email: bignottibianca@gmail.com

Conflict of Interest: The authors declare that they have no conflict of interest.

Funding: This study was partially funded by the University of Genoa and AIRC -

Associazione Italiana per la Ricerca sul Cancro: grants to Alberto Tagliafico.

Abstract:

Objectives: To perform a systematic review of the methods used for background parenchymal enhancement (BPE) evaluation on breast magnetic resonance imaging (MRI).

Methods: Studies dealing with BPE assessment on breast MRI were retrieved from major medical libraries independently by four reviewers up to 6 October 2015. The keywords used for database searching are "background parenchymal enhancement', 'parenchymal enhancement', "MRI" and "breast". The studies were included if a qualitative and/or quantitative methods for BPE assessment were described.

Results: Of the 420 studies identified, a total of 52 articles were included in the systematic review. N=28 studies performed only a qualitative assessment of BPE, N=13 studies performed only a quantitative assessment and N=11 studies performed both qualitative and quantitative assessment. A wide heterogeneity was found in the MRI sequences and in the quantitative methods used for BPE assessment.

Conclusions: Wide variability exists in quantitative evaluation of BPE on breast MRI. More studies focused on a reliable and comparable method for quantitative BPE assessment are needed.

Advances in knowledge: More studies focused on quantitative BPE assessment are needed.

Keywords

Background parenchymal enhancement; Breast; Magnetic resonance imaging; Review

Introduction

As stated by the research committee of the European Society of Radiology (ESR), the future of medicine lies in the so-called 'personalised medicine' (PM) [1,2]. The concept of PM could be reassumed in delivering the right treatment to the right patient at the right time. The concept of personalized medicine is strictly linked to the "precision medicine" that has been defined in 2011 by the National Research Council of the National Academies white paper entitled "Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a new Taxonomy of Disease" [3]. On the light of these new goals of modern medicine, biomedical imaging requires a correct and rational use of quantitative imaging biomarkers (QIBs) [4].

In addition, implementation of quantitative imaging on a large scale will be critical to meet the demands of PM [4]. Indeed, PM presents new challenges to the radiologists with the need of validation and assessment of QIBs for diagnosis and treatment response assessment [1-6]. One primary metrology area of interest in the assessment of performance of a quantitative imaging biomarker is the ability of the QIB to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial [6]. In this perspective, background parenchymal enhancement (BPE), the term used to describe the enhancement of the normal breast tissue, is emerging as imaging biomarker [7].

The 'degree' of BPE is linked to the risk of developing breast cancer, may affect reading breast MRI, the staging and the risk of cancer even long-term outcome, particularly in patients with certain subtypes at immunohistochemistry [8-15]. BPE can be visually assessed qualitatively using the BI-RADS scores or quantitatively using software [7,16]. However, radiologists' agreement for BPE qualitative evaluation is fair [17] and, to the best of our knowledge, there is a lack of uniformity on quantitative measurements of background parenchymal enhancement on breast MRI. Indeed, an absolute categorizing method based on percentage is not supported by the American College of Radiology (ACR), suggesting the need of further research in this topic [16]. It is crucial that, in the era of PM, the methods used for evaluation of background parenchymal enhancement, as for others imaging biomarkers, are reliable and comparable among different imaging sites [5]. Therefore, the purpose of this study is to perform a systematic review of the methods currently adopted to assess BPE on breast MRI and to drive future research on this QIB.

Methods

We followed the guidelines defined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [18]. The protocol of this study was published on PROSPERO (International Prospective Register of Systematic Reviews; protocol number: CRD42015026904) on 8 October 2015 (<u>http://www.crd.york.ac.uk/PROSPERO/</u>).

Search strategy

We identified all relevant studies that assessed the evaluation of background parenchymal enhancement (BPE) on breast MRI. A literature search using PUBMED (http://www.pubmed.org), Embase (http://www.embase.com.proxy.medlib.iupui.edu/search), ISI Web of Science (http://apps.webofknowledge.com), SpringerLink, ScienceDirect and Cochrane library (http://www.thecochranelibrary.com) was performed independently by four reviewers (Blind, Blind, Blind, Blind) up to 6 October 2015. Manual revision of the reference lists was also performed to integrate the initial search with additional studies, if necessary. We did not contact directly authors for additional data.

The search strategy included the following terms related to studies on humans:

'background parenchymal enhancement' or 'parenchymal enhancement', in combination with 'magnetic resonance imaging', 'evaluation' or 'assessment', and 'breast'.

The detailed search strategy in PubMed is presented in **Supplemental Appendix S1**.

Inclusion criteria

Studies were included if they met all the following criteria:

1. Women older than 18 years who performed breast MRI

2. Background parenchymal enhancement assessed on MRI

3. The method used for background parenchymal enhancement assessment clearly stated: qualitative with BI-RADS, qualitative without BI-RADS, automated quantitative on 2D MRI slices, automated quantitative on 3D MRI volumes, semi-automated quantitative on 2D MRI slices, semi-automated quantitative on 3D MRI volumes.

4. Languages: only publications in English were included.

Exclusion criteria: (1) case reports or case series, review articles, letters, comments; (2) duplicate publication; (3) BPE not assessed; (4) MRI exams below 1.5T.

No publication date restriction was used.

Study selection

Two authors (Blind, Blind) independently and manually reviewed article titles and abstracts for study selection, based on the pre-defined criteria. Then, the same authors independently read the methods of the full text of those studies to confirm fulfilment of the inclusion criteria. Disagreements arising during each phase of the study selection were resolved in consensus. If consensus could not be reached, a clinical expert (Blind) was asked to resolve any disagreements.

Data extraction and analysis

Two authors (Blind, Blind) independently extracted the data from each eligible study. A duplicate data extraction was performed and discrepancies were resolved by consensus. The following data were extracted from each study: first author, journal and publication year, country of the study, study designation (retrospective or prospective), study population, magnetic field of MRI scanner (1.5 T or 3.0 T), menstrual period of patients undergoing MRI, the type of contrast media used (high relaxivity and not high relaxivity contrast media) the type of BPE assessment (qualitative method, quantitative method, including automated software), the sequences which BPE was qualitatively and quantitatively assessed and the method used for quantitative evaluation of BPE. In particular, we recorded studies assessing BPE quantitatively using region-of-interest (ROI), fibroglandular tissue segmentation, automatic method or other methods. To assess studies using ROI, we considered studies in which BPE was assessed by using a region of interest traced to include normal fibroglandular tissue, or the most enhancing part of the normal fibroglandular tissue, or the normal tissue extended from the tumour edge,

excluding breast lesion enhancement. To assess studies using fibroglandular tissue segmentation, we considered studies in which BPE was calculated by the enhancements of every pixels/voxel contained within a previously segmented fibroglandular tissue. To assess studies using an automatic method, we considered studies in which was specified the use of a fully automatic software that gives the value of BPE without the need of further control by a radiologist. We also recorded studies using other methods, different from the ROI, fibroglandular or automatic one.

Among studies assessing BPE qualitatively, we recorded each study with intra and interreader agreement assessment for all readings by using the kappa statistics. We recorded kappa values for both ordinal (minimal, mild, moderate or marked BPE) and dichotomized variables (low and high BPE), when assessed. Strength of kappa agreement was defined as follows: 0.00–0.20, slight; 0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.81, substantial; 0.81–1.00, almost perfect.

We divided articles in those published in 2015 and those published before 2015 to evaluate the increase interest on this topic in the last year. We performed a narrative synthesis of the qualitative and quantitative methods reported.

Risk of bias

The quality assessments of the eligible study were evaluated independently by two authors (Blind, Blind) using a modified Quality Assessment of Studies of Diagnostic Accuracy Studies (QUADAS-2) checklist, which comprised four domains: patient selection, index test and reference standard, and flow and timing. For the purpose of this study, the domains "index test" and "reference standard" were considered together: in addition to the standard questions of these domains, we included the quality of the description of BPE assessment and the quality of MR images where the BPE assessment was performed, when available. Each domain is assessed in terms of risk of bias and the first three in terms of concerns regarding applicability. The answers 'yes' (+), 'no' (-) or 'unclear' (?) to

the standard questions of each domain represent the judgment regarding bias and applicability: low risk of bias, high risk of bias and insufficient data to permit a judgement, respectively. The two authors then discussed the results of their quality assessments. Disagreements were resolved by consensus.

Results

The initial database searching identified 420 articles. A total of 63 full-text articles were assessed after removal of duplicates and reading abstracts because they did not meet selection criteria. From the 63 full-text articles, 11 studies were excluded because they did not meet screening criteria and a total of 52 articles were included in the systematic review (**Figure 1**). **Table 1** and **Table 2** show characteristics of the included studies that assessed BPE with a qualitative and quantitative method, respectively. Among these 52 studies, 28 studies (54%) performed <u>only</u> a qualitative assessment, 13 studies (25%) performed <u>only</u> a quantitative assessment and 11 studies (21%) performed <u>both</u> qualitative and quantitative assessment of BPE and were included in both tables. Among these 52 studies, 20 studies (38%) were published in 2015.

Qualitative BPE assessment

Among the 39 (28+11) studies that assessed BPE qualitatively [7,8,10-13,15,17,19-49], 38% (15/39) were published during 2015 (January-October) and 62% (24/39) were published during 2010-2014. Most of the studies were performed in the United States of America (17/39) and Republic of Korea (10/39) and Japan (6/39). Only one study [49] had a prospective study design. The patient population of the included studies ranged from 18 to 1275 numbers of patients. N=20 studies performed breast MRI using a 1.5 T scanner, nine studies performed breast MRI using a 3.0 T scanner and nine studies using both 1.5 T and 3.0 T scanners. In one studies [11] the MRI scanner was not clearly stated but it was above 1.5T. Most of the studies (59%; 23/39) used gadopentetate dimeglumine as contrast agent. Only three studies (8%; 3/39) used high-relaxivity contrast agent [7,34,47]. All the studies graded BPE on a four-point scale as minimal, mild, moderate, or marked in accordance with the Breast Imaging-Reporting and Data System (BI-RADS) categories [16]. Iacconi et al. [25] classified BPE according to BI-RADS lexicon but for statistical purpose clumped into two groups (low and high BPE). N=16 studies qualitatively assessed

BPE using a combination of unenhanced and contrast-enhanced fat-suppressed T1weighted and subtracted images, and five studies added also maximum-intensity projection images; N=14 studies qualitatively assessed BPE using a combination of postcontrast fat-suppressed T1-weighted and/or subtraction images; one studies [27] used only maximum-intensity-projection images; in three studies the sequences used for qualitative BPE assessment were not clearly stated (**Table 1**).

A total of nine studies performed intra and/or interreader agreement of qualitative evaluation of BPE [7,8,17,22,31,36,37,39,48]. In particular, four studies [7,8,17,39] evaluated both intra and interreader agreement and the other five studies evaluated only interreader agreement. Kappa values for intrareader agreement were moderate to almost perfect, while more variability was found for kappa values for interreader agreement, that was demonstrated to be fair to almost perfect (**Table 3**).

In the majority of studies (7 of 9) the agreement was assessed for ordinal variables. In studies by King et al. [8] and by Melsaether et al. [17] authors assessed intra and interreader agreement for both ordinal and dichotomized variables, but the strength of kappa agreement was not changed (kappa values for intrareader agreement were substantial and for interreader agreement were moderate in both studies).

Quantitative BPE assessment

Among the 24 (13+11) studies that assessed BPE quantitatively [7,14,40-62], 33% (8/24) were published during 2015 (January-October) and 67% (16/24) were published during 2008-2014. Most of the studies were performed in the United States of America (9/24) and Republic of Korea (4/24) and Germany (4/24). A total of seven studies were prospective, and 17 studies were retrospective. The patient population of the included studies ranged from 16 to 651 numbers of patients. N=18 studies performed breast MRI using a 1.5 T scanner and five studies performed breast MRI using a 3.0 T scanner. Most of the studies (42%; 10/24) used gadopentetate dimeglumine (Magnevist) as contrast agent. Only two

studies (8%; 2/24) [7,47] used a high-relaxivity contrast agent (gadobenate dimeglumine, MultiHance). N=15 studies (62%) performed a quantitative evaluation of parenchymal enhancement from a ROI. Among these studies, BPE was described as a signal enhancement ratio in four studies [43,46,47,52]. The signal enhancement ratio was based on comparison of signal intensity in an early contrast-enhanced image with signal intensity in a delayed contrast-enhanced image relative to a pre-contrast image.

BPE was described as a percentage enhancement rates or relative percentage enhancement in eleven studies [41,42,44,45,48,49,53-55,58,59], with the use of both preand post-contrast images. There was a wide heterogeneity on time selection of images obtained after contrast agent injection for relative percentage enhancement or percentage enhancement rates calculation.

Three studies performed a quantitative evaluation of BPE using an automatic method [7,57,61]. Tagliafico et al. [7] assessed BPE using fully automated software that performed an objective and reproducible voxel-by-voxel analysis. This software used an algorithm based on the maximum entropy method and a threshold value [7]. Mazurowski et al. [57] used computer vision algorithms that extracted all the features automatically, including dynamic feature of the background parenchyma [57]. Wu et al. [61] used a validated fully automated method that allowed segmentation and quantitatively measure of fibroglandular tissue and BPE [61].

Qualitative and quantitative BPE assessment

Among the 11 studies that assessed BPE both in a qualitative and quantitative methods [7,40-49], 27% (3/11) were published during 2015 (January-October) and 73% (8/11) were published during 2010-2014. Most of the studies were performed in the United States of America (3/11) and Republic of Korea (3/11). The majority of the studies (10/11) were prospective. The patient population of the included studies ranged from 26 to 229 numbers of patients. Seven studies performed breast MRI using a 1.5 T scanner and four studies

performed breast MRI using a 3.0 T scanner. Most of the studies (45%; 5/11) used gadopentetate dimeglumine (Magnevist) as contrast agent. Among these 11 studies that assessed BPE both in a qualitative and quantitative methods, only the study of Kim MY et al. [46] found a statistical difference between qualitative and quantitative data. Considering menstrual period of pre-menopausal patients that underwent MRI, in the majority of studies (30 of 52) the patient menstrual cycle was unknown or not available [8,10,12,13,15,20,21,23,25,27,28,30,32-35,38,39,45,46,47,50-54,57,59,60,62]. In five studies [11,17,19, 36,43], authors acknowledged that, due to the retrospective nature of the study, it was not possible to analyse the point of menstrual cycle, although, following Institutional protocol, screening breast MRI of pre-menopausal patients are performed during the second week of the menstrual cycle. In a total of 14 studies authors stated the menstrual period [7,22,24,26,31,37,40-42, 44,48,55,56,61]. In eight of these 14 studies, breast MRI were performed ideally in the second week of the menstrual cycle [7,22,24,37,41,42,56,61]. In three studies [29,49,58], the patients were post-menopausal women.

Risk of Bias

Assessment of the methodological quality of the included studies by the modified QUADAS-2 tool is depicted in **Table 4** and **Table 5**.

The domain of "patient selection" for the qualitative and quantitative BPE evaluation was unclear in the studies of DeMartini et al. [11], Choi et al. [21], Jansen et al. [43], Kajihara et al. [44], Kang et al. [55], Kim JY et al. [45], Park et al. [35]. The domain "index test and reference standard" was described in detailed in most of the studies that assessed BPE qualitatively and quantitatively. High risk of bias and concerns regarding applicability were judged in the paper of Chen et al. [50] and in the papers of Grimm et al. [23] and Myers et al. [34], specifically for low quality of MR imaging examinations where the BPE assessment was performed and a low detailed of the qualitative assessment of BPE,

respectively. The domain of 'flow and timing' was the only domain to potentially contribute a high risk of bias in the papers evaluated. However, we believe that this domain could be less relevant because we focused only on the methods of assessment of BPE that in most instances is performed with a retrospective review of a dataset of breast MRI.

Discussion

We performed a systematic review of the literature currently available about qualitative and quantitative assessment of BPE in breast MRI. We divided the 52 articles included in the systematic review in those that performed a qualitative evaluation of BPE and in those that performed a quantitative evaluation of BPE. Most of the studies found (28/52) performed only a gualitative evaluation of BPE, 13 studies performed only a guantitative evaluation and 11 studies both qualitative and quantitative evaluation of BPE. Therefore, a total of 24 studies performed a quantitative assessment of BPE. Among these 24 studies, one of the most difficult issues was the analysis of the quantitative method used, due to the lack of standardization of the BPE quantitative assessment. Indeed, the studies used different methods and software to evaluate BPE, although the majority of these studies performed a quantitative evaluation of parenchymal enhancement from a region-of-interest (ROI). However, the use of ROI usually needs radiologist involvement, and this issue should be faced in the perspective of a standardized quantitative imaging evaluation of BPE. In addition, only three studies used an automatic method, and in all these studies different software were used. We can state that in the "era" of PM and emerging QIBs, BPE quantitative assessment is still far to be standardized. The ACR distances itself from prescribing an absolute quantification method for BPE assessment [16], and this is probably the source of the heterogeneity that we found in our study. Indeed, our study found extensive heterogeneity in the methods used for BPE quantitative assessment and encourage further studies assessing comparable method for quantitative BPE evaluation. Among the 11 studies that performed a BPE assessment with both qualitative and quantitative methods, only one study [46] reported a statistical difference between the qualitative and quantitative methods used. Noteworthy, the study by Kim et al. [45] was able to associate high values of BPE around the tumours on the pre-operative MRI with an increased risk of ipsilateral breast tumour recurrence. Without using a quantitative

approach, this information would have been missed. Indeed, with a study design similar to that of Kim et al., [46] a huge number of breast MRI examinations were necessary to obtain the same information.

Our systematic review found that the majority of papers published had a retrospective design, and only few studies were prospective. A retrospective study design reduces the possibility of associating BPE with others factors relevant to tumour biology. In addition, in the majority of the studies the menstrual period of pre-menopausal women that underwent MRI was unknown or not available.

Regarding the contrast media used, we found that only few studies used high-relaxivity contrast media. The use of a high relaxivity contrast media such as gadobenate dimeglumine is reported to offer advantages for lesion conspicuity, detection rate, and sensitivity for malignant breast lesions [63]. Besides, a higher enhancement of benign lesions and breast parenchyma is possible with a high relaxivity contrast media [63]; therefore, we cannot confirm that the amount of BPE assessed with the same method, but different contrast media, is comparable.

Regarding the quality assessment, we used a modified QUADAS-2 checklist, since our systematic review did not focus on diagnostic accuracy studies; indeed, we merged the domain "index test" and "reference standard". In addition to the standard questions of these domains [64], we also considered the quality of the description of BPE assessment and the quality of MR images where the BPE assessment was performed. In spite of the modified method for quality assessment, the domain of 'flow and timing' was the only domain to potentially contribute a high risk of bias in the included studies. However, this review focused on the methods used on BPE evaluation, and the majority of the studies performed the assessment with a retrospective review of the breast MRI dataset; therefore, we believe that this domain could be less relevant and the overall risk of bias in these studies could be considered low.

Considering qualitative evaluation, BPE was always graded on a four-point scale by the BI-RADS categories representing the main standardized area in BPE assessment, as recommended by the ACR BI-RADS fifth edition itself [16]. However, a huge variability in the MRI sequences adopted to assess BPE was noted, although the main principle was to find the sequences where the amount of BPE was most evident. It is clear that there is no consensus on what MRI sequences the BPE should be assessed even with the relatively simple suggested BI-RADS grading system. In addition, a wide variability was found among kappa values for the interreader agreement, from fair to almost perfect agreement. Considering intrareader agreement, kappa values were moderate to almost perfect. However only 9 of 39 studies assessed intra and/or interreader agreement for qualitative evaluation of BPE, and further studies could be useful on this topic.

Considering quantitative evaluation, we acknowledge that our study did not include a detailed descriptions of the methods used for quantitative assessment of BPE. However, we performed the division of these studies among four main different methods (ROI, fibroglandular tissue segmentation, automatic methods or other methods) to allow a more uniform analysis. Further systematic reviews that focus on this topic could be useful to provide future directions for a standardization of quantitative methods used to assess BPE.

Finally, the first study about BPE assessment was published in 2008 [52] and the 38% (20/52) of all the studies included were published during 2015, reflecting the growing interest in this topic. The relatively recent interest in the BPE assessment could be another possible explanation for the wide variability found in the sequences used for the qualitative assessment and in the methods used for the quantitative assessment.

In conclusion, since background parenchymal enhancement (BPE) is considered an emerging imaging biomarker, new methods to assess BPE quantitatively are being developed. However, a wide variability exists in the methods used to perform a

<text> quantitative evaluation of BPE on breast MRI. In addition, no consensus exists on the sequences to be used to visually assess BPE. Therefore, more studies on quantitative BPE assessment are needed.

References

- European Society of Radiology (ESR). Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging 2015;6:141-55.
- European Society of Radiology (ESR). Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging 2011;2:621-30.
- National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. 2011;Washington (DC): National Academies Press (US)
- Herold CJ, Lewin JS, Wibmer AG, Thrall JH, Krestin GP, Dixon AK, et al. Imaging in the Age of Precision Medicine: Summary of the Proceedings of the 10th Biannual Symposium of the International Society for Strategic Studies in Radiology. Radiology 2015;13:150709.
- Sullivan DC, Obuchowski NA, Kessler LG, Raunig DL, Gatsonis C, Huang EP, et al. Metrology Standards for Quantitative Imaging Biomarkers. Radiology 2015;12:142202.
- Raunig DL, McShane LM, Pennello G, Gatsonis C, Carson PL, Voyvodic JT, et al. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res 2015;24:27-67.
- 7. Tagliafico A, Bignotti B, Tagliafico G, Tosto S, Signori A, Calabrese M. Quantitative evaluation of background parenchymal enhancement (BPE) on breast MRI. A feasibility study with a semi-automatic and automatic software compared to observer-based scores. Br J Radiol 2015;4:201504173.

- King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA. Background parenchymal enhancement at breast MR imaging and breast cancer risk. Radiology 2011;260:50–60.
- 9. Pike MC, Pearce CL. Mammographic density, MRI background parenchymal enhancement and breast cancer risk. Ann Oncol 2013;24:viii37-viii41.
- 10. Dontchos BN, Rahbar H, Partridge SC, Korde LA, Lam DL, Scheel JR. Are Qualitative Assessments of Background Parenchymal Enhancement, Amount of Fibroglandular Tissue on MR Images, and Mammographic Density Associated with Breast Cancer Risk? Radiology 2015;12:142304.
- 11. DeMartini WB, Liu F, Peacock S, Eby PR, Gutierrez RL, Lehman CD. Background parenchymal enhancement on breast MRI: impact on diagnostic performance. AJR Am J Roentgenol 2012;198:W373–W380.
- 12. Hambly NM, Liberman L, Dershaw DD, Brennan S, Morris EA. Background parenchymal enhancement on baseline screening breast MRI: impact on biopsy rate and short-interval follow up. AJR Am J Roentgenol 2011;196:218–24.
- 13. Uematsu T, Kasami M, Watanabe J. Does the degree of background enhancement in breast MRI affect the detection and staging of breast cancer? Eur Radiol 2011;21:2261-7.
- 14. van der Velden BH, Dmitriev I, Loo CE, Pijnappel RM, Gilhuijs KG. Association between Parenchymal Enhancement of the Contralateral Breast in Dynamic
 Contrast-enhanced MR Imaging and Outcome of Patients with Unilateral Invasive Breast Cancer. Radiology 2015;26:142192.
- 15. Uematsu T, Kasami M, Watanabe J. Should breast MRI be performed with adjustment for the phase in patients' menstrual cycle? Correlation between mammographic density, age, and background enhancement on breast MRI without adjusting for the phase in patients' menstrual cycle. Eur J Radiol 2012;81:1539-42.

16. Morris EA, Comstock CE, Lee CH, et al. ACR BI-RADS® Magnetic Resonance Imaging. In: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA, American College of Radiology; 2013. American College of Radiology.

- 17. Melsaether A, McDermott M, Gupta D, Pysarenko K, Shaylor SD, Moy L. Inter- and intrareader agreement for categorization of background parenchymal enhancement at baseline and after training. AJR Am J Roentgenol 2014;203:209-15.
- 18. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6(7):e1000100.
- 19. Albert M, Schnabel F, Chun J, Schwartz S, Lee J, Klautau Leite AP, et al. The relationship of breast density in mammography and magnetic resonance imaging in high-risk women and women with breast cancer. Clin Imaging 2015;39:987-92.
- 20. Baek JE, Kim SH, Lee AW. Background parenchymal enhancement in breast MRIs of breast cancer patients: impact on tumor size estimation. Eur J Radiol 2014;83:1356-62.
- 21. Choi BB, Kim SH. Effective factors to raise diagnostic performance of breast MRI for diagnosing pathologic complete response in breast cancer patients after neoadjuvant chemotherapy. Acta Radiol 2015;56:790-7.
- 22. DeLeo MJ 3rd, Domchek SM, Kontos D, Conant E, Chen J, Weinstein S. Breast MRI fibroglandular volume and parenchymal enhancement in BRCA1 and BRCA2 mutation carriers before and immediately after risk-reducing salpingo-oophorectomy. AJR Am J Roentgenol 2015;204:669-73.
- 23. Grimm LJ, Anderson AL, Baker JA, Johnson KS, Walsh R, Yoon SC, et al. Interobserver Variability Between Breast Imagers Using the Fifth Edition of the BI-RADS MRI Lexicon. AJR Am J Roentgenol 2015;204:1120-4.

- 24. Hansen NL, Kuhl CK, Barabasch A, Strobel K, Schrading S. Does MRI breast "density" (degree of background enhancement) correlate with mammographic breast density? J Magn Reson Imaging 2014;40:483-9.
- 25. Iacconi C, Thakur SB, Dershaw DD, Brooks J, Fry CW, Morris EA. Impact of fibroglandular tissue and background parenchymal enhancement ondiffusion weighted imaging of breast lesions. Eur J Radiol 2014;83:2137-43.
- 26. Kawamura A, Satake H, Ishigaki S, Ikeda M, Kimura R, Shimamoto K, et al. Prediction of background parenchymal enhancement on breast MRI using mammography, ultrasonography, and diffusion-weighted imaging. Nagoya J Med Sci 2015;77:425-37.
- 27. Kim MY, Choi N, Yang JH, Yoo YB, Park KS. Background parenchymal enhancement on breast MRI and mammographic breast density: correlation with tumour characteristics. Clin Radiol 2015;70:706-10.
- 28. Kim YJ, Kim SH, Choi BG. Impact of radiotherapy on background parenchymal enhancement in breast magnetic resonance imaging. Asian Pac J Cancer Prev 2014;15:2939-43.
- 29. King V, Goldfarb SB, Brooks JD. Effect of aromatase inhibitors on background parenchymal enhancement and amount of fibroglandular tissue at breast MR imaging. Radiology 2012;264:670-8.
- 30. King V, Kaplan J, Pike MC, Liberman L, David Dershaw D, Lee CH, et al. Impact of tamoxifen on amount of fibroglandular tissue, background parenchymal enhancement, and cysts on breast magnetic resonance imaging. Breast J 2012;18:527-34.
- 31. King V, Gu Y, Kaplan JB, Brooks JD, Pike MC, Morris EA. Impact of menopausal status on background parenchymal enhancement and fibroglandular tissue on breast MRI. Eur Radiol 2012;22:2641-7.

- 32. Kohara S, Ishigaki S, Satake H, Kawamura A, Kawai H, Kikumori T, et al. Background parenchymal enhancement in preoperative breast MRI. Nagoya J Med Sci 2015;77:373-82.
- 33.Koo HR, Moon WK, Chun IK, Eo JS, Jeyanth JX, Chang JM, et al. Background ¹⁸F-FDG uptake in positron emission mammography (PEM): correlation with mammographic density and background parenchymal enhancement in breast MRI. Eur J Radiol 2013;82:1738-42.
- 34. Myers KS, Kamel IR, Macura KJ. MRI-guided breast biopsy: outcomes and effect on patient management. Clin Breast Cancer 2015;15:143-52.
- 35. Park SY, Kang DK, Kim TH. Does background parenchymal enhancement on MRI affect the rate of positive resection margin in breast cancer patients? Br J Radiol 2015;88:20140638.
- 36. Preibsch H, Wanner L, Bahrs SD, Wietek BM, Siegmann-Luz KC, Oberlecher E, et al. Background parenchymal enhancement in breast MRI before and after neoadjuvant chemotherapy: correlation with tumour response. Eur Radiol 2016;26:1590-6.
- 37. Price ER, Brooks JD, Watson EJ, Brennan SB, Comen EA, Morris EA. The impact of bilateral salpingo-oophorectomy on breast MRI background parenchymal enhancement and fibroglandular tissue. Eur Radiol 2014;24:162-8.
- 38. Uematsu T, Kasami M, Watanabe. Background enhancement of mammary glandular tissue on breast dynamic MRI: imaging features and effect on assessment of breast cancer extent. Breast Cancer 2012;19:259-65.
- 39. Yoon HJ, Kim Y, Lee JE, Kim BS. Background 99mTc-methoxyisobutylisonitrile uptake of breast-specific gamma imaging in relation to background parenchymal enhancement in magnetic resonance imaging. Eur Radiol 2015;25:32-40.
- 40. Amarosa AR, McKellop J, Klautau Leite AP, Moccaldi M, Clendenen TV, Babb JS,

et al. Evaluation of the kinetic properties of background parenchymal enhancementthroughout the phases of the menstrual cycle. Radiology 2013;268:356-65.

- 41. Cho GY, Moy L, Kim SG, Klautau Leite AP, Baete SH, Babb JS, et al. Comparison of contrast enhancement and diffusion-weighted magnetic resonance imaging in healthy and cancerous breast tissue. Eur J Radiol 2015;84:1888-93.
- 42. Cubuk R, Tasali N, Narin B, Keskiner F, Celik L, Guney S. Correlation between breast density in mammography and background enhancement in MR mammography. Radiol Med 2010;115:434-41.
- 43. Jansen SA, Lin VC, Giger ML, Li H, Karczmar GS, Newstead GM. Normal parenchymal enhancement patterns in women undergoing MR screening of the breast. Eur Radiol 2011;21:1374-82.
- 44. Kajihara M, Goto M, Hirayama Y, Okunishi S, Kaoku S, Konishi E, et al. Effect of the menstrual cycle on background parenchymal enhancement in breast MR imaging. Magn Reson Med Sci 2013;12:39-45.
- 45. Kim JY, Kim SH, Kim YJ, Kang BJ, An YY, Lee AW, et al. Enhancement parameters on dynamic contrast enhanced breast MRI: do they correlate with prognostic factors and subtypes of breast cancers? Magn Reson Imaging 2015;33:72-80.
- 46. Kim MY, Cho N, Koo HR, Yun BL, Bae MS, Chie EK, et al. Predicting local recurrence following breast-conserving treatment: parenchymal signal enhancement ratio (SER) around the tumor on preoperative MRI. Acta Radiol 2013;54:731-8.
- 47. Kim SA, Cho N, Ryu EB, Seo M, Bae MS, Chang JM, et al. Background parenchymal signal enhancement ratio at preoperative MR imaging: association with subsequent local recurrence in patients with ductal carcinoma in situ after

breast conservation surgery. Radiology 2014;270:699-707.

- 48. Scaranelo AM, Carrillo MC, Fleming R, Jacks LM, Kulkarni SR, Crystal P. Pilot study of quantitative analysis of background enhancement on breast MR images: association with menstrual cycle and mammographic breast density. Radiology 2013;267:692-700.
- 49. Schrading S, Schild H, Kühr M, Kuhl C. Effects of tamoxifen and aromatase inhibitors on breast tissue enhancement in dynamic contrast-enhanced breast MR imaging: a longitudinal intraindividual cohort study. Radiology 2014;271:45-55.
- 50. Chen JH, Yu HJ, Hsu C, Mehta RS, Carpenter PM, Su MY. Background Parenchymal Enhancement of the Contralateral Normal Breast: Association with Tumor Response in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Transl Oncol 2015;8:204-9.
- 51. Chen JH, Yu H, Lin M, Mehta RS, Su MY. Background parenchymal enhancement in the contralateral normal breast of patients undergoing neoadjuvant chemotherapy measured by DCE-MRI. Magn Reson Imaging 2013;31:1465-71.
- 52. Hattangadi J, Park C, Rembert J, Klifa C, Hwang J, Gibbs J, et al. Breast stromal enhancement on MRI is associated with response to neoadjuvant chemotherapy. AJR Am J Roentgenol 2008;190:1630-6.
- 53. Hegenscheid K, Schmidt CO, Seipel R, Laqua R, Ohlinger R, Hosten N, et al. Contrast enhancement kinetics of normal breast parenchyma in dynamic MR mammography: effects of menopausal status, oral contraceptives, and postmenopausal hormone therapy. Eur Radiol 2012;22:2633-40.
- 54. Hegenscheid K, Schmidt CO, Seipel R, Laqua R, Ohlinger R, Kühn JP, et al. Normal breast parenchyma: contrast enhancement kinetics at dynamic MR mammography--influence of anthropometric measures and menopausal status. Radiology 2013;266:72-80.

- 55. Kang SS, Ko EY, Han BK, Shin JH, Hahn SY, Ko ES J. Background parenchymal enhancement on breast MRI: influence of menstrual cycle and breast composition. Magn Reson Imaging 2014;39:526-34.
- 56. Klifa C, Suzuki S, Aliu S, Singer L, Wilmes L, Newitt D, et al. Quantification of background enhancement in breast magnetic resonance imaging. J Magn Reson Imaging 2011;33:1229-34.
- 57. Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI. Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 2014;273:365-72.
- 58. Mousa NA, Eiada R, Crystal P, Nayot D, Casper RF. The effect of acute aromatase inhibition on breast parenchymal enhancement in magnetic resonance imaging: a prospective pilot clinical trial. Menopause 2012;19:420-25.
- 59. Schrading S, Kuhl CK. Breast Cancer: Influence of Taxanes on Response Assessment with Dynamic Contrast-enhanced MR Imaging. Radiology 2015;277:687-96.
- 60. van der Velden BH, Dmitriev I, Loo CE, Pijnappel RM, Gilhuijs KG. Association between Parenchymal Enhancement of the Contralateral Breast in Dynamic Contrast-enhanced MR Imaging and Outcome of Patients with Unilateral Invasive Breast Cancer. Radiology 2015;276:675-85.
- 61. Wu S, Weinstein SP, DeLeo MJ 3rd, Conant EF, Chen J, Domchek SM, et al. Quantitative assessment of background parenchymal enhancement in breast MRI predicts response to risk reducing salpingo-oophorectomy: preliminary evaluation in a cohort of BRCA1/2 mutation carriers. Breast Cancer Res 2015;17:67.
- 62. Yang Q, Li L, Zhang J, Shao G, Zheng B. A new quantitative image analysis method for improving breast cancer diagnosis using DCE-MRI examinations. Med Phys 2015;42:103-9.

- 63. Carbonaro LA, Pediconi F, Verardi N, Trimboli RM, Calabrese M, Sardanelli F. Breast MRI using a high-relaxivity contrast agent: an overview. AJR Am J Roentgenol 2011;196:942-55.
- 64. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies Ann Intern Med 2011;155:529-36.

Table 1 : Characteristic of the 39 studies that assess BPE qualitatively included in the
systematic review.

Study	Year	Journal	Country	Design	Study	Magn	Contra	-	sed for qualitative		
					popul ation	etic field	st media (comm ercial names)	Combinati on of unenhance d and contrast- enhanced fat- suppressed T1- weighted and	Combinati M on of the unenhanc ed, initial contrast- enhanced subtractio n, and maximum- intensity- projection images	11P post- contra st series and/or subctr acted images	not clear
Albert	2015	Clin.	USA	R	475	3.0 T	Magne	subtracted images x °			
et al.	2015	lmagin g	03A	N	475	and 1.5 T	vist	^			
Amaro sa et al. ◆	2013	Radiolo gy	USA	R	58	3.0 T	Magne vist	х			
Baek et al.	2014	Eur J Radiol	Republic of Korea	R	322	3.0 T and 1.5 T	Magne vist		x ^		
Cho et al. ◆	2015	Europe an Journal of Radiolo gy	USA	R	77	3.0 T	Magne vist	x			
Choi et al.	2015	Acta Radiol	Republic of Korea	R	98	1.5 T	Magne vist	х°			
Cubuk et al. •	2010	Rad Med	Turkey	R	26	1.5 T	Magne vist			x	
DeMar tini et al.	2012	AJR	USA	R	736	not clear	not clear		х		
DeLeo et al.	2015	AJR	USA	R	55	3.0 T and 1.5 T	not clear	x			
Dontch os et al.	2015	Radiolo gy	USA	R	487	1.5 T	Omnisc an		x		
Grimm et al.	2015	AJR	USA	R	222	3.0 T and 1.5 T	Magne vist				Y
Hambl y et al.	2011	AJR	USA	R	250	1.5 T	Magne vist	x			x
Hansen et al. Iacconi	2014 2014	JMRI EJR	Germany USA	R R	468 96	1.5 Т 3.0 Т	Gadovi st Magne			x °	
et al.		7		I.		and 1.5 T	vist				x
Jansen et al. •	2011	Eur Radiol	USA	R	229	1.5 T	Omnisc an			х	
Kajihar a et al. ◆	2013	Magn Reson Med Sci	Japan	R	165	1.5 T	Magne vist			x	
Kawam ura et al.	2015	Nagoya J Med Scie	Japan	R	160	3.0 T	Magne vist	x °			
Kim JY et al. ◆	2015	Magn Reson Imagin g	Korea	R	81	3.0 T	Gadovi st			×°	

	Kim MY et	2015	Clin Radiol	South Korea	R	178	3.0 T	Dotare m		X
	al. Kim	2013	Acta	Republic	R	133	1.5 T	Gadovi	x°	
:	MY, et al. ◆		Radiol	of Korea				st		
	Kim SA	2014	Radiolo	Republic	R	215	1.5 T	Multih	x°	
	et al. ♦ Kim YJ	2014	gy Asian	of Korea Korea	R	62	3.0 T	ance Gadovi		x°
	et al.		Pac j Cancer Prev					st		
	King et al.	2012	Radiolo gy	USA	R	149	3.0 T and 1.5 T	Magne vist	x	
	King et al.	2012	Breast J	USA	R	88	1.5 T	Magne vist	x	
:	King et	2012	Eur	USA	R	330	3.0 T	Magne	х	
	al.		Radiol				and	vist		
	King et	2011	Radiolo	USA	R	1275	1.5 T 1.5 T	Magne	x	
	al.	2011	gy	004		12/3	1 5.1	vist	~	
	Kohara	2015	Nagoya	Japan	R	91	3.0 T	Magne		x°
	et al.				_			vist		
	Koo et al.	2013	Eur J Radiol	Republic of Korea	R	52	1.5 T	Gadovi st	х°	
	ai. Melsae	2014	AJR	USA	R	119	3.0 T	Magne	x°	
	ther et		,	00/1		115	and	vist		
	al.						1.5 T			
	Myers	2015	Clin	USA	R	168	1.5 T	Multih		
	KS et al.		Breast Cancer					ance		x
	Park et	2015	BrJ	Republic	R	314	3.0 T	Magne		х
	al.		Radiol	of Korea			and 1.5 T	vist		
	Preibsh	2015	Eur	Germany	R	73	1.5 T	Gadovi		x •
	et al.		Radiol			10		st		•
	Price et al.	2014	Eur Radiol	USA	R	18	1.5 T	Magne vist		x°
	Scaran	2013	Radiolo	Canada	R	147	1.5 T	Gadovi		x °
	elo et al. ◆		gy					st		
	Schradi	2014	Radiolo	Germany	Р	40	1.5 T	Magne	x °	
	ng et al. ◆		gy					vist		
	Tagliafi	2015	BJR	Italy	R	48	3.0 T	Multih		x°
	co et							ance		
	al. ◆	2012	Drosst	lanar		70	1 5 3	Magge		0
	Uemat su et	2012	Breast Cancer	Japan	R	70	1.5 T	Magne vist		x°
	al.									
	Uemat	2011	Eur	Japan	R	146	1.5 T	Magne		x°
	su et		Radiol					vist		
	al.									
	Uemat	2012	Eur J	Japan	R	146	1.5 T	Magne		x°
	su et		Radiol					vist		
	al.									
		Ŧ								
	Yoon	2015	Eur	Republic	R	145	3.0 T	Magne		х
	et al.		Radiol	of Korea				vist		ages were used; ^the unenhanced images

Table 2: Characteristic of the 24 studies that assess BPE quantitatively included in the systematic review. In the last column there is the name of the software used, when retrievable.

Study	Year	Journal	Country	Design	Study popul ation	Magn etic field	Contras t media		d used for qua ment of BPE Fibroglan	antitative	Software used
								ROI	dular tissue segment ation	Other	
Amarosa et al. ◆	2013	Radiology	USA	R	58	3.0 T	Magne vist			x	Interactive Data Language (Exelis, Boulder, Colo)
Chen et al.	2015	Translatio nal Oncology	USA	R	46	1.5 T	Omnisc an		x		
Chen et al.	2013	Magn Reson Imaging	USA	R	45	1.5 T	Omnisc an		x		
Cho et al. ◆	2015	Eur J Radiol	USA	R	77	3.0 T	Magne vist	x			Matlab,Mathworks, Natick, MA, USA
Cubuk et al. ◆	2010	Rad Med	Turkey	R	26	1.5 T	Magne vist	x			
Hattanga di et al.	2008	Am J Roentgeno I	USA	Ρ	42	1.5 T	Magne vist	х			
Hegensc heid et al.	2012	Eur Radiol	Germany	P	651	1.5 T	Gadovi st	х			Syngo 2008A MultiModality Workplace (Siemens Medical Solutions, Erlangen, Germany)
Hegensc heid et al.	2013	Radiology	Germany	Ρ	651	1.5 T	Gadovi st	x			Syngo 2008A MultiModality Workplace (Siemens Medical Solutions, Erlangen, Germany) CADstream
Jansen et al. ◆	2011	Eur Radiol	USA	R	101	1.5 T	Omnisc an	х			research version 5.0 (Confirma, CA, USA)
Kajihara et al. ◆	2013	Magn Reson Med Sci	Japan	R	165	1.5 T	Magne vist	x			Aquarius (TeraRecon INc., San Mateo, CA, USA)
Kang et al.	2014	J Magn Reson Imaging	Korea	Ρ	272	3.0 T	Magne vist	x			Extended MR Work Space (Philips Medical Systems)
Kim JY et al. ◆	2015	Magn Reson Imaging	Korea Korea	R	81	3.0 T	Gadovi st	x			
Kim MY et al. ◆	2013	Acta Radiol		R	133	1.5 T	Gadovi st	x			
Kim SA et al. ◆	2014	Radiology	Republic of Korea	R	215	1.5 T	Multih ance	х			
Klifa et	2011	J Magn	USA	R	16	1.5 T	Magne		x		29

al.		Reson Imaging					vist not			
Mazuro wski et al.	2014	Radiology	USA	R	48	1.5 T	clear		x*	
Mousa et al.	2012	Menopaus e	Canada	Ρ	14	1.5 T	Gadovi st/ Omnisc an	x		
					147					
Scaranel o et al. ◆	2013	Radiology	Canada	R		1.5 T	Gadovi st	x		
Schradin	2014	Radiology	Cormony	Р	40	1.5 T	Magna			View Forum
g et al. ◆	2014	кашоюду	Germany	Р	40	1.5 1	Magne vist	x		(Philips, Best, the Netherlands) DynaCAD software
Schradin g S et al.	2015	Radiology	Germany		62	1.5 T	Magne vist	x		3.0 (Invivo, a Philips Healthcare Company, Best, the Netherlands)
Tagliafic o et al. ◆	2015	BJR	Italy	R	48	3.0 T	Multih ance		x*	MedDensity© Insight
van der Velden et al.	2015	Radiology	Netherla nds	R	531	1.5 T	Prohan ce		^	Segmentation and Registration Toolkit and Visualization Toolkit (Kitware, Clifton Park, NY) and MeVisLab software (MeVis Medical Solutions, Bremen, Germany)
Wu et al.	2015	Breast Cancer Res	USA	R	55	1.5 T	Omnisc an	×	(*	
Yang et al.	2015	Med Phys	China	R	115*	1.5 T	Magne vist		x	

•Articles with both qualitative and quantitative assessment of BPE; MR images; R: retrospective study; P: prospective study. *Automatic method.

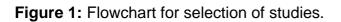
Table 3: Intra- and interreader agreement for all readings for qualitative BPE evaluation
 among the nine studies that assessed agreement by using kappa statistics. In two studies (King et al. and Melsaether et al.) authors assessed the agreement also for dichotomized variables (low or high BPE).

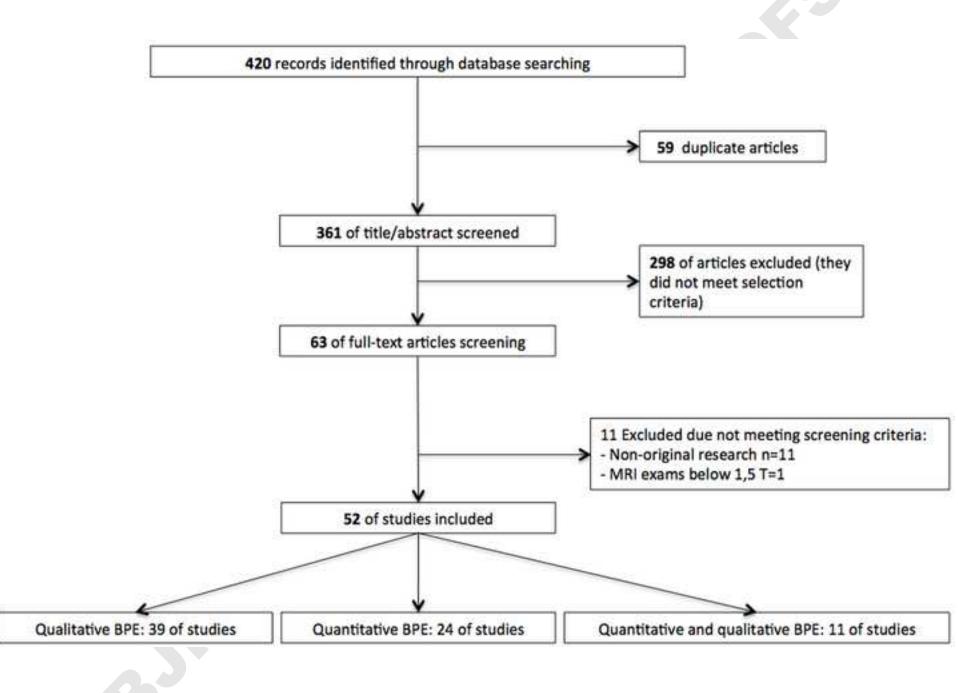
			Number		ement
Study [Reference number]	Year	Journal	of readers	Intra-reader (for dichotomized variables)	Inter-reader (for dichotomized variables)
eLeo et al.[22]	2015	AJR	2	n.a.	0.49
ing et al.[31]	2012	Eur Radiol	2	n.a.	0.95
ing et al.[8]	2011	Radiology	2	0.62(0.69)	0.47(0.57)
lelsaether et al.^[17]	2014	AJR	4	0.79(0.80)	0.45(0.47)
reibsh et al.•[36]□	2015	Eur Radiol	2	n.a.	Right breast:0.73
	_0.0		-		Left breast:0.77
rice et al.[37]	2014	Eur Radiol	3	n.a.	0.3-0.6
caranelo et al.[48]	2014	Radiology	2	n.a.	0.37
			2		
agliafico et al.[7]	2015	BJR Fur Dadial		0.69	0.70
oon et al.[39] ooled over all four read	2015	Eur Radiol	2	0.82	0.85

Table 3: Risk of bias table demonstrating overall risk of bias for each of thedomains of patient selection, index test and reference standard, flow and timing.Qualitative studies. +: low risk of bias; -: high risk of bias; ?: unclear.

	Patient	Index Test and	Flow and
	Selection	Reference Standard	Timing
Albert et al.	+	+	+
Amarosa et al. *	+	+	?
Baek et al.	+	+	+
Cho et al. ◆	+	+	+
Choi et al.	?	+	?
Cubuk R et al. ◆	+	?	?
DeMartini et al.	?	+	+
DeLeo et al.	+	Ŧ	+
Dontchos et al.	+	+	+
Grimm et al.	+	-	?
Hambly et al.	+	+	-
Hansen et al.	G +	+	+
lacconi et al.	+	+	?
Jansen et al. 🔸	?	+	?
Kajihara et al. 🔸	?	+	?
Kawamura et al.	+	+	+
Kim JY et al. ♦	?	+	+
Kim MY et al.	+	?	+
Kim MY *	+	+	+

Kim SA et al. 🔸	+	+	+
Kim YJ et al.	+	?	-
King et al.	+	+	+
King et al.	+	+	+
King et al.	+	+	+
King et al.	+	+	+
Kohara et al.	+	+	?
Koo et al.	+	+	+
Melsaether et al.	+	+	+
Myers et al.	+	0	?
Park et al.	?	+	?
Preibsh et al.	+	+	?
Price et al.	+	+	+
Scaranelo et al. +	+	÷	+
Schrading et al. *	+	+	+
Tagliafico et al. +	+	+	+
Uematsu et al.	+	+	?
Uematsu et al.	+	+	?
Uematsu et al.	+	+	?
Yoon et al.	+	+	?


*Studies that assessed BPE with both qualitative and quantitative methods.


Table 4: Risk of bias table demonstrating overall risk of bias for each of thedomains of patient selection, index test and reference standard, flow and timing.Quantitative studies. +: low risk of bias; -: high risk of bias; ?: unclear.

	Patient	Index Test and	Flow and Timing
	Selection	Reference Standard	r iow and rithing
Amarosa et al. 🔶	+	+	?
Chen et al.	+	-	?
Chen et al.	+	+	?
Cho et al. ◆	+	+	+
Cubuk R et al. 🔶	+	?	-
Hattangadi et al.	+	?	?
egenscheid et al.	+	+	+
egenscheid et al.	+	+	+
Jansen et al. ^{□◆}	+	+	?
Kajihara et al. ^{□♦}	?	+	?
Kang et al.	?	+	+
Kim JY et al.□◆	?	+	+
Kim MY et al.◆	+	?	?
Kim SA et al.◆	+	+	+
Klifa et al.	+	+	+
Mazuroski et al.	+	?	?
Mousa et al.	+	+	-
Scaranelo et al. ◆	+	+	+
Schrading et al.◆	+	+	+
Schrading et al.	+	?	+
Γagliafico et al. ◆	+	+	+

1	Van der Velden et al.	+	+	+	
1 2 3	Wu et al.	+	+	+	
4 5	Yang et al.	+	+	?	
6 7	Studies that assessed BPE	with both qua	litative and quantitative m	ethods.	
8 9					
10 11 12					
13 14					
15 16					
17 18					
19 20 21					
21 22 23					
24 25					
26 27					
28 29					
30 31					
32 33 34					
35 36					
37			÷		
38 39 40 41 42 43 44					
41 42					
43 44 45					
45 46 47					
48 49	0-				
50 51					
52 53					
54 55 56					
57 58					
48 49 50 51 52 53 54 55 56 57 58 59 60					
61 62					
61 62 63 64 65					35
65					

Figure Legends

Supplementary material

Click here to access/download Supplementary material Supplemental appendix 1.docx