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Abstract— An enhanced high-gain observer is proposed to
estimate the state variables of dynamic systems with Lipschitz
nonlinearities. Such an observer has a more general structure
as compared with the standard high-gain observer, which can
be regarded as a particular case of enhanced high-gain observer
because of a special choice of the design parameters. The more
general structure allows for additional degrees of freedom in
the selection of the observer parameters, which however entails
some difficulties in the design. To overcome such difficulties,
a convenient design procedure is presented that is based on
the use of the Young inequality and linear matrix inequalities.
Numerical results are reported to evaluate the effectiveness of
the proposed observer and its related design tools as compared
with the high-gain observer.

I. INTRODUCTION

The high-gain observer is by far the most popular estima-

tion method used in nonlinear control. First results on what

will be called high-gain observer are reported in [1], but for

a complete overview on the original approach the reader is

referred to [2]. The high-gain observer is based on the idea

to dominate the effect of uncertainty or nonlinear terms in

the dynamics of the estimation error through the selection of

a sufficiently large gain. Unfortunately, the higher the gain,

the larger the peaking in the transient, which may cause the

destabilization of the control loop if the high-gain observer

is used in cascade with a feedback regulator [3].

To reduce the peaking various solutions have been pro-

posed. The so-called extended high-gain observer is pre-

sented in [4], Moreover, a lot of gain adaptation methods

have been proposed to account for the presence of distur-

bances acting on the system. For example, in [5] a tuning

mechanism based on the solution of a Riccati equation is

adopted; a switching-gain tuning is proposed in [6]; in [7],

[8] moving-horizon schemes are suggested to set the gain;

[9] relies on the use of a nonlinear adaptation law.

The selection of a high gain stems also from the need to

account for the nonlinearities in the error dynamics, which

are usually modelled as Lipschitz functions. In [10], the

gain adaptation allows one to account for the unknown

Lipschitz constant. Resetting rules are proposed in [11].

The use of a time-varying gain is addressed in [12], [13],

where a Lyapunov functional is used for the purpose of

the stability analysis of the estimation error instead of the
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classical quadratic Lyapunov function. A novel state observer

with a nested-saturation strucure is proposed in [14] (see also

[15]).

In this paper, we will present a new observer structure

as compared with the standard high-gain observer reported

in the literature for triangular systems having Lipschitz

nonlinearities. Such a more general structure comprises the

standard one as a particular case, and let the designer to

exploit additional degree of freedom at the prize of some

difficulty. Indeed, the stability analysis based on a quadratic

Lyapunov function provides some more complex conditions

to deal. However, such issues can be overcome by using the

Young inequality in a convenient manner in such a way to

turn the problem into a set of bilinear matrix inequalities

(BMIs). The use of gridding technique allows one to reduce

the design problem to an iterative search with the satisfaction

of more tractable linear matrix inequalities (LMIs) [16].

The paper is organized as follows. In Section II, we de-

scribe the basic assumptions on the system and the proposed

enhanced high-gain observer. The stability analysis of the

resulting estimation error is presented in Section III. In

Section IV, we deal with its design. The results obtained by

the proposed estimator as compared with high-gain observer

are shown in Section V. The conclusions are drawn in

Section VI.

The following notations will be used throughout this paper.

For a real square matrix P , P > 0 (P ≥ 0) means that

it is symmetric positive definite (semidefinite). Given two

symmetric real matrices P and Q, P < Q means that

the matrix Q − P is positive definite. The minimum and

maximum eigenvalues of P > 0 are denoted by λmin(P )
and λmax(P ), respectively. If P > 0, ‖P‖ = λmax (P ).

II. SYSTEM AND OBSERVER ASSUMPTIONS

Let us consider dynamic systems described by

{ ·
x= Ax+ f(x, t)
y = C x

, t ≥ 0 (1)

where x(t) ∈ R
n is the state vector and y(t) ∈ R is a

scalar measurement; A ∈ R
n×n, C ∈ R

n, and the function

f : Rn × R≥0 → R
n are defined as follows:

A :=















0 1 0 . . . 0
0 0 1 0
...

...
...

. . .
...

0 0 . . . 0 1
0 0 . . . 0 0















, C :=[1 0 . . . 0] ,



f(x, t) :=















f1(x1, t)
f2(x1, x2, t)

...

fn−1(x1, x2, . . . , xn−1, t)
fn(x1, x2, . . . , xn, t)















.

To estimate x(t), we consider the full-order state observer

˙̂x = Ax̂+ f(x̂, t) +G(γ,K) (y − Cx̂) , t ≥ 0 (2)

where x̂(t) ∈ R
n is the estimate of x(t) at time t and

G(γ,K) :=











γ1 k1
γ2 k2

...

γn kn











where γi is the i-th component of γ ∈ R
n and

K :=[k1 k2 . . . kn]
⊤ with ki ∈ R, i = 1, 2, . . . , n, to

be suitably chosen. Clearly, the observer (2) has just the

same structure of the high-gain observer but with more many

possibilities of choosing the design parameters of the gain.

In a few words, (2) with all positive γi such that γ2 = γ2
1 ,

γ3 = γ3
1 , . . . , γn = γn

1 becomes quite a standard high-

gain observer. Here we will present an approach to the

construction of (2) that takes advantage of the increased

number of parameters to be tuned in such a way to improve

the performances.

Assumption 1: The function f is continuous and there

exist L ∈ R
n
≥0 such that, for all x,w ∈ R

n and t ≥ 0,

∣

∣fi(x1 + w1, x2 + w2, . . . , xi + wi, t)

− fi(x1, x2, . . . , xi, t)
∣

∣ ≤

i
∑

j=1

Lj |wj | . (3)

Note that Assumption 1 ensures the existence of the

solutions of both (1) and (2) (see [13] for details).

Instead of studying the stability of the estimation error

that genuinely descends from (1) and (2) (i.e., ê :=x − x̂),

we perform a change of variables ê = T (γ) e, e ∈ R
n with

T (γ) = diag (γ1, γ2, . . . , γn)

and study the stability in e. From (1) and (2) we obtain the

error dynamics

˙̂e(t) = (A−G(γ,K)C) ê(t) + f(x(t), t)

− f (x(t) − ê(t), t) . (4)

Clearly, the error dynamics in ê(t) is stable if and only if so

it is also for the error dynamics in e(t).
In the following, we will focus on novel stability condi-

tions that are more general with respect to the state-of-art.

Toward this end, we need a technical result that is just the

generalization of [12, Lemma 1].

Lemma 1: If γ1 > 0 and

γ1 ≤ γ2 ≤ . . . ≤ γn−1 ≤ γn (5)

there exists kf > 0 such that
∥

∥

∥
T (γ)−1

(

f(x(t), t) − f(x(t)− T (γ) e(t), t)
)

∥

∥

∥

≤ kf ‖e(t)‖ (6)

for all t ≥ 0, and kf does not depend on γ and t.
Proof. Consider the various components of the l.h.s. of (6):

∥

∥T (γ)−1 (f(x, t)− f(x− T (γ) e, t))
∥

∥ =
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

































1

T11(γ)

(

f1(x1, t)− f1(x1 − T11(γ)e1, t)
)

1

T22(γ)

(

f2(x1, x2, t)

−f2(x1 − T11(γ)e1, x2 − T22(γ)e2, t)
)

...
1

Tnn(γ)

(

fn(x1, x2, . . . , xn, t)

−fn(x1 − T11(γ)e1, x2 − T22(γ)e2,
. . . , xn − Tnn(γ)en, t)

)

































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

.

As to the first one, using Assumption 1 it follows
∣

∣

∣

∣

1

T11(γ)

(

f1(x1, t)− f1(x1 − T11(γ)e1, t)

∣

∣

∣

∣

≤
L1

γ1
|x1

− (x1 − γ1e1)| = L1e1 (7)

as γ1 > 0. Following the same steps based on the use of

Assumption 1, we obtain
∣

∣

∣

∣

1

Tii(γ)

(

fi(x1, x2, . . . , xi, t)− fi(x1 − T11(γ)e1, x2

− T22(γ)e2, . . . , xi − Tii(γ)ei, t)
)
∣

∣ ≤ L1
T11(γ)

Tii(γ)
|e1|

+ L2
T22(γ)

Tii(γ)
|e2|+ . . .+ Ln−1

Ti−1 i−1(γ)

Tii(γ)
|ei−1|

+ Li|ei| =

i−1
∑

k=1

γk
γi

Lk|ek|+ Li|ei| ≤

i
∑

k=1

Lk|ek| (8)

for i = 2, 3, . . . , n, where the last inequality stems from (5).

Using the inequality

(

i
∑

k=1

Lk|ek|

)2

≤ i

(

max
i=1,2,...,n

Li

)2 i
∑

k=1

e2k

≤ i

(

max
i=1,2,...,n

Li

)2 n
∑

k=1

e2k

on the squared r.h.s. of (8), we obtain (6) by choosing, for

example,

kf :=

√

n(n+ 1)

2
max

i=1,2,...,n
Li .

Based on the aforesaid, from (4) we obtain:

ė(t) = T (γ)−1 (A−G(γ,K)C) T (γ) e(t)

+ T (γ)−1
(

f(x(t), t)− f (x(t) − T (γ) e(t), t)
)

.



Because of the particular observer structure, the previous

equation can be written as follows:

ė(t) = γ1 (A−KC +Ω(γ)) e(t) + T (γ)−1
(

f(x(t), t)

− f(x(t)− T (γ) e(t), t)
)

(9)

where

Ω(γ) :=















0 z1 0 0 · · · 0
0 0 z2 0 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · zn−1

0 0 0 0 · · · 0















where zi = γi+1/(γ1γi)− 1, i = 1, 2, . . . , n− 1.

In the next section, we will address the design problem

for the proposed observer.

III. STABILITY OF THE ESTIMATION ERROR

To study the stability of (9), we will use the Lyapunov

function V (e) = e⊤Pe with P ∈ R
n×n symmetric positive

definite. The time derivative of V is

V̇ (e) = γ1e
⊤
(

(A−KC +Ω(γ))⊤P + γP (A−KC

+Ω(γ))
)

e+ 2e⊤PT (γ)−1
(

f(x, t)− f(x− T (γ) e, t)
)

(10)

Using the Schartz inequality and Assumption 1, the second

term in (10) can be bounded as follows:

2e⊤P T (γ)−1 (f(x, t)− f(x− T (γ) e, t))

≤ 2
∣

∣e⊤P T (γ)−1 (f(x, t)− f(x− T (γ) e, t))
∣

∣

≤ 2kf λmax(P ) ‖e‖2 .

If γ ∈ R
n
>0 is such that (5) hold

(A−KC +Ω(γ))⊤P + P (A−KC +Ω(γ)) + λI < 0

we obtain

V̇ (e) ≤ −γ1λ‖e‖
2 + 2kfλmax(P )‖e‖2

and hence V̇ (e) turns out to be negative definite for e 6= 0
if, in addition, we impose γ1 > 2kfλmax(P )/λ.

The aforesaid can be summarized as follows.

Theorem 1: If there exist P > 0, λ > 0, K , and γ such

that

(A−KC +Ω(γ))⊤P + P (A−KC +Ω(γ)) + λI < 0

(11)

γ1 ≤ γ2 ≤ . . . ≤ γn−1 ≤ γn (12)

γ1 >
2kfλmax(P )

λ
(13)

then the estimation error exhibited by observer (2) in per-

forming estimation for system (1) is asymptotically stable.

The satisfaction of the stability conditions stated in the

above theorem is difficult for various reasons. First, in

general there exists the coupling of (11) and (12) except

when zi = 0 for all i = 1, 2, . . . , n−1, which corresponds to

the “classical” high-gain solution. Here, we need to explicitly

account for such a coupling. Second, we have to impose the

constraints (12) so as to enforce the use of the inequality

(6), which is crucial to prove stability. Third, also (13) is

required to ensure stability. Nevertheless, we will provide an

efficient method to construct the proposed enhanced high-

gain observer by overcoming the coupling thanks to the use

of the parameters zi instead of γi. The values of γi will be

computed in such a way to satisfy (13). Toward this end,

note that

Ω(γ) = A1ZA2

where Z := diag(z1, . . . , zn−1) ∈ R
(n−1)×(n−1),

A1 :=















1 0 . . . 0
0 1 0
...

...
. . .

...

0 . . . 0 1
0 . . . 0 0















∈ R
n×(n−1) ,

A2 :=











0 1 0 . . . 0
0 0 1 0
...

...
...

. . .
...

0 0 . . . 0 1











∈ R
(n−1)×n .

In practice, A1 and A2 can be obtained from A by erasing

the first column and last row, respectively. Moreover, the

Young’s inequality will be exploited according to the fol-

lowing formulation.

Lemma 2: Let E and F be two real rectangular matrices.

Then, the following inequality holds:

E⊤F + F⊤E ≤
1

2
(E + SF )

⊤
S−1 (E + SF )

for any symmetric S > 0 of appropriate dimension.

Proof: The proof follows from the standard Young’s relation

and it is omitted for the space limitation.

The significance of Lemma 2 does not lie in its proof,

which is trivial: the point to retain is that only the half

quantity of E⊤F + F⊤E is upper bounded by the Young’s

relation. This technique plays an important role on the

observer design problem we address in this paper.

Based on the aforesaid, we are able to state the following

result.

Theorem 2: If there exist P > 0, λ > 0, Y , S > 0
diagonal, and W ≤ 0 diagonal such that
[

A⊤P + PA− C⊤Y ⊤ − Y C + λI ⋆
A⊤

1 P +WA2 −2S

]

< 0 (14)

W > −S (15)

and γ is chosen such that

γ1 ≥
1

λmin(Z) + 1
(16)

γ1 >
2kfλmax(P )

λ
(17)



where Z = S−1W , the estimation error given by observer

(2) having gain G(γ,K) with K = P−1Y and

γi = γi
1

i−1
∏

k=1

(zk + 1) , i = 2, . . . , n (18)

is asymptotically stable.

Proof. Based on Theorem 1, we need to account for (11),

(12), and (13).

First, let us consider (11), which can be rewritten as

A⊤P + PA− C⊤Y ⊤ − Y C + λI +Ω⊤P + P Ω < 0

since Y = KP . Moreover, since

Ω⊤P + PΩ = (A⊤
1 P )⊤(ZA2) + (ZA2)

⊤(A⊤
1 P )

≤
1

2

(

A⊤
1 P + SZA2

)⊤
S−1

(

A⊤
1 P + SZA2

)

thanks to Lemma 2, it is straightforward to get (14) as

a sufficient condition for (11) to hold by using the Schur

lemma.

Second, (18) stems from the definition of zi. Using (18),

it follows that (12) holds if

γ1 ≥
1

zi + 1
(19)

with

zi ∈ (−1, 0] (20)

for all i = 1, 2, . . . , n − 1. The constraints (20) can be im-

posed by using (15) since S and W are both diagonal as well

as positive definite and negative semidefinite, respectively. Of

course, (19) is equivalent to

γ1 ≥
1

min
i
(zi) + 1

(21)

or (16) for the sake of brevity. Finally, we need (13), which

is just reported as (17).

The LMI-based stability conditions presented so far are

well-suited for the purpose of design, which will be ad-

dressed in the next section.

IV. OBSERVER DESIGN BASED ON CONVEX

OPTIMIZATION

This section is devoted to present some guidelines for the

design of the proposed enhanced high-gain observer. Clearly,

to get a convenient observer gain G(γ,K) so as to reduce

the effect of measurement noise but with a sufficiently fast

transient, we need to select the design parameters in a careful

way. Unfortunately, such an optimization is not convex, but

a suitable procedure will be presented to construct observers

with a tradeoff between transient response and steady state

behavior in the presence of disturbances on the output.

Theorem 2 provides the stability conditions to be satisfied.

Among them, (14) and (15) are LMIs that can be easily

treated, whereas (16) and (17) deserve some attention. The

goal is that of finding γ1 and zi, i = 1, 2, . . . , n−1 and then

γi, i = 2, 3, . . . , n by using (18).

First of all, let us consider (17). Thanks to homogeneity,

we may choose γ1 = 1/λ under the constraint

P <
1

2kf
I (22)

since the above LMI ensures that λmax(P ) < 1/(2kf) and

hence
2kfλmax(P )

λ
<

1

λ
= γ1 . (23)

Second, (16) can be taken into account together with (23)

by choosing

γ1 = max

(

1

λ
,

1

λmin(Z) + 1

)

.

Clearly, the maximization of λ is well-suited to reducing γ1.

In so doing, we need also to maximize the zi variables since

otherwise there may be no reduction of γ1. A large λ ensures

a fast response in the transient by means of a gain K and

hence G(γ,K) that may become too big as compared with

the measurement noise at steady state. Thus, a compromise

between how large the norm of K and λ may be taken has

to be pursued. As is well-known, a possible strategy consists

in exploiting homogeneity by imposing the LMIs

P > I

and
[

α Y ⊤

Y αI

]

> 0 . (24)

From the former we get P−1 < I , whereas the latter is

equivalent to

‖Y ‖2 = Y ⊤Y ≤ α2 .

and hence, since

‖K‖ = ‖P−1Y ‖ ≤ ‖P−1‖ ‖Y ‖ ≤ ‖Y ‖ ,

the minimization of ‖K‖ follows from the minimization of

α. Unfortunately, the condition P > I is not compatible

with (22) in general. To overcome such a difficulty, we may

introduce the new LMI

P > βI (25)

where β > 0. From (25), we have P−1 < (1/β)I and,

following the same reasoning, we can minimize ‖K‖ by

minimizing of α after fixing β and if (24) holds since

‖K‖ = ‖P−1Y ‖ ≤ ‖P−1‖ ‖Y ‖ ≤
‖Y ‖

β
.

The selection of β can be done by using some gridding

technique, which will be also well-suited to maximizing the

zi variables later on. Gridding methods allows one to treat

problems that are essentially bilinear but, after keeping some

parameters constant, they can be solved by using LMIs [17].

Concerning the maximization of the zi variables, we have

to overcome the difficulty that they are not available as naive

LMI variables. Nevertheless, since they are the components

along the diagonal of the matrix S−1W we may succeed in

such a maximization by introducing the diagonal matrix R =



diag(r1, r2, . . . , rn−1) with ri ∈ [0, 1), i = 1, 2, . . . , n − 1,

such that

W ≤ −SR (26)

where each ri has to regarded as lower bound on zi and

thus it is well-suited to being maximized to maximize zi.
The effect of the maximization on zi is successful only if

we obtain a feasible, non negative value of ri. Since the

problem is still composed of LMIs if the ri variables are

fixed, we may apply gridding also for dealing with such

variables, likewise proposed to account for β .

Summing up, the design will be performed by gridding β
on (0, 1/(2kf) and r = (r1, r2, . . . , rn−1) on [0, 1)n−1 and

minimizing the objective function α− cλ with a convenient

choice of c > 0 in the inner loop and G(γ,K) in the outer

loop as follows:

Design procedure

Input: A, C, A1, A2, kf , c, N
Output: G∗

1: Generate a sampling sequence {(β̃(i), r̃(i))}, i = 1,
2, . . . , N belonging to (0, 1/(2kf))× [0, 1)n−1

2: best norm ← +∞
3: for i = 1 to N do

4: solve the optimization problem min(α− cλ)
w.r.t. α > 0, P > 0, λ > 0, Y , S > 0 diagonal,

and W ≤ 0 diagonal subject to (14), (15), (22),

(24), (25), (26) with β = β̃(i), R = diag(r̃(i))
5: K ← P−1Y
6: Z ← S−1W

7: γ1 ← max

(

1

λ
,

1

λmin(Z) + 1

)

8: γi ← γi
1

i−1
∏

k=1

(zk + 1) , i = 2, . . . , n

9: G(γ,K)← T (γ)K
10: if

(

‖G(γ,K)‖ < best norm
)

then

11: best norm ← ‖G(γ,K)‖
12: G∗ ← G(γ,K)
13: endif

14: endfor

with G∗ as the final result of the procedure.

Note that, if we perform the minimization at step “4:”

for different values of c, we force the optimization toward a

larger K and a smaller γ1 by increasing c.
Next section will be devoted to the simulation results

to evaluate the effectiveness of the proposed observer as

compared with the standard high-gain observer.

V. SIMULATION RESULTS

This section is devoted to some numerical comparisons

between the high-gain observer and the enhanced high-

gain observer, which will be denoted by HGO and EHGO,

respectively. Let us consider the third-order system














ẋ1 = x2

ẋ2 = x3

ẋ3 = kf sinx3

y = x1

(27)

where x(t) = (x1(t), x2(t), x3(t)) is the state vector. Thus,

(27) can be written as

ẋ = Ax+ f(x)

where

A =





0 1 0
0 0 1
0 0 0



 , C = [ 1 0 0 ] ,

and

f(x) = [ 0 0 kf sinx3 ]
⊤

.

We applied the proposed design procedure using Yalmip

[18] to find the gain of the EHGO with different choice of

kf . The same procedure “mutatis mutandis” was used to find

the gains of the HGO. Table I allows for a comparison of

the results by using percentage reduction of the gain norms,

i.e.,

∆G =
‖G(γHG,KHG)‖ − ‖G(γEHG,KEHG)‖

‖G(γHG,KHG)‖

where γHG, KHG and γEHG, KEHG stand for the gains of

the HGO and EHGO, respectively. Specifically, the results

reported in Table I are obtained by using linearly spaced

gridding on [0, 1) for the ri variables, whereas logarithmic

spacing on (0, 1/(2kf)) was chosen for β. The gridding was

made of N = 1000 points.

Fig. 1 shows the result of a simulation run with additive,

uniform random noises in the range [−1, 1] on the measure

and on the last dynamic equation of (27), initial state equal

to (5 , 5 , 5) and initial estimated state (for both HGO and

EHGO) equal to (−5 , −5 , −5).

Table I and Fig. 1 are helpful to illustrate the effectiveness

of the proposed EHGO as compared with the HGO. For

small values of kf , there is no difference between HGO

and EHGO. By contrast, for large values of kf the results

obtained by the EHGO are much better in terms of transient

behavior of the estimates of the inner state variables as well

as at regime, where the smaller gain of the EHGO makes

the estimation less sensible to the measurement noise.

Remark 1: It is worth to note that the classical HGO

cannot be better than the EHGO since the HGO stability

conditions result from a particular choice of the design

matrices according to Theorem 2, namely W = 0, or R = 0
in the design procedure. In such a case, Theorem 2 provides

the standard conditions of stability for the HGO, i.e.,

A⊤P + PA− C⊤Y ⊤ − Y C + λI < 0

γ1 >
2kfλmax(P )

λ

with, as usual, KHG = P−1Y and γi = γi
1, i = 2, . . . , n.

Table I confirms the aforesaid in the case kf = 0.1, for

which no appreciable difference in the final result is shown

between HGO and EHGO.



TABLE I

RESULTS OF THE DESIGN FOR DIFFERENT VALUES OF kf AND c

HGO EHGO
c kf γHG KHG

γEHG KEHG

∆G

γ1 γ2 γ3

1
0.1 2.34 1.06 0.86 0.29 2.34 5.48 12.81 1.06 0.86 0.29 0%

1 23.45 1.06 0.86 0.29 14.82 219.75 977.29 7.46 5.95 1.87 41%
10 234.51 1.06 0.86 0.29 148.24 21975.16 977274.59 7.46 5.95 1.87 51%

10
0.1 1.00 2.58 4.60 2.11 1.00 1.00 1.00 2.58 4.60 2.11 0%

1 5.74 2.58 4.60 2.11 5.82 33.81 117.98 2.45 4.56 2.16 30%
10 57.36 2.58 4.60 2.11 58.15 3381.46 117979.65 2.45 4.56 2.16 36%

100
0.1 1.00 2.58 4.88 2.21 1.00 1.00 1.00 2.58 4.88 2.21 0%

1 5.71 2.58 4.88 2.20 5.78 33.37 115.66 2.40 4.88 2.23 31%
10 57.14 2.58 4.88 2.21 57.77 3336.98 115659.61 2.40 4.88 2.23 37%

1000
0.1 1.00 2.58 4.91 2.22 1.00 1.00 1.00 2.58 4.91 2.22 0

1 5.71 2.58 4.91 2.21 5.78 33.37 115.65 2.40 4.91 2.24 31%
10 57.14 2.58 4.91 2.22 57.76 3336.72 115645.85 2.40 4.91 2.24 37%
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Fig. 1. Simulation run for a system instance with kf = 1, HGO and
EHGO designed with c = 10.

VI. CONCLUSION

As evolution of the high-gain observer, we have presented

an enhanced high-gain observer together with an effective

design method. Such an observer can be designed in such

a way to ensure stability in a noise-free setting with a

smaller gain and hence a more reduced sensitivity to the

measurement noise as compared with the standard high-gain

observer. The complications arisen in the design have been

successfully addressed, as shown by means of the numerical

results we have reported.

As a future work, we will investigate the combination

of the enhanced high-gain observer with the increasing-gain

observer [12], [13] with the goal to simultaneously guarantee

good performances in the transient and at steady state.
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