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Abstract. We aim at creating an expressive Embodied Conversational
Agent (ECA) and address the problem of synthesizing expressive agent
gestures. In our previous work, we have described the gesture selection
process. In this paper, we present a computational model of gesture qual-
ity. Once a certain gesture has been chosen for execution, how can we
modify it to carry a desired expressive content while retaining its orig-
inal semantics? We characterize bodily expressivity with a small set of
dimensions derived from a review of psychology literature. We provide a
detailed description of the implementation of these dimensions in our
animation system, including our gesture modeling language. We also
demonstrate animations with different expressivity settings in our ex-
isting ECA system. Finally, we describe two user studies we undertook
to evaluate the appropriateness of our implementation for each dimen-
sion of expressivity as well as the potential of combining these dimensions
to create expressive gestures that reflect communicative intent.

1 INTRODUCTION

Embodied Conversational Agents (ECAs) are virtual embodied representations
of humans that communicate multimodally with the user through voice, facial
expression, gaze, gesture, and body movement. Effectiveness of an agent is de-
pendent on her ability to suspend the user’s disbelief during an interaction. To
increase believability and life-likeness of an agent, she has to express emotion
and exhibit personality in a consistent manner [1]. Human individuals differ not
only in their reasoning, their set of beliefs, goals, and their emotional states, but
also in their way of expressing such information through the execution of specific
behaviors. During conversation, expressivity may manifest itself through gesture
selection – which types of gestures are displayed – as well as through manner
of execution – how they are displayed. In this paper we present an augmenta-
tion to our GRETA agent architecture that allows for parametric control of the
qualitative aspects of gesture execution. Since high-level agent functions such as
emotion, personality, culture, role and gender may modify actions in complex
and competing ways, and since the nature of these influences is not well un-
derstood, we restrict our attention to generating phenomenologically accurate



behaviors without claiming to correctly represent internal processes (cf. Nass et
al. [2]). The paper is structured as follows: related work is reviewed in section 2,
and our method for parameterizing gesture expressivity is reviewed in section 3.
After outlining the GRETA architecture in section 4, we devote the majority of
the paper to a description of the implementation of the expressivity parameters
in section 5. We conclude by describing the results of two evaluation studies of
our system and pointers to future work in sections 6 and 7.

2 RELATED WORK

Research in gesture synthesis can be divided into systems that address the prob-
lem of gesture selection and systems that address the problem of gesture anima-
tion. Gesture selection for agents has mostly been concerned with semantic as-
pects of human gesturing, often following McNeill’s method of classification [3].
Cassell et al. select suitable non-verbal behaviors to accompany user-supplied
text based on a linguistic analysis [4]. Tepper et al. cross the boundary towards
gesture animation by automatically generating iconic gestures from a paramet-
ric model [5]. Noot and Ruttkay address the need for inter-subject variability in
GESTYLE [6], which chooses between atomic behaviors based on ‘style dictio-
naries.’

Gesture animation is concerned with realistic movement generation of an
agent’s arms and hands from an abstract gesture representation language [7, 8].
Often, inverse kinematics techniques are used to calculate wrist trajectories [9].
Other systems allow for modification of existing body animations [10]. Of these,
EMOTE by Chi et al. [11] is most closely related to our work as it also introduces
an intermediate level of parametrization to obtain expressive gestures. EMOTE
implements Laban principles from the dance community, while our system relies
on psychology literature to obtain a set of expressivity parameters. EMOTE acts
as a generic filter on pre-existing behaviors, while we tie behavior modification
into the synthesis stage of gesturing. A more comprehensive comparison between
the two systems can be found in [12].

3 EXPRESSIVITY PARAMETERS

We conducted a literature review of social psychology to arrive at a dimensional
characterization of expressivity in human bodily movement. A summary of this
review has been published in [12]. We regard an intermediate level of behavior
parametrization as a useful enabling tool to facilitate the mapping of holistic,
qualitative communicative functions such as mood, personality, and emotion to
low-level animation parameters like joint angles. Our approach is driven by a
perceptual standpoint – how expressivity is perceived by others. That is, we
focus only on the surface realizations of movement and do not attempt to model
underlying muscle activation patterns.

Based on an aggregation of the most pertinent studies [13–15] and our anal-
ysis of a gesture corpus [16], we propose to capture gesture expressivity with a



set of six attributes which we describe below in qualitative terms. As part of
an individualized agent’s definition, personal default values for the expressivity
attributes are defined.

– Overall Activation: quantity of movement during a conversational turn (e.g.,
passive/static or animated/engaged).

– Spatial Extent : amplitude of movements (amount of space taken up by body)
– Temporal Extent : duration of movements (e.g., quick vs sustained actions)
– Fluidity : smoothness and continuity of overall movement (e.g., smooth vs

jerky)
– Power : dynamic properties of the movement (e.g., weak vs strong)
– Repetition: tendency to rhythmic repeats of specific movements.

Each of the attributes is float-valued and defined over the interval [−1, 1], where
the zero point corresponds to the actions our generic agent without expressivity
control would perform. Overall Activation is float-valued and ranges from 0 to
1, where 0 corresponds to a complete absence of nonverbal behavior.

TurnPlanner

GesturePlanner

MotorPlanner

Interpolator

Animation FileSound File

GestureLibrary

Festival timingtext

prototype
gestures

abstract gesture
specification + timing

keyframes for each gesture

complete animation

spoken
text

communicative function
tags + timing

text + markup<performative type="announce">
  <rheme>
    Whatever works for 
    <emphasis x-pitchaccent="Hstar" 
      deictic="you" 
      intensity="0.4">
      you
    </emphasis>
  </rheme>
  <boundary type="LH"/>
    thats for 
    <emphasis x-pitchaccent="LplusHstar" 
      intensity="0.3">
      you
    </emphasis>
    <boundary type="LL"/>
  </performative>
...

APML

Fig. 1. Agent architecture outline.

4 EXPRESSIVE AGENT ARCHITECTURE

GRETA, our multimodal agent, interprets utterance text marked up in APML
with communicative functions [17] to generate synchronized speech, face, gaze
and gesture animations. The engines produce animation data in MPEG4-compliant
FAP/BAP format, which in turn drive a facial and skeletal body model in
OpenGL. We briefly review GRETA’s GestureEngine [7] (see Fig. 1) here to
clarify where expressivity modification are performed. GestureEngine first per-
forms text-to-speech conversion through Festival [18] which provides necessary
phoneme timing for synchronizing gesture to speech. Communicative function
tags which are candidates for gesture matching are extracted in the TurnPlanner.



The GesturePlanner matches communicative function tags to a library of known
prototype gestures and also schedules rest phases when arms are retracted to the
body. The MotorPlanner then concretizes abstract gestures by calculating key
frame joint angles and timing. Finally, a bank of different Interpolators generate
in-between frames to complete the animation.

To enable the thus-far generic, deterministic architecture for expressivity con-
trol, we augmented different stages of the architecture, which we will describe in
the next section. Our implementation for gesture instantiation and modification
is then presented.

5 IMPLEMENTATION: MAPPING EXPRESSIVITY
INTO GESTURE ANIMATION PARAMETERS

Given a particular type of action and a set of values in the expressivity space, how
can we modify non-verbal behavior production to communicate the appropriate
expressive content? We need a suitable representation for gestures. We strive to
preserve the semantic value of each gesture during the expressivity modifications.
We hypothesize that effective strategies have to adjust behavior on multiple levels
– from abstract planning (whether to search for a gesture for a given text at all),
via gesture phase-level modifications (whether or not to repeat a stroke), down
to adjusting velocity profiles of key pose transitions.

In the following, let the variables oac, spc, tmp, flt, pwr and rep stand for
the Overall Activation, Spatial Extent, Temporal Extent, Fluidity, Power and
Repetition parameter values we are trying to express.

5.1 Example

We introduce a sample dialog in transcript and APML-annotated form that will
help clarify the expressivity computations we perform later on. The dialog was
transcribed (and slightly edited) from an interview with author/journalist Helen
Gurley Brown on the Open Mind television show3. We selected the following
short utterance – words that coincided with gesture strokes are underlined:

“Whatever works for you, that’s for you. But please don’t tell me what works
for me. Would you just please mind your own business and I’ll mind my business
and let’s get on with the rest of our lives.”

In the video, Hurley Brown performs a deictic reference to the interviewer
(you), overlaid with a beat on the second you. A deictic gesture to herself with
both hands accompanies the word me. After that, a metaphoric rejection is
expressed by moving the right arm from shoulder-level downwards and out
(your business). Finally, a round object in front of her torso is circumscribed
to denote [her] business. We encoded this segment in APML, but for the sake
of brevity only reproduce the beginning here in Figure 2. Text to be spoken by
the agent is highlighted in blue.

3 publicly available through the Internet Archive: http://www.archive.org/



01: <performative type="announce"> 
02:   <rheme>
03:     Whatever works for
04:     <emphasis x-pitchaccent="Hstar" deictic="you" intensity="0.4">you</emphasis>
05:     <boundary type="LH"/>
06:     thats for
07:     <emphasis x-pitchaccent="LplusHstar" intensity="0.4">you</emphasis>
08:     <boundary type="LL"/>
09:   </rheme>
10: </performative>

Fig. 2. APML Dialog.

5.2 Gesture Specification Language

In the past, we devised an abstract keyframe based scheme for gesture synthe-
sis [7]. The gesture specification language is a sequence of key poses of the action,
each of which describes wrist location, palm orientation and hand shape. Sets
of key poses are grouped into the gesture phases defined by McNeill [3]. Our
specification language was augmented by attributes defining which features of a
gesture carry its semantic meaning and are thus invariable, and which features
can be modulated to add expressivity. Description of the temporal aspect of each
gesture was made implicit. Where previously kinematics were fixed through the
frame times of the key frames, timing is now calculated using motion functions.
Let us consider the gesture matched to the deictic pointing towards the user (line
4 of our APML script). This gesture consists of a simple arm movement that
halts on the upper torso and a hand configuration that points at the conversation
partner. The hand is not immediately retracted, but remains in a post-stroke
hold. Figure 3 shows our encoding of this gesture. To conserve space, frames
have been arranged horizontally and are to be read from left to right.

STARTFRAME
  FRAMETYPE stroke_start
  ARM XC:fixed YUpperC ZMiddle
ENDFRAME

STARTFRAME
  FRAMETYPE stroke_end
  ARM XC:fixed YLowerC ZMiddle
  HAND form_open thumb_default
  WRIST FBInwards PalmTowards
  ADDNOISE
ENDFRAME

STARTFRAME
  FRAMETYPE post_stroke_hold
  ARM XC:fixed YLowerC ZMiddle
  HAND form_open thumb_default
  WRIST FBInwards PalmTowards
ENDFRAME

Fig. 3. Sample gesture definition script.

The postfix :fixed, highlighted in red, indicates that a particular element of
the gesture must not be modified by expressivity calculations. In the deictic ref-
erence, the agent’s hand points towards the user who is facing the agent through
the screen. Thus the agent should point straight outwards and not besides her-
self. We thus constrain the lateral X coordinate of the arm goal position to be
in the center sector of McNeill’s gesture space [3]. Note the absence of explicit
timing information. The Gesture Engine calculates default durations. While we



lose fine grain control compared to earlier explicit timing information, we gain
parametric control over gesture phases as we will describe in section 5.3.

5.3 Expressivity Parameters

We now go through each of the identified dimensions of expressivity and explain
how they are implemented. The stages of Figure 1 will be referenced to explain
where gesture modification takes place.

Overall Activation A filtering is applied at the level of the GesturePlanner,
which assigns gesture prototypes to input text mark up tags. Each input tag
carries an intensity attribute that captures how important stressing the tag’s
content through nonverbal signals is – in line 4 of our APML example, the deictic
gesture has an intensity of 0.4. Communicative functions tags for which this
activation attribute does not surpass a given agent’s overall activation threshold
are not matched against the behavior database and thus no nonverbal behavior is
generated at all. Thus, in our example, the deictic gesture will only be matched
if the agent has an overall activation threshold ≥ 0.4. A similar principle of
activity filtering was presented and implemented by Cassell et al. in [4].

Spatial Extent The space in front of the agent that is used for gesturing is
represented as a set of sectors following McNeill’s diagram [3]. We expand or
condense the size of each sector through scaling. Wrist positions in our gesture
language are defined in terms of these sectors (see Fig. 4). Represented by their
center coordinates, the location of the sectors can be scaled asymmetrically using
a simple matrix for homogenous coordinates. For meaningful scaling, we estab-
lish sector center coordinates pi relative to the agent’s solar plexus. Then the
modified sector centers are given by:

p′i =
[

I spc
0 1

]
· pi

with:

spc =

 1.0 + spc · spcagenthoriz

1.0 + spc · spcagentvert

1.0 + spc · spcagentfront


spcagenthoriz

, spcagentvert
, and spcagentfront

are individual scaling factors in the
horizontal, vertical and frontal directions that can define individualized patterns
of space use. To find the location of articulation for a gesture, we first compute
a point in the dynamically resized gesture quadrant that matches the gesture
definition. We then calculate joint angles needed to reach that target with the
IKAN inverse kinematics package [19]. Note that this technique is conceptually
similar to EMOTE’s kinematic reach space. While inverse kinematics are com-
putationally expensive, they provide the only way of addressing arm movement



in terms of goal positions. In a complex articulated joint chain such as a human
arm, controlling forward kinematics (i.e., joint angles) directly yields non-linear
and unpredictable results. In our example deictic gesture, increasing spatial ex-
tent will move the Y and Z goal coordinates away from the agent, while the X
coordinate remains unchanged because of the :fixed constraint in the gesture
definition.

Adjusting the elbow swivel angle (Tolani [19]) also directly changes the space
taken up by the agent – extended elbows enlarge the body’s silhouette. Since we
are using inverse kinematics to position the wrist, we can control each arm’s IK
swivel angle θ for every key position:

θ′ = {min(θ · (1.0 + 0.5 · spc), π/2) spc ≥ 0
max(θ · (1.0 + 0.5 · spc), 0) spc < 0

These modifications are performed at the MotorPlanner stage.

1.00.0-1.0

Fig. 4. Spatial Extent - arms extend or contract towards the torso.

Temporal Extent Starting from the synchronicity constraint on the end of
the gesture stroke to coincide with the stressed affiliate in speech (McNeill [3]),
we can calculate preceding and proceeding frame times from invariant laws of
human arm movement described in [20]. During the planning phase, the actual
distance traveled by the wrist joint in space is approximated by linear segments
through key points. The duration to complete each segment can be derived from
a simplification of Fitt’s law as

T = a + b · log2(‖xn − xn+1‖+ 1)

The value of the velocity coefficient b has been established as 10−1 for average
speed movements by Kopp [21]. Using this value as a starting point, the speed
of a gesture segment can be adjusted as follows:

b = (1 + 0.2 · tmp) · 10−1

Since we still have information about which part of the movement corresponds
to which gesture phase, we can selectively amplify the stress of the gesture by
increasing only the speed of the stroke to accentuate the gesture.



stroke end

stroke start
tmp=1.0tmp=0tmp=-1.0

Fig. 5. Temporal Extent - stroke phases are faster or slower.

Fluidity This concept seeks to capture the smoothness of single gestures as
well as the continuity between movements (the inter-gestural rest phases). We
achieve low-level kinematic control through varying the continuity parameter of
Kochanek-Bartels splines [22] used in the Interpolator component. Once again,
this idea is close to EMOTE timing and fluidity control. In our implementation,
we set the continuity parameter cont of the spline of the position interpolation
spline for the wrist end-effector of each arm to equal the fluidity setting: cont =
flt.

Fluidity also acts on the GesturePlanner level: larger fluidity increases the
minimum timing threshold for retracting arms to a neutral position on the sides
of the torso in between two gestures. During below-threshold pauses, arms are not
retracted. Instead, two neighboring gestures are directly connected by interpo-
lating between the retraction position of a previous gesture and the preparation
position of the following gesture. In our example utterance, a low fluidity value
would cause the agents arms to be retracted between the gestures accompanying
the references to “you ” and “me ” (shown in transcript only, not in APML). A
high fluidity setting would smoothly interpolate in the pause between gestures.

coarticulation

gradual, smooth movement

no coarticulation;
retraction to rest
position

abrupt direction changes

Fig. 6. Fluidity - rest phases and continuity are affected.



Power To visualize the amount of energy and tension invested into a move-
ment, we again look at the dynamic properties of gestures. Powerful movements
are expected to have higher acceleration and deceleration magnitudes. However,
tense movements should exhibit less overshoot. This behavior is modelled with
the tension and bias parameters of the kinematic TCB-spline in the Interpola-
tor : tension = pwr and bias = pwr. We also hypothesize that tense, powerful
performances will be characterized by different hand shapes. If the configuration
of the hand is not indicated as fixed in the gesture specification, high power set-
tings will contract the hand towards a fist shape in the GesturePlanner stage.

Fig. 7. Power - Overshoot and hand shape are affected.

Repetition We have previously introduced the technique of stroke expansion [7]
to capture coarticulation/superposition of beats onto other gestures. Stroke ex-
pansion repeats the meaning-carrying movement of a gesture so that successive
stroke ends fall onto the stressed parts of speech following the original gesture
affiliate. It is possible to control the extent of repetition by selectively increasing
the ‘horizon’ or lookahead distance that the stroke repetition algorithm analyzes.
In our example, the original speaker superimposed a beat onto the post-stroke
hold of the deictic gesture for you during the second occurrence of the term. By
increasing or decreasing the repetition parameter, we can encourage or discour-
age such superposition, respectively.

5.4 Aggregating Parameters

We now show how setting expressivity parameters can generate a qualitatively
different animation. Our system represents only a building block towards real-
izing affective action – exactly how motion quality is changed by the emotional
state of an actor is still an open question in experimental psychology. Wall-
bott [14] had progressed the furthest to establish a mapping from emotional
state to behavior quality but much work remains to be done. For now, until a
reliable mapping is established, we use qualitative labels that are neutral with



respect to emotion and personality, such as “abrupt.” In this case, “neutral”
action is modified in the following ways: Overall Activation and Spatial Extent
were disregarded (and thus left to the value 0) since abruptness is less apparent
in the quantity of gestures or the amount of space taken up by those gestures.
These two parameters are not important to convey abruptness. Temporal Ex-
tent was increased to 1 to speed up the meaning carrying strokes of all gestures.
Fluidity was decreased to -1 to create jerky, discontinuous velocity profiles of
arm movements and to discourage coarticulation from one gesture to the next
– the agent’s arms are frequently retracted to a neutral position to create a
disjoint performance. Power was set to a high value (1) to force a fist hand
shape for beats and rapid acceleration and deceleration between gesture phases.
Finally, Repetition was minimized (-1) since the rhythmic quality of a repeating
movement counteracts the notion of abruptness. If we don’t want to generate a
strongly abrupt movement, we can generate slightly abrupt behavior by interpo-
lating the pertinent parameters between “neutral” and “very abrupt” settings
while leaving other parameters unchanged.

6 EVALUATION

We conducted two evaluation tests. For the first test, we evaluated the following
hypothesis: The chosen implementation for mapping single dimensions of ex-
pressivity onto animation parameters can be recognized and correctly attributed
by users. 52 subjects were asked to identify a single dimension and direction of
change in forced-choice comparisons between pairs of animation videos. 41.3%
of participants were able to perceive changes in expressivity parameters and
attribute those changes to the correct parameters in our dimensional model
of expressivity. Recognition was best for the dimensions Spatial Extent (72.6%
of modifications correctly attributed to this parameter) and Temporal Extent
(73.8Modifications of Fluidity (33.9%) and Power (32.3%) were judged incor-
rectly more often, but the correct classification still had the highest number
of responses. The parameter Repetition (28.0%) was frequently interpreted as
Power. Overall Activation, or quantity of movement, was not well recognized.
Overall, we take the results as indication that the mapping from dimensions
of expressivity to gesture animation parameters is appropriate for the Spatial
Extent and Temporal Extent dimensions while it needs refinement for the other
parameters.

The second test with 54 subjects was conducted as a preference ranking task
of four animations with different parameter combinations per trial to test the
following hypothesis: Combining parameters in such a way that they reflect a
given communicative intent will result in more believable overall impression of
the agent. In each trial, one clip corresponded to the neutral, generic animation,
two clips were variants of the chosen expressive intent (strongly and slightly ex-
pressive) and one clip had an inconsistent assignment of expressivity parameters.
The subjects were asked to order the video clips from the most appropriate to
the least appropriate with respect to the expressive intent. Participants in this



second test preferred the coherent performance for the abrupt action described
above over neutral and inconsistent actions as we had hoped. Similar results were
obtained for the vigorous action. However, results were more ambiguous for our
other test case - sluggish action. Two explanations are possible: the problematic
implementation of some of the parameters may have led to unrealistic or inco-
herent animation; alternatively, gesture modification alone may not be sufficient
- it may have to be integrated with gesture selection to achieve truly believable
expressive action. A person gesturing sluggishly might not use the same gesture
types as a vigorously gesturing one.

7 Conclusion and Future Work

We have presented a computational model to add movement quality to a commu-
nicative gesture. Six dimensions have been considered. We have performed two
tests to evaluate the implementation of each of the six parameters individually
and the ability of communicating a given intent when setting appropriately mul-
tiple parameters. We plan to refine our computational model, especially for the
parameters that had low recognition rate. We are currently investigating how to
use a video corpus of people talking emotionally that has been annotated with
the perceived emotion and with several information regarding gesture: its type,
its description and its expressive quality. We aim at using an analysis-synthesis
loop to refine the mapping between emotion labels and expressivity dimensions.
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