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Abstract. In this paper we further develop the idea that the PAC-Bayes
prior can be defined based on the data-generating distribution. In partic-
ular, following Catoni [1], we refine some recent generalisation bounds on
the risk of the Gibbs Classifier, when the prior is defined in terms of the
data generating distribution, and the posterior is defined in terms of the
observed one. Moreover we show that the prior and the posterior distri-
butions can be tuned based on the observed samples without worsening
the convergence rate of the bounds and with a marginal impact on their
constants.

1 Introduction

It is well known that combining the output of several classifiers results in much
better performance than using any one of them alone. In fact many state-of-
the-art algorithms search for a weighted combination of simpler classifiers [2]:
Bagging [3], Boosting [4] and Bayesian approaches [5] and, in some sense, Kernel
methods [6] and Neural Networks [7]. The major open problem in this scenario
is how to weight the different classifiers in order to obtain good performance [8,
9, 1], and how this performance can be assessed [10, 6, 11, 12, 13, 14]. The PAC-
Bayes approach [15, 11, 1, 16, 17, 2] is one of the sharpest analysis frameworks
in this context, since it can provide a tight bound on the risk of the Gibbs
Classifier (GC), and the Bayes Classifier (BC) [2]. The GC choses a classifiers
in a set according to a posterior distribution each time a new sample has to be
classified [17]. In particular, in the PAC-Bayes framework, a prior distribution
over the classifiers must be defined before seeing the data, then, based on the
available data, a posterior distribution is chosen, and the risk of the associate
GC is estimated, based on the empirical risk and the divergence between the
prior and posterior distributions [11]. The PAC-Bayes analysis bounds the risk
of the GC [11, 16], while the C-bound bounds the error of the BC, also called
weighted majority vote classifier, based on the properties of the GC [2].

The major weakness in the conventional PAC-Bayes approach is that a pos-
terior distribution that minimises the divergence between prior and posterior
distributions must be chosen, since this divergence is part of the bound [17, 18].
In order to address this issue, Catoni [1] proposed a localised PAC-Bayes analysis,
which exploys a Boltzmann prior distribution defined in terms of the unknown



data distribution. Note that, since the prior depends on the data generating dis-
tribution, the PAC-Bayes analysis is still valid because the prior is defined before
observing the data [1]. By tuning the prior to the distribution, Catoni was able
to remove the divergence term from the bound, hence significantly reducing the
complexity penalty [1]. More recently, this approach has been further developed
in [17] but the prior still has a free parameter that needs to be fixed before
observing the data and can affect the divergence penalty and consequently the
tightness of the bound.

In this paper, in Section 3, we further refine the bound proposed in [17]
and recalled in Section 2. Moreover, in Section 4 we show that the distribution
dependent Boltzmann prior distribution developed by Catoni [1] can be tuned
based on the observed samples in order to optimise the bounds over the risk of
the GC. In particular we will show that this optimisation does not change the
convergence rate of the bounds and has a marginal impact over the constants
involved in the bounds.

2 State-of-the-art Results

Let us consider a set of n labeled samples D,, = {(X1,Y1), -+, (Xpn,Yn)} =
{Z1,--+,Z,} drawn ii.d. according to an unknown probability distribution y
over the cartesian product between the input space X and the output space
Y={—1,1}. Let us consider a function f€F, where f:X—Y=[-1,1]. The error
of f in approximating p is measured with reference to some [0, 1]-bounded loss
function £:F x (X' xY)—[0, 1]. Then the risk of f, and its empirical estimator, can
be defined as LY(f)=Ez {{(f, Z)} and LE(f)=1/n 37, /(f, Z;). The GC draws
a function feF, according to a probability distribution @ over F, each time a
label for an input X€X is required. For the GC, referred as G, we can de-
fine its risk together with its empirical counterpart [17]: L*(Gg)=Eo{L(f)},
and EZ(GQ):IEfNQ{Zf;mp(f)}. Given two probability distributions @ and P
over F, let us denote with KL[Q||P] the Kullback-Leibler Divergence (KLD)
between P and @, while k1[g||p] is the KLD for the Binomial distribution
k1[q||p|=q1n[9/p] +[1—¢]In [1~49/1—p] where, thanks to the Pinsker’s Inequality
we can state that |¢—p|<y/1/2k1l[g||p]. Finally, let us recall the definition of a
last fundamental quantity in the PAC-Bayes framework, which is a weighted
sum of binomial coefficients &,=>"p_, (}) (%)k(l—%)nfk where /n<§,<2v/n
[16]. Based on these preliminary definitions we can recall the state of the art
bound on the risk of the BC.

Theorem 1 ([16]). For any probability distribution P over F, chosen before
seeing Dy, VQ we have P{k1[LY(Gq)||L*(Gq)]> [KLQIIPl+n [en/5]] /1 <.

The main problem of the PAC-Bayes Theory regards the choice of P and Q.
@ should fit our observations, but, at the same time, ) should be close to P,
in order the minimise the KLD. The milestone result of [1], later extended by
[17], proposes to use a Boltzmann prior distribution P which depends on the
data generating distribution p. In particular, let us suppose that the density



function associated to P is p(f)=cpe~ "= (), where v€[0,00) and ¢, is a nor-
malisation term. Basically, this distribution gives more importance to functions
that possess small risk. If we choose as posterior @) a distribution which gives
more importance to funcEions with small empirical risk with the following den-
sity function ¢(f ):cqe_'VLe(f ), where ¢q is a normalisation term, it can be proved
that this theorem, built on the result of Theorem 1, holds.

Theorem 2 ([17]). Given the prior P and the posterior @ defined above, we
can state that P{KL[Q||P]>KL1 (7, §,n)=7"/n+vy/2In[En/s]/n}<28. Consequently,
we have that P{k1[L*(Gq)||L*(Gq)]> K1 (v, 8, n)+1n[6n/s]] [} <36.

3 Sharpening the Risk Bound

In this part of the paper we prove that the result of Theorem 2 can be further
improved (Theorem 3). Furthermore, we show that, if the loss function exploited
for assessing the risk of the BC is the same used to define the prior and posterior
defined by Catoni [1] (generally they may be different), then Theorem 3 can be
further improved (Theorem 4).

Theorem 3. Under the same hypothesis of Theorem 2, we can state the follow-
ing inequality P{KL[Q||P]>KLa(7y,0,n)}<20 where KLa(7,d,n)<KLi(v,d,n) and
KL2 (7, 6,1)=7\/ 32 0 fant- W0 (60 /8] fon 97 1602 4/ /o fondn® fan. Moreover,
we also have that ]P’{kl[EZ(GQ)HLZ(GQ)]z [KL2 (v, 8,m) + In [6n/s]] /n } <36.

Proof. Let us consider KL[Q||P], since p(f):cpe_'VLe(f)7 then cp:p(f)e'yle(f) and
consequently:

KLQ||P] = Ejng {In [1)/p(n]} =E fng {In [c,em 72 0 feye 2 (D]} = In[ea/e,]

HE o (L (f) =L (N} =7[L(C) ~L!(GQ)] ~ In [ p(f)e? " (N=E (g

<L (Go)~L'(Ga)l[L(Gp)~L!(Gp)). (1)
By bounding the last two terms in square brackets through the Pinsker’s in-
equality and Theorem 1 and by solving with respect to KL[Q||P], Theorem 2 can
be derived. This is indeed sub-optimal. Since P is defined before seeing D,, we

can exploit the Hoeffding’s inequality [19] in order to bound the second term
and, consequently, with probability (1 — 24§), we have that:

MNIH(GQ)~LH(G Q)AL (Cp)~LA(Gp)] < 7y AP HLn ] o finlie] )

By bounding Eq. (1) through Eq. (2), solving with respect to KL[Q||P], and
plugging the result in Theorem 1, the statement in this Theorem is proved. O

Theorem 4. Under the same hypothesis of Theorem 2, if the losses used to de-
fine P, Q, L*(Gq) and L*(Gq) are the same, we can state the following inequal-

ity P {kl[f‘(GQ)HL‘(GQ)]Z [1L4(Ga)~ TG o)y /T T ot In [sn/sﬂ/n} <29.



Proof. The proof can be derived from Eq. (1). Since the losses used to define P,
Q, ZZ(GQ) and L‘(Gg) are the same we simply have to bound the last one of
the two terms in square brackets of Eq. (1) through the Hoeffding’s inequality
[19], as in Theorem 3, and plug the result in Theorem 1. O

The results of Theorems 3 and 4 improve over the state-of the-art bound of
Theorem 2.

4 Tuning the Prior on the Available Data

Unfortunately, even if an optimal choice of « that minimises the above bounds
exists, this parameter must be chosen before seeing the data in order to maintain
their validity. In this section we deal with this problem by tuning + based on the
available data. The first step consists in proving the following theorem which
bounds the risk of the GC when, given PY and Q7 defined in Section 2 for
different values of v € {71, ,¥m}, one choses the v; with ¢ € {1,--- ,m} that
minimises the bound on the GC risk.

Theorem 5. Given the prior PY and Q7 defined in Section 2 for different values
of v € {1, - ,Ym}, we can state that, Vy € {y1, - ,Ym }:

1. P{x1[LY(Go)|| LY (Gg)]> [KLa (v, 8. m)+ In [n/5)) ju } <3md,

2. P{k1[LY(Gq)||L(Gg)]> KLa(v.8.m) + In[sn/a)l [} <3m.
Moreover, if the losses used to define PY, Q7, ZE(GQ’Y)7 and L*(Gg~) are the
same, we can state that, ¥y € {y1, -+ ,Ym}:

3. P {kl[ff(GQ)IIL‘(GQ)]Z [ML8(GQ)~T(Go) 7y = T et In [snm]/n} <2ms.

Proof. In order to prove the statement the union bound must by applied over
the different v € {1, -+ ,ym} to Theorems 2, 3 and 4. O

Given the result of Theorem 5, and since KLz (7, §, n)<KL; (7, d,n) (Theorem
3), if 7 is chosen among m=(§,,)" with >0 points equally spaced in logarithmic
scale in [Ymin, Ymax), We can state that with probability (1—0):

K1[L!(Gq)|| LY (Go))< el it nlen [ B (3)

n

V\/”f 27]1]l[£11,],+21n[3/6]+(1+”) 1n[£21TLL]+1u[3/6]+ 722 +y "1"[5"551“[3/5]+%j+(1+n)ln[£n]+1ll[3/5]

16n
n

2 n n
< KL1 (3,5/5€8,m)+(1+m) nfén] + Inf3/s] _ 22 4y /20 R+ 2I0B/5] | (14 ) Infe, |+ Inf3/s]
- n n

Moreover, if the losses used to define P7, Q7, EE(GQW), and LY(Gg~) are the
same, we can state that with probability (1—4):

R e _T¢ nln[€n]+ In[2/5] n[én]+ In

kl[Lé(GQNlLK(GQ)]SW'L (G@)—L ' (Gq)l+y o +(1+4n) In[n]+ In[2/s] (4)
Note that when m=1 (which means that =0 and consequently Theorems 2, 3,
and 4 can be applied) the bound has the same convergence rate as when ~ is
chosen among m=(&,,)"€[n"/?, 2n"?] possible values at the expenses of a slightly
worse constant 1>0.




5 Discussion

In order to get more insights on the proposed bounds, we test them on an
artificial problem. In particular, a dataset is created, consisting of n samples in
a bidimensional input space: 7/2 are equally spaced on a circle of radius 1 and
center [—c, —c]T while the others 7/2 are equally spaced on a circle of radius 1
and center [c,c]T. We choose c€ {1/2,1}, Ymin=10"2, and Ymax=10%. The Hard
Loss ¢(f, Z)=1-Ysign[f(X)] /2 is exploited for the P7, Q7, EZ(GQ’Y), and L*(Gg).
We choose, as hypothesis space F, all the possible linear separators in the input
space. In Figure 1 we have reported the upper bound of L* (Gg) obtained by
applying Theorems 2, 3, 4, and 5 (results 1, 2, and 3) in different situations.
In Figures 1(a) and 1(d) we report the comparison of Theorems 2, 3 and 4 for
different values of v: note that Theorems 3 and 4 improve over the state of the
art bound of Theorems 2, in particular Theorem 4 is the sharpest one (note
that in this case we cannot choose the 7 for which the bound is minimum).
In Figures 1(b) and 1(e) we report the comparison between Theorem 4 and the
bound obtained by adopting the strategy of Theorem 5 when we look at m=(&,)"
values of : note that the bound is worse as soon as we increase n but in this
case we can choose the v which minimises the bound and the loss, in terms of
tightness of the risk bound, is smaller with respect to the loss of choosing a
wrong 7. Finally in Figures 1(c) and 1(f) we report the upper bound of L¢(Gg),
for different value of n, for n = 1 and y=~*, where " is the one that gives the
minimum of Theorem 5 (results 1, 2, and 3) as described in Section 4 against
the ideal case when ~* is known a priori and Theorem 2, 3, and 4 can be used
directly: obviously the bounds are looser but the loss is negligible if we take into
account that + has been tuned based on the observed samples.

The result that we have just presented, even if preliminary, gives interesting
insights on the Theorems reported in this paper. In particular, in this paper we
have shown that our results improve over the state-of-the-art PAC-Bayes GC
risk bounds and that is possible to tune, in a fully empirical fashion, both the
prior and posterior PAC-Bayes distributions without impacting on the rates of
the bounds and with a marginal impact on their constants.
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Fig. 1: Performance of the different bounds over the artificial problem.

B. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

S. Nitzan and J. Paroush. Optimal decision rules in uncertain dichotomous choice situa-
tions. International Economic Review, 23(2):289-97, 1982.

D. Berend and A. Kontorovitch. Consistency of weighted majority votes. In NIPS, 2014.

S. Floyd and M. Warmuth. Sample compression, learnability, and the vapnik-chervonenkis
dimension. Machine Learning, 21(3):269-304, 1995.

D. A. McAllester. Some pac-bayesian theorems. In Computational Learning Theory,
1998.

O. Bousquet and A. Elisseeff. Stability and generalization. JMLR, 2:499-526, 2002.

P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. JMLR, 3:463-482, 2003.

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local rademacher complexities. Annals
of Statistics, pages 1497-1537, 2005.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain markov pro-
cess expectations for large time, i. Communications on Pure and Applied Mathematics,
28(1):1-47, 1975.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. Pac-bayesian learning of linear
classifiers. In ICML, 2009.

G. Lever, F. Laviolette, and J. Shawe-Taylor. Tighter pac-bayes bounds through
distribution-dependent priors. Theoretical Computer Science, 473:4-28, 2013.

E. Parrado-Herndndez, A. Ambroladze, J. Shawe-Taylor, and S. Sun. Pac-bayes bounds
with data dependent priors. JMLR, 13(1):3507-3531, 2012.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13-30, 1963.



