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Compensation of Load Dynamics for Admittance
Controlled Interactive Industrial Robots using a

Quaternion-based Kalman Filter
Saverio Farsoni1, Chiara Talignani Landi2, Federica Ferraguti2, Cristian Secchi2 and Marcello Bonfè1

Abstract—The paper describes a control architecture for in-
dustrial robotic applications allowing human/robot interactions,
using an Admittance Control scheme and direct sensing of
the human inputs. The aim of the proposed scheme is to
support the operator of an industrial robot, equipped with a
force/torque (F/T) sensor on the end-effector, during human/robot
collaboration tasks involving heavy payloads carried by the
robot. In these practical applications, the dynamics of the load
may significatively affect the measurements of the F/T sensor.
Model-based compensation of such dynamic effects requires to
compute linear acceleration and angular acceleration/velocity
of the load, that in this work are estimated by means of a
quaternion-based Kalman filter and assuming that the only
available measurements come from the forward kinematics of
the robot. Experimental results demonstrate the feasibility of the
approach and its industrial applicability.

Index Terms—Industrial Robots; Physical Human-Robot In-
teraction; Compliance and Impedance Control.

I. INTRODUCTION

COLLABORATION between humans and robots is in-
creasingly desired in several application domains, in-

cluding the production industry. As a result, a new gener-
ation of industry-oriented robots has been launched on the
market (e.g. KUKA LBR iiwa). Such robots support physical
Human-Robot Interaction (pHRI) by embedding advanced
control functionalities, not available on standard industrial
robots, including compliant control modes (from simple grav-
ity compensation to Cartesian impedance control [1]) and
contact forces/torques estimation, possibly exploiting direct
joint torque sensing.

In pHRI applications, contact forces/torques must be avail-
able for human/robot collision detection and human intents
awareness. The first feature can be achieved using model-
based observers and the so-called residuals analysis [2], [3].
However, observer-based solutions require accurate knowledge
of the dynamic parameters of the robot (i.e. masses, inertia
tensors, friction), which may not be precisely known for
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standard industrial robots (i.e. not natively designed for hu-
man/robot collaboration), especially those with high gear ratios
and non-negligible friction effects. To cope with these issues,
a solution based on the frequency-domain analysis of motor
currents is described in [4], but exploiting the KUKA Robot
Sensor Interface (RSI), a feature not available on many other
commercial systems. Detection of human intents and their
isolation from accidental collisions is instead reported, among
others, in [3] and [5]. The latter proposes a control effort-
based approach that should not require a dynamic model of the
robot, but only the possibility for a human to manually change
its end-effector position. This approach is reasonable for the
light and back-drivable haptic device used in the experiments
of [5], but questionable for large industrial robots with high
gear ratios.

In this work, we propose a control framework that allows to
extend pHRI to a larger part of industrial applications, in which
non-backdrivable manipulators with stiff position controllers
are installed. In these contexts, a compliant control mode
can be implemented installing a 6 degrees-of-freedom (DOF)
force/torque (F/T) sensor on the end-effector of the robot and
exploiting an admittance control scheme. In particular, we
consider those applications in which the robot is carrying a
significative payload (i.e. a manipulated object or a heavy tool)
and humans interact by applying forces/torques on that load.
This condition requires to take into account the load dynamics,
to compensate its effects from F/T sensor measurements and
properly detect human inputs. Compensation of load dynamics
has been previously addressed in [6], proposing an impedance
control scheme. Impedance control, unlike the admittance
control adopted here, requires knowledge of robot dynamics
and the possibility to command joint torques, two features that
are not available on most industrial manipulators. Direct force
control with non-contact effects elimination, based on load
velocities/accelerations estimated from joint encoder data and
differential kinematics, is reported in [7], but this approach still
require knowledge of robot intrinsic data (i.e. calibrated kine-
matic parameter). Others authors describe similar estimation
schemes using sensor fusion and accelerometers/gyroscopes
[8], with the drawbacks of additional costs for hardware and
additional sensor calibration requirements.

The main contribution of this paper is a solution for the
estimation of accelerations and velocities of the load, to be
used for the compensation of non-contact effects from F/T
measurements, that does not require any additional sensor
in the robotic setup and assumes that neither dynamic nor
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kinematic parameters of the mechanical structure of the robot
are known. It is only required that the low-level robot con-
troller, whose user may not have knowledge of kinematic
parameters, provides an accurate measure of the 6-DOF pose
of its end-effector at a reasonable update frequency. The
proposed solution relies on a novel quaternion-based Kalman
filter, based on a second order differential model, that directly
processes measurements of the end-effector pose.

Quaternion-based kinematic models have been largely ex-
ploited, especially in the aerospace domain [9], to implement
attitude estimation Kalman filters [10]. Such filters fuse data
from accelerometers/magnetometers, as an indirect measure of
attitude (i.e. assuming fixed gravity vector and Earth magnetic
field), data from gyroscopes as a direct measure of angular
velocities and compute first order quaternion derivatives, to be
integrated for attitude estimation. In our design, instead, we
use the Kalman filtering approach for differentiation, up to the
second order, of a known position and orientation of the robot
end-effector. Similar approaches have been applied in human
body tracking [11], [12], but still without considering second
order derivatives. Even in [13], that describes quaternion-based
Kalman filters embedding also the estimation of environmental
F/T acting on a robotic tool, angular accelerations are not
included in the estimated state, with the result that F/T
estimation errors are larger than those presented in this paper.
In next sections, we will define more precisely the statement
of the problem that we aim to address and the proposed overall
control scheme.

II. INTERACTION CONTROL SCHEME

Robotic applications requiring to regulate the interaction
of the robot with its environment, but also to cope with
both free motions and in contact phases, are suitable for
the implementation of either impedance or admittance control
schemes [1]. The latter is more adequate when the robot has
a stiff and non-backdrivable mechanical structure or is made
purposefully stiff by an inner motion control loop, which
is the common case in industrial robotics. In this situation,
it is possible to force the robot to behave compliantly in
response to a human input, according to a given mass-damper
interaction model, provided that the human/robot contact force
is measurable and that the interaction model is integrated to
compute the motion of a compliant frame, which is set as the
reference pose to the inner control loop.

In the following, we will denote: a 6-DOF pose as P,
expressed by a homogenous transformation matrix embedding
a translation vector p and a rotation matrix R; a 6D spatial
velocity vector as V = [v, ω]

T , embedding linear and angular
velocities; a 6D force/torque (F/T) vector as F = [f , τ ]

T . With
this notation, the interaction model for admittance control is
expressed by the following differential equation:

ΛdV̇ref + DdVref = Fc (1)

in which Λd and Dd are 6×6 symmetric and positive definite
inertia and damping matrices, properly tuned to obtain a stable
and smooth behavior even in case of human-driven interactions
[14]. Since the contact force/torque Fc is an input, Eq. 1

is used to compute (from its discrete-time equivalent) the
incremental motion to be added to the reference pose Pref

commanded to the low-level robot controller. The contact input
is assumed to be measured from a 6-DOF F/T sensor mounted
on the robot wrist flange. Moreover, we want to address case
studies in which the robot is used to help humans in the
manipulation of heavy objects, rigidly attached to the robot
after the F/T sensor as shown in Fig. 1.

F/T sensor

Load COM

Robot wrist
flange

Fig. 1. Reference frames of F/T sensor and load

In this case, the load exerts a non-contact effect Fnc on
the sensor, with both static (i.e. gravity) and dynamic terms
(i.e. inertial, centrifugal/Coriolis). While the former could be
computed and eliminated from F/T sensor measurements with
a knowledge of the load mass, center-of-mass (COM) and
orientation, the load inertia tensor and an estimate of linear
acceleration and angular acceleration/velocity must be avail-
able to compensate also dynamic effects. Such accelerations
and velocities are estimated by means of a quaternion-based
Kalman filter, which is described in the next section, whose
only input is a measure of the 6-DOF pose of the robot end-
effector (whose orientation is properly transformed into a unit
quaternion). First and second order derivatives of the F/T
sensor pose Ps, generated by the Kalman filter, are used by
a model-based load compensation module, processing sensor
measurements to extract Fc. The overall control scheme is
therefore described by the block diagram of Fig. 2. Finally, as
is common when admittance control is used, we assume that
a low-level position control loop provides accurate tracking of
the reference pose, so that Pref ≈ Ps.

Robot Kinematics /
Low-level Control

Quaternion-based
Kalman Filter

Admittance
Control

Model-based
Contact F/T
Estimation

Human /
EnvironmentForce/Torque

Sensor Payload

sPrefP

cF̂

cF
sF

ncF

]
sω̂̇,sω̂,sâ,sP

[

Fig. 2. Block diagram of the proposed interaction control scheme
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Remark 1 The proposed control scheme allows the so-called
walk-through programming or hand guidance, implemented
on industrial robots by other authors [15] and by companies
like FANUC (i.e. by adding the Hand Guidance option to its
collaborative robot CR-35iA) or ABB (i.e. by means of its
FC Programming Handle add-on). However, these examples
require the user to interact with the robot by means of specific
handles embedding a F/T sensor, but the latter is not sensitive
to the robot payload. In our case, instead, the setup could
also be used, when human teaching is concluded, to execute
tasks requiring a controlled interaction between payload and
environment (e.g. polishing, assembling, etc.).

Remark 2 This paper focuses on the estimation of load
accelerations/velocities and the compensation of related ef-
fects on F/T measurements, without addressing human safety
issues as prescribed by relevant industrial standards (e.g.
ISO 10218 [16] and the newer ISO/TS 15066 [17]). While
some safety-related aspects can already be addressed in the
proposed setup, namely velocity limitation by using the method
described in [15], the absence of dangerous collisions between
the human and any other link of the robot cannot be guaran-
teed by only measuring contact F/T on the robot tip. However,
even though achieving full compliance to such regulations for
standard (i.e. large and non-backdrivable) industrial robots is
an issue, we also believe that it could be solved in a near
future by using 3D or RGB-D cameras [18], [19], or tactile
sensing skins [20].

III. QUATERNION-BASED KALMAN FILTER

A. Quaternions

Several methods can be used to represent the orientation
of a rigid body relative to a fixed frame [21]. Among these,
quaternions offer a noteworthy solution avoiding the singular-
ity problem of Euler angles and reducing, at the same time,
the redundant number of parameters included in a full rotation
matrix R. A unit quaternion q is a four-dimensional vector
(with unitary 2-norm) consisting of two parts: a scalar qw
and an inner vector qv = [qx, qy, qz]

T . Unit quaternions are
strictly related to the axis-angle representation, in which two
subcomponents denote respectively the angle θ and the axis
versor u around which the orientation of the rigid body is
defined:

q =

[
qw
qv

]
=

[
cos( θ2 )

u sin( θ2 )

]
(2)

A set of useful operations applied to quaternions can be
defined, and they are briefly recalled in the following. More
details about quaternion properties can be found in [9].

The algebraic sums of quaternions, as well as the multi-
plications of a scalar for a quaternion, do not differ from
the standard vector operations, whilst the product of two
quaternions q, r is defined by the non-commutative operator
⊗ in terms of cross and dot products among their components:

q⊗ r =

[
qwrw − qv · rv

qv × rv + qwrv + rwqv

]
(3)

Furthermore, considering that the quaternion can be seen as
a hyper-complex number, the exponential of a quaternion is

an extension of the Euler expression for the exponential of an
imaginary number ejθ = cos(θ) + j sin(θ):

eq =





eqw
[

cos(‖qv‖)
qv
‖qv‖ sin(‖qv‖)

]
if ‖qv‖ 6= 0

[1, 0]
T

otherwise

(4)

where ‖ · ‖ is the 2-norm operator. To avoid numerical
issues, practical software implementations of the previous
formula should consider as zero values of ‖qv‖ < ε, for a
properly chosen ε. The exponential of a quaternion can also
be expressed as an absolutely convergent series. In case of
quaternions characterized by a scalar part equal to zero (pure
quaternions), this formulation reduces to:

eq =

∞∑

k=0

qk

k!
(5)

with q = [0, qx, qy, qz]
T and the power operator understood as

successive quaternion products. Another remarkable property
of the exponential expression is its relationship with the axis-
angle meaning of a quaternion, defined in Eq. 2. Indeed, any
quaternion q, featuring a rotation around the versor u by an
angle θ, corresponds to the exponential form of:

q = e
θu
2 (6)

B. Quaternion Kinematics

The time variation of the orientation is associated to the time
derivative of the unit quaternion describing the orientation of
the rigid body. Furthermore, the evolution of that quaternion in
time is related to the body angular rate, through the equations:

q̇ =
1

2
q⊗ ωbf =

1

2
ωwf ⊗ q (7)

where the body angular rates ωbf and ωwf are seen respec-
tively from the body-fixed frame and from the world-fixed
frame, and they are considered as pure quaternions ω =
[0, ωx, ωy, ωz]

T . It is worth noting that the pure quaternion
associated to the angular rate may not have unitary 2-norm.

Consequently, the second-order derivative of the quaternion
can be formulated as:

q̈ =
1

2
(q̇⊗ ωbf + q⊗ ω̇bf ) =

1

2
(ω̇wf ⊗ q + ωwf ⊗ q̇) (8)

In the following, in order to derive a model for the Kalman
filter, the time is discretized and the angular acceleration is
supposed to be constant between two consecutive time steps.
Both the angular variables are seen from the body-fixed frame.
Then, the discrete-time integration of the quaternion has to be
defined. The starting point is the Taylor series of qk+1 that
can be written as:

qk+1 = qk + q̇k∆t+
1

2
q̈k∆t2 +

1

6

...
qk∆t3 + . . . (9)

where k is the current time step and ∆t is the sample time.
A first approach to the computation of qk+1 consists in

neglecting the terms of order higher than the second, as the
successive powers of the sample time commonly become
close to zero, and in substituting in Eq. 9 the first and
second order derivative of Eq. 7 and Eq. 8. However, such



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2016

integration approach does not preserve the unitary 2-norm of
the quaternion, so that a consequent division by ‖qk+1‖ is
required in case the integration law is used as a predictor of
orientation.

A proper solution overcoming this problem exploits the ex-
ponential of quaternions, as reported in [22]. Indeed, because
of the previous assumptions, the pure quaternion of the average
angular rate ω̄ between two consecutive time steps is given
by:

ω̄k = ωk +
1

2
ω̇k∆t (10)

that can be used to expand the angular rate powers:

ωk = ω̄k − 1
2
ω̇k∆t

ω2
k = ω̄2

k − 1
2
∆tω̄k ⊗ ω̇k − 1

2
∆tω̇k ⊗ ω̄k + 1

4
∆t2ω̇2

k

ω3
k = ω̄3

k + . . .
(11)

Then, substituting the ωk powers into the quaternion
derivatives, and the quaternion derivatives into the discrete-
time quaternion integration of Eq. 9, the following expression
is derived:

qk+1 = qk ⊗
(

1 +
1

2
∆tω̄k +

1

2

(1

2
∆tω̄k

)2
+ . . .

)
+

+ qk ⊗
(
. . .
)

∆t3 + . . . (12)

Finally, the first term corresponds to the Taylor series of the
exponential of the pure quaternion 1

2 ω̄k∆t (see Eq. 5) and the
successive terms can be neglected, obtaining:

qk+1 = qk ⊗ e
1
2

(
ωk∆t+ 1

2 ω̇k∆t2
)

(13)

where the exponential factor represents the angular increment
in the orientation of a quantity equal to ωk∆t+ 1

2 ω̇k∆t2, as
pointed out previously (see Eq. 6). This integration formula
preserves the unitary 2-norm of the quaternion. An alternative
formula, more complex but possibly more accurate for a large
∆t, can be found in [23].

C. Kalman Filter Model

Based on the assumption that the only available measure-
ment is the output of robot forward kinematics, two Kalman
filters have been designed in order to estimate both the linear
and the angular variables (velocity and acceleration) of the
load: the former is a classic Kalman filter that accomplishes the
main task of the estimation of the linear acceleration, while the
latter is an extended Kalman filter (EKF) aimed at producing
an estimation of the load angular variables.

The general scheme of a Kalman filter used for differentia-
tion assumes the following dynamic model for the state x and
the measurement y:

xk+1 = Axk + wk

yk = Cxk + νk
(14)

where A and C are constant matrices, w is the process noise
with covariance matrix Q and ν is the measurement noise
with covariance matrix R. In differentiation applications, it is
generally assumed that the process noise on the higher order
derivative is the largest, while the measurement is assumed to
be reliable and, therefore, its covariance is low.

The filtering loop consists of two phases: the former accom-
plishes the prediction of the next state vector x̂−k+1 by means
of Eq. 14 (with no noise applied) and the prediction of the
error covariance matrix P−k+1:

x̂−k+1 = Ax̂k (15)

P−k+1 = A PkA
T + Q (16)

Then, the second phase performs a correction of the pre-
dicted variables based on the Kalman gain Kk, computed as
follows:

Kk = P−k+1C
T
(
C P−k+1C

T + R
)−1

(17)

x̂k+1 = x̂−k+1 + Kk

(
yk+1 −Cx̂−k+1

)
(18)

Pk+1 =
(
I−KkC

)
P−k+1 (19)

This general structure is applied to the linear filter proposed
in this work, in which the state vector xl contains the position
p, the linear velocity v and the linear acceleration a:

xl =




p
v
a


 = [x, y, z, vx, vy, vz, ax, ay, az]

T (20)

In this case, the evolution law exploits the Euler integration,
assuming constant acceleration during two consecutive time
steps. Therefore, the prediction step is accomplished by means
of the following dynamic matrix:

Al =




I3×3 ∆tI3×3
1
2∆t2I3×3

03×3 I3×3 ∆tI3×3

03×3 03×3 I3×3


 (21)

where I is the identity matrix and 0 is the matrix of zeros.
The available measurements yl for the correction step concern
the load position, extracted from robot kinematics, so that:

yl = Clxl =
[
I3×3 03×6

]
xl (22)

The EKF scheme exploited for the estimation of the angular
variables differs from the general structure in terms of the
state evolution part of Eq. 14, that is replaced by a nonlinear
function f :

xk+1 = f(xk) + wk (23)

Regarding the other filter equations, the matrix A is replaced
by the Jacobian matrix F, with:

F =
∂f

∂x

∣∣∣∣
x=x̂

(24)

In more details, the state vector xa of the angular filter
contains the quaternion representing the orientation of the load,
as well as the angular velocity and the angular acceleration in
the form of pure quaternions (scalar parts are omitted):

xa =




q
ω
ω̇


 = [qw, qx, qy, qz, ωx, ωy, ωz, ω̇x, ω̇y, ω̇z]

T (25)

The prediction step of the filter replaces Eq. 15 with a
nonlinear one based on f , that in this case includes the ex-
ponential integration of Eq. 13, while the angular velocity and
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the angular acceleration follow the Euler integration formula,
that is linear in the state variables:




q̂−k+1

ω̂−k+1
ˆ̇ω−k+1


 =




q̂k ⊗ e
1
2

(
ω̂k∆t+ 1

2
ˆ̇ωk∆t2

)

ω̂k + ˆ̇ωk∆t
ˆ̇ωk


 (26)

The correction step of the filter involves the acquisition of
the orientation measurements from the system, expressed as
unit quaternions. They are grouped into the vector ya and
related to the state by means of the matrix Ca:

ya = Caxa =
[
I4×4 04×6

]
xa (27)

More details about the initialization of the covariance ma-
trices Ql, Rl, Qa, and Ra, will be given in Sec. V.

IV. LOAD COMPENSATION AND HUMAN-INPUT
DETECTION

Model-based compensation of non-contact F/T contributions
from the sensor measurements requires, in addition to the
dynamic estimates provided by the Kalman filter described in
previous section, an accurate knowledge of mass, COM and
inertia tensor of the load. In this paper, whose focus is on
Kalman filter design and human-robot interaction, we assume
that such parameters are known in advance. Practical appli-
cations in a real industrial environment would require online
calibration of the load features, as described in [24] and more
recently in [25], using methods that can be straighforwardly
integrated in the framework proposed here. The rest of the
section describes the computational process for contact F/T
estimation and introduce additional steps required for human
input detection.

The raw measurement Fs from an F/T sensor mounted as
shown in Fig. 1 includes a sum of three terms: the non-
contact one Fnc = [fnc, τnc]

T , the contact one Fc and an
offset Fo. The latter is a temperature-dependent contribution,
typical of strain gage-based devices, that can be usually zeroed
periodically using a tare function embedded in the F/T sensor.
Knowing the mass of the load m, the location of its COM
cs =

[
csx, c

s
y, c

s
z

]
(w.r.t. the F/T sensor frame), its 3×3

inertia tensor Is (as seen from the F/T sensor frame) and,
of course, velocities/accelerations of the F/T sensor frame, the
non-contact term can be computed as follows [7]:

[
fnc

τnc

]
=

[
m(as − gs) + ω̇s×mcs + ωs×(ωs×mcs)
Isω̇s + ωs×Isωs + mcs×as −mcs×gs

]
(28)

The previous equation can be reworked to highlight its
linear dependency from the load inertial parameter vector
Φs

l =
[
m,mcsx,mcsy,mcsz, I

s
xx, I

s
xy, I

s
xz, I

s
yy, I

s
yz, I

s
zz

]T , obtaining
the matrix form:

Fnc = Vs(as, ωs, ω̇s, gs)Φ
s
l (29)

in which Vs(. . . ) is a 6×10 matrix including veloci-
ties/accelerations and elements of the gravity vector gs, ex-
pressed in the current F/T sensor frame.

If the load cannot be detached easily from the end-effector,
force and torques of the offset term [fo, τ o]

T can still be
eliminated with the help of Eq. 29. In fact, if the loaded F/T

sensor is zeroed in a static initial condition with a known
orientation, then it is necessary to add to subsequent readings a
pseudo-gravitational term Fginit = Vs(0,0,0,gsinit)Φ

s
l . This

offset zeroing operation should also be repeated periodically,
during a pause of the robotic task, to cope with temperature
variations and slow drifts.

The computation of contact F/T is based on uncertain quan-
tities, namely load parameters, whether they are determined
offline or estimated online, and estimates from the Kalman
filter. Therefore, its expression should be written as follows:

F̂c = Fs − F̂nc + F̂ginit (30)

Because of such uncertainties, it is necessary to define a
threshold-based logic for the actual contact detection. Assum-
ing that all of the 19 uncertain variables are grouped in the
vector Θ =

[
âs, ω̂s, ˆ̇ωs, Φ̂

s

l

]T
and that each element Θj of

the vector is affected by an uncertainty ∆Θj , the propagation
of uncertainties in the nonlinear function of Eq. 29 can be
written as follows, denoting with F i• the i-th component of a
6D F/T vector (i.e. F 1

• = fx• , F 4
• = τx• ):

∆F̂ inc =

√√√√
19∑

j=1

(
∂F inc
∂Θj

)2

(∆Θj)
2 (31)

In the case of the variables estimated with Kalman filtering,
the uncertainty can be defined (neglecting correlations) as the
square root of the diagonal terms in the error covariance matrix
P, multiplied by 2 to obtain a 95% confidence level. In the
case of load parameters, unless they are obtained with an
online identification procedure (that would provide a similar
information about their variance), an arbitrary confidence
level can be specified. Finally, the adaptive threshold can be
defined, with an additional and constant safety margin Fmin,
as follows:

Fth = ∆F̂nc + Fmin (32)

Another important aspect that must be taken into account for
the purpose of human-input detection is the spectral content of
the contact signal. Several authors pointed out that intentional
human stimuli have the most dominant frequency components
within a band from 0 to at most 5 Hz (possibly less),
while accidental collisions can be commonly detected as high-
frequency (i.e. higher than 10 Hz) peaks [5], [4], [3]. Since
our aim is to directly exploit the former components as an
input to the admittance control scheme of Fig. 2, we assume
that the output of Eq. 30 is further processed by a low-pass
filter to obtain F̂cf , as an evaluation of the human intentional
contact. Different tunings (i.e. with higher cutoff frequencies),
of this low-pass filter could eventually be necessary for the
execution of other tasks, involving autonomous behavior and
robot-environment contacts. In the latter case, especially when
stiff enviroments are considered, tuning of the filter would
also influence the stability of the contact transition behavior.
However, this issue has not been addressed so far in our
experiments.
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Finally, the threshold-based evaluation of the filtered contact
estimation for human-input detection can be written, for each
component of the F/T vector, as follows:

F̂ ich =





F̂ icf − F
i
th if F̂ icf > F ith

F̂ icf + F ith if F̂ icf < −F
i
th

0 otherwise

(33)

V. EXPERIMENTAL RESULTS

The proposed control scheme has been implemented using
the Orocos [26] real-time framework and tested on a KUKA
LWR 4+ (workspace radius 800 mm, rated payload 7 kg),
equipped with a 6-DOF F/T ATI Mini45 IP65 (measuring
range ± 145 N on X-Y, ± 290 N on Z, ± 5 Nm on all
axes, resolution 1/16 N - 1/752 Nm). It is important to remark
that even if the KUKA controller directly supports compliant
control modes (i.e. Cartesian or joint impedance), in this
context only direct/inverse kinematics and joint space (non-
compliant) position control functionalities have been used, in
order to emulate the features of a common industrial robot
with stiff low-level control.

A. Kalman filter evaluation

The first tests were made to evaluate the computational
efficiency and the reliable convergence of the quaternion-
based Kalman filter. The latter is crucial to preserve a stable
interaction behavior of the proposed admittance controlled
robotic system. The full implementation of the linear and an-
gular estimation, using the Eigen library [27], requires a mean
execution time of 408 µs on a PC with an Intel R© CoreTM i5-
2300 CPU @2.80GHz×4, 8Gb RAM and Ubuntu 14.04 OS.
Moreover, the EKF did not show any convergence issue with
sampling times of up to 100 ms, even though the quality of
the estimate is acceptable for our load compensation purposes
only with sampling times up to 10 ms. During the reported
experiments, the Kalman filter rate was fixed to 500 Hz (the
same sampling frequency was used for F/T measurements
and admittance control). Moreover, after proper tuning to
achieve a good tradeoff between dynamic response and output
smoothness, the covariance matrices of process noise were
set to Ql = diag(0, 0, 0, 10−6, 10−6, 10−6, 10−2, 10−2, 10−2) and
Qa = diag(0, 0, 0, 0, 10−6, 10−6, 10−6, 10−2, 10−2, 10−2), while
those of measurement noise to Rl = 10−10I3×3 and Ra =

10−10I4×4. This choice follows the rule of thumb described in
Sec. III-C.

As shown in Fig. 3 and Fig. 4 the Kalman filter is a
mandatory alternative to numerical differentiation (at the same
sampling rate), here calculated using the first order deriva-
tive operator for homogeneous transformation matrices, called
diff() in the Orocos Kinematics Dynamics Library (KDL)
[28], and subsequent differentiation of the diff() result to
obtain angular accelerations. The latter, in particular, are too
noisy to be useful and processing them with an additional filter
(in these experiments, a low-pass FIR filter with 20 Hz cutoff
frequency, designed using the Parks-McClellan algorithm, that
guarantees equiripple magnitude and linear phase response) is
not a viable alternative, because it introduces an undesirable

(i.e. in terms of real-time compensation of load dynamics)
phase lag, negligible in a properly tuned Kalman filter.
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Several authors describe the use of inertial sensors (i.e.
accelerometers for linear accelerations and gyroscopes for
angular velocities) to extract information about higher order
dynamic variables of a robot [24], [8]. Therefore, we compared
the outputs of the proposed Kalman filter with those measured
from an Inertial Measurement Unit (IMU), namely a 9DOF
Razor by SparkFun Electronics (measuring range ± 16 g,
13-bit resolution, on accelerations and ± 2000 deg/s, 16-bit
resolution, on angular rates), mounted on the end-effector of
the KUKA robot. Since the range and resolution of these ac-
celerometers do not allow a fair comparison, only angular rates
will be considered in the following. The used IMU embeds
digital low-pass filters with configurable cutoff frequency, set
to 200 Hz for gyroscopes. As shown by Fig. 5 the latter sensors
provide accurate values, though the Kalman filter output is still
smoother, but then angular accelerations should be estimated
using again numerical differentiation and amplifying noise.
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B. Effects of load dynamics in absence of contacts

With regard to the estimation of contact forces, we first
tested the computational process of Sec. IV without low-
pass filters and thresholds, mounting as load an aluminium
cylinder (1.042 kg mass, 3.6 cm height, 11.5 cm diameter) and
forcing point-to-point free motions (i.e. without contacts with
environment or humans) with direct joint space commands.
Fig. 6 shows measured forces and estimated contact forces
during a motion in which the linear velocity of the load
reached 1 m/s (four times faster than the limit prescribed by
ISO 10216 during a cooperation with a human), with a maxi-
mum linear acceleration of 3 m/s2. As can be seen, estimated
contacts are close to zero, so that the non-contact effect is
correctly eliminated even during such a fast motion and its
acceleration/deceleration phases. In these transients, residual
oscillations are visible in the contact estimation, but were not
observed in the outputs of the Kalman filter. An explanation of
this effect could be related to the structural flexibilities in the
robot and especially in the mounting adapters for F/T sensor
and load. Since such effects would instead be captured by
an IMU mounted near the load, the proposed Kalman filter
could be extended to embed fusion of measurements from
these sensors, if higher accuracy is required.

During the same free motion tests, the adaptive threshold
parameters were tuned and verified. As shown in Fig. 7, the
choice of the model-based adaptation mechanism defined by
Eq. 32 allows to avoid false positive contact detection, that
would instead be possible with a fixed threshold. After such
experiments, the modeling uncertainty was fixed to 2% of the
nominal value on all load parameters and the safety margin to
Fmin = [0.4, 0.4, 0.4, 0.1, 0.1, 0.1]T .

C. Human input detection tests

Finally, the full control scheme has been tested during
a manipulation task emulating a human/robot collaboration
for transportation of a large object. The task requires the
human to push the object carried by the robot and force the
latter to compliantly follow the F/T stimuli, as detected by
the previously described threshold-based logic. In addition
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to the adaptive threshold parameters mentioned above, the
contact force estimation has been processed by a 4-th order
Butterworth low-pass filter with a 2.5 Hz cutoff frequency,
a band compatible with suggestions taken from the literature
[5]. The plot of Fig. 8 shows that the contact force estimate,
after filtering and thresholding, provides a smooth input to the
admittance controller governed by Eq. 1 during intentional
human/robot interactions. Instead, when the load is hit acci-
dentaly by a rigid object, the high-frequency peaks that are
visible in the raw contact force estimates are eliminated by
the low-pass filter and do not cause abrupt robot motions.

Since the human intent, detected by contact force estima-
tion, is the only input of the mass-damper interaction model,
its smoothness guarantees a corresponding smooth behavior of
the robot, as can be observed in the accompanying video.

VI. CONCLUSION

The paper has presented a control framework that is de-
signed to extend pHRI applications on a broader industrial
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context, including plants in which industrial robots with closed
and stiff control systems are already installed. The proposed
framework is based on admittance control and force/torque
(F/T) sensing of the contact between the robot and its environ-
ment, with the specific intent to detect the input from a human
user. To compensate the effect of a large payload possibly
installed on the end-effector of the robot, the measurements
of robot pose, which are always available from any industrial
robot controller, are processed by a quaternion-based Kalman
filter to estimate the velocities/accelerations of the load.

In future works we will compare the performance of the pro-
posed Kalman filter with those obtained using an Unscented
Kalman Filter (UKF), for quaternion processing. Moreover,
we aim to characterize more precisely the human intent as
detected by the contact force estimation process described in
the paper, with the aim to predict the task that he/she wants
to infer to the robot and select and adapt predefined motion
primitives for their online execution. This feature would better
support human operators during the execution of manipulation
operations of industrial interest, like pick-and-place or parts
assembly. Reconfiguration of the system according to the
task and the operating mode (i.e. teaching or autonomous
execution), particularly concerning the cutoff frequency of
contact F/T filtering, will also be an important part of future
experiments.
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