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Abstract. Shape-memory alloys are active materials, their amazing thermo-
elecromechanical behavior is at the basis of a variety of innovative applications.
Many models have been set forth in order to describe this complex behavior.
Among these the so-called Souza-Auricchio model appears as remarkably sim-
ple in terms of mechanical assumptions yet accurate in the description of three-
dimensional experiments and robust with respect to approximations. Our aim
is to survey here the current literature on the Souza-Auricchio model, with a
specific focus on modeling.

1. Introduction. Shape-memory alloys (SMAs) are usually referred to as active

materials for considerably large strains can be activated by either thermal, mechani-
cal, or magnetic stimuli [37, 74, 47]. At high temperatures SMAs completely recover
strains as large as 8% during loading-unloading cycles (note that conventional steels
plasticize around 1% strains). This amounts to the so-called super-elastic behavior
of SMAs. At lower temperatures, deformation are permanent. Still, the specimen
can be forced to recover its original shape by a thermal treatment: this is the
shape-memory e↵ect. Finally, some SMAs are ferromagnetic: completely recover-
able strains can be induced by the action of an external magnetic field entailing the
so-called magnetic shape-memory e↵ect. See Figure 1 for a schematic representation
of these three e↵ects

SMAs are metallic alloys: specimens are composed by a collection of one or more
adjacent crystals with di↵erent orientations. We refer to these as the single-crystal

and the polycrystalline situation, respectively. The complex macroscopic behavior
of SMAs is the e↵ect of an abrupt and di↵usion-less solid-solid phase transforma-
tion between di↵erent crystallographic configurations (phases): the austenite and
the martensites. Austenite is mostly cubic and it is energetically favored at high
temperatures and low stresses. Martensites are lower symmetry crystallographic
variants (tetrahedral, orthorhombic, monoclinic, among others) and are favored at
low temperature [46, 47, 48]. By cooling an austenitic sample below some critical
temperature each crystals trasforms into martensite and specific variants are cho-
sen in such a way to minimize macroscopic work. This result in the emergence
of characteristic microstructures such as laminates and twins [18]. On the other
hand, by applying stress or, in some cases, a magnetic field, a specific martensitic
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Figure 1. Schematic illustration of the super-elastic (left), shape-
memory (center), and magnetic e↵ects (right).

variant is preferred with respect to other and to austenite. This triggers a phase
transformation which then results in a macroscopic strain a↵ect.

The amazing behavior of SMAs, originally observed in the ’60, has attracted
enormous attention ever since. The motivation for such an interest is the unprece-
dented applicative possibilities o↵ered by SMAs. In particular, these are nowadays
exploited in a variety of innovative devices including sensors, actuators, MEMS
and in a number of di↵erent fields from Biomechanics and Medical Engineering, to
Seismic and Aerospace Engineering.

The paramount importance of SMAs in applications has triggered an extremely
active research activity in the last decades and a whole menagerie of models has
been proposed by addressing di↵erent alloys (NiTi, CuAlNi, Ni2MnGa, among the
most important) at di↵erent scales (atomistic, microscopic with microstructures,
mesoscopic with volume fractions, macroscopic) and emphasizing di↵erent princi-
ples (minimization of stored energy vs. maximization of dissipation, phenomenology
vs. rational crystallography and Thermodynamics) and di↵erent structures (single
crystals vs. polycrystals and structures) [111]. These models have of course am-
bitions for di↵erent ranges of applicability (from lab single-crystal experiments to
commercially exploitable tools) and di↵erent abilities to fit particular experiments
and to explain microstructures, stress/strain relations, or hysteresis. It is beyond
our purposes to even attempt a review of the huge literature on these themes. By
restricting to the case of macroscopic thermomechanically coupled systems, which
are the most relevant for our purposes, we shall however minimally mention the
modeling propositions in [8, 9, 53, 56, 73, 105, 106, 107, 108, 125]. From the more
mathematical perspective, a distinguished role is played by the Frémond model
[46, 47, 48] and the Falk-Konopka model [43, 44]. These have received extended
consideration from the point of view of existence, approximation, and qualitative
behavior of solutions. The reader is referred to [25, 29, 30, 49] and [26, 98, 133] and
the references therein for a collection of results.

This survey is aimed at reporting on a specific macroscopic model originally pro-
posed by Souza, Mamiya, & Zouain [121] and then combined with finite elements
by Auricchio & Petrini [11, 12, 13]. We refer to this as the Souza-Auricchio model
(SA) in the following. Our interest in the SA model is motivated from one hand
by its capability of reproducing the macroscopic behavior of SMAs within a simple
variational frame and from the other hand on its amenability to a complete math-
ematical and numerical discussion. Our survey is intended to highlight the indeed
remarkable features of the SA model, to describe its extensions to thermal ferromag-
netic and plastic couplings, and to record the available corresponding mathematical
results.
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By reflecting the progressive development of research of the SA model, this sur-
vey is divided into two parts. Sections 2-4 are devoted to the introduction and
the mathematical settlement of the SA model in its original isothermal setting.
These sections are intended to provide some sequential discussion. Then, the many
developments and extensions of the original isothermal theory are collected in Sec-
tions 6-9.

2. Souza-Auricchio model. The aim of this section is that of introducing the
SA model in its original isothermal setting. Reference here are the original papers
[11, 12, 13, 121] as well as the mathematical formulation in [10].

2.1. General features of the SA model. The SA model is a phenomenological
model of variational type: the evolution of the state of the material is determined
by the specification of the corresponding energy and the choice of the dissipation
mechanism. This variational structure allows to frame this model within the by-now
classical theory of rate-independent evolutions [81] and, in particular, to discuss
existence of solutions, approximations, and discretizations. At the same time, it
allows for direct extensions in order to include additional phenomena and features.

The SA model is an internal-variable-type model: in the basic isothermal situa-
tion the material phase structure is described by a tensorial variable which represent
the inelastic strain of the medium. This choice allows for the possibility of accu-
rately describing reorientation dynamics in the martensites, that is the passage from
one variant to another.

The most striking feature of the SA model is the extremely limited number of
material parameters involved. As a matter of example, the full three-dimensional
mechanical evolution (isothermal, fully isotropic) requires the specification of just
7 parameters (note that linearized elastoplasticity with linear kinematic hardening
already requires 5 parameters). This small number of parameters can be very
e↵ectively identified from ordinary uniaxial experiments [16]. Upon this minimal
parameter fitting, the SA model has ben proved capable of reproducing well the
features of uniaxial and biaxial super-elastic as well as strain-temperature tests.

Before closing this introductory discussion let us also record some drawbacks of
the SA modeling perspective. At first, one has to mention the very crude descrip-
tion of unsaturated transformation dynamic (especially the internal structure of
hysteresis loops) as well as its simplified tracking of the particular material phases.
This lack of detail is to be related with the macroscopic tenet of the SA model.

Additionally, the SA features a strong nonlinear character. This in turn requires
a dedicated mathematical and numerical treatment. In particular, the integration
of the SA model material description within commercial available finite element
codes usually asks for some specific care.

2.2. Tensor notation. In the following bold Latin letters stand for vectors and
3-tensors, bold Greek symbols are for 2-tensors, and double-capital letters are for
4-tensors, all of which in R

3. Given the 2-tensors ↵, � 2 R
3⇥3, the 3-tensor A 2

R
3⇥3⇥3, and the 4-tensor A 2 R

3⇥3⇥3⇥3 we classically define ↵:� 2 R, A:�,�:A 2
R

3, and A� 2 R
3⇥3 as (summation convention) ↵:� := ↵ij�ij , (A:�)i := Aijk�jk,

(�:A)i = �jkAjki, and (A�)ij := Aij`k�`k, respectively. The space of symmet-
ric 2-tensors is denoted by R

3⇥3
sym and endowed with the natural scalar product

↵:� := tr(↵�) where tr(↵) := ↵ii and corresponding norm |↵|2 := ↵:↵. More-
over, R

3⇥3
sym is orthogonally decomposed into R

3⇥3
sym = R

3⇥3
dev � R12, where R12
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is the subspace spanned by the identity 2-tensor 12 and R
3⇥3
dev is the subspace

of deviatoric symmetric tensors. In particular, for all ↵ 2 R
3⇥3
sym, we have that

↵ = dev↵+ (tr↵)12/3.

2.3. State variables. Let ⌦ ⇢ R
3 denote the reference configuration of the body

and denote by u : ⌦ ! R
3 its displacement and by ✓ : ⌦ ! R

+ its absolute
temperature. Moving within the small-deformation polycrystalline regime, we shall
additively decompose the linearized strain " = "(u) = (ru+ru>)/2 as " = "el+⇠.
Here, "el = C

�1� ⇢ R
3⇥3
sym corresponds to the elastic part of the strain, C is isotropic

elasticity tensor, and � is the stress. The tensor ⇠ 2 R
3⇥3
dev is an internal variable

standing for the inelastic strain, also referred to in this context as transformation
strain. In particular, ⇠ is assumed to be trace-free, as experiments suggests that
martensitic transformations are approximately isochoric. The quantity |⇠| serves
as a measure of the martensitic content of the specimen and fulfills |⇠|  ✏L where
✏L is the maximal strain which is obtainable by martensitic reorientation. On the
other hand, ⇠/|⇠| is an indicator of the local orientation of martensites.

In the single-crystal regime we describe the martensitic phase-fraction distribu-
tion by the vector p 2 R

v taking values in the simplex

S := {pi � 0, p1+ . . .+pv  1}.

The situation p = 0 corresponds then to pure austenite whereas p 2 @S =
{p1+ . . .+pv = 1} means pure martensite. The corresponding inelastic strain will
be given by ⇠(p) = ⇠kpk where ⇠k is the stress-free inelastic strain corresponding
to phase k. As a matter of example, we record that in the cubic-tetrahedral system
v = 3 and a suitable choice for ⇠k is ⇠k = (3✏L/

p
6) dev(ek⌦ek) where ek indicates

the k-th coordinate versor.

2.4. Energy. The statics of the medium is described by the Helmholtz free-energy

density

 =  (", ⇠, ✓) = c✓(1� log ✓) +
1

2
("�⇠):C("�⇠) +

1

2
⇠:H⇠ + f(✓)|⇠|+ I(⇠).

The parameter c > 0 stands for heat capacity density and scales the purely caloric
part of the free energy. The quadratic terms in  correspond exactly to the free-
energy of linearized elastoplasticity with linear kinematic hardening. In particular,
H denotes a suitable fourth-order hardening tensor. The last two terms above
are instead characteristic of the SA model. The value f(✓) corresponds to the
martensite-to-austenite equilibrium stress at temperature ✓ and is measured in MPa.
A handy choice (which is however not allowed in the non-isothermal situation, see
Section 6) is f(✓) = �(✓�✓⇤)+ = �max{✓�✓,0} where ✓⇤ is the martensite-to-
austenite transition temperature at zero stress and � > 0. Finally, I : R3⇥3

dev ! [0,1]
is the indicator function of the set {|⇠|  ✏L} that is I(⇠) = 0 if |⇠|  ✏L and
I(⇠) = 1 otherwise. In particular, the constraint |⇠|  ✏L is enforced at finite
energy.

For the sake of later reference, we can equivalently express the energy of the
medium in terms of its Gibbs free-energy density as

G(�, ⇠, ✓) = c✓(1� log ✓)� 1

2
�:C�1� � �:⇠ +

1

2
⇠:H⇠ + f(✓)|⇠|+ I(⇠).

Both for the Helmholtz and the Gibbs free energy, the single-crystal situation is
obtained by replacing ⇠ by ⇠(p) and I(⇠) by the indicator function IS(p) of the
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simplex S. Note that we will use the same symbols  and G also in the single-
crystal case, without introducing new notation.

2.5. Constitutive equations. We classically obtain constitutive relations from
the variations of the free energie with respect to its variables. In particular, we
have that the entropy s, the stress �, and the thermodynamic force ⇣ associated to
⇠ read

s = �@✓ = �f
0(✓)|⇠|+ c log ✓, (1)

� = @" = C("�⇠), (2)

⇣ = @⇠ = �� +H⇠ + �(✓�✓⇤)+@|⇠|+ @I(⇠). (3)

Here and in the following the symbol @ corresponds to the subdi↵erential in the
sense of convex analysis. In particular, @|⇠| = ⇠/|⇠| if ⇠ 6= 0 and @|0| = {|⇠|  1}
whereas @I(⇠) = ; if |⇠| > ✏L, @I(⇠) = R

+⇠/|⇠| if |⇠| = ✏L, and @I(⇠) = 0 if
|⇠| < ✏L. Note that we could equivalently deduce constitutive relations from the
Gibbs energy as " = @�(�G) and ⇠ = @⇣(�G).

In the single-crystal case we define the thermodynamic force associated to p as
q = @p . Along with the choice ⇠(p) = ⇠kpk we have

q = ��:E + �(✓�✓⇤)+@p|⇠(p)|+H⇠(p):E + @pIS(p)

where E = @p⇠(p) so that Eijk = ⇠
k

ij
.

2.6. Dissipation and evolution equation. In order to describe the evolution of
the medium we shall prescribe a (pseudo-)potential of dissipationD : R3⇥3

dev ! [0,1)

of Von-Mises type, namely D(⇠̇) = R|⇠̇| where R > 0 is the activation radius. Then,
the flow rule consists in the classical normality principle @D(⇠̇) 3 �⇣. Indeed, by
using also position (3) we obtain the constitutive equation

@D(⇠̇) + @⇠ (", ⇠, ✓) 3 0

as a generalized balance between the system @⇠ of the conservative forces and
the system @D of the dissipative forces. Given the above choices the constitutive
relation for the evolution of the material reads

R@|⇠̇|+H⇠ + �(✓�✓⇤)+@|⇠|+ @I(⇠) 3 � (4)

In the single crystal setting along with ⇠(p) = ⇠kpk the latter constitutive rela-
tions bears the form

R✏L@

X

k

|ṗk|+H⇠(p):E + �(✓�✓⇤)+@p|⇠(p)|+ @IS(p) 3 �:E. (5)

Let us remark once again that the constitutive equation, either (4) or (5), features
just 7 material parameters, namely C (two Lamé constants in the isotropic case),
R, H (one parameter in the isotropic case), �, ✓⇤, and ✏L.

The SA model is dissipative as one directly computes

� ̇ + �:"̇ = (��@" �):"̇� ⇣:⇠̇ = D(⇠̇) � 0

for all su�ciently smooth evolutions, and analogously in the single-crystal setting.
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2.7. Illustration of the model behavior. We shall now comment on how the
constitutive relation (4) replicates the super-elastic behavior. In order to check this,
let us reduce for the sake of simplicity to the 1D situation. Indeed, we shall consider
the reduced 1D constitutive relation

R@|⇠̇|+H⇠ + �(✓�✓⇤)+@|⇠|+ @I(⇠) 3 �. (6)

Assume to be given a su�ciently high temperature so that we are in the super-
elastic regime. In particular, let ✓ > R/� + ✓⇤ so that �(✓�✓⇤)+ = �(✓�✓⇤) > R.
Take ⇠(0) = 0 and proceed by loading by increasing the stress t 7! �(t). Then, ⇠̇
remains 0 until �(t) = �(✓�✓⇤)+ +R. Afterwards, ⇠̇ > 0 so that, from relation (6),

R+H⇠ + �(✓�✓⇤)+ = �.

In particular, ⇠ progressively grows with � until saturation ⇠ = ✏L.
By unloading from the saturated ⇠ = ✏L regime one obtains that ⇠̇ = 0 is ad-

missible as long as � � H✏L + �(✓�✓⇤)+ � R > 0. By further unloading the
material trasforms again (⇠̇ < 0) and we reach the nontrasformed case ⇠ = 0 for
�  �(✓�✓⇤)+ � R. That is, the stress-strain relation is of play hysteretic type
[26, 128]. In particular, the only value of ⇠ which is compatible with the stress-free
state � = 0 is ⇠ = 0. This is exactly the fundamental feature of the super-elastic
e↵ect.

The illustration of the shape-memory e↵ect is more subtle. Assume that ✓ < ✓⇤.
Then, the constitutive relation (6) in one dimension reads

R@|⇠̇|+H⇠ + @I(⇠) 3 �

which is nothing but the constitutive relation of linearized elastoplasticity with
linear kinematic hardening, at least as long as |⇠| < ✏L. In particular, large de-
formations are not recovered and a loading-unloading cycle may leave a remanent
strain even at zero stress. On the other hand, by rising ✓ enough we have already
proved that the only admissible strain at zero stress is " = ⇠ = 0. In other words,
by heating the medium we restore the initial shape.

The above described material response is very schematic. Still, let us mention
that one can easily extend the model in order to capture more detailed features such
as nonsymmetric behaviors in tension and compression as well as transformation-
dependent materials parameters [16].

2.8. Relations with other models. As already mentioned in the Introduction,
the macroscopic modeling of SMAs has attracted much research in the last decades
a number of models have been set forth. We do not attempt here to review the cor-
responding huge literature but rather concentrate on outlining the main di↵erences
between the SA and some other modeling perspectives.

A classical reference model for SMAs is that of Frémond [46, 47] which has
been proved to be amenable to a quite comprehensive mathematical discussion
[25, 29, 30, 49, 123]. The crucial di↵erence between the SA and the Frémond model
relies in the description of the martensitic structure. Frémond’s model is grounded
on a mixing ansatz on free energies, basically available for an arbitrary number of
martensitic variants. Still, the corresponding analysis has been restricted to the
consideration of two martensitic variants only. When only two variants are present,
one can perform an elementary change of variables in the free energy in order to
make the thermomechanical coupling term bilinear. The drawback for this is that
the phase descriptor is a scalar and the description of martensite reorientation is out
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of reach. The SA model instead features a tensorial description of the material phase
making the description of reorientation amenable. Note that, the interpretation of
energy as a mixing is still available for the SA model, see [116].

The tenet of the Falk [43] and the Falk-Konopka [44] models is that the SMA
behavior originates by the specific the nonconvexity of the mechanical energy land-
scape and that internal-variable evolution is viscous. This line of thought has
been successfully followed in a series of papers on thermoviscoelasticity for SMAs
[19, 20, 33, 78, 79, 98, 103, 133, 134]. On the contrary, the mechanical part of the
energy of the SA model is indeed convex and the complex SMA behavior stems from
the interaction of energy and rate-independent dissipation instead. This amounts
to an enhanced robustness of the modeling with respect to approximations and
discretizations, see [10].

In [99, 100, 101, 102] one assumes that the thermomechanical coupling term in
the free energy is linear in the temperature ✓. This is particularly convenient as it
results in the uncoupling of thermal and mechanical variables in the internal energy.
This uncoupling however seems not to pair well with the specific case of SMAs.

Eventually, we shall mention that viscous elastic terms, possibly also viscous
internal-variable dynamics, albeit disputable form the modeling viewpoint are very
often considered in relation with three-dimensional SMA problems. One can check,
with no claim of completeness [1, 2, 17, 20, 58, 50, 114] for a collection of existence
results.

3. Quasistatic evolution. Let us proceed by recording in this section some varia-
tional setting for quasistatic evolution. Assume the reference configuration ⌦ ⇢ R

3

to be nonempty, open, connected, and Lipschitz. We decompose the boundary � as
� = �D \ �tr where �D and �tr are disjoint and �D has positive surface measure.
We define the cylinders ⌦T = ⌦⇥(0, T ), �T = �⇥(0, T ) and so on.

In the isothermal case, we shall be confronted with the quasistatic equilibrium
relations coupled with the material constitutive relation as

r·(C"(u)�⇠) = 0 in ⌦T , (7a)

R@|⇠̇|+H⇠ + �(✓�✓⇤)+@|⇠|+ @I(⇠) + @V (⇠) 3 C("(u)�⇠) in ⌦T , (7b)

u = 0 in �D
T
, �⌫ = g in �tr

T
(7c)

⇠(0) = ⇠0 in ⌦. (7d)

Here ⌫ stands for the outward unit normal to � and g : �tr
T

! R
3 is a given

traction at the boundary (we could consider also some body force in (7a) with no
particular intricacy). The functional V represents a suitable di↵erential operator.
Choices for V are

V1(⇠) =


2

Z

⌦
|D⇠|2, V2(⇠) = 

Z

⌦
|D⇠|, V3(⇠) =

1

2

Z

⌦
K(x, y)⇠(x):⇠(y)dx dy

(8)
for  > 0 and K 2 L

1(⌦⇥⌦;R3⇥3⇥3⇥3). Correspondingly, the symbol @V has to be
interpreted here as the (density of the) variational derivative of V , namely

@V1(⇠) = ��⇠, @V2(⇠) = �r·
✓

r⇠

|r⇠|

◆
, @V3(⇠)(x) =

Z

⌦
K(x, y):⇠(y)dy.

All the above functionals V bear a compactifying e↵ect (for K suitably singular at
x = y) and introduce a length scale in the model, to be compared with typical sizes of
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martensitic structures. The first quadratic functional gives rise to an easily handled
linear laplacian term in (7c) and, as such, is often encountered in this context. One
has however to notice that the choice of V to be quadratic entails the emergence of
di↵usion and transition layers and calls for the specification of boundary conditions
on ⇠. All these issues are usually regarded as troublesome for SMAs. On the
contrary, the second total variation functional still penalizes martensitic interfaces.
However it does not prevent ⇠ from possibly exhibiting jumps. This is a particularly
desirable feature in connection with shape-memory alloys where few-atoms-thick
martensitic-phase structures are observed. The advantage of the third choice V3 is
that it does not require the specification of boundary conditions, an often disputed
instance.

4. Existence and approximations. One of the crucial features of the SA model
is its amenability to approximations and discretizations. This in turn entails the
possibility of devising existence results, either at the level of material points and at
the three-dimensional level of quasistatic evolution. Evolution within the SA model
can be reformulated in the energetic sense, following Mielke & Theil [91]. We
shall minimally review the existence theory for energetic solutions in Subsection
4.1 and record the related results for the SA model in Subsection 4.2 and 4.3, for
the constitutive relation and the quasistatic evolution, respectively. Eventually, we
comment on space-discretizations in Subsection 4.5 and on general approximation
issues in Subsection 4.4.

4.1. Energetic solutions. We present a minimal aside on the existence theory
for energetic solutions, leaving all proofs, detail, and generalization to the papers
[91, 81]. We shall be concerned with the evolution of a state t 2 [0, T ] 7! q(t) 2
Q where Q is a suitable Banach space. We assume to be given an energy E :
[0, T ]⇥Q ! R and a positively 1-homogeneous dissipation D : Q ! [0,1]. The
evolution of q starting from some given initial state q0 follows the rate-independent
flow

@D(q̇(t)) + @qE(t, q(t)) 3 0 for t 2 (0, T ), q(0) = q
0
. (9)

We shall focus on a suitable weak formulation of the latter by saying that t 7! q(t)
is an energetic solution of (9) if q(0) = q

0 and, for all t 2 [0, T ],

q(t) 2 S(t) = {q 2 Q E(t, q)  E(t, bq) +D(bq�q) 8bq 2 Q}, (10)

E(t, q(t)) + Diss(q; [0, t]) = E(0, q0) +

Z
t

0
@sE(s, q(s))ds. (11)

Here Diss(q; [0, t]) corresponds to the supremum of
P

D(q(ti)�q(ti�1)) over parti-
tions {0 = t0 < t1 < · · · < tN = t}. The inclusion q(t) 2 S(t) is usually called global

stability whereas (11) is nothing but energy conservation. The advantage of deal-
ing with energetic solutions consists in reducing to a system of a static variational
inequality (10) coupled with a scalar equation (11) instead of the evolutionary vari-
ational inequality (9). A second remarkable advantage of the energetic formulation
is that of being gradient-free, both for the functionals and the solution. This is
particularly convenient for nonsmooth situations. We shall recall that the system
(10)-(11) (along with the initial condition) is equivalent to the strong formulation
(9) for convex energies (that is, for all cases considered in this section) and weaker
in all other cases.

Here and in the following we assume that E(t, ·) has compact sublevels for all
t, @tE exists and is linearly bounded by E, @tE(·, q) is absolutely continuous for
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all q, D is convex, continuous, and vanishes just in 0, and that q
0 2 S(0). Then,

an energetic solution can be obtained by time discretization by letting q0 = q
0 and

solving recursively the incremental minimization problem

min (E(ti, q) +D(q�qi�1)) for i = 1, . . . , N (12)

where {0 = t0 < t1 < · · · < tN = T}. The latter has at least a solution as
q 7! E(ti, q) + D(q�qi�1) is coercive and lower semicontinuous. In particular, by
indicating by ⌧ = max(ti�ti�1) and letting q⌧ be the right-continuous piecewise
constant interpolant of {q0, . . . , qN} on the partition one has that, up to not re-
labeled subsequences, q⌧ ! q point-wise in time where q is an energetic solution.
Moreover, we have that Diss(q⌧ ; [0, t]) ! Diss(q; [0, t]) and E(t, q⌧ (t)) ! E(t, q(t))
for all times.

4.2. Existence for constitutive relation. We are interested in the stress-driven
evolution in the material point. Namely, given a temperature ✓ > 0, a su�ciently
regular stress history t 2 [0, T ] 7! �(t) and an initial state ⇠0, one looks for t 2
[0, T ] 7! ⇠(t) solving the constitutive relation (4) such that ⇠(0) = ⇠0. This can be
set in the frame of Subsection 4.1 by letting q = ⇠, Q = R

3⇥3
dev , D(⇠̇) = R|⇠̇|, and

E(t, ⇠) = ⇠:H⇠/2 + �(✓�✓⇤)+|⇠| + I(⇠) � ⇠:�(t) so that @tE = �⇠:�̇(t). Hence,
one can build a solution to (4) by passing to the limit into time-discretization. In
particular, one can define ⇠0 = ⇠0 and solve iteratively the backward (implicit)
Euler scheme

R@|⇠
i
�⇠

i�1|+H⇠
i
+ �(✓�✓⇤)+@|⇠i|+ @I(⇠

i
) 3 �(ti) (13)

for i = 1, . . . , N . The latter has a unique solution as it corresponds to the successive
minimization of the uniformly convex functionals ⇠ 7! D(⇠�⇠i�1) + E(ti, ⇠). For
such a minimization one can quite e↵ectively develop suitable return-map-like algo-
rithms, in analogy to plasticity. By assuming � 2 W

1,1(0, T ) and ⇠0 2 S(0), and
by letting ⇠

⌧
denote the right-continuous piecewise interpolant of {⇠

i
}N
i=0 on the

partition, one gets that ⇠
⌧
! ⇠ 2 W

1,1(0, T ) point-wise and strictly in BV (0, T )
where ⇠ solves (4). The full strain " can then be readily reconstructed from relation
(2). Analogous considerations can be made in the single-crystal case of (5).

4.3. Existence for the quasistatic evolution. Assume to be given temperature
✓ > 0, a suitable initial value ⇠0, and the traction g 2 W

1,1(0, T ;L2(�tr;R3)). We
define q = (u, ⇠) and

Q = {u 2 H
1(⌦;R3) : u = 0 on �D}⇥ {⇠ 2 L

1(⌦;R3⇥3
dev ) : V (⇠) < 1},

and let D(q̇) =
R
⌦ R|⇠̇| and

E(t, q) = V (⇠)+

Z

⌦

✓
1

2
("(u)�⇠):C("(u)�⇠)+

1

2
⇠:H⇠+�⇤|⇠|+I(⇠)

◆
�
Z

�tr

g·u

where �⇤ = �(✓�✓⇤)+. The latter choices fit into the frame of Subsection (4.1). In
particular, E(t, ·) has compact sublevels with respect to the weak⇥strong topology
in Q and D is continuous in L

1. Moreover, the power of external actions @tE is
linear in u, hence regular. In particular, one can obtain a solution to the quasistatic
evolution problem by passing to the limit in the time-discrete problems (12), each
of which corresponds to a nonlinear elliptic system.

Before closing this subsection let us remark again the crucial role played by the
nonlocal operator V for it entails strong compactness in L

1 for the ⇠ variable. No
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existence result for solutions in function spaces is presently available when omitting
this compactification.

4.4. Regularization. The energy E from Subsection 4.3 is nonsmooth in ⇠. This
nonsmoothness is indeed crucial for the behavior of the model, as illustrated in
Subsection 2.7. On the other hand, a smooth energy would allow a simpler analyt-
ical and computational treatment. As such, one is brought to the consideration of
regularized energies depending on an extra user-defined parameter ⇢ > 0. In par-
ticular, one replaces the nonsmooth part �(✓�✓⇤)+|⇠|+I(⇠) by some regularization
obtained by penalization and smoothing as, for instance,

�⇢(⇠) = �(✓�✓⇤)+
p
⇢+|⇠|2 + 1

2⇢
((|⇠|�✏L)+)2.

This regularization does not alter the uniform convexity of the energy. It can
be then considered in the spirit of proving continuous dependence on data (and
hence uniqueness) of the solutions, both for the constitutive relation (4) and the
quasistatic evolution (7a)-(7b), see [10].

On the other hand, the regularization turns out useful in simulations. For in-
stance, the Euler scheme (13) can be the rephrased equivalently as the smooth
nonlinear equation

⇠
i
� ⇠i�1 = L

�1(�(ti)��⇢(⇠i)�H⇠
i
)

where L(⇠) = R@|⇠| + H⇠ has Lipschitz continuous inverseL�1. Hence, one can
tackle the problem with conventional methods.

By taking ⇢ ! 0 the (unique) solutions of the regularized problems converge
to solutions of the nonregularized ones (⇢ = 0) [10]. Moreover, the limit in the
regularization parameter ⇢ commutes with discretization in time. For a general
tractation of evolutive �-limit issues in rate-independent evolution the reader is
referred to [89].

4.5. Space discretization. In the 3D case of quasistatic evolution, the time dis-
cretization in (12) can be combined with space discretization in order to give rise
to a fully discrete scheme. In particular, one can introduce finite-dimensional sub-
spaces Qh ⇢ Q exhausting Q and define Dh and Eh to be D and E restricted to
Qh. Under suitable assumptions and for V (⇠) = (1/2)

R
⌦ |D⇠|2 one can prove that

the limit h ! 0 gives a solution to the space-continuous problem [85]. More pre-
cisely, by denoting by (uh⌧ , ⇠h⌧ ) the solutions to the fully-discrete and regularized
problem (see Subsection 4.4), under additional qualification on the domain ⌦ and
the initial state ⇠0, one can find that [86]

ku�uh⌧kH1 + k⇠�⇠
h⌧
k2
L2  C(h�/2 + ⌧

1/2)

for some 0 < � < 1, where (u, ⇠) solves the continuum problem.

5. Finite strains. Martensitic-transformation strains can be as large as 10%. As
such, the small-strain assumption may be questionable. Originally proposed in the
small-strain regime, the SA has been extended to finite strains in [41, 42] and then
reconsidered in [51]. The starting point is the multiplicative decomposition of the
deformation gradient Df = ⇠el⇠ : ⌦ ! GL+(3) = {det↵ > 0} where f : ⌦ ! R

3 is
the deformation, ⇠el 2 GL+(3) is the elastic part and ⇠ 2 SL(3) = {det↵ = 1} is
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the inelastic part of the deformation gradient [72]. The free-energy density of the
medium is given as

 (Df , ⇠, ✓) = W (Df⇠�1) + �(✓�✓⇤)+|⌘|+
H

2
|⌘|2 + I(⌘)

where ⌘ = (⇠>⇠�12)/2 is the so-called Green-St. Venant tensor and, H > 0 is
a hardening modulus. Here, W is a polyconvex, isotropic, and frame-indi↵erent
hyperelastic energy. In particular, we can allow for W (⇠el) ! 1 for det ⇠el ! 0+.
A possible choice for W is terms of its first and second invariants is proposed in
[42].

We can equivalently reformulate the model in terms of the right Cauchy-Green

deformation tensor �el = ⇠>el⇠el and its inelastic analogue � = ⇠>⇠ by letting  =
 el + tr where  el(�el) = W (⇠el) and  tr(�, ✓) = �(✓�✓⇤)+|⌘|+ (H/2)|⌘|2 + I(⌘).

By letting ! denote the second Piola-Kirchho↵ tensor ! = 2⇠�1
@ el⇠

�>, defin-
ing ⌧ = ⇠�1µ⇠�> � ↵ where µ = 2�el@�el

 el is the so-called Mandel stress and
↵ = 2@�el

 tr is the back-stress, the evolution of the medium is given by the asso-
ciative flow rule

�̇ = ⇣̇@⌧f(⇠, ⌧ )

along with the complementarity conditions ⇣̇ � 0, f  0, and ⇣̇f = 0. Here, the
yield function f is given by f(⇠, ⌧ ) = |dev(⇠⌧⇠>)|�R for some yield stress R > 0.

Along with the latter flow rule, the model is proved to be dissipative in [51]. In
particular, we check that all smooth evolutions fulfill the Clausius-Duhem inequality

� ̇ � s✓̇ + !:
1

2
�el � q·r✓

✓
� 0

so that the entropy-production rate is nonnegative. The reader is referred to [41,
42] for a computational assessment on the capability of the model and to [51] for
a variational reformulation in terms of energetic solutions and an existence and
discretization convergence proof for the constitutive relation.

In [41, 42] it is argued that, by considering small deformations, the finite-strain
model approaches the original small-strain one. This remark is presently just a
point-wise convergence argument for the involved functionals. It would be interest-
ing to develop a rigorous convergence analysis for energetic trajectories in the spirit
of the finite-to-inifinitesimal plasticity theory of [90].

6. Non-isothermal evolution. While the isothermal regime can be considered
to be satisfactory for describing the super-elastic e↵ect, the shape-memory e↵ect
is activated by temperature changes instead. To this end, one is clearly obliged to
step o↵ the isothermal regime.

6.1. Given temperature. When the body is thin in at least one direction and
mechanical cycles have a suitably low frequency one can assume that the heat pro-
duced in the specimen is immediately transferred to the surrounding environment
acting as a heat bath. Hence, by assuming the temperature to agree with a given
external temperature t 7! ✓(t) = ✓ext(t) for all times, one is interested in considering
a quasistatic evolution problem (7). This has been done in [87] and [84] in the poly-
crystal and single-crystal case, respectively. In both papers, the elasticity tensor
C = C(✓) is assumed to be smoothly dependent on ✓ in order to reflect the di↵erent
elastic behavior of austenite and martensite. Moreover, the thermoinelastic part of
the free energy f(✓)|⇠|+ I(⇠) is regularized in both ✓ and ⇠, see Subsection 4.4 and
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well-posedness of the problem is proved in the energetic sense. Some further exis-
tence result under weaker assumptions on ✓(t) and no regularization in ⇠ is reported
in [40].

6.2. Thermodynamic consistency. In order to include temperature evolution
in the model one is forced to complete the quasistatic problem (7) by the entropy
balance equation

✓ṡ+rq = �⇣:⇠̇ = D(⇠̇)

where q is the heat flux. For the sake of definiteness we now choose the Fourier
law q = �r✓ where  > 0 measures thermal conductivity. Along with the above
choices we obtain the heat equation

(c�✓f 00(✓)|⇠|)✓̇ � �✓ = R|⇠̇|+ ✓f
0(✓)|⇠|·. (14)

to be combined with suitable initial and boundary conditions.
The system (7)+(14) can be proved to be thermodynamically consistent as

� ̇ � s✓̇ + �:"̇� q·r✓
✓

= D(⇠̇) + 
|r✓|2

✓
� 0.

6.3. Unknown temperature, 1D. Note that the original choice f(✓) = �(✓�✓⇤)+
do not pair well with the computation in (14). This is not a mere matter of regularity
but rather a substantial thermodynamical obstruction. Indeed, by inspecting the
form of the entropy from (1) one realizes that, given ⇠ 6= 0 and fixed, the relation
✓ 7! s(✓) is strictly increasing i↵ � < c. As this basic requirement need to be fulfilled
in order for thermodynamic consistency to be ensured, one is forced to resort to
some regularized version of f instead. Even more, from the heat equation (14) one
finds that indeed c � f

00(✓)|⇠| serves as an e↵ective heat capacity. This induces a
second restriction on the possible choice of f as the relation c � f

00(✓)|⇠| > 0 have
to be ensured in order to preserve dissipativity (that is, the parabolic nature of the
system).

These issues have been analyzed in [67, 68] in the one-dimensional case. In
particular, by introducing suitable smallness assumptions on f , it is proved that
the system (7)+(14) admits a unique solution. Note that a counterexample to
existence when such smallness assumptions are not fulfilled is recorded in [67].

6.4. Unknown temperature, 3D. Existence results in three space dimensions for
the fully coupled thermomechanical system (7)+(14) are presently not available.

Still, one has to mention some related existence arguments which are obtained by
assuming additional smoothness and considering viscosity [99, 100, 101, 102, 103,
113, 117]. These modifications are intended to tame the strongly nonlinear character
of the dissipation, see the right-hand side of equation (14). The e↵ect is however that
the model substantially deviate from the original SA formulation. In particular, one
has to mention that in all of the above contributions, the thermomechanical energy
term is assumed to be linear in ✓ in such a way that thermal and mechanical e↵ects
decouple in the internal energy expression. This is not completely satisfactory with
respect to the SA model where the thermomechanical coupling is modulated by the
nonlinear function f . This linearity ansatz is removed in the recent [115, 116] which
will be described in Subsection 9 below.
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6.5. Variational formulation via GENERIC. Let us present here the possi-
bility of providing a variational formulation of the fully coupled thermomechanical
material evolution by resorting to the GENERIC formalism in thermoplasticity
from [82, 83]. This possibility is particularly remarkable as it allows to enlighten
the gradient structure underlying the full thermomechanical evolution.

Let us preliminarily compute the internal energy e by means of the classical
Helmholtz relation

e =  + ✓s = c✓ +
1

2
("�⇠):C("�⇠) +

1

2
⇠:H⇠ +

�
f(✓)�✓f 0(✓)

�
|⇠|+ I(⇠).

By restricting to an isolated system, we can introduce the energy, entropy, and dual
dissipation functionals as

E(u, ⇠, ✓) =
Z

⌦
e(u, ⇠, ✓)dx, S(⇠, ✓) =

Z

⌦
s(⇠, ✓)dx,

K⇤(u, ⇠, ✓;v⇠,v✓) =

Z

⌦
IR/✓

✓
v⇠ �

v✓

@✓E
@⇠E

◆
dx+



2

Z

⌦

����r
✓

v✓

@✓E

◆����
2

dx

where IR/✓ is the indicator function of the ball of radius R/✓. Then, the fully
coupled system (7a)-(7b)-(14) corresponds to the system

@uE(u, ⇠, ✓) = 0, (15a)

⇠̇ 2 @v⇠K⇤(u, ⇠, ✓;rS(⇠, ✓)), (15b)

✓̇ 2 @v✓K⇤(u, ⇠, ✓;rS(⇠, ✓)). (15c)

Note that equation (15c) corresponds exactly to (14) with the nonlinear term
�(1/✓) replacing ��✓. Indeed, the latter can be seen as a linearization of the
former around some equilibrium temperature.

The variational structure of this system can be made even more explicit by
eliminating the variable u. Indeed, relation (15a) (or (7a) plus boundary conditions)
defines a linear solution-map ⇠ 7! �(⇠) = u. We can hence define

E(⇠, ✓) = E(�(⇠), ⇠, ✓), S = S, K
⇤(⇠, ✓;v⇠,v✓) = K⇤(�(⇠), ⇠, ✓;v⇠,v✓),

and let y = (⇠, ✓) in order to rewrite (15b)-(15c) as the generalized gradient flow

[82]
ẏ = rK

⇤(y,rS(y)).

Additional details on this perspective together with some related numerical discus-
sion are provided in [7].

6.6. Thermal control. A vast majority of SMA actuators are driven by thermal
control, usually in terms of an induced Joule e↵ect. Some preliminary investigation
on the possibility of controlling the SA model via thermal means is performed in [40].
For given temperatures t 7! ✓(t), let us indicate with S(✓) the set of all energetic
solutions of the quasi-static evolution problem (7) (note that this set reduces to
a point in case the thermomechanical coupling term is regularized). Then, one is
interested in finding an optimal control ✓ and an optimal solution (u⇤

, ⇠⇤) 2 S(✓⇤)
for some cost functional J , namely

(u⇤
, ⇠⇤) 2 Argmin{J(u, ⇠, ✓) | (u, ⇠) 2 S(✓)}.

By assuming suitable compatibility of the initial values and the controls, compact-
ness of controls, and lower semicontinuity of the cost functional J , it is shown in
[40] that the optimal control problem admits at least a solution.
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7. Residual plasticity. Most SMAs experience the accumulation of permanent in-
elastic deformations under an increasing number of loading-unloading cycles. This
fatigue-like accumulation causes a progressive degradation of the elastic properties
of the materials and eventually saturates around on a maximal limiting value. This
circumstance is responsible of a number of material failures compromising the ef-
ficiency of some SMA applications. The experimental evidence of fatigue e↵ects
has been reported for various alloys under di↵erent settings [3, 38, 119, 127] and
a number of models including permanent inelastic strains have been recently pro-
posed [24, 54, 70, 97]. An existence analysis for a SMA model including permanent
plasticity is detailed in [69].

7.1. Including permanent inelastic e↵ects. The SA model has been extended
in [14, 15] in order to include permanent inelasticity and degradation e↵ects. The
extension consists in the introduction of a new internal variable ⇠pl describing per-
manent inelastic strains. In particular, we assume that the inelastic strain ⇠ is
linearly decomposed as ⇠ = ⇠tr + ⇠pl where ⇠tr is activated by martensitic transfor-
mation whereas ⇠pl corresponds to the permanent inelastic strain. The expression
of the free energy  is then extended as follows

 (e, ⇠tr, ⇠pl, ✓) = c✓(1� log ✓) +
1

2
(e�⇠tr�⇠pl):C(e�⇠tr�⇠pl)

+
1

2
⇠tr:Htr⇠tr +

1

2
⇠pl:Hpl⇠pl � ⇠tr:A⇠pl + f(✓)|⇠tr|+ I(⇠tr+⇠pl). (16)

In the latter, H
tr and H

pl are hardening tensors, referring to the two inelastic
processes, respectively, and A encodes the (supposedly bilinear) coupling among
the two. We shall always assume A

2 � H
tr:Hpl  0 so that the whole free energy

is convex in (⇠tr, ⇠pl). Note that the thermomechanical coupling term depends the
transformation strain ⇠tr only whereas the whole inelastic strain ⇠tr+⇠pl is bounded
by the indicator function I.

The dissipative character of the model follows from prescribing D(⇠̇
tr
, ⇠̇

pl
) =

I
⇤
K
(⇠̇

tr
, ⇠̇

pl
) where the convex set K is given by

K = {⇣tr
, ⇣pl 2 R

3⇥3
dev ⇥R

3⇥3
dev : f(⇣tr

, ⇣pl) = |⇣tr|+ |⇣pl|�R}.

Here, an additional material parameter  � 0 has been introduced for the sake of
modulating the permanent inelastic e↵ects. In [14] it is proved that these choices
allow for the description of both saturated and unsaturated permanent inelastic
e↵ects as well as the degradation phenomenon. In particular, numerical evidence
assessing the performance of the model both in uniaxial and biaxial tests and the
relevance of the material parameters have been presented. Some validation with
respect to available uniaxial tests is also assessed.

The analysis of the model has been performed in [39]. In particular, the well-
posedness of both the constitutive and the quasi-static evolution problems (suitably
regularized, see Subsection 4.4) is discussed and explicit convergence rates for the
time-discrete approximations are provided. Moreover, it is rigorously proved by
evolutionary �-convergence that the model reduces to the original SA model for
! 0 and to linearized elastoplasticity with linear kinematic hardening (and bound
on the plastic strain) for  = R ! 1.
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7.2. Grain size e↵ects. In a recent series of papers it has been show that the
emergence of permanent inelastic e↵ect is correlated to the specific sizes of the crys-
tals in a NiTi polycrystal [34, 35, 76]. Indeed, in the amorphous (non crystallized)
phase or for grains of the size of 5-10 nm the material behaves approximately elas-
tically even in the super-elastic temperature range. By increasing the grain size to
approximately 20-50 nm (for instance by heat-induced recrystallization) the mate-
rial shows super-elastic behavior instead. By further increasing grain size to 100-200
nm, plastic e↵ects emerge. In [55] an explicit dependence of the free energy (16) on
the local proportion � 2 [0, 1] or recrystallized phase and the local average radius
g > 0 of grains. The main ansatz here is that the material behaves as a mixture of
elastic and inelastic compounds, depending on �. More precisely, we have that the
actual inelastic strain of the �-crystallized body reads �⇠ where ⇠ is the inelastic
strain of the fully crystallized specimen. Moving from this, by scaling one assumes
that the material parameters depend on � and g as

�(�, g) = �b�(g), H
tr(�, g) =

1

�

bHtr(g)12, H
pl(�, g) =

1

�

bHpl(g)12,

A(�, g) =
1

�

bA(g)12, ✏L(�, g) = �b✏L(g), (�, g) = b(g), R(�, g) = � bR(g).

In particular, the above functions b�, bHtr
, bHpl

, bA, b✏L, b(g), and bR are chosen in such
a way to fit tension experiments in terms of observable quantities (such as activation
and threshold stresses at particular cycles) along with the classical Hall-Petch law

�1 = �0 +
k

g1/2

ensuing that the di↵erence between the final and the initial activation stress scales
like g

�1/2.
Along with this provisions, in [55] it is proved that the model reproduces the

passage from elastic to super-elastic to plastic regimes for increasing grain sizes as
well as the plastic saturation and the degradation of the elastic behavior due to
plasticization.

8. Magnetic shape-memory e↵ect. The shape-memory alloys Ni2MnGa, NiMn-
InCo, NiFeGaCo, FePt, FePd, among others, are called magnetic (MSMAs) as they
feature ferromagnetic martensitic phases. These entails the possibility of obtaining
large strains by martensitic-variant reorientation under the imposition of an exter-
nal magnetic field. The resulting macroscopic e↵ect is often referred to as giant

magnetostrictive response for strains as large as 10% can be activated. This moti-
vates a strong interest for these materials for innovative devices applications. For
details on the magnetic shape-memory e↵ect the reader is referred, with no claim
of completeness, to [36, 61, 62, 75, 95, 126], see also the review in [63].

The SA model has been extended to include the ferromagnetism of the marten-
sitic phases in [4, 5, 6, 21]. Within the single-crystal setting, we assume magnetic
uniaxiality within a cubic-tetragonal system. Namely, we let the easy axis of mag-
netization of each of the three martensitic variants to be aligned with one of the
three axes in R

3 (the cubic-orthorombic system is discussed in [6]). Hence, we have
that each proportion p 2 S ⇢ R

3 features an easy axis of magnetization in direction
p.
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Before going on, let us briefly review some literature on MSMA modeling. Early
modeling contributions have been mainly focusing on the energy minimization mech-
anism. Among these, we shall minimally refer to [36, 93, 94, 126]. As for thermody-
namically consistent models, one has to mention the contributions by [95, 96, 92].
Internal-variable models have been introduced by [57, 52] and [64, 65], see also
[66, 80]. The later has been extended in order to encompass some more realistic
magnetic response by [132]. Let us stressa that all MSMA models proposed so far
deal with single crystals. Indeed MSMAs polycrystals, despite their relatively easier
production process, are presently not yet exploited in real devices because of the
observed significant drop in the observed magnetostrictive strain [31] and brittleness
[122].

8.1. Strong magnetic anisotropy. Let us assume at first that the material presents
a very strong magnetic anisotropy so that the actual magnetization of martensites
is rigidly attached to the corresponding easy axes and no magnetization rotation
actually takes place. The magnetization m is given by

m = msat↵p (17)

where msat > 0 is the saturation magnetization. The orientation of the variants
with respect to the easy axis will be determined by the scalar (signed) magnetic-

domain proportion ↵ 2 [�1, 1]. This particularly entail that |M | = |msat↵p| 
msat|↵| |p|  msat. Strong magnetic anisotropy is in large agreement with observa-
tions on Ni2MnGa [95, 126].

8.2. Magnetic Gibbs energy. The constitutive relations for the model are de-
rived from the specification of the Gibbs free energy density encompassing mag-
netism as well

Gmag(�,p, ✓,h,↵) := G(�, ⇠(p), ✓) +
1

2�
↵
2 + I[�1,1](↵)� µ0h·msat↵p. (18)

The additional terms in the Gibbs energy encode the magnetic behavior of the ma-
terial. The term �µ0h·msat↵p is the classical Zeeman energy term �µ0h·m. Note
that h stands here for the internal magnetic field. Namely, h is the magnetic field
which is actually experienced by the material when subjected to some (externally)
applied field. In particular, h corresponds to the sum of the applied external field
and the corresponding induced demagnetization field. The indicator function I[�1,1]

constraints the signed domain proportion ↵ to take values in [�1, 1] and 1/� is a
user-defined (dimensionalized in MPa) hardening-like parameter modulating the
tendency of magnetic domains to equilibrate at ↵ = 0. As temperature e↵ects are
not of interest here, we fix some suitable temperature ✓⇤ (under the Curie temper-
ature) such that field-induced reorientation of martensitic variants may take place.
Correspondingly, �⇤ stands for the constant nonnegative value �(✓⇤). Note that the
Gibbs energy is invariant with respect to material symmetries [6].

Given the Gibbs energy (18), we classically derive the constitutive equations
(1)-(2) as well as

µ0m = �@hGmag = msat↵p, (19a)

⇣ 2 @pGmag = ��:E + �
⇤
@p|⇠(p)|+H⇠(p):E + @pIS(p)� µ0msat↵h, (19b)

g 2 @↵Gmag = �
�1
↵+ @I[�1,1](↵)� µ0msath·p. (19c)

Here, g 2 R is the thermodynamic force associated with the internal variable ↵.
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8.3. Dissipation and constitutive relation. We shall assume the dissipation to
be given by D = D(ṗ) = R|ṗ|. In particular, we assume no dissipation in the
magnetic-domain proportion ↵. This is of course disputable as the dissipation in ↵
is, indeed, the only dissipative mechanism in simple ferromagnetic materials. Still,
MSMA experiments show that, at small strains, the dissipation in ↵ is negligible
with respect to that in p [32, 64].

As the magnetic-domain proportion ↵ is non-dissipative, we have that the ther-
modynamic force g vanishes. Hence, by solving relation (19c) for g = 0 one can ob-
tain ↵ as a function of h and p. In particular, we have that ↵ = ⇧[�1,1]

�
�µ0msath·p

�
:=

max
�
� 1,min

�
1, �µ0msath·p

  
where ⇧[�1,1] denotes the projection onto [�1, 1].

In other words, one can minimize out ↵ from the Gibbs energy (18) in order
to obtain a reduced Gibbs-energy density. The minimum is attained exactly at
↵ = ⇧[�1,1]

�
�µ0msath·p

�
so that

Gred(�,p, ✓,h) := min
↵

Gmag(�,p, ✓,h,↵)

= �1

2
�:C�1:� � �:⇠(p) + FSA(p)� Fmag(h·p).

In the latter we have introduced the convex functions FSA and Fmag 2 C
1,1(R) as

Fmag(r) :=
1

2�
min

n
(�µ0msatr)

2
, 2|�µ0msatr|� 1

o
for all r 2 R

FSA(p) := �
⇤|⇠(p)|+ 1

2
⇠(p):H⇠(p)|2 + IS(p).

Hence, the right-hand side of relation (19b) reads DpFmag(h·p).
Given the above arguments, the final form of the constitutive equation problem

reads

@D(ṗ) + @FSA(p)� @pFmag(h·p) 3 �:E. (20)

In particular, the e↵ective energy driving the evolution of p turns out to be the sum
of a mechanical convex and a magnetic concave part.

8.4. Existence results. The strongly anisotropic case has been considered from
the point of view of the existence of energetic solutions and their approximation in
[6, 21]. In particular, given t 7! (�(t),h(t)) suitably smooth one can prove that
the constitutive relation (20) admits an energetic solution. The usual implicit Euler
scheme serves well in order to prove such an existence result. Still, one has to record
here the semiimplicit scheme

@D(pk�pk�1) + @FSA(p
k)� @pFmag(h(t

k)·pk�1) 3 �(tk):E

which shows improved stability, as the nonmonotone term �@pFmag is evaluated
explicitly.

By suitably augmenting the constitutive equation by the nonlocal term @V (⇠(p))
(see (8)), the full quasi-static evolution problem (7a)+(7c)-(7d)+(20) also admits
an energetic solution. This follows by observing that the nonmonotone magnetic
coupling term is smooth, albeit nonlinear. Finally, the nonmagnetic SA model can
be rigorously recovered by letting the parameter � ! 0 by using the evolutionary
�-convergence theory for rate-independent processes [89]. This serves also as a cross
validation of the magnetic extension of the SA model.
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8.5. Weak magnetic anisotropy. By dropping the strong-anisotropy ansatz (17)
one is forced to include the magnetization m in the list of state variables. This has
been done in [22] in the case ✓⇤ < ✓⇤ (that is, pure martensite at zero stress) for
the total energy

E(t,u, ⇠,m) =

Z

⌦
 ("(u), ⇠, ✓⇤)�

Z

�tr

g·u+
µ0

2

Z

R3

|rvm|2

� µ0

Z

⌦
h(t)·m+ m

Z

⌦
|rm|2 � µ0ani

Z

⌦
(m·p)2 + V (⇠(p))

under the constraints

|m| = msat, div(�µ0rvm +m�⌦) = 0 in R
3

where the first is nothing but magnetization saturation while the second is the
Maxwell equation defining the magnetostatic potential vm (�⌦ is the characteristic
function of ⌦). The corresponding term in E is the magnetostatic energy term.
The energy features also the Zeeman term �µ0h·m and the exchange energy term,
modulated by the constant m [27]. The anisotropic term �µ0ani

R
⌦(m·p)2 is

minimized whenm is parallel to the easy axis p. Finally, the nonlinear term V (⇠(p))
has been explicitly included in the energy in order to give rise to a scale e↵ect with
the aim of penalizing martensitic phase boundaries and possibly describing the
occurrence of a specific twinning length scale.

By assuming the dissipation of the system in the form

D(ṗ, ṁ) =

Z

⌦
Rp|ṗ|+

Z

⌦
Rm|ṁ|

one can prove that there exist energetic solutions for the pair (E,D). Moreover,
again by exploiting the general theory of [89] one can prove that by letting Rm ! 1
the model rigorously reduces to the purely mechanical one. On the other hand, by
taking Rp ! 1 one obtains a specific micromagnetic model instead. Finally, by
letting Rm ! 0 one recovers the nondissipative-magnetics limit [22].

8.6. Magnetic control. The giant magnetostrictive behavior of MSMA provides
the unprecedented possibility of activating devices at a distance by tuning an ex-
ternal magnetic field. A preliminary analysis in this direction is reported in [124]
where an optimal control problem is considered. There, the admissible control is
a time-dependent imposed magnetic field t 7! h(t) and the controllable quantities
are the displacement u and the phase p, which are energetic solutions of the cor-
responding quasi-static evolution model. Under suitable compactness assumptions,
the existence of an optimal triplet of trajectories (u⇤

,p⇤
,h⇤) minimizing a given

cost functional under the constraint that (u⇤
,p⇤) is an energetic solution for h⇤

is proved. Due to the inherent nonsmoothness of the solution map h 7! (u,p),
necessary conditions for optimality seem particularly delicate and are presently not
available.

9. Thermal and electric couplings. The models in [6, 21] has been recently
extended in the direction of including thermal and electric couplings. By addition-
ally assuming viscous dynamics (see Subsection 6.4), in [116] an extension of the
SA model is introduced and the corresponding weak solvability is discussed. More
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precisely, one is interested in describing the material via the extended free energy
density

 (e,p, p, ✓,m, b,r⇠,rm) =  therm(p, ✓,m) +  mech(e,p) +  mag(m, b)

+  coupl(p,m) +  NL(rp,rm) +  constr(p,m).

Here p is an additional internal variable, possibly to be related with the total pro-
portion of the martensitic phase and b stands for magnetic induction. in particular,
we choose

 therm(p, ✓,m) = ↵0(✓) + ↵1(✓)�(p) +
a0

2
✓|m|2,

 mech(e,p) =
1

2
("�⇠(p)):C("�⇠(p)) +

1

2
⇠(p):H⇠(p),

 mag(m, b) =
1

2µ0
|b�µ0m|2,

 coupl(p,m) =
b0

4
|m|4 � ani|m·p|2

 NL(rp,rm) =
p

2
|rp|2 + m

2
|rm|2

 constr(⇠,m) = IS(p) + I[0,1](p) + I|m|msat
(m).

The term  therm features a purely thermic term (of prescribed polynomial behavior),
a latent heat term, and a thermo-magnetic coupling term (a0 > 0) whereas  mech

is the quadratic part of the classical SA energy. The term  mag describes magneto-
statics and  coupl represents magneto-mechanical couplings, with b0, ani > 0, and
I[0,1] is the indicator function of the interval [0, 1]. Finally,  NL and  constr encode
nonlocal e↵ects and constraints on the variables.

The dissipation is assumed to be of viscous type, namely

D(p, ✓; ṗ, ṗ, ṁ,r✓, e) = Dp(ṗ, ṗ) +
dp

2
|(ṗ, ṗ)|2 +Dm(ṁ) +

dm

2
|ṁ|2

+
1

2
K(p, p, ✓)|r✓|2 + 1

2
S(p, p, ✓)|e|2

where Dp and Dm are positively 1-homogeneous, dp, dm > 0 are viscosity coe�-
cient K and S represent heat and electric conductivity and e is the electric field.

By assuming now the constitutive relations

� = @" , h = @b , s = �@✓ , �q = @r✓D,

and j = @eD, the model consists in the thermo-electro-mechanical system

entropy equation: ✓ṡ+r·q = @(ṗ,ṁ,e)D·(ṗ, ṁ, e),

quasi-static equilibrium: r� = 0,

internal variables evolution: @(ṗ,ṗ,ṁ)D + @(p,p,m) 3 0,

eddy-current Maxwell’s system: ḃ+r⇥ e = 0, r⇥ h = j.

The basic idea of the model resides in the possibility of considering smooth func-
tion �(p) in the termal part of the energy (cfr. the original (5)). This allows to
circumvent the thermodynamic (and analytic) obstruction mentioned in Subsec-
tion 6.3. The final outcome of the model corresponds to a generalization also of
the classical Frémond model [46, 47] to complex martensitic structures and electro-
magnetism. Additionally, the model represents an extension of former contributions



20 DIEGO GRANDI AND ULISSE STEFANELLI

in thermoviscoelasticity and magnetostriction to the full coupling of e↵ects. In par-
ticular, the present model can be related with that of [118] where, nonetheless, the
phase descriptor ⇠ was not appearing. The present convexity assumption on the
free energy allows fro a stronger solution notion with respect to that of [118]. The
reader is referred to [116] for a thorough discussion. By referring to the discus-
sion in Subsection 6.4 one has however to mention that here the thermomechanical
coupling in the material is not assumed to be linear in ✓. Along this same line of
thought, the reader is referred to [115] where a thermoviscoelastic evolution prob-
lem with general nonlinear thermal coupling (but no phase change nor magnetism)
is considered.

By assuming smoothness on nonlinearities and suitable nondegeneracy for ↵0, K,
and S one can perform an enthalpy-like trasformation allowing for the passage to
the limit in a suitable time discretization. This entails in particular the existence
of a weak solution [116].
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[104] I. Paw low, A. Żochowski. A control problem for a thermoelastic system in shape memory
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