
Pr
e-P

rin
t

Z. angew. Math. Phys. 99 (9999), 1–22
DOI 10.1007/s00033-003-0000
c© 2021 Birkhäuser Verlag Basel/Switzerland

Zeitschrift fr angewandte
Mathematik und Physik ZAMP

On the whole spectrum of Timoshenko beams.
Part II: further applications

Antonio Cazzani, Flavio Stochino and Emilio Turco

Abstract. The problem of free vibrations of the Timoshenko beam model has been addressed in the
first part of this paper. A careful analysis of the governing equations has shown that the vibration
spectrum consists of two parts, separated by a transition frequency, which, depending on the applied
boundary conditions, might be itself part of the spectrum. Here, as an extension, the case of a doubly
clamped beam is considered. For both parts of the spectrum the values of natural frequencies are
computed and the expressions of eigenmodes are provided: this allows to acknowledge that the
nature of vibration modes changes when moving across the transition frequency. This case is a
meaningful example of more general ones, where the wave-numbers equation cannot be written
in a factorized form and hence must be solved by general root-finding methods for non-linear
transcendental equations. These theoretical results can be used as further benchmarks for assessing
the correctness of the numerical values provided by several numerical techniques, e.g. finite element
models.
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1. Introduction1

A large number of papers on the same topic treated here have appeared since 1921, when Timoshenko2

published [1] a first paper on the dynamics of a beam model — which is now universally associated to3

his name — including the effects of both rotary inertia and shear strain, which he further extended4

in [2]. There are still, however, some issues which deserve some attention, in particular a complete and5

precise definition of the vibration spectrum of this beam model. Indeed, the most debated point about6

the Timoshenko beam theory is precisely the so-called second spectrum, which was first described7

by Traill-Nash and Collar [3]. Following that paper many contributions on this issue appeared; an8

updated, though inevitably incomplete list should mention at least the following contributions (in9

order of appearance):[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].10

This paper is devoted to carry out the discussion, started in the companion paper [19], about11

the complete spectrum of the Timoshenko beam, i.e. the solution, in terms of natural frequencies12

and corresponding vibration modes, for this model in the most general case. Using only real-valued13

variables, general results have been specialized to some peculiar boundary conditions and therefore14

the numerical values of natural frequencies and eigenmodes have been constructed.15

Among the ten basic configurations that a single-span Timoshenko beam can assume, in terms16

of end constraints, attention has been concentrated on two representative cases, namely the simply-17

supported beam and the doubly clamped one. The first case was presented and discussed in [19]18

whereas the second one is going to be presented here. The doubly clamped beam is indeed a prototype19

of the most general cases, where the wave-numbers equation (a non-linear transcendental one) cannot20
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be written in a factorized form, and hence cannot be solved by direct methods. Thus, for evaluating21

natural frequencies it is necessary to apply general root-finding algorithms for non-linear equations.22

Eigenmodes, too, have now more complicated shapes than those of the simply-supported case, since23

they involve either circular and hyperbolic functions, in the first part of the spectrum, or circular24

functions depending on two different wave-numbers, in the second part of the spectrum. Moreover,25

the transition frequency does not belong, in general, to the vibration spectrum.26

As it has been already done (in the first part [19]) for the simply-supported beam, in the case here27

analysed, the complete list of the first 50 natural frequencies is given, for suitably chosen geometric28

and material data, as well as some representative plots of the eigenmodes in different portions of the29

spectrum; moreover a comparison between the spectrum of the Euler-Bernoulli model and that of the30

Timoshenko one is presented for the same geometric and material data. Together, these theoretical31

results will be used, in a forthcoming paper [20], as reference solutions to validate, from a quantitative32

point of view, the accuracy of some finite element models.33

The rest of the paper is structured in this way: in Section 2 the main tools to perform a modal34

analysis according to Timoshenko theory, along with the data used to build the spectrum are presented;35

in Section 3 a complete discussion on the solution for the case of a doubly clamped single-span beam36

is carried out; in Section 4 the specific complete spectrum is constructed. Finally, Section 5 contains37

an insight on the eigenmode related to the transition frequency. This anticipates the final remarks38

and future perspectives, which are reported in Section 6.39

A complete list of symbols is here provided for the reader’s convenience.40

Symbol Definition

A coefficient matrix for the homogenous system
Ar coefficient matrix for the reduced homogenous system
X unknown column matrix for the homogenous system
Xr unknown column matrix for the reduced homogenous system
0 right-hand side column matrix for homogeneous system
0r right-hand side column matrix for reduced homogeneous system

A cross section area
A1, A2, A3, A4 integration constants for V , first part of the spectrum
A1n, A2n, A3n, A4n integration constants for the n-th eigenmode
B cross section depth (and width)
B1, B2, B3, B4, integration constants for Φ, first part of the spectrum
C constant factor (see Eq. (3.17))
C1, C3, C4 integration constants for V , transition frequency
C̃1, C̃3, C̃4, D̃1 integration constants for the n-th eigenmode at transition frequency
D1 integration constant for Φ, transition frequency
E Young’s modulus
E1, E2, E3, E4 integration constants for V , second part of the spectrum
E1n, E2n, E3n, E4n integration constants for the n-th eigenmode
G shear modulus
I cross section mass moment of inertia
L beam length
L̃ special value of beam length
V vibration mode for transversal displacement
fλ space frequency associated to wave-number λ
fλn

space frequency associated to the n-th vibration mode
k, k1, k2 integer values corresponding to wave-numbers of vibration modes
t time variable
v transversal displacement

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part II: further applications" ZAMP 67: 25 DOI 10.1007/s00033-015-0596-9
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x space variable (beam abscissa)
z dummy space variable
z? normalized dummy space variable

Φ vibration mode for section rotation
α̂1 coefficient of eigenmode for generalized wave-number
α̂1n value of α̂1 for n-th vibration mode
α1, α2 eigenmode coefficients for first/second wave-number
α1n, α2n values of α1, α2 for n-th vibration mode
α̃2 eigenmode coefficient for second wave-number at transition frequency
ε predefined convergence tolerance
κ shear correction factor
λ̂1 generalized wave-number (first part of the spectrum)
λ1 first wave-number (second part of the spectrum)
λ2 second wave-number (first and second part of the spectrum)
λ̃2 second wave-number at transition frequency
λ1n first wave-number for n-th vibration mode
λ2n second wave-number for n-th vibration mode
λ?21 first root (squared) of wave-numbers equations
λ?22 second root (squared) of wave-numbers equations
ν Poisson’s ratio
ξ dimensionless space variable (dimensionless beam abscissa)
ρ beam density (mass per unit volume)
σn, χ̂n eigenmode coefficient for first part of spectrum for n-th vibration mode
τn, χn eigenmode coefficient for second part of spectrum for n-th vibration mode
φ section rotation
χ̂ eigenmode coefficient for first part of spectrum, doubly clamped beam
χ eigenmode coefficients for second part of spectrum, doubly clamped beam
ω angular frequency
ω̃ angular frequency at the transition value (cut-off frequency)
ω? limiting value (upper/lower bound) for angular frequency
ωn angular frequency (theoretical value) for n-th vibration mode

2. Modal analysis of Timoshenko beams — a résumé41

In this Section, the minimal tools to perform the modal analysis of a Timoshenko beam are briefly42

recalled, in order to devise its complete spectrum. Complete details can be found in the companion43

paper [19].44

The coupled equations of motion, written in terms of kinematic variables v = v(x, t) and φ =
φ(x, t) (i.e. the transversal displacement of the centroid and the cross-section rotation, which depend
on both the abscissa, x, and time, t), for the Timoshenko beam model are:

GκA

(
∂2v

∂x2
+
∂φ

∂x

)
− ρA∂

2v

∂t2
= 0, (2.1)

EI
∂2φ

∂x2
−GκA

(
∂v

∂x
+ φ

)
− ρI ∂

2φ

∂t2
= 0. (2.2)

In Eqs. (2.1)–(2.2) G and E are shear and Young’s moduli, κ the shear-correction factor, ρ the density45

of the material constituting the beam, A and I the area and the area moment of inertia of the beam46

cross-section. The assumed positive conventions for v and φ are illustrated in Figure 1.47

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part II: further applications" ZAMP 67: 25 DOI 10.1007/s00033-015-0596-9
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Figure 1. Timoshenko beam element showing the assumed conventions for general-
ized displacements (v, φ).

It is possible to reduce the system of two second-order Partial Differential Equations (PDEs),48

Eqs. (2.1)–(2.2), to a unique fourth-order PDE. Indeed, from Eq. (2.1), it follows immediately:49

∂φ

∂x
=

ρ

Gκ

∂2v

∂t2
− ∂2v

∂x2
, (2.3)

and by proper use of multivariate differential calculus, φ can be eliminated in Eq. (2.1). The resulting50

fourth-order PDE in terms of v alone is:51

EI
∂4v

∂x4
− ρI

(
1 +

E

Gκ

)
∂4v

∂t2∂x2
+ ρA

∂2v

∂t2
+
ρ2I

Gκ

∂4v

∂t4
= 0, (2.4)

which is the equation first established by Timoshenko [1] in 1921 when developing a new beam theory52

able to deal with both shear strain and rotary inertia. Similarly, if v is eliminated in Eq. (2.2), a53

fully-decoupled fourth-order PDE in terms of φ alone is obtained:54

EI
∂4φ

∂x4
− ρI

(
1 +

E

Gκ

)
∂4φ

∂t2∂x2
+ ρA

∂2φ

∂t2
+
ρ2I

Gκ

∂4φ

∂t4
= 0. (2.5)

Solutions to Eqs. (2.4)–(2.5) are sought such that the independent variables, x and t, are separated.55

In particular an harmonic kind time-dependence is assumed, so that free vibrations are possible. Thus56

one states:57

v(x, t) = V (x) exp(iωt), φ(x, t) = Φ(x) exp(iωt), (2.6)

where i =
√
−1 is the imaginary unit; then, if primes are used to denote derivatives with respect to58

x, it follows from Eq. (2.4) (a similar expressions follows for Eq. (2.5), too):59

V ′′′′ +
ρω2

E

(
1 +

E

Gκ

)
V ′′ +

ρω2

E

(
ρω2

Gκ
− A

I

)
V = 0. (2.7)

This is a fourth-order ODE with constant coefficients, whose solutions are to be found in the form of60

exponential functions V (x) = exp(λ?x), where, in general, λ? ∈ C.61

In particular, the characteristic equation associated to Eq. (2.7) is:62

λ?4 +
ρω2

E

(
1 +

E

Gκ

)
λ?2 +

ρω2

E

(
ρω2

Gκ
− A

I

)
= 0, (2.8)

which is a biquadratic algebraic equation, where the independent variable is λ?. The squared roots of
Eq. (2.8) are therefore:

λ?1
2 =− ρω2

2E

(
1 +

E

Gκ

)
+

√
ρ2ω4

4E2

(
1− E

Gκ

)2

+
ρω2A

EI
, (2.9)

λ?2
2 =− ρω2

2E

(
1 +

E

Gκ

)
−

√
ρ2ω4

4E2

(
1− E

Gκ

)2

+
ρω2A

EI
. (2.10)

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
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While, in Eq. (2.10), it is always λ?2
2 < 0, the sign of the other root, λ?1

2, given by Eq. (2.9) depends63

on the value of ω2; there is a special value of ω2, which correspond to a transition frequency,64

ω̃2 =
GκA

ρ I
, (2.11)

such that the value of λ?1
2 changes from positive to negative. As a consequence, when solving Eq. (2.8),65

these three cases must be distinguished.66

Case 1. ω2 < ω̃2. For this range of angular frequency, it results: λ?1
2 > 0 and λ?2

2 < 0. Hence, Eq. (2.8),67

has two real roots, namely ±
√
λ?1

2, and two purely imaginary conjugate roots, viz. ±i
√
−λ?2

2.68

Case 2. ω2 = ω̃2. In the present case (transition frequency) it follows: λ?1
2 = 0 and λ?2

2 < 0. In69

particular,70

λ?2
2|ω2=ω̃2 = −λ̃22, (2.12)

with71

λ̃2 =

√
A

I

(
1 +

Gκ

E

)
> 0. (2.13)

Consequently there is a null real root, whose multiplicity is two, and one couple of imaginary conjugate72

roots, namely again ±i
√
−λ?2

2.73

Case 3. ω2 > ω̃2. This time it results λ?1
2 < 0 and λ?2

2 < 0. As a consequence, all four roots of74

Eq. (2.8) are purely imaginary. In particular, there are two couples of conjugate roots, i.e. ±i
√
−λ?1

2
75

and ±i
√
−λ?2

2.76

2.1. The eigenmodes of Timoshenko beams77

The complete solution to Eq. (2.7) — and to the corresponding equation which provides Φ(x) — can78

be computed in terms of real-valued quantities only; results will be presented separately for the three79

cases outlined above. Again, all relevant details are given in [19].80

Case 1. ω2 < ω̃2. In the first part of the spectrum the eigenfunctions in terms of V (x) and Φ(x) are:

V (x) = A1 cosh λ̂1x+A2 sinh λ̂1x+A3 cosλ2x+A4 sinλ2x, (2.14)

Φ(x) = − α̂1

λ̂1
(A2 cosh λ̂1x+A1 sinh λ̂1x) +

α2

λ2
(A4 cosλ2x−A3 sinλ2x). (2.15)

where A1, A2, A3, A4 are integration constants and the following proper (λ2) and generalized (λ̂1)81

wave-numbers apply:82

λ̂1 = +

√
λ?1

2 > 0, λ2 = +

√
−λ?2

2 > 0. (2.16)

In Eq. (2.15) the following short-hand notation has been adopted:83

α̂1 =
ρω2

Gκ
+ λ̂21, α2 =

ρω2

Gκ
− λ22. (2.17)

Hence in the first part of the spectrum the eigenmodes are given, in general, by a linear combination84

of hyperbolic and trigonometric functions. It has to be remarked that only for particular choices of85

Boundary Conditions (BCs) it is possible to annihilate the contribution of hyperbolic functions: this86

happens, for instance, in the case of a simply-supported beam, see [19].87

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part II: further applications" ZAMP 67: 25 DOI 10.1007/s00033-015-0596-9
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Case 2. ω2 = ω̃2. At the transition frequency, ω̃, the eigenfunctions have these expressions:

V (x) = C1 + C3 cos λ̃2x+ C4 sin λ̃2x, (2.18)

Φ(x) = D1 −
ρ ω̃2

Gκ
C1x−

α̃2

λ̃2
(C3 sin λ̃2x− C4 cos λ̃2x), (2.19)

where C1, C3, C4, D1 are integration constants. In Eqs. (2.18)–(2.19), for the seek of a compact88

notation, the following definition has been adopted, see Eq. (2.13):89

α̃2 =
ρ ω̃2

Gκ
− λ̃22 = −GκA

EI
. (2.20)

Thus, from the above-written equations, it follows that at the transition frequency the V component90

of the vibration mode is a linear combination of trigonometric functions and of a constant, while the91

Φ component is obtained by combining a complete linear polynomial and the usual sine and cosine92

functions.93

Case 3. ω2 > ω̃2. In this second part of the spectrum the eigenfunctions are:

V (x) = E1 cosλ1x+ E2 sinλ1x+ E3 cosλ2x+ E4 sinλ2x, (2.21)

Φ(x) =
α1

λ1
(E2 cosλ1x− E1 sinλ1x) +

α2

λ2
(E4 cosλ2x− E3 sinλ2x), (2.22)

where E1, E2, E3, E4 are integration constants (to be determined by boundary conditions) and the94

two independent, real-valued wave-numbers are given by:95

λ1 = +

√
−λ?1

2, λ2 = +

√
−λ?2

2. (2.23)

The following short-hand notation has been adopted in Eq. (2.22):96

α1 =
ρω2

Gκ
− λ21, (2.24)

while α2 is still defined by Eq. (2.17)2.97

Therefore, in the second part of the spectrum mode shapes are given by a linear combination of98

trigonometric functions depending on two different wave-numbers, λ1 and λ2; in general, eigenmodes99

involve both λ1 and λ2, since wave-numbers are entwined (or even entangled); only for particular100

cases, e.g. the simply-supported beam, see [19], the contributions of wave-numbers become decoupled.101

2.2. Comments on the construction of the spectrum102

Here the spectrum will be explicitly computed only for the doubly clamped beam; together with the103

already analysed case of the simply-supported beam (see [19]), they are somehow representative of all104

general cases which can be encountered.105

Indeed, differently from what happens in the case of the simply-supported beam, (where the106

wave-number transcendental equation can be written in a factorized form and, as a consequence, the107

frequency equation becomes a simple algebraic one, and allows for the evaluation of natural frequencies108

ωn by a direct method), in the doubly clamped case — as it occurs, on the other hand for all the109

remaining cases — there is a complete coupling. Since the wave-number transcendental equation110

cannot be written as a product, the computation of natural frequencies ωn must be performed by111

solving a complicated implicit transcendental equation.112

Furthermore, in this case, as it occurs for any case but the simply-supported one, hyperbolic113

functions appear in the eigenmodes in the first part of the spectrum, while, each eigenmode depends114

simultaneously on both wave-numbers in the second part of the spectrum.115

Finally, the transition frequency is not part of the spectrum in general (except for particular116

special values of the beam length), differently from what happen in the simply-supported beam, where117

it is always part of the spectrum.118

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
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The expressions of the frequency equation and of the eigenmodes corresponding to other BCs119

can be found in [7], where only those which are valid for ωn < ω̃ are reported, and in [21], where the120

complete expressions are given.121

The geometric and material data used for building the spectrum are the same which have already122

adopted for the simply-supported case in [19]. They are the following: a straight uniform and homoge-123

neous beam, whose length is L = 2 m, having a square cross-section with side length (either depth or124

width) B = 0.1 m. Consequently, the cross-section area and area moment of inertia are respectively125

A = B2 = 0.01 m2; I = B4/12 = 1/120, 000 m4. The length-to-depth ratio (a rough measure of126

slenderness) is therefore: L/B = 20, so that shear strains are expected to be non-negligible.127

Material density is assumed to be ρ = 8000 kg/m3, Young’s modulus E = 260 GPa, Poisson’s128

ratio ν = 0.3 so that, under the hypothesis of elastic isotropy, the shear modulus is G = 100 GPa. The129

shear correction factor has been chosen according to the standard value, first established by Goens [22]130

for a rectangular cross-section, κ = 5/6.131

3. The doubly clamped beam132

When both ends of the beam, whose length is L, are built-in, there are only kinematic type BCs:133

@x = 0 : V = 0 and Φ = 0; @x = L : V = 0 and Φ = 0. (3.1)

Again, the two parts of the spectrum must be treated separately.134

3.1. First part of the spectrum: ω2 < ω̃2135

When BCs, Eqs. (3.1), are substituted into Eqs. (2.14) and (2.15), a homogeneous system of simulta-136

neous linear algebraic equations:137

AX = 0, (3.2)
is obtained, where matrices A and X assume these expressions:138

A =


1 0 1 0

0
α̂1

λ̂1
0 −α2

λ2
cosh λ̂1L sinh λ̂1L cosλ2L sinλ2L
α̂1

λ̂1
sinh λ̂1L

α̂1

λ̂1
cosh λ̂1L

α2

λ2
sinλ2L −α2

λ2
cosλ2L

 , X =


A1

A2

A3

A4

 . (3.3)

Since, as a simple check confirms, α̂1 6= 0 and λ̂1 6= 0 it follows from the first two equations:139

A1 = −A3, A2 = χ̂A4, χ̂ =
α2λ̂1
α̂1λ2

, (3.4)

and this reduced system of equations is arrived at:140 
(cosλ2L− cosh λ̂1L) sinλ2L+ χ̂ sinh λ̂1L

α̂1

λ̂1
(χ̂ sinλ2L− sinh λ̂1L) −α2

λ2
(cosλ2L− cosh λ̂1L)

{ A3

A4

}
=

{
0
0

}
. (3.5)

After some cumbersome algebraic/trigonometric expansions and simplifications, it is found that, for141

the existence of non-trivial solutions, the following transcendental equation must be satisfied:142

2(1− cosh λ̂1L cosλ2L) +
λ̂1λ2
α̂1α2

(
α2
2

λ22
− α̂2

1

λ̂21

)
sinh λ̂1L sinλ2L = 0. (3.6)

Hence, for the doubly clamped beam it is not possible to arrive at a closed form solution: natural143

frequencies ωn have to be determined by solving Eq. (3.6) once the expressions of λ̂1(ω), λ2(ω),144

α̂1(ω), α2(ω) are plugged into it, producing a complicated implicit transcendental equation in ω.145

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part II: further applications" ZAMP 67: 25 DOI 10.1007/s00033-015-0596-9
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It has to be emphasized that computing these frequencies is generally an awkward task, since the146

presence of hyperbolic functions produces wide oscillations, such that automatic procedure can easily147

fail, and, on the other hand, it is difficult to produce a priori suitably bracketed intervals where the148

existence of just one solution is guaranteed.149

It is necessary, of course, to restrict the search for solutions to the range 0 < ωn < ω̃, since only150

in this range, by the analysis performed in Section 2, Eq. (3.6) is guaranteed to assume real values. If151

the roots of Eq. (3.6) are then denoted by ωn, (n = 1, . . . , ñ), with152

ñ = max {n ∈ N |ωn < ω̃} , (3.7)

the corresponding values of λ̂1, λ2, α̂1, α2 might be usefully denoted by:

λ̂1n = λ̂1(ωn), λ2n = λ2(ωn), (3.8)
α̂1n = α̂1(ωn), α2n = α2(ωn). (3.9)

Then, once a solution ωn is found, the corresponding eigenfunctions can be determined by taking into153

account that the coefficient matrix of Eq. (3.5) becomes singular when ω = ωn. Consequently one154

of the two equations, e.g. the former, can be used to compute A3n, once A4n is fixed or vice-versa,155

since the ratio between such coefficients is fixed. If, for instance, for normalizing purposes A4n = 1 is156

assumed, then it follows:157

A3n = σn, σn =
χ̂n sinh λ̂1nL+ sinλ2nL

cosh λ̂1nL− cosλ2nL
, χ̂n =

α2nλ̂1n
α̂1nλ2n

. (3.10)

By substitution it is finally possible to evaluate the other coefficients:158

A1n = −σn, A2n = χ̂n, (3.11)

and completing by Eqs. (2.14) and (2.15) the construction of the eigenmodes. It is remarked here159

that, for a doubly clamped beam, all functions cosh λ̂1nx, sinh λ̂1nx, cosλ2nx, sinλ2nx appear in the160

eigenmodes which are relevant to the first part of the spectrum.161

The first eigenmodes of a doubly clamped Timoshenko beam are shown in Figure 2; it is clear162

that hyperbolic functions do contribute to the eigenmodes: for instance, for n > 3 their effect produces163

different values for all positive (or negative) peaks.164

Remark 1. It is useful noticing that the coefficients multiplying, in Eq. (3.6), the term sinh λ̂1L sinλ2L165

can be written also in these alternate ways:166

λ̂1λ2
α̂1α2

(
α2
2

λ22
− α̂2

1

λ̂21

)
=

(
λ̂1α2

λ2α̂1
− λ2α̂1

λ̂1α2

)
=
λ̂21α

2
2 − λ22α̂2

1

α̂1α2λ̂1λ2
, (3.12)

and this confirms that both expressions presented by Levinson and Cooke [7, p. 321, Eqs. (13),(15)],167

for the doubly clamped and for the completely free beam do coincide. The same expression can be168

found, as well, in Pilkey [23, p. 596–598].169

3.2. Transition frequency: ω2 = ω̃2170

When doubly clamped BCs are imposed, a new homogeneous system of simultaneous linear algebraic171

equations similar to Eq. (3.2) is obtained, where in this case:172

A =


1 1 0 0

0 0
α̃2

λ̃2
1

1 cos λ̃2L sin λ̃2L 0

−ρ ω̃
2

Gκ
L − α̃2

λ̃2
sin λ̃2L

α̃2

λ̃2
cos λ̃2L 1

 , X =


C1

C3

C4

D1

 . (3.13)

where λ̃2 and α̃2 are given by Eqs. (2.13) and (2.20).173
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Figure 2. Vibration shapes corresponding to modes 1–5 for a doubly clamped Tim-
oshenko beam, first part of the spectrum. Transversal displacement, V is shown in
(a); section rotation, Φ in (b). Geometric and material data are given in Section 2

The first two equations allow eliminating two unknowns, namely:174

C1 = −C3, D1 = − α̃2

λ̃2
C4, (3.14)

and thus this homogeneous reduced system of equations ArXr = 0r can be obtained:175  −(1− cos λ̃2L) sin λ̃2L

(
ρ ω̃2

Gκ
L− α̃2

λ̃2
sin λ̃2L) − α̃2

λ̃2
(1− cos λ̃2L)

{ C3

C4

}
=

{
0
0

}
. (3.15)

The determinant of the coefficient matrix Ar appearing in Eq. (3.15), since α̃2 6= 0 and λ̃2 6= 0 might176

be written as:177

det(Ar) = (1− cos λ̃2L)− 1

2α̃2

ρ ω̃2

Gκ
λ̃2L sin λ̃2L (3.16)

For an assigned value of L, Eq. (3.16) is completely determined and, in general, it is det(Ar) 6= 0: this178

implies that the coefficient matrix is non-singular, so that the only solution to Eq. (3.15) is the trivial179

one, namely C3 = 0, C4 = 0: as a consequence both V (x) = 0 and Φ(x) = 0, and it comes out that180

(in general) the transition frequency is not part of the spectrum for the doubly clamped beam, since at181

such frequency there are no vibrations.182

This situation corresponds to values of the beam length such that it is impossible to place a183

suitable number of sine/cosine waves along the beam span which can, at the same time, satisfy the184

BCs at both ends of the beam. The only possibility for having frequency ω = ω̃ in the spectrum is185

that the beam length L has been chosen in such a way, L = L̃, that Eq. (3.16), as a function of L̃,186

vanishes. Then, if the following notation is adopted:187

z = λ̃2L̃, C =
1

2α̃2

ρ ω̃2

Gκ
, (3.17)

it follows from Eq. (3.16):188

(1− cos z)− Cz sin z = 0. (3.18)
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In such conditions, the coefficient matrix Ar appearing in Eq. (3.15) becomes singular (i.e. it has189

rank(Ar) < 2) and a non-trivial solution is obtained. In this particular situation, beam length is such190

that it becomes possible to place a suitable number of sine/cosine waves along the beam span which191

can, at the same time, satisfy the BCs at both ends of the beam. This occurrence is presented and192

discussed in details in Section 5.193

3.3. Second part of the spectrum: ω2 > ω̃2194

As in the already considered cases, substitution of the BCs into Eqs. (2.21) and (2.22), gives a homo-195

geneous system of simultaneous linear algebraic equations analogous to Eq. (3.2), where in the present196

case:197

A =


1 0 1 0

0
α1

λ1
0

α2

λ2
cosλ1L sinλ1L cosλ2L sinλ2L

−α1

λ1
sinλ1L

α1

λ1
cosλ1L −α2

λ2
sinλ2L

α2

λ2
cosλ2L

 , X =


E1

E2

E3

E4

 , (3.19)

By taking into account Eq. (2.24), it follows that:198

E1 = −E3, E2 = χE4, χ = −α2λ1
α1λ2

, (3.20)

so that Eqs. (3.2) can be reduced to the following:199 [
cosλ2L− cosλ1L χ sinλ1L+ sinλ2L

α1

λ1
(sinλ1L+ χ sinλ2L)

α2

λ2
(cosλ2L− cosλ1L)

]{
E3

E4

}
=

{
0
0

}
. (3.21)

Non-trivial solutions might be shown to exist, provided that the following transcendental equation is200

satisfied:201

2(1− cosλ1L cosλ2L)− λ1λ2
α1α2

(
α2
1

λ21
+
α2
2

λ22

)
sinλ1L sinλ2L = 0. (3.22)

Again, for the doubly clamped beam it is not possible to arrive at a closed form solution: natural202

frequencies ωn have to be determined by solving Eq. (3.22) once the expressions of λ1(ω), λ2(ω),203

α1(ω), α2(ω) are plugged into it, producing a complicated implicit transcendental equation in ω.204

It has to be emphasized that also computing these frequencies is generally a difficult task — even205

though it is less awkward than in the case of solving Eq. (3.6), since the presence of trigonometric206

functions depending on two wave-numbers, whose ratio is not (in general) a rational number produces207

non periodic oscillations, such that automatic procedure can still fail, while, on the other hand, it is208

difficult to identify a priori suitably bracketed intervals where the existence of just one solution is209

guaranteed.210

It is necessary, of course, to restrict the search for solutions to the range ωn > ω̃, since only in
this range, by the analysis performed in Section 2, Eq. (3.22) is guaranteed to assume real values.
If the roots of Eq. (3.6) are denoted by ωn, (n = ñ + 1, . . . ,∞), with ñ defined by Eq. (3.7), the
corresponding values of λ1, λ2, α1, α2 might be usefully denoted by:

λ1n = λ1(ωn), λ2n = λ2(ωn), (3.23)
α1n = α1(ωn), α2n = α2(ωn). (3.24)

Once a solution ωn is found, the corresponding eigenfunctions can be determined by taking into211

account that the coefficient matrix of Eq. (3.21) becomes singular when ω = ωn; consequently one212

of the two equations, e.g. the former, can be used to compute E3n, once E4n is chosen or vice-versa,213

since the ratio between such coefficients is fixed. If, for instance, for normalizing purposes E4n = 1 is214

assumed, then it follows:215

E3n = τn, τn =
χn sinλ1nL+ sinλ2nL

cosλ1nL− cosλ2nL
, χn = −α2nλ1n

α1nλ2n
. (3.25)
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By substitution, see Eq. (3.20), it is finally possible to evaluate the other coefficients:216

E1n = −τn, E2n = χn, (3.26)

and completing by Eqs. (2.21) and (2.22) the construction of the eigenmodes. For a doubly clamped217

beam all four functions cosλ1nx, sinλ1nx, cosλ2nx, sinλ2nx appear in the eigenmodes which are218

relevant to the second part of the spectrum. The first eigenmodes belonging to this part of the219

spectrum are portrayed in Figure 3.220
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Figure 3. Vibration shapes corresponding to modes 26–30 for a doubly clamped
Timoshenko beam, second part of the spectrum. Transversal displacement, V is shown
in (a); section rotation, Φ in (b). Geometric and material data are given in Section 2.

4. Construction of the spectrum for the doubly clamped beam221

For the same data set which has been explained in Section 2 the spectrum for the doubly clamped222

beam has been constructed. Of course, as already mentioned, in the present case it is not possible223

to identify natural frequencies by a closed-form procedure. It is indeed necessary to numerically find224

the roots of the transcendental equations (3.6), for the first part of the spectrum, and (3.22), for the225

second one.226

Solutions were obtained with a Computer Algebra System (CAS), namely MathematicaTM(version227

6.0). The roots of the above mentioned transcendental equations (3.6) or (3.22) have been computed228

by using the native function FindRoot, see [24], which implements a variant of the secant method.229

Bracketing intervals to isolate roots were defined by properly magnified plots of the corresponding230

functions.231

In the present paper, all roots have been computed by assigning variables with 250 digit precision.232

Moreover, any root, once computed, has been back-substituted into the equation and the error ob-233

tained, ε, has been checked against a predefined small tolerance: it has been verified that all provided234

roots satisfy the corresponding transcendental equation to within |ε| ≤ 1 · 10−200.235
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Table 1. Computed natural frequencies, wave-numbers and vibration amplitudes of
a doubly clamped Timoshenko beam for the first N = 50 vibration modes, first part
of the spectrum. Circular frequency, ωn, is expressed in rad/s, wave-numbers λ̂1n (a
generalized one) and λ2n in rad/m; all other parameters are dimensionless.

n ωn λ̂1n λ2n A4n A2n A3n

1 904.9409611 2.333875334 2.356010971 1. −0.9810279387 −0.9996330292
2 2441.571820 3.802561816 3.900664347 1. −0.9496312793 −0.9486861187

3 4657.856049 5.190071344 5.448594130 1. −0.9060985311 −0.9061547886

4 7455.126708 6.466375170 6.989971677 1. −0.8539603412 −0.8539562122
5 10742.87361 7.620475330 8.526546585 1. −0.7964371880 −0.7964375710

6 14436.14841 8.647183238 10.05946258 1. −0.7363144266 −0.7363143812

7 18460.58387 9.545829233 11.58986376 1. −0.6757860398 −0.6757860467
8 22753.49430 10.31852142 13.11880486 1. −0.6164595057 −0.6164595044

9 27263.30693 10.96882488 14.64722347 1. −0.5594329277 −0.5594329280

10 31948.16369 11.50082121 16.17591918 1. −0.5053970445 −0.5053970444
11 36774.29503 11.91847562 17.70554362 1. −0.4547343471 −0.4547343471

12 41714.47640 12.22521743 19.23659970 1. −0.4076033781 −0.4076033780
13 46746.69904 12.42364924 20.76944902 1. −0.3640052529 −0.3640052529

14 51853.08522 12.51531507 22.30432521 1. −0.3238336691 −0.3238336691

15 57019.02924 12.50046891 23.84135072 1. −0.2869111247 −0.2869111247
16 62232.52671 12.37778669 25.38055471 1. −0.2530141407 −0.2530141407

17 67483.65139 12.14395276 26.92188965 1. −0.2218897524 −0.2218897525

18 72764.14249 11.79301522 28.46524490 1. −0.1932647190 −0.1932647190
19 78067.06975 11.31532041 30.01045514 1. −0.1668478188 −0.1668478188

20 83386.54582 10.69564009 31.55730091 1. −0.1423238333 −0.1423238331

21 88717.44914 9.909609302 33.10549525 1. −0.1193340557 −0.1193340563
22 94055.08973 8.916157340 34.65464041 1. −0.0974277442 −0.0974277407

23 99394.62680 7.638505501 36.20410188 1. −0.0759317595 −0.0759317947

24 104729.3945 5.900796868 37.75255648 1. −0.0534963800 −0.0534955784
25 110040.4377 3.009915176 39.29497761 1. −0.0249531228 −0.0250746945

The frequencies corresponding to the first 50 eigenmodes are reported in Tables 1 and 2. In order236

to allow the interested reader to reproduce the whole set of results provided here (up to N = 100),237

the relevant data for vibration modes 51–100 are reported in Appendix.238

For comparison purpose the full spectrum relevant to the first 100 vibration modes for a doubly239

clamped beam according to both Euler-Bernoulli and Timoshenko models is shown in Figure 4. For240

the Euler-Bernoulli beam the natural frequencies are given, in the doubly clamped case, by the roots241

of this transcendental equation:242

cos(λEBL) cosh (λEBL)− 1 = 0, with λEB =
4

√
ρAω2

EI
(4.1)

and, as it is well-known, see e.g. [25], for sufficiently large values of k, k ≥ 5, this asymptotic estimate243

of the natural frequencies holds:244

ωk,EB = (2k + 1)
2

√
EI

ρA

( π
2L

)2
. (4.2)

Also in this case, it is apparent that for the Timoshenko beam model vibration frequencies are much245

less separated than for the Euler-Bernoulli one.246

5. Eigenmodes corresponding to the transition frequency for a doubly clamped beam247

In Section 3 the existence of eigenmodes corresponding to the transition frequency ω̃ for a doubly
clamped beam has been shown to be possible only for particular values of the beam length, L = L̃.
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Table 2. Computed natural frequencies, wave-numbers and vibration amplitudes of
a doubly clamped Timoshenko beam for the first N = 50 vibration modes, second
part of the spectrum. Circular frequency, ωn, is expressed in rad/s, wave-numbers λ1n
and λ2n in rad/m; all other parameters are dimensionless.

n ωn λ1n λ2n E4n E2n E3n = −E1n

26 112269.3096 1.560860889 39.94262807 1. 0.01247129284 1.255192040

27 113685.9451 3.154610786 40.35438770 1. 0.02462586984 −1.891552346
28 115148.1517 4.228220178 40.77950049 1. 0.03222873189 0.061280546

29 116187.3003 4.859519139 41.08168542 1. 0.03642139904 −0.245756623

30 118829.9614 6.212298595 41.85044613 1. 0.04462137566 0.628419760
31 120909.4747 7.125155636 42.45567519 1. 0.04951036164 −0.044203124

32 122643.0746 7.821648728 42.96043358 1. 0.05288126459 1.634954669

33 126211.5471 9.129479716 44.00005262 1. 0.05837541997 −0.017757338
34 127024.2937 9.409313719 44.23695352 1. 0.05941225256 3.841605639

35 131561.6327 10.88276457 45.56035559 1. 0.06410273088 −0.007262243

36 131903.3768 10.98865818 45.66009148 1. 0.06439191971 9.310275297
37 136934.5768 12.48511319 47.12941462 1. 0.06784249797 −0.005524872

38 137198.2900 12.56074267 47.20648235 1. 0.06798682147 12.08008627

39 142323.5083 13.98660738 48.70533795 1. 0.07021545310 −0.010652219
40 142838.2723 14.12571436 48.85599156 1. 0.07038556925 6.145557559

41 147724.4485 15.41546836 50.28704089 1. 0.07160241714 −0.021561772
42 148764.8159 15.68366221 50.59198395 1. 0.07177899462 2.953157858

43 153137.7707 16.79001879 51.87468473 1. 0.07225813281 −0.038424837

44 154923.9204 17.23315452 52.39904651 1. 0.07234599571 1.585258689
45 158572.9376 18.12466188 53.47108258 1. 0.07236128056 −0.064095022

46 161247.2816 18.76743475 54.25744496 1. 0.07225032165 0.877822730

47 164062.9884 19.43550401 55.08598730 1. 0.07203773291 −0.108539094
48 167595.3748 20.26224859 56.12630413 1. 0.07165147028 0.449410558

49 169718.3241 20.75356403 56.75200209 1. 0.07136378463 −0.206183737

50 173670.4499 21.65813465 57.91775093 1. 0.07073370830 0.204494218

Now, the occurrence of such eigenmodes is further investigated. The frequency equation which needs
to be satisfied is given by Eq. (3.18), here reproduced for the reader’s convenience:

(1− cos z)− Cz sin z = 0,

where z = λ̃2L̃, and C is a constant factor, whose definition is given by Eq. (3.17).248

It is not difficult to acknowledge that Eq. (3.18) admits two kind of solutions:249

1. periodic solutions, of the form:250

z = 2πj, (j = 1, 2, . . . ,∞), (5.1)

corresponding to even multiples of π. Consequently, it follows that the beam length must have251

these precise values:252

L̃j =
z

λ̃2
=

2πj

λ̃2
, (j = 1, 2, . . . ,∞). (5.2)

For such values of z, both sin z and (cos z − 1) do vanish: as a consequence, the first Eq. (3.15)253

becomes an identity, while the second one ensures the existence of non-trivial solutions only for254

C3 = C̃3 = 0, C4 = C̃4 6= 0.255

Then, if for normalization purposes C̃4 = 1 is assumed, the remaining coefficients assume256

these values:257

C̃1 = 0, D̃1 = − α̃2

λ̃2
. (5.3)
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Figure 4. Full frequency spectrum, i.e. ωn vs. n plot (for N=100 modes) for the
doubly clamped Euler-Bernoulli beam model (denoted by crosses) and for the Timo-
shenko one. For the latter, modes corresponding to the first part of the spectrum are
marked by solid dots, modes corresponding to the second part are denoted by hollow
diamonds.

So, by Eqs. (2.18)–(2.19) the eigenmodes are the following:258

Ṽ (x) = sin λ̃2x, Φ̃(x) =
α̃2

λ̃2
(cos λ̃2x− 1). (5.4)

2. non-periodic solutions, such that:259

1− cos z = Cz sin z, z 6= 2πj, j ∈ N, (5.5)

such that both sin z 6= 0 and (1− cos z) 6= 0. It is possible to show, see Figure 5 that there is one260

and only one such solution for each interval 2πj < z < 2π(j + 1), with j ∈ N.261

In this case, the coefficient matrix Ar of Eq. (3.15) becomes singular, and any of the two262

equations allows identifying the ratio between C3 and C4; if the first equation is used, under the263

normalization assumption C̃4 = 1, it results:264

C̃3 =
sin λ̃2L̃

1− cos λ̃2L̃
, C̃1 =

− sin λ̃2L̃

1− cos λ̃2L̃
, D̃1 = − α̃2

λ̃2
. (5.6)
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Figure 5. Illustration of the solutions to equation (1−cos z)−Cz sin z = 0. Periodic
solutions are marked by crosses, non-periodic ones by hollow diamonds. In the present
case, C = 1/4. For better readability a dimensionless coordinate z? = z/π has been
adopted.

So, for the non-periodic case, by Eqs. (2.18)–(2.19) the eigenmodes become:

Ṽ (x) =
sin λ̃2L̃

1− cos λ̃2L̃
(cos λ̃2x− 1) + sin λ̃2x, (5.7)

Φ̃(x) =
α̃2

λ̃2

[
(cos λ̃2x− 1) +

sin λ̃2L̃

1− cos λ̃2L̃

(
1

α̃2

ρ ω̃2

Gκ
λ̃2x− sin λ̃2x

)]
. (5.8)

Then, by recognizing that, according to Eq. (3.17),

1

α̃2

ρ ω̃2

Gκ
= 2C

it is not difficult verifying that Φ̃(x) complies with BCs at both ends of the beam.265

Finally, it is useful to remark that periodic solutions are always characterized by a space-frequency
value which is an integer value, i.e.

fλ̃2
=
λ̃2
2π
∈ N+,

while for the non-periodic ones this does not happen, and consequently, it results fλ̃2
∈ R+.266

6. Final remarks and perspectives267

The complete analysis of free vibrations for the Timoshenko beam model has been presented and268

carefully discussed in order to highlight the nature of the vibration spectrum, which has often been269

overlooked in the past. The analysis reveals indeed that there is a transition frequency (or cut-off270
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Figure 6. Vibration shapes corresponding to the transition frequency for a doubly
clamped Timoshenko beam. Transversal displacement, V is shown in (a); section
rotation, Φ in (b). The case of a periodic solution (corresponding to a length L̃ =
2.0519240731 m) is marked by solid lines; that of a non-periodic solution (which is
relevant to a length L̃ = 1.9734138880 m) is denoted by dashed lines. Geometric and
material data are given in Section 2.

frequency, in the language of wave propagation analysis, see [26]) which subdivide the spectrum271

corresponding to natural frequencies in two parts; each one of them exhibits a rather different shape.272

The transition frequency itself might be part of the spectrum, and has a characteristic vibration mode.273

As a consequence, for a Timoshenko beam the vibration spectrum is obviously unique, but it has274

to be considered as formed by two parts, none of which can be, in principle, disregarded. Particular275

attention has been devoted to two special cases of boundary conditions: the simply supported beam276

and the doubly clamped one. They provide a rather simple — but exhaustive enough — representative277

view of the 10 independent combinations which can be formed with the four elementary end constraints278

(e.g. clamped, free, guided, supported) in a single-span beam.279

For simply supported boundary conditions, the transcendental equation which provides the wave-280

numbers corresponding to natural frequencies has been shown to be factorized. Hence, this property281

produces vibration modes which have in both part of the spectrum a simple shape, consisting of an282

integer number of sine/cosine half-waves, while both components of the eigenmode corresponding to283

the transition frequency are constant functions.284

Conversely, for doubly clamped boundary conditions the transcendental equation does not fac-285

torize, and this produces much more complicated vibration modes. In particular, in the first part of the286

spectrum, both circular and hyperbolic sine/cosine functions are combined in each eigenmode, while287

in the second part of it, there appears a combination of sine/cosine functions depending, however,288

on two different wave-numbers. And the transition frequency is not, in general, part of the spectrum:289

this is a common feature shared by the doubly clamped beam and by all other combinations of end290

constraints, with the only exception of the simply supported case.291

For both considered cases, the simply supported, which has been analysed in [19] and the doubly292

clamped, which has been considered here, and for the same mechanical and geometric data (which have293

been chosen in such a way that they are representative of a beam model where shear strain effects are294

expected to be non-negligible), a complete list of the first 50 natural frequencies has been provided,295
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along with the parameters which are necessary to completely identify the corresponding vibration296

modes, for both kinematic variables, transversal displacement, V , and cross-section rotation, Φ. The297

plots of some representative modes have been given, too, to better illustrate the Timoshenko beam298

response in terms of free vibrations.299

The results presented in this work could be used for an in-depth analysis of some current and300

more complicated problems. For instance, the case of curved Timoshenko beams would be interesting301

and useful for technical applications. Particularly interesting is the extension to the computational302

framework, for example by applying the isogeometric approach: see for 1D problem these recently303

appeared contributions [27, 28, 29, 30, 31, 32, 33]. Also the use of highly-efficient discretisation tech-304

niques, such as those reported in [34, 35, 36] is interesting: indeed they provide more refined stress305

description and might therefore improve the accuracy of numerical results. Geometric nonlinearities306

have to be considered, as well, viz. by using the suggestions presented in [37, 38, 39, 40, 41, 42, 43],307

while a complete dynamic approach for the generalized beam theory has been addressed in [44, 45],308

and in the references cited therein, and in [46, 47] for wave propagation problem in second gradi-309

ent continua and micromorphic materials. Also the effects of piecewise–smooth non linearities due to310

impact, see [48, 49, 50], will have the role of modifying the frequency spectrum311

As it is well-known, the Timoshenko beam model is a particularly simple micro-mechanical model312

and can therefore be thought of as a simple prototype for providing fruitful clues for the development313

of new and refined mathematical models of continua. The interested readers will find many insight314

looking at the current research trend on generalized continua and their applications, for example in315

[51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64], taking also into consideration the hints reported316

in [65, 66, 67].317

Finally, it has to be pointed out that an accurate evaluation of the spectrum is fundamental in318

problems which consider damage detection, see for example [68, 69, 70, 71] and references provided319

therein, or try to optimize the structural response of smart structures such as the one described320

in [72, 73].321

Appendix322

To complete the solution of the doubly clamped beam case for the first N = 100 vibration modes,323

data for vibration modes 51–100 are presented in Table 3.324
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