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Abstract

The interaction between cars or trains and bridges has been often described
by means of a simplified model consisting of a beam loaded by a traveling
mass, or by a traveling oscillator.
Among others, two aspects are essential when dealing with masses traveling
along flexible vibrating supports: (i) a complete relative kinematics; and
(ii) a continuous transition between a traveling mass, rigidly coupled, and a
traveling oscillator, elastically coupled with the support.
The kinematics is governed by normal and tangential components —with
respect to the curved trajectory— of the acceleration. However in literature
these parts are oriented with reference to the undeformed beam configu-
ration. This model is improved here by a nonlinear second-order enriched
contribution.
The transition between a traveling oscillator and a traveling mass is governed
by the stiffness k of the elastic or viscoelastic coupling which, in the latter
case (i.e. rigid coupling), has to tend towards infinity.
However, very large stiffness values cause high frequencies and significant
problems are mentioned in literature in order to establish numerically stable
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and reliable results and in order to realize a continuous evolution between
absolute and relative formulations.
By using mixed state variables, generalized displacements and coupling forces,
the contribution from the stiffness changes from k to its inverse 1/k, the cou-
pling force itself becomes a member of the solution-space and the problems,
which have been mentioned in literature, disappear. As a matter of fact, the
coupling force can also take into account a viscoelastic contribution; more-
over, a larger number of traveling oscillators can be considered, too.
Finally, for a periodic sequence of moving oscillators the dynamic stability is
treated in the time-domain along several periods, as well as in the spectral
domain, by using Floquet’s theorem.

Keywords: Mixed variables, Traveling mass-traveling oscillator, Curved
beam, Floquet’s theorem, Consistent kinematics, Dynamic stability.

1 Introduction

The body of literature devoted to traveling oscillators is large. State-of-
the-art overviews are available from Ouyang [1] and Au et al. [2]. The clas-
sical treatment concentrates on finding the critical constant velocity which
leads to a continuous increase of deformations if a sequence of masses crosses
the beam/bridge.

Well-known studies on this dynamic stability problem have been pre-
sented by Bolotin [3], Fryba [4], Luongo [5], [6], [7], [8] and Piccardo and his
coworkers [9], [10], [11], [12], [13], [14].

In order to avoid dynamic instability, the use of piezoelectric actuators
can be effective: some applications to beams and plates are shown in [15],
[16], [17], [18].

A group of recently published papers presents a discussion whether abso-
lute or relative formulations should be used [19]; deals with the equivalence of
the moving mass and moving oscillator problems [20], [21]; and gives atten-
tion to the dynamic stability if a sequence of oscillators crosses the supporting
structure, which has been already deformed by the foregoing oscillators [22].

Another group of papers [23], [24] deals with more sophisticated models
for both, bridge and vehicles, which are represented as an assembly of rigid
bodies, springs and dampers. Sometimes, in addition, the bridge is modeled
as a continuous in-plane curved beam or the wheel-rail interaction is of special
concern: see, for instance [25], [26], [27], [28], [29], [30].
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Plates and beams on generalized foundations subjected to moving loads
are treated in several papers like [31], [32], [33] including tensionless founda-
tions and special models for finite and infinite soil domains using Boundary
Elements, Infinite elements or the Scaled Boundary Finite Element Method.

The analysis and control of bridges with traveling masses has been stud-
ied, too, during earthquakes: several papers are listed in the above-mentioned
review [1].

Finally, local and global changes of the supporting structure due to abrupt
changes in the bridge-railway interface or due to separation and impact-
reattachment have been treated in [34], [35], [36].

The first aspect of this paper concerns the introduction of mixed state
variables, generalized displacements and coupling forces, for the description
of the traveling oscillator. In doing so, a continuous transition between a
traveling mass and a traveling oscillator can be established without incur-
ring numerical problems due to high frequencies caused by stiffness coeffi-
cients tending towards infinity. The key idea behind this new approach is to
change from the stiffness k to its inverse 1/k; in doing so, the coupling force
automatically appears as an additional member of the solution-space.

However, to prepare a common basis for the description of the deforma-
tions and the total acceleration of the oscillator, Section 2 describes in a
detailed way the model of a circle-like beam in a horizontal plane. Thus, the
straight beam case is rigorously recovered when the curvature radius R tends
toward infinity; practically, it is included in the presented model when this
radius is significantly increased.

In Section 3 the kinematic model of the traveling mass is presented and
discussed. Section 4 is devoted to the second innovative aspect of this paper:
a consistent representation of the normal and tangential acceleration with
respect to the curved trajectory of the traveling mass or oscillator. These
accelerations are part of the second total derivative d2x/dt2 of the position
vector x of the traveling coupling point: up to now, the classical formulation
shows that the normal acceleration is applied along the vertical direction
(which is a first-order approximation), and not along the normal to the sup-
porting curve, which is bent by strains, and constitutes the actual trajectory
traveled by the coupling point. Here, a nonlinear second-order theory for the
description of the position vector is introduced, which results in a normal ac-
celeration correctly oriented along the normal vector of the deformed beam
axis. For the sake of simplicity, the procedure is applied here only in the case
of an initially straight beam.
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In order to restrict the amount of variables and to concentrate on the
benefits from the mixed formulation, the shear deformations due to shear-
forces are neglected, and the system of partial differential equations in space
and time is solved in Section 5 by means of a semi-analytical approach using
the sinusoidal modal space of the curved beam. Thus, the beam is assumed
to be a simply supported one with zero vertical displacements and torsional
rotations at both boundaries.

The resulting time-variant ordinary differential equations are presented
in Section 6 and then solved in Section 7 by means of a linear interpolation
of all relevant quantities. The evaluation of Floquet’s theorem is prepared in
Section 8, while in Section 9, some typical results are presented and discussed.
Finally, in Section 10, some conclusions are drawn.

2 Formulation of the curved beam model

The curved beam/bridge is assumed to have a circle-like shape in the
horizontal plane, spanned by the (fixed) Cartesian unit vectors e1, e2, and
perpendicular to the vertical unit vector e3.

Figure 1: Circle-like beam lying in a horizontal plane.

2.1 Basic definitions

The coordinates and displacements of the beam points are defined locally
by the following variables, clearly depicted in Figures 1–2:
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• R: radius, referred to the curved beam axis, i.e. to the cross-section
centroid, G.

• r: radial position of a point, P , measured from the center of curvature
O.

• ϕ: angular position of a point, measured from the center of curvature
O.

• s = Rϕ: coordinate in circumferential direction along the curved beam
axis.

• ξ: coordinate in the cross-section of the beam measured in radial di-
rection from the centroid, G; the corresponding radial position r is:
r = R + ξ.

• z: coordinate in the cross-section of the beam measured in vertical
direction from the centroid.

• u: displacement in radial direction, defined by the local axis k1.

• v: displacement in tangential direction, defined by the local axis k2.

• w: displacement in vertical direction, defined by local/global vertical
axis k3.

• φ1: rotation around the local radial axis k1.

• φ2: rotation around the local tangential axis k2.

• φ3: rotation around the local/global vertical axis k3 = e3.

2.2 Kinematics and strains

Using the cylindrical coordinates r, ϕ, z, for any point of the beam the
position vector x can be described with respect to the fixed initial Cartesian
base E = {e1, e2, e3}:

x = r cosϕ e1 + r sinϕ e2 + z e3 (1)

Adopting the comma notation for derivatives, (i.e. x,r =
∂x

∂r
, etc.), the total

differential, dx of this position vector:

dx = x,r dr + x,ϕ dϕ+ x,z dz (2)
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defines the unit vectors kj , with j = 1, 2, 3, of the local base K:

k1 =x,r = cosϕ e1 + sinϕ e2,

k2 =
x,ϕ
r

= − sinϕ e1 + cosϕ e2, (3)

k3 =x,z = e3.

It should be noticed that, with the definitions of eq. (3), such local base
consists again of three mutually orthogonal unit vectors.

On the other hand, the total differential dx of the above-mentioned po-
sition vector can also be expressed by means of the fixed base, E, as:

dx = e1dx+ e2dy + e3dz. (4)

So, the components of dx which are different, when referred to the fixed base,
E, and to the local one, K, can be compared:

dx =cosϕdr − sinϕrdϕ

dy =sinϕdr + cosϕrdϕ.

Similarly, the displacement vector u may be described with reference to the
global and to the local base:

u = ux e1 + uy e2 + uz e3 = uk1 + v k2 + w k3, (5)

so that the following equalities hold:

ux =u cosϕ− v sinϕ

uy =u sinϕ+ v cosϕ (6)

uz =w.

The total differential of the displacement, du can be deduced in a way similar
to eq. (2):

du = u,r dr + u,ϕ dϕ+ u,z dz (7)

It follows then, taking into account that, by eq. (3), k1 and k2 depend only
on the angular coordinate ϕ:

u,r = (uk1 + vk2 + wk3),r = (u,r k1 + v,r k2 + w,r k3)

u,ϕ = (uk1 + vk2 + wk3),ϕ = [(u,ϕ −v)k1 + (v,ϕ +u)k2 + w,ϕ k3] (8)

u,z = (uk1 + vk2 + wk3),z = (u,z k1 + v,z k2 + w,z k3),
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so that the complete expression of du reads as:

du =(u,r k1 + v,r k2 + w,z k3)dr+

(
u,ϕ−v

r
k1 +

v,ϕ +u

r
k2 +

w,ϕ
r

k3)rdϕ+ (9)

(u,z k1 + v,z k2 + w,z k3)dz.

Therefore, by eq. (9) the total differential of the displacement u may be
expressed in matrix form as a function of the coordinate increment dx and
of the displacement gradient, ∇u; indeed:

du = ∇u dx, (10)

where du, dx and ∇u have these matrix form:

du =





du
dv
dw



 , dx =





dr
rdϕ
dz



 ; ∇u =



















u,r
u,ϕ−v

r
u,z

v,r
v,ϕ +u

r
v,z

w,r
w,ϕ
r

w,z



















. (11)

The components (∇u)ij of the displacement gradient ∇u allow deducing, with
the usual procedure, the corresponding components of the infinitesimal strain
tensor:

εij = εji =
(∇u)ij + (∇u)ji

2
. (12)

The result is:

ε11 = u,r ε12 =
1

2

(

v,r +
u,ϕ−v

r

)

ε22 =
v,ϕ +u

r
ε13 =

1

2
(u,z +w,r )

ε33 = w,z ε23 =
1

2

(

v,z +
w,ϕ
r

)

.

(13)

With reference to Figure 2, let now xG denote the position of the centroid, G,
of the cross-section, whose coordinates are given by the triple (R, ϕ, 0); and
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Figure 2: Cross-section and local coordinates of the circle-like beam. O denotes the center
of the beam axis, G the centroid and P a generic point of the cross-section

xP that of any other point P which is not coinciding with the centroid; its
coordinates are then expressed by the following triple: (rP = R+ ξ, ϕP = ϕ,
zP = z).

If u, v, w identify, from now on, the components of the displacement
vector u of the centerline of the beam, (i.e. for any cross section those referred
to the centroid) the displacements of any point P , uP , whose components
are denoted respectively by uP , vP wP are linked to those of G by the usual
kinematic constraint which apply to beam-like solids, viz. :

uP = u+ φ× (xP − xG), (14)

where φ is the infinitesimal rotation vector which defines the rotation of the
cross-section and has components φ1, φ2, φ3 along the directions defined by
the local base K, see Figure 2.

Taking into account that r = R + ξ, since R is constant for a circle-like
beam, it is also dr = dξ, and ∂(.)/∂r = ∂(.)/∂ξ. Then the component form
of eq. (14) is:

uP =u+ zφ2

vP =v − zφ1 + ξφ3 (15)

wP =w − ξφ2.

The infinitesimal length of a fibre lying outside the centerline of the beam
is dsP = (R + ξ)dϕ. Since the displacement u and the rotation φ are only
unknown functions of the angular coordinate ϕ or (which is the same) of the
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arc-length s = Rϕ, so that ds = R dϕ and hence ∂(.)/∂s = ∂(.)/R∂ϕ, it
follows, by eq. (13), that ε11 = 0; ε33 = 0; ε13 = 0 and the only non-zero
strain components are:

ε22 =
v,s+

u

R

1 +
ξ

R

+

z

(

φ2

R
− φ1,s

)

1 +
ξ

R

+
ξφ3,s

1 +
ξ

R

γ12 =2ε12 =
u,s−

v

R
+ φ3

1 +
ξ

R

+

z

(

φ1

R
+ φ2,s

)

1 +
ξ

R

(16)

γ23 =2ε23 =
w,s−φ1

1 +
ξ

R

−
ξ

(

φ1

R
+ φ2,s

)

1 +
ξ

R

.

In eq. (16) warping effects have been neglected.
Moreover, if the radius of curvature R of the beam axis is large compared

to the cross section width, then ξ/R ≪ 1 and the corresponding terms,
appearing in the denominators of eq. (16), can be disregarded. This will be
tacitly assumed in the sequel.

However, in cases when R becomes comparable with the cross-section
beam width, Winkler’s theory [37] for strongly curved beams applies: some
examples and analytical solutions are discussed in [38].

2.3 Potential and kinetic energy

The potential energy E and the kinetic energy T of the beam are simply:

2E =

∫

G(γ2
12 + γ2

23)ds dA +

∫

Eε222 ds dA, (17)

2T =

∫

ρ(u̇2
P + v̇2P + ẇ2

P ) ds dA (18)

=ρA

∫

(u̇2 + v̇2 + ẇ2) ds+ ρI1

∫

φ̇2
1 ds + ρI3

∫

φ̇2
3 ds+ ρIP

∫

φ̇2
2 ds,
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where G and E are the shear and the Young’s modulus of the beam, ρ is
its density, which is constant since the beam is assumed to be homogeneous
and to have a constant cross-section, whose area is A, I1 =

∫

z2dA and
I3 =

∫

ξ2dA are the cross section moments of inertia about the k1 and k3

directions and IP = (I1+I3) is the corresponding cross-section polar moment
of inertia.

Once these energies are known, Hamilton’s principle can be applied in
order to get the governing Partial Differential Equations (PDEs); alterna-
tively, variationally-based numerical approaches can be used by assuming
some shape-functions for modeling the unknown variables u(s), v(s), w(s),
φ1(s), φ2(s), φ3(s).

2.4 Simplifying assumptions

The first term which appears in the elastic potential, 2E , in eq. (17),
namely

2EG =

∫

G(γ2
12 + γ2

23) ds dA

accounts for the effects of shear deformation on strain energy; it consists of
two contributions, one of them is due to shear forces (with a shear stiffness
given by GAT , AT being the reduced shear area of the cross-section), the
other is due to torsion (whose stiffness is GIP ).

Once strains components, see eqs. (16), are substituted into eq. (17) it
results:

2EG = GAT

∫

(φ1−w,s )
2ds+GAT

∫

(φ3+u,s−
v

R
)2 ds+GIP

∫

(φ2,s+
φ1

R
)2ds.

The Euler-Bernoulli beam model is characterized by zero strains due to shear
forces:

GAT

∫

(φ1 − w,s )
2ds = 0 → φ1 = w, s

GAT

∫

(φ3 + u,s−
v

R
)2ds = 0 → φ3 = −u,s +

v

R
;

this allows eliminating φ1 and φ3 from the state variables.
Moreover, here only the out-of-plane dynamics will be treated, which

means that only state variables φ2 and w (which are decoupled from the
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pair u, v of in-plane displacements) need to be introduced. Then, eqs. (16)
become:

ε22 = z

(

φ2

R
− w,ss

)

, γ12 = z
(w,s

R
+ φ2,s

)

, γ23 = −ξ
(w,s

R
+ φ2,s

)

.

(19)
The corresponding out-of-plane potential energy for strain-less shear forces,
containing the vertical displacement w and the torsional rotation φ2, is:

2E = EI1

∫

(
φ2

R
− w,ss )

2ds+GIP

∫

(φ2,s +
w,s
R

)2ds. (20)

By applying the same reduction of variables to the kinetic energy, see eq. (18),
but retaining the rotational inertia, it results:

2T = ρA

∫

ẇ2ds+ ρIP

∫

φ̇2
2ds. (21)

2.5 Equations of motion

By applying Hamilton’s principle to the total energy of the beam, given
by the sum of E , eq. (20), and T , eq. (21), the equations of motion of the
beam model are established:

EI1(w,ssss−
φ2,ss

R
)− GIP

R
(
w,ss
R

+ φ2,ss) + ρAw,tt =0 (22)

EI1
R

(
φ2

R
− w,ss )−GIP (

w,ss
R

+ φ2,ss) + ρIPφ2,tt =0 (23)

They correspond to the extension to curved beams of the so-called Rayleigh
beam model, as defined by Pilkey [39, p. 537].

3 Kinematics of a traveling mass

3.1 General case: traveling mass along a plane-curved beam

A point-mass traveling along the curved axis (i.e. the center-line) of the
circular beam is now considered. As it is shown in Figure 1, the variable
position of the mass is measured by an arc-length coordinate s(t) = Rϕ(t).
The local base K, to which the displacements and rotations of the beam are
referred, is connected to the mass, and it is therefore moving along the curved
beam axis, in such a way that k1 and k2 are always oriented, respectively,
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according to the radial and the tangential directions. It is assumed that the
traveling speed c of the mass, defined as:

ds

dt
= R

dφ

dt
= Rω = c = const, (24)

so that also the angular velocity ω is constant. Since the traveling speed of
base K is c, it is also ϕ = ωt, ω = c/R. The position vector xr to any point
of the curved beam axis in the undeformed configuration of the beam (or,
which is the same, if the mass trajectory is considered a rigid curve) is time-
dependent; particular it results: xr = R k1, with k1 expressed by eq. (3)1 in
terms of the global base E. The total derivatives with respect to time of the
position vector xr come out to be oriented along the k1 and k2 unit vectors;
indeed it is simply:

dxr

dt
= Rω k2,

d2xr

dt2
= −Rω2k1, (25)

again with k2 given by eq. (3)2. In the deformed configuration of the beam,
the position vector x to any point of its axis can be thought of as the su-
perposition of a displacement u (measured again in the local basis K) to the
undeformed configuration:.

x = xr + u = xr + (uk1 + vk2 + wk3) , (26)

where k3 is defined in eq. (3)3
In evaluating the first derivative of x with respect to time, namely the

velocity vector, one has to consider the time-dependency of the basis K and
the dependency of the state-variables with respect to the position of the
traveling mass: indeed, u = u(s, t), v = v(s, t), w = w(s, t). The velocity
vector is then:

v =
dx

d t
=

dxr

d t
+

du

d t
, (27)

where:
du

dt
= u,t +u,s s,t = u,t +cu,s . (28)

Finally, it results:

u,t =(u,t−ωv)k1 + (v,t+ωu)k2 + w,t k3,

(29)

u,s =
(

u,s−
v

R

)

k1 +
(

v,s+
u

R

)

k2 + w,s k3.
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So, the velocity vector v of the traveling mass can be explicitly computed:

v = Rω k2 + u,t +cu,s . (30)

With a similar procedure, the second total time-derivative of the position
vector x gives the acceleration of the traveling mass, a:

a =
d2x

d t2
=

d2xr

d t2
+

d2u

d t2
. (31)

The total second time-derivative of u can be written in this compact form:

d2u

dt2
= u,tt +2cu,ts +c2u,ss . (32)

The explicit expressions of u,tt, u,ts, u,ss are:

u,tt =
(

u,tt −2ωv,t−uω2
)

k1 +
(

v,tt+2ωu,t−vω2
)

k2 + w,tt k3,

u,ts =

(

u,ts −ωv,s−
v,t+ωu

R

)

k1 +

(

v,ts+ωu,s+
u,t−ωv

R

)

k2 + w,ts k3,

(33)

u,ss=
(

u,ss−2
v,s
R

− u

R2

)

k1 +
(

v,ss+2
u,s
R

− v

R2

)

k2 + w,ss k3.

By using eqs. (33) the acceleration vector a of the traveling mass, formulated
with respect to the local base K results:

a = −Rω2k1 + u,tt +2cu,ts+c2u,ss . (34)

It should be noticed that the expression of acceleration contains Coriolis-
type terms, indicated by the typical factor 2c = 2ωR; moreover, for the
acceleration vector expressed in the local base:

a = ark1 + aϕrk2 + azk3 (35)

the component acting in the vertical direction (namely that spanned by k3)
contains only parts related to the vertical displacement w of the beam:

az = w,tt+2cw,st+c2w,ss . (36)

Please cite this document as: A. Cazzani, N. Wagner, P. Ruge and F. Stochino
“Continuous transition between traveling mass and traveling oscillator using mixed
variables”International Journal of Non-Linear Mechanics, first published on August 24,
2015, DOI:10.1016/j.ijnonlinmec.2015.06.017



A
cc
ep

te
d
M
an

us
cr
ip
t

Cont. trans. between trav. mass and trav. oscillat. using mix. variab. 14

3.2 Special case: traveling mass along a straight beam

With a similar procedure one can deduce the acceleration for the out-of-
plane dynamics in the case of a mass traveling on an originally straight beam.
With reference to Figure 6 (where there is a slight change of the notation
adopted up to here: the horizontal direction is denoted by x and η describes
the arc-length abscissa, previously denoted by s) it is indeed:

d2w

dt2
= w,tt+2cw,ηt+c2w,ηη +aw,η , (37)

where c = dη/dt, a = d2η/dt2. It should be remarked that eq. (37) has been
deduced in a more general framework, where the traveling speed of the mass,
c might be not constant ; hence the presence of the last term in the right-hand
side. On the other hand, if c = const then a = 0, and the same expression
provided by eq. (36) is recovered.

4 Second-order nonlinear kinematics of a traveling mass

With reference to a mass traveling along a straight beam, as described at
the end of Section 3, the vertical acceleration can be typically split in two
parts, which are identified by their geometric orientation:

• c2w,ηη, with c = η,t: normal acceleration, which is related to the
squared value of the speed of the traveling, mass/oscillator contact
point;

• aw,η, with a = η,tt: tangential acceleration, which depends on the
magnitude of acceleration of the traveling mass/oscillator contact point.

However, the second total derivative of the position vector x of the coupling
point of the traveling mass/oscillator does not result truly aligned along the
normal direction, as some simple computations show.

The problem is a plane one; its description is simplified if an horizontal
x-axis and a vertical, downwards pointing z-axis are assumed, as in Figure 3;
for the sake of conciseness, vectors are here represented component-wise and
stored in suitable column matrices.
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It results, then for the position, velocity and acceleration vectors corre-
sponding to the traveling mass/oscillator contact point:

x =

[

η(t)
w(η, t)

]

,

v = dx/d t =

[

0
w,t

]

+ η,t

[

1
w,η

]

, (38)

a = d2x/dt2 = w,ηη (η,t )
2

[

0
1

]

+ η,tt

[

1
w,η

]

+ 2η,t

[

0
w,ηt

]

+

[

η,tt
w,tt

]

.

If Figure 3 is considered, it is clear that the so-called normal acceleration

Figure 3: Absolute description of the motion of an elastically coupled mass traveling along
a beam, standard model: spring elongation occurs in the vertical direction, and not along
that of the unit normal n̂ to the deformed beam axis.

defined by eq. (38)3 is not directed along the unit normal n̂ to the deformed
beam, at the coupling point between the traveling mass/oscillator and the
beam, whose expression is:

n̂ =
1

√

1 + w,η2

[

−w,η
1

]

, (39)

but in the vertical direction:

e3 =

[

0
1

]

. (40)

However, a careful look at the deformed situation of the supporting structure,
see Figure 4, shows a difference ∆u(x, t) between the position occupied by
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the coupling point, if the beam were rigid, x, and the actual position of
the coupling point on the deformed beam. If the reasonable hypothesis of
inextensibility is introduced, so that x = η, then this difference is given by:

∆u(x, t) = −
∫ x

0

1

2
w,η

2dη. (41)

Thus, the position vector x of the coupling point has to be enriched by
this difference. When this is done, it results that the expressions of the
position, velocity and acceleration vectors corresponding to the traveling
mass/oscillator contact point are no more given by eqs. (38), but are instead:

x =

[

η(t)−
∫ x

0
1
2
w,2η dη

w(η, t)

]

,

v =

[

0
w,t

]

+ η,t

[

1− 1
2
w,2η

w,η

]

, (42)

a = (η,t )
2w,ηη

[

−w,η
1

]

+ η,tt

[

1− 1
2
w,η

2

w,η

]

+ η,tw,ηt

[

−w,η
2

]

+

[

0
w,tt

]

.

For this enhanced kinematic model, eq. (42), the normal acceleration is in-
deed oriented along the direction identified by the unit normal n̂, eq. (39).

Figure 4: Absolute description of the motion of an elastically coupled mass traveling along
a beam, enhanced kinematic model: spring elongation occurs in the direction of the unit
normal n̂ to the deformed beam axis.

For a constant velocity of the traveling mass, η,t= c, η,tt = 0, the acceleration
along the vertical (z) direction:

az = c2w,ηη +2cw,ηt+w,tt (43)
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is the same as for the standard, not enriched formulation; however, the ac-
celeration along the horizontal (x) direction

ax = −cw,η (cw,ηη +w,ηt ) (44)

does not vanish as it happens for the standard formulation.
Including the difference ∆u in the analysis produces another improve-

ment concerning that part, vc, of the velocity vector which is related to the
(imposed) driving velocity η,t= c.

Indeed, for the standard, not enriched kinematic model it results:

vc = c

[

1
w,η

]

; |vc| = c
√

1 + w,η2 ≈ c(1 +
1

2
w,η

2), (45)

while for the enriched one it follows:

vc = c

[

1− 1
2
w,η

2

w,η

]

; |vc| = c

√

1 +
1

4
w,η4 ≈ c(1 +

1

8
w,η

4). (46)

Thus the discrepancy between |vc| and the imposed traveling velocity c is
much less for the enriched version, provided that the slope of the deformed
beam axis is conveniently small: w,η ≪ 1.

It should be noticed that in almost all papers dealing with a traveling
oscillator along a beam the displacement of the oscillator is always assumed
to be in a vertical direction, as it is depicted in Figure 3. A more precise
analysis, however, should take the oscillator as a pendulum with an additional
rotational degree-of-freedom (DOF) β, as it is shown in Figure 5, resulting in
a 2 DOFs variable length pendulum, see [40]. This model, of course, reduces
to the traditional one when the constraint β = 0 is introduced.

5 Semi-analytical approach for the dynamics of a beam with a

traveling oscillator

The dynamics of the system composed by the beam and the traveling
oscillator is described by this system of partial differential equations:

EI1(w,ssss−
φ2,ss

R
)− GIP

R
(
w,ss
R

+ φ2,ss) + ρAw,tt=Fδ(s− ct),

(47)

EI1
R

(
φ2

R
− w,ss )−GIP (

w,ss
R

+ φ2,ss) + ρIPφ2,tt =0,
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Figure 5: Absolute description of the motion of an elastically coupled mass traveling along
a beam, enhanced 2 DOFs kinematic model: the direction of spring elongation e forms an
angle β with the vertical direction.

where F is the coupling force in the interface between supporting beam and
traveling mass/oscillator. This forcing term, which applies only to eq. (47)1,
the one governing the w displacement-component of the beam, is a Dirac’s
δ-function acting in the vertical direction; ct is the instantaneous position
occupied by the traveling oscillator, driven with a constant speed c along the
curved, circular beam axis.

The system of PDEs eq. (47) is solved by a semi-analytical approach for a
simply supported circle-like beam, having a developed length (i.e. measured
along the curved axis), L, with the following Boundary Conditions (BCs):

@s = 0 : w = 0 , φ2 = 0 ; (48)

@s = L : w = 0 , φ2 = 0 . (49)

5.1 Discretization in the space-domain

The equations of motion can be solved by a discretization procedure in
the space-domain: for this purpose sin-like shape functions are chosen in
order to satisfy for any value of time t the above-mentioned BCs (48)–(49):

w(s, t) =

N
∑

j=1

Wj(t) sin(j
πs

L
), (50)

φ2(s, t) =
N
∑

j=1

Tj(t) sin(j
πs

L
). (51)

Please cite this document as: A. Cazzani, N. Wagner, P. Ruge and F. Stochino
“Continuous transition between traveling mass and traveling oscillator using mixed
variables”International Journal of Non-Linear Mechanics, first published on August 24,
2015, DOI:10.1016/j.ijnonlinmec.2015.06.017



A
cc
ep

te
d
M
an

us
cr
ip
t

Cont. trans. between trav. mass and trav. oscillat. using mix. variab. 19

In eqs. (50)–(51) Wj(t) and Tj(t) represent still unknown time-dependent
amplitude coefficients. Solution is sought by substituting these shape func-
tions, eqs. (50)–(51), inside the equations of motions and then projecting
all the resulting terms against the orthogonal functions space spanned by
sin(jπs/L) (j = 1, . . . , N), which correspond to the homogeneous solutions
of the curved beam in the space-domain.

This procedure can be thought of as a Fourier-series expansion of the
unknown variables: based on the particular symmetry of the problem, it
should be noticed that only sin-type terms are involved.

Taking into account that these functions are orthogonal, i.e. :
∫ L

0

sin(j
πs

L
) sin(k

πs

L
)ds =0 ∀ k 6=j

(52)
∫ L

0

sin(j
πs

L
) sin(k

πs

L
)ds =

L

2
for k = j

the procedure produces a set of ODE’s in the unknown variables Wj(t) and
Tj(t); more precisely, it results (for j = 1, . . . , N):

b11jWj(t) + b12jTj(t) + ρAẄj(t) =
2F

L
sin(jα t),

(53)

b21jWj(t) + b22jTj(t) + ρIP T̈j(t) =0,

where these short-hand definitions have been adopted:

b11j =EI(
jπ

L
)4 +

GIP
R2

(
jπ

L
)2,

b12j =
GIP + EI

R
(
jπ

L
)2 = b21j , (54)

b22j =GIP (
jπ

L
)2 +

EI

R2
.

The r.h.s. in eq. (53)1 descends from the integration properties of Dirac’s
delta function; indeed:

∫ L

0

F sin(j
πs

L
)δ(s− ct)ds = F sin(j

πc t

L
) = F sin(jα t),

Please cite this document as: A. Cazzani, N. Wagner, P. Ruge and F. Stochino
“Continuous transition between traveling mass and traveling oscillator using mixed
variables”International Journal of Non-Linear Mechanics, first published on August 24,
2015, DOI:10.1016/j.ijnonlinmec.2015.06.017



A
cc
ep

te
d
M
an

us
cr
ip
t

Cont. trans. between trav. mass and trav. oscillat. using mix. variab. 20

where α = πc/L.

5.2 Modeling of the coupling force between beam and traveling mass/oscillator

The equation of motion for the traveling oscillator contains the coupling
force:

F = fk + fd (55)

due to the elastic (fk) and to the viscous (fd) contributions, so that the
equation of motion of the oscillator, whose mass is m, by Newton’s law is:

mẅM = mg− fk − fd with fk = k(wM −wB), and fd = d(ẇM − ẇB) (56)

where gravity acceleration is denoted by g. In eq. (56) both the absolute
vertical displacement wB = zB of the supporting beam and the absolute
vertical deflection wM = zM − ℓ0 of the oscillator’s mass appear, according
to Figure 6; moreover, ℓ0 describes the stress-less length of the spring.

Figure 6: Absolute description of the motion of an elastically coupled mass traveling along
a beam, standard model: spring elongation e = zM − zB − ℓ0 is constrained to be in the
vertical direction.

The viscous force fd can be written equivalently in this way: fd =
d

k
ḟk;

then the viscoelastic coupling force, eq. (55) becomes:

F = fk +
d

k
ḟk, (57)

and the oscillator’s equation of motion, eq. (56) results in:

mẅM = mg − fk −
d

k
ḟk. (58)
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Then, the second derivative of the absolute vertical displacement of the mass,
wM , can be described by ẅM = ẅB+f̈k/k and thus, the wM degree-of freedom
(DOF) can be eliminated by switching to the new state variable, fk.

Finally, the equation of motion of the mass-spring-dashpot oscillator is
this:

mẅB +
m

k
f̈k +

d

k
ḟk +

k

k
fk = mg. (59)

Thus, the whole system characterized by an oscillator traveling along a flexi-
ble beam/bridge is described by mixed variables: displacements for the beam
and forces for the oscillator.

The second total derivative of the displacement wB with respect to time
at the interface between beam and traveling oscillator can then be taken from
eq. (37).

d2w

dt2
= w,tt+2cw,ηt+c2w,ηη +aw,η , (60)

with c and a denoting, respectively, the driving speed and acceleration of the
traveling contact point.

6 Semi-discretized, time-variant equation of motion for a curved

beam

For j = 1 up to N , the projections of all terms of the given PDEs —
see eqs. (47) — against the domain of orthogonal functions sin(jπs/L) give
as a result a system of ODEs (whose size depends on the number N of
the considered Fourier series harmonics) which are characterized by time-
dependent nonsymmetric matrices:

M(t)q̈+D(t)q̇ +C(t)q = r, (61)

where {M(t),D(t),C(t)} ∈ R
(2N+1)×(2N+1) and {q, r} ∈ R

2N+1. In eq. (61)
a standard notation is adopted: M, D and C denote, respectively, the iner-
tia, damping and stiffness matrices, while q, r are column-matrices storing
componentwise the unknown displacements and the assigned external forces.

Before giving explicitly the structure of matrices appearing in eq. (61)
it is useful introducing some new definitions, namely µ = ρA, which is the
density per unit length of the beam; m, d, k which denote, as before, the
mass, viscous damping and elastic stiffness of the moving oscillator; and a
new variable, α = πc/L, having the dimension of the reciprocal of time: it
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should be remembered that c is the traveling speed of the oscillator, while L
the developed length of the beam. It follows, hence:

M(t) =















µINN 0NN 0N

0NN ρIP INN 0N

mT
31 0T

N

m

k















, (62)

mT
31 = m

[

sin(αt) · · · sin(Nαt)
]

,

D(t) =















0NN 0NN d13

0NN 0NN 0N

dT
31 0T

N

d

k















, (63)

dT
13 =− 2d

Lk

[

sin(αt) · · · sin(Nαt)
]

,

dT
31 =2mα

[

cos(αt) · · · N cos(Nαt)
]

,

C(t) =















C11 C12 c13

CT
12 C22 0N

cT31 0T
N 1 =

k

k















, (64)

C11 =diag

[

EI
(π

L

)4

+
GIP
R2

(π

L

)2

, · · · , EI

(

Nπ

L

)4

+
GIP
R2

(

Nπ

a

)2]

,

C22 =diag

[

GIP

(π

L

)2

+
EI

R2
, · · · , GIP

(

Nπ

L

)2

+
EI

R2

]

,

C12 =

(

GIP + EI

R

)

diag

[

(π

L

)2

, · · · ,

(

Nπ

L

)2]

,

cT31 = −mα2
[

sin(αt) · · · N2 sin(Nαt)
]

,

cT13 = − 2

L

[

sin(αt) · · · sin(Nαt)
]

,
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Matrices INN , 0NN and 0N appearing in eqs. (62)–(64) are respectively a
square identity matrix of order N , a square null matrix of order N and a null
column matrix having N rows. Moreover, it results:

qT (t) =
[

W1 · · · WN T1 · · · TN F
]

, (65)

rT =
[

0 · · · 0 0 · · · 0 mg
]

. (66)

The corresponding matrices for a straight beam traveled by an oscillator will
be deduced in Appendix A.

7 Time discretization of the equation of motion

The final equation of motion is, in matrix form, a second-order Ordinary
Differential Equation (ODE), see eq. (61):

M(t)q̈ +D(t)q̇+C(t)q = r(t), (67)

where the time-dependent forcing term r(t) can be expressed as:

r(t) = mg
[

0T
N0

T
N1

]T
= mg e2N+1. (68)

In eq. (68) e2N+1 is a column matrix consisting of 2N + 1 rows: the first
2N entries are filled with zeros, while the last one stores a unit value. The
equation of motion eq. (67) can be rewritten as a system of first-order ODEs,
with additional state variables v:

M(t)v̇ +D(t)q̇ +K(t)q =r(t), (69)

q̇ =v(t). (70)

Time integration is performed along time-steps of equal length h using a
linear interpolation (corresponding to a Newmark-like algorithm), for the
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unknown state variables q, v and for the given matrices M, D, C as well:

M(t) =

(

1− t

h

)

M0 +
t

h
M1,

D(t) =

(

1− t

h

)

D0 +
t

h
D1,

C(t) =

(

1− t

h

)

C0 +
t

h
C1, (71)

q(t) =

(

1− t

h

)

q0 +
t

h
q1,

v(t) =

(

1− t

h

)

v0 +
t

h
v1,

where M0 = M|t=t0 , M1 = M|t=t1=t0+h, and so on.
Numerical integration ends up with a corresponding difference equation:

1

2
[M0 +M1] (v1 − v0) +

1

2
[D0 +D1] (q1 − q0) +

h

6
[C0 + 2C1]q1 +

h

6
[2C0 +C1]q0 =mg e2N+1, (72)

q1 − q0 =
h

2
(v0 + v1) .

Here, the initial values q0, v0 are known by initial conditions, while q1, v1

are the unknowns. Column matrix v1 can be taken explicitly from the last
eq. (72)2

v1 =
2

h
(q1 − q0)− v0,

and eliminated in the other difference equation, eq. (72)1:

1

h

[

M0 +M1 +
h

2
(D0 +D1) +

h2

6
(C0 + 2C1)

]

q1 =

1

h

[

M0 +M1 +
h

2
(D0 +D1)−

h2

6
(2C0 +C1)

]

q0+ (73)

[M0 +M1]v0 +mg e2N+1.

This algebraic system has to be solved for an amount of n = T/h time-
steps where T = L/c is the period that the oscillator needs to cross the
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beam/bridge (whose length, measured along the arc-length abscissa s, is L)
at a constant speed, c.

A special situation concerns a sequence of traveling oscillators having a
fixed distance L, namely equal to the developed length of the beam. Then
the displacements of the beam may increase continuously from one crossing
to the next, such that instability occurs. The stability of such parameter-
excited problems (here such parameter is the velocity c) can be studied, too,
by Floquet’s theorem.

8 Stability analysis by Floquet’s theorem

The starting point for treating the dynamical stability by means of Flo-
quet’s theorem is constituted by the two homogeneous difference equations (72),
which are put together into one single system of double order, starting with
the first time-step with j = 0, k = 1 and ending with j = n− 1, k = n:

Aj,kzk = Bj,kzj, zk = Tj,kzj , Tj,k = A−1
j,kBj,k, (74)

where matrices used in eq. (74) have the following structure:

Aj,k =





I −h
2
I

Dj,k +
h
6
(Cj + 2Ck) Mj,k



 , (75)

Bj,k =





I h
2
I

Dj,k − h
6
(2Cj +Ck)Cj,k Mj,k



 . (76)

In eqs. (75)–(76) these short-hand notations have been used:

Mj,k =
1

2
(Mj +Mk), Dj,k =

1

2
(Dj +Dk). (77)

Thus the local transition from zj to zk = zj+1 can be described by means of
the local transition matrix Tj,k, which is calculated by column-wise solving
the linear algebraic system Aj,kTj,k = Bj,k.

However, the stability analysis by Floquet’s theorem requires computing
the relation

z|t=T = T0,n z|t=0 (78)

along the whole typical period of the dynamic system.
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The global transition matrix T0,n entering in eq. (78) is built by the
product of all transition matrices for each time-step,

T0,n = Tn−1,n ×Tn−2,n−1 × · · · ×T1,2 ×T0,1, (79)

and the local counting with time increments h is replaced by a global counting
along a period T = nh, which generates a global difference equation:

z1 = T0,Tz0. (80)

This equation is solved by assuming:

z1 = λ1z0 and thus zk = λkz0, (81)

with λ descending from the corresponding eigenvalue-problem:

T0,Tx = λx. (82)

Typically, the eigenvalues λ are complex numbers, which can be written
alternatively in the following forms, with a ∈ R, b ∈ R:

λ = a+ ib = ρ⋆ exp(iΦ); ρ⋆ =
√
a2 + b2; tanΦ =

b

a
. (83)

Hence it follows from eq. (81) that

zk = ρ⋆k exp(ikΦ)z0. (84)

Consequently, the quantities zk remain bounded and the solution is stable
only if the magnitude (or modulus) ρ⋆ of any eigenvalue λ does not exceed
the value 1. Otherwise, for any ρ⋆ > 1 the system is unstable.

It is useful to notice that only the eigenvalue with largest modulus ρ⋆ is
needed in order to check the stability of the system.

On the other hand, it should be emphasized, even though this property
has not been used in this context, that it is the eigenvector x⋆ related to
the eigenvalue with ρ⋆ > 1 which contains the information about the critical
mode leading to instability.
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9 Numerical examples

The numerical examples presented in this section are conceived to outline
these main issues:

1. To describe a continuous transition between traveling mass and travel-
ing oscillator using mixed variables;

2. To detect dynamic instability in the time domain by means of a se-
quence of traveling oscillators and in the spectral domain by means of
Floquet’s theorem;

3. To evaluate in a quantitative way the non-linear second-order effects
produced by the enhanced approximation of the traveling mass kine-
matics described in Section 4.

9.1 Sequence of traveling oscillators moving along a curved beam

The same data provided by Yang et al. [30] have been adopted here:

• Radius of the centerline: R = 45.840 m,

• Mass of traveling oscillator: m = 29869.5 kg,

• Mass density of the bridge: ρ = 2400 kg/m3,

• Young’s modulus of the bridge: E = 3.22 · 1010 N/m2,

• Poisson’s ratio: ν = 0.2,

• Cross-section area of the beam: A = 5.0 · 1.8 = 9.0 m2,

• Cross-section moment of inertia about the k1 axis: I1 = 5.0 · 1.83/12 m4,

• Cross-section polar moment of inertia: IP = I1 + 1.8 · 5.03/12 m4,

• Aperture angle of the beam: θ = π/6

• Beam length measured along the arc-length: L = R · θ = 24.00 m;

All the presented results have been computed by considering a number N = 3
of harmonic contributions: the size of the problem, in terms of DOFs is
2 · (2N + 1) = 14.
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Figure 7: Complex plane plots of the eigenvalues λi of the transition matrix for the
traveling mass elastically coupled with a plane-curved beam, as a function of the mass
speed.
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The development of the dynamical instability according to the constant
velocity of the traveling oscillator is shown in Figure 7 in the spectral domain
by means of the eigenvalues λ of the transition matrix in the complex plane.
The stable situation is characterized by eigenvalues running around the unit
circle. However, in between the values from about c = 377 km/h up to about
c = 392 km/h eigenvalues escape outwards from the unit circle and that
indicates instability.

For a velocity c = 362 km/h (i.e. outside the critical interval) the displace-
ment of the oscillator along time, as well as the position of the eigenvalues
of the corresponding transition matrix in the complex plane, are shown in
Figure 8, for a sequence of five masses crossing the bridge. A continuous
amplification from one crossing to the following one is not visible.
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Figure 8: Complex plane plots of the eigenvalues λi of the transition matrix for the travel-
ing mass elastically coupled with a plane-curved beam, for a mass speed c = 362 km/h (a)
and corresponding displacement history of the 5 equally spaced oscillators as a function
of time (b).

The same situation, but now for a critical velocity c = 390 km/h is
demonstrated in Figure 9, where a continuous increase of the displacements
occurs. Obviously, the results in the spectral domain and in the time domain
correspond to each other.

The development of a characteristic quantity, for example the coupling
force between the oscillator’s traveling mass and the supporting beam, is
shown along the coupling stiffness in Figure 10. There the largest coupling
force Fmax during the passing of only one oscillator along the beam is shown
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Figure 9: Complex plane plots of the eigenvalues λi of the transition matrix for the travel-
ing mass elastically coupled with a plane-curved beam, for a mass speed c = 390 km/h (a)
and corresponding displacement history of the 5 equally spaced oscillators as a function
of time (b).

in relation to the static force F0 = mg, for a mass speed c = 360 km/h (i.e
100 m/s).
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Figure 10: Coupling force between the oscillator’s traveling mass and the supporting beam,
for a mass speed c = 360 km/h, for several values of the elastic stiffness parameter k.

Obviously, the normalized coupling force tends towards the situation of
a traveling mass, rigidly connected with the supporting beam in normal di-
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rection and the force increases as stiffness increases. Before asymptotically
reaching the rigid situation there happens a local amplification.

Finally, the center point displacement wB of the supporting beam is pre-
sented in Figure 11 as a function of the time and of the coupling stiffness
k [N/m] during the crossing of one oscillator from t = 0 (entering the bridge)
until t = 0.6 s (leaving the bridge) according to the relation L = cT , this
time with c = 144 km/h (i.e. 40 m/s), L = 24 m and thus T = 0.6 s. All
curves, including those for high stiffness values exhibit a smooth behavior
and the maximum center point displacement occurs after the oscillator has
passed the center point.
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Figure 11: Center displacement wB of the supporting beam, for a mass speed c =

144 km/h, as a function of the elastic stiffness parameter k.

9.2 Single mass traveling along a straight beam: second-order nonlinear
kinematics

The numerical influence of the nonlinear second-order correction, eq. (41):

∆u(x, t) = −
∫ x

0

1

2
w,η

2dη
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in eq. (42) is shown a posteriori for a beam which is nearly a straight one by
adopting a radius R = 1000 m of the centerline1; furthermore, by assuming a
very stiff spring, k = 4.0 · 1012 N/m, the traveling oscillator becomes so rigid
that the case of a traveling mass is approached. All other data are the same
already used for the first example above.

By following the semi-discretization procedure described in Section 5,
it is possible to show that for an initially straight beam, the vertical and
horizontal components of the traveling mass, eqs. (43) and (44), assume
these expressions:

az(t) =− c2
N
∑

j=1

(j
π

L
)2Wj(t) sin(j

πct

L
) + 2c

N
∑

j=1

(j
π

L
)Ẇj(t) cos(j

πct

L
)+

N
∑

j=1

Ẅj(t) sin(j
πct

L
),

and

ax(t) =− c

[

N
∑

j=1

(j
π

L
)Wj(t) cos(j

πct

L
)

]

×
[

N
∑

j=1

(j
π

L
)Ẇj(t) cos(j

πct

L
)− c

N
∑

j=1

(j
π

L
)2Wj(t) sin(j

πct

L
)

]

.

These values, for c = 390 km/h are computed along one period:

T =
πR

6c
= (

π

6
)
1000 · 3.6

390
= 4.83 s

and the results are compared in Figure 12.
As it can be seen from Figure 12 the horizontal acceleration ax plays

a marginal role compared with the vertical acceleration az. For the given
values, indeed, it comes out that az is more than 1000 times larger than ax.
However, for different data and for high performance systems the horizontal
component ax of acceleration can become important and thus, further work
should be carried out on this issue.

1The same code developed for the curved beam has been used in this case, too; therefore,
a large, but finite, value of R was selected, for approximating a truly straight beam
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Figure 12: Comparison of the horizontal, ax, and vertical, az, components of acceleration
for the enhanced kinematic model of a single mass traveling along a straight beam, for a
mass speed c = 390 km/h.

10 Conclusions

This paper provides a common kinematics for a mass traveling along a
circle-like curved beam as well as for the elastic strains. In order to switch
from a traveling mass to a traveling oscillator, papers which are available in
literature use either the absolute displacement wM of the traveling oscillator
or the relative displacement ∆w = wM − wB between supporting beam and
the oscillator’s mass. Here, instead, the coupling force F is introduced, which
allows a continuous transition between a traveling oscillator and a traveling
mass, to be thought of as a material point rigidly connected to the supporting
beam. Even for a coupling stiffness k tending towards infinity and thus
modeling a traveling mass, the numerical treatment remains stable due to
the inverse appearing like 1/k in the equations of motion and as a byproduct,
the coupling force appears directly in the solution space. Thus this concept
of mixed variables presents a numerically robust tool in order to deal with
dynamical problems involving almost rigid connections and can be used for a
much larger variety of problems with traveling oscillators including control,
earthquake, separation and reattachment. Further research in this direction
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is on the way.
Concerning the treatment of the dynamical stability of bridges excited

periodically by a sequence of traveling oscillators, two different approaches
in the time-domain and in the spectral-domain have been elaborated and the
results clearly correspond to each other. Thus further studies can use any of
these two methods in order to analyze the dynamic stability of systems with
a sequence of traveling oscillators.

In addition, an enriched kinematics for a traveling mass running along a
straight elastic beam has been presented which shows the so-called normal
acceleration component of the whole total second derivative of the position
vector of the traveling mass is indeed correctly oriented along the normal
direction referred to the supporting flexible beam. This nonlinear enrichment
containing a second-order contribution to the horizontal displacement and
thus to the corresponding acceleration has been evaluated a posteriori for
one example and has been found to be marginal compared with the vertical
one. However, there is a need of further investigation about this important
issue.

Possible extensions of the theory developed in this paper could involve
the following topics:

• dynamic and stability analyses by nonlibear methods, including per-
turbation techniques: [41], [42], [43], [44], [45], [46], [47];

• inverse problems and system identification, see [48], [49], [50];

• applications to micro-structured or higher-gradient materials, as in [51],
[52], [53], [54], [55], [56];

• applications to bidimensional structures, like membranes, plates and
shells, see [57], [58], [59], [60], [61], [62];

• applications to contact/impact problems or to fractured/damaged struc-
tures, see, for instance: [63], [64], [65], [66];

• applications to complex materials: composite, plastic, poro/two phases-
elastic, or nonlinear elastic ones, like, for instance, those described
in [67], [68], [69], [70], [71], [72], [73].
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Appendix A Time-variant system for a straight beam

For a straight beam, by assuming R → ∞, and, as a consequence of the
decoupling between flexural and torsional response, φ2 = 0 ∀ t, s, matrices M,
D, C corresponding to those which appear in eq. (61) can be easily deduced
starting from the more general formulation which holds for the curved beam.

In the case of the straight beam eq. (61) has again this expression:

M(t)q̈+D(t)q̇ +C(t)q = r, (A.1)

but this time, due to the flexural-torsional decoupling, matrix dimensions
are different: indeed {M(t),D(t),C(t)} ∈ R

(N+1)×(N+1) and {q(t)}, {q(t)} ∈
R

N+1.
Looking inside the structure of these matrices, and adopting the same

notation already used in Section 5, it results, :

M(t) =







µINN 0N

mT
21

m

k






, (A.2)

mT
21 =m

[

sin(αt) · · · sin(Nαt)
]

,

D(t) =







0NN d12

dT
21

d

k






,

dT
12 =− 2d

Lk

[

sin(αt) · · · sin(Nαt)
]

, (A.3)

dT
21 =2mα

[

cos(αt) · · · N cos(Nαt)
]

,

C(t) =







C11 c12

cT21 1 =
k

k






,

cT21 =−mα2
[

sin(αt) · · · N2 sin(Nαt)
]

, (A.4)

cT12 =− 2

L

[

sin(αt) · · · sin(Nαt)
]

,

C11 =diag

[

EI
(π

L

)4

, · · · , EI

(

Nπ

L

)4 ]

,
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Again, matrices INN , 0NN and 0N appearing in eqs. (A.2)–(A.4) are re-
spectively a square identity matrix of order N , a square null matrix of order
N and a null column matrix having N rows. Finally, it results:

qT (t) =
[

W1 · · · WN F
]

, (A.5)

rT =
[

0 · · · 0 mg
]

. (A.6)
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