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Abstract

Multiple-Input, Multiple-Output models for coupled systems in structural
dynamics including unbounded domains, like soil or fluid, are characterized
by sparse system-matrices and unstable parts in the whole set of solutions
due to spurious modes. Spectral shifting with deflation can stabilize these
unstable parts; however the originally sparse system-matrices become fully
populated when this procedure is applied.
This paper presents a special consecutive treatment of the deflated system
without losing the numerical advantages from sparsity. The procedure starts
with an LU -decomposition of the sparse undeflated system and continues
with restricting the solution space with respect to deflation using the same
LU -decomposition. An example from soil-structure interaction shows the
benefits of this consecutive treatment.
Keywords: Spurious modes, Deflation, Sparse systems, Stabilization,
Unbounded domains

1. Introduction 1

Dynamic systems play a key-role in engineering and natural sciences. 2

For linear systems the mathematical formulation can be established in the 3

frequency-domain or in the time-domain. 4
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In structural dynamics the equations of motion are of second order in the1

time-domain; however by introducing, besides the generalized displacements2

u, the velocities v = u̇ as additional state variables—after a classical finite3

element discretization in the space-domain—a first order differential equation4

in the time-domain comes out:5

Aż−Bz = f , z =

[
u
v

]
. (1)

The homogeneous equation is solved by the exponential z = ẑ exp(λt), λ =6

α+ iβ and thus the corresponding linear algebraic equation in the frequency7

or spectral domain appears:8

λAẑ−Bẑ = 0. (2)

The eigenvalues λ contain the eigenfrequencies β of the system, while the9

coefficient α decides upon the stability of the process. Thus, λ is a significant10

genetic code of the process.11

However the linear representation in the spectral domain does not appear12

automatically or in every case; there are problems, especially those including13

unbounded domains like soil, air, liquid with energy radiation towards in-14

finity, which are formulated by means of rational functions which are highly15

nonlinear with respect to the eigenvalue λ.16

Typically, realizations for such problems aim at a state-space formulation17

using finitely many samples of impedances; in structural analysis they are18

called dynamic stiffnesses. The impedance describes the relation between the19

input fc = f̂c exp(iΩt) and the output uc = ûc exp(iΩt) at a certain point C20

placed, for instance, in the coupling interface between two domains.21

These samples are taken to establish a rational interpolation like a Padé22

one for the impedance Kc:23

Kcûc = f̂c, Kc =
P0 + λP1 + λ2P2 + · · ·+ λM+1PM+1

1 + λq1 + λ2q2 + · · ·+ λMqM
, λ = iΩ, (3)

as it is shown in (3), for the sake of simplicity, for a Single-Input, Single-24

Output (SISO) problem.25

In such situations the introduction of additional so-called internal vari-26

ables allows a corresponding linear representation in the spectral domain and27

thus a first order differential equation in the time-domain.28

Please cite this document as: A. Cazzani, P. Ruge “Stabilization by
deflation for sparse dynamical systems without loss of sparsity”Mechanical
Systems and Signal Processing, 2016, 70–71: 664–681
DOI:10.1016/j.ymssp.2015.09.027



Pr
e-P

rin
t

3

This can be combined with the classical finite element formulation for the 1

near field (a bounded one: e.g. any building, dam, machine, etc.) which is 2

coupled with the unbounded domain, acting as a far field. At the very end 3

of this process the representation turns out to become a classical one similar 4

to equation (1). 5

However it has been realized in relevant studies, especially those dealing 6

with the powerful Scaled Boundary Finite Element Method (SBFEM), that 7

the rational interpolation with the coefficients Pj, Qj for the unbounded 8

domain is a rather sensitive process and can be contaminated by numerical 9

noise, finally resulting in unstable solutions of the whole coupled problem 10

with positive values α. Indeed, it has been found in papers like [1], [2], [3], 11

[4], [5] that the stability of the dynamic system (2) in the time-domain is not 12

guaranteed a priori. 13

Indeed, these parameters Pj, Qj are calculated by means of a least-square 14

procedure and only small changes in this procedure can shift eigenvalues from 15

the right side to the left side of the complex plane. 16

By deflation, these spurious modes can be stabilized but with a significant 17

disadvantage: the block-tridiagonal sparsity of the final matrix B represent- 18

ing the whole problem, coupling the unbounded and bounded domains (i.e. 19

the far field and the near field) is lost. How this can be avoided is the main 20

concern of this contribution. 21

Spurious modes due to numerical noise can happen, too, in system iden- 22

tification; deflation and spectral shifting can be organized there in a similar 23

effective manner. 24

A different class of linear problems, transient diffusion in unbounded do- 25

mains, is characterized a priori by only first-order derivatives with respect 26

to time, that is the flux. By means of the SBFEM similar impedances as 27

those defined for structural dynamics can be established, but this time with 28

λ =
√
iΩ. 29

Thus, the resulting state equation in the frequency-domain, corresponding 30

to (2), contains the frequency Ω in a non-rational manner, since λ is linked 31

to Ω through its square root. Hence: 32

√
iΩAẑ−Bẑ = 0, (4)

and, as a consequence, the corresponding state equation in the time-domain 33

contains one-half derivatives due to the power 1/2 of Ω in the frequency 34

domain. Such derivatives have been treated in mathematics, and are called 35
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fractional derivatives. A recent paper on this matter, involving diffusion with1

fractional derivatives, has been published by Birk and Song [6]. There, too,2

problems from numerical noise have to be treated by using spectral shifting3

with deflation.4

The paper is organized as follows: in Section 2 the essentials of deflation5

and eigenvalue-shifting are repeated and prepared for Section 3, where it will6

be shown how the loss of sparsity of state-space matrix B can be avoided by7

using a Sherman-Morrison like procedure.8

This rather famous algorithm, which was developed in 1950 by Sher-9

man and Morrison (see [7]), and is well documented in [8], has been sub-10

sequently used both in several branches of mathematics (e.g. [9], [10], [11],11

[12], [13], [14], [15], [16], [17], [18], [19], [20]) and of applied mechanics ([21],12

[22], [23]); in particular, with reference to system-identification and system-13

modification, typical examples can be found in [24], [25] and [26].14

Finally in Section 4 an example from soil-structure interaction, including15

wave propagation due to an unbounded soil domain, shows the effectiveness16

of the procedure presented in this paper.17

A Sherman-Morrison like treatment of linear algebraic equations is partic-18

ularly useful when dealing with time-solvers with time-step control and thus19

with a continuously changing coefficient matrix. Moreover it can be advanta-20

geously adopted in several other mechanical problems, especially when only21

a small part of system matrices coefficients is going to experience changes22

due to time evolution, but such changes are able to destroy the original pat-23

tern (whether banded, or tri-diagonal, or more generally sparse) of matrix24

structure.25

Among these problems, the following ones can be mentioned:26

• dynamical system identification under special conditions (see, e.g. [27],27

[28], [29]);28

• dynamical problems with functionally-graded materials or surface stresses29

(viz. [30], [31]);30

• structural dynamics for special loading conditions (like, for instance,31

galloping [32] or moving loads [33], [34], [35]);32

• wave propagation in non-classical continua ([36], [37], [38], [39]);33

• remodeling and evolution problems in biomechanics (see, for instance,34

[40], [41], [42]).35
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2. Deflation, Eigenvalue Shifting 1

The SBFEM is a powerful method in order to model unbounded do- 2

mains. It is a semi-analytical method which solves the problem in the un- 3

bounded direction analytically. Typical outcome of the SBFEM is a finite 4

set of impedances Kc(λj) for discrete values λ = iΩ; here Ω is used as usual 5

instead of β. These samples are taken to establish a rational interpolation 6

like (3) or a corresponding continued fractions realization (the one, which is 7

shown here, holds for M = 4): 8

f̂c = Kcûc,

Kc = Sc + λTc −
C2
c

S1 + λT1 −
C2

1

S2 + λT2 −
C2

2

S3 + λT3 −
C2

3

S4 + λT4

. (5)

In(5) the coefficients Sj, Tj, Ck (j = c, 1, . . . ,M ; k = c, 1, . . . ,M − 1) can be 9

taken to establish a corresponding tridiagonal state-space formulation. For 10

the sake of simplicity here the rational interpolation as well as the continued 11

fractions realization refer to a Single-Input, Single-Output (SISO) problem. 12

The nonlinear continued fractions realization can be rewritten in a for- 13

mal linear manner by introducing internal variables vj. The outcome is 14

shown in (6) where in parallel the step from SISO- to MIMO-systems (i.e. 15

Multiple-Input, Multiple-Output) has been done by simply changing from 16

scalar quantities to matrix-valued ones, again for the case M = 4: 17

λAẑ−Bẑ = f̂ , ẑ =


ûc
v̂1

v̂2

v̂3

v̂4

 , f̂ =


f̂c
0
0
0
0

 , (6)
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A =


Tc 0 0 0 0
0 −T1 0 0 0
0 0 T2 0 0
0 0 0 −T3 0
0 0 0 0 T4

 , (7)

B =


−Sc −Cc 0 0 0
−CT

c S1 C1 0 0
0 CT

1 −S2 −C2 0
0 0 −CT

2 S3 C3

0 0 0 CT
3 −S4

 . (8)

By eliminating the quantities v4 down to v1 the original nonlinear continued1

fractions realization can be recovered. This process with internal variables,2

ending with a state-space formulation in the time-domain:3

Aż−Bz = f , z = ẑ exp(λt), λ = α + iβ, (9)

is characterized by a block-diagonal matrix A multiplied with λ and a block-4

tridiagonal matrix B.5

Obviously there are strong relations between the rational interpolation (3),6

the continued fractions (5) and the system of Ordinary Differential Equations7

(ODEs) (9) with sparse matrices. In other words, if a problem can be mod-8

eled in a rational manner or by continued fractions, it belongs to the class of9

systems with a tridiagonal matrix representation. All this is well-known and10

described in textbooks like [43].11

As it has been already mentioned, the stability of the coupled system (5)12

can be contaminated by numerical noise hidden in finding the coefficients13

Pj, Qj or Sj, Tj, Ck by a least-square approach.14

In [44] Du and Zhao tried to avoid a priori spurious eigenvalues, by com-15

bining the least-square-approach with the constraint Re(λ) ≤ 0. However,16

the convergence of this process is rather poor and it has, so far, been applied17

only to systems with one original degree of freedom.18

Thus, in the present case, stability is established a posteriori. This can be19

done either by eliminating the spurious modes by means of modal reduction20

or by spectral shifting. In the latter case, the full original solution space is21

maintained and therefore this method has been chosen here.22

All eigenvalues λ = α + iβ with positive real part (i.e. with α > 0) are23

simply shifted to the left side of the complex plane to become λ̃ with a24

negative real part, so that α̃ ≤ 0, and with an unchanged imaginary part, β:25
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λ = α + iβ with α > 0⇒ λ̃ = α̃ + iβ with α̃ ≤ 0. (10)

This process needs all eigenvectors (the left ones, y, and the right ones, 1

x), related to the eigenvalues λ whose real part, α is positive. If any λj is 2

complex, λj = αj+iβj, that means automatically that its complex conjugate, 3

λ̄j = αj − iβj is also an eigenvalue (and for a better organization it will be 4

labeled as λj+1), the corresponding eigenvectors xj = aj ± ibj, yj = uj ± ivj 5

are stored in a pairwise and real-valued form, 6

Pj = [aj bj] , Qj = [uj vj] , (11)

and used to shift the real part α to α̃ = α − ε by modal deflation of the 7

system matrix B to B̃. 8

The original right- and left-eigenproblems: 9

λAx = Bx; λATy = BTy, (12)

become after deflation: 10

λ̃Ax = B̃x; λ̃ATy = B̃Ty with λ̃ = λ− ε; (13)

where the right- and left-eigenvectors are the same in both cases, (12) and (13). 11

When there is a complex conjugate pair of eigenvalues λj = α + iβ, 12

λj+1 = α − iβ with the same α > 0 and β, then a rank-two modification 13

leads to 14

B̃ = B− εAPj(Q
T
j APj)

−1QTA, (14)

where, QT
j APj is a 2× 2 matrix which can be inverted explicitly. 15

If, instead, the eigenvalue λj = α > 0 is a pure real number (i.e. β = 0), 16

then the corresponding eigenvector is real too, xj = a, yj = u and it comes 17

out that 18

B̃ = B− ε Axj(y
T
j Axj)

−1yTj A, (15)

contains the inverse of a scalar. The procedure shown in (15) is called a 19

rank-one modification. 20

The theory behind these equations traces back to a real-valued modal de- 21

coupling where the nc pairs of conjugate complex eigenvectors are assembled 22

pairwise and real-valued by means of Pj or Qj, followed by the nr = N−2nc 23
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remaining real eigenvectors xj or yj, to produce suitable N ×N square ma-1

trices Y and X with real entries:2

Y = [Q1 · · ·Qnc y1 · · ·ynr ] , (16)
X = [P1 · · ·Pnc x1 · · ·xnr ] , . (17)

where N = 2nc + nr is the total number of eigenvalues.3

Then it follows that:4

YTAX =



A11 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · Anc,nc 0 · · · 0
0 · · · 0 a1 · · · 0
... · · · ...

... . . . ...
0 · · · 0 0 · · · anr


, (18)

YTBX =



B11 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · Bnc,nc 0 · · · 0
0 · · · 0 b1 · · · 0
... · · · ...

... . . . ...
0 · · · 0 0 · · · bnr


, (19)

where Ajj and Bjj (with j = 1, . . . , nc) are 2×2 square matrices; al, bl (with5

l = 1, . . . , nr) are real scalar values; while all matrices and vectors X, Y,6

Ajj, Bjj, aj, bj, uj, vj ∈ R.7

Moreover,8

Ajj = QjAPj =

[
uTj
vTj

]
A [aj bj] =

[
uTj Aaj uTj Abj
vTj Aaj vTj Abj

]
. (20)

Bjj = QjBPj =

[
uTj
vTj

]
B [aj bj] =

[
uTj Baj uTj Bbj
vTj Baj vTj Bbj

]
. (21)

This pairwise assembling (11) avoids the use of complex numbers.9

If complex eigenvectors x̃j, ỹj are instead used, complex bilinear quan-10

tities ãj and b̃j result, which lead directly to the corresponding eigenvalue11

λ:12
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ỹTj Ax̃j = aj, ỹTj Bx̃j = bj; λj =
bj
aj
, (22)

where x̃j, ỹj, ãj, b̃j ∈ C. 1

As it can be easily checked, both approach, with complex conjugate eigen- 2

vectors stored as contiguous real arrays (11), leading to (18)–(19), and with 3

complex variables, produce the same results, i.e. (20)–(21) and (22) are con- 4

firmed. 5

It is useful noticing that most eigenvalue solvers which are available for 6

dealing with real matrices take advantage of the property that for a square 7

matrix with real entries, its complex eigenvalues (if any) will always occur 8

in complex conjugate pairs, and this holds also for the corresponding eigen- 9

vectors. As a consequence, both eigenvalues (similar considerations apply 10

to eigenvectors, too) belonging to the same conjugate pair are completely 11

known if their real part and the imaginary part of just one element of the 12

pair are given. 13

This properties suggests saving memory-allocation space by storing eigen- 14

values (or eigenvectors) in contiguous locations, reserving the first location 15

for the real part and the second for the imaginary part which characterize 16

completely the complex conjugate pair. 17

This kind of storage scheme is adopted, for instance, by the eigenvalue 18

solver RGG belonging to the EISPACK [45] package or by DGGEVX being part of 19

the LAPACK [46] package: they end up with eigenvectors which are ordered 20

as real pairs Qj-wise and Pj-wise, so that (20)–(21) apply. 21

Multiplying the modified matrix B̃ in (15), from the left side with the 22

pair Qj of left-eigenvectors, and from the right side with the pair Pj of right- 23

eigenvectors, activates the shifted part with the same index j, including ε. 24

A similar multiplication, but now with a different pair Qk, Pk than that 25

in the ε-part does not activate the modification, due to the orthogonality 26

condition QT
kAPj = 0, QT

kBPj = 0. 27

Indeed, by properties of deflation, it follows: 28

λ̃Ax = B̃x; λ̃ATy = B̃Ty. (23)

Hence, in the former case, i.e. when the same pair Qj, Pj of left- and right- 29

eigenvector is involved, it results 30
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QT
j APj = Ajj, (24)

QT
j B̃Pj = QT

j [B− εAPj(Q
T
j APj)

−1QT
j A]Pj = Bjj − εAjj. (25)

In the latter case, when a different pair of eigenvectors is dealt with, it comes1

out:2

QT
kAPk = Akk, (26)

QT
k B̃Pk = QT

k [B− εAPj(Q
T
j APj)

−1QT
j A]Pk = Bkk − ε0. (27)

Thus, it follows λ̃k = λk for k 6= j; λ̃j = λj − ε.3

3. Numerical treatment of the modified matrix B̃4

The solution of the resulting equation of motion, a first-order ODE:5

Aż = B̃z + f , (28)

where B̃ is the modified system matrix coming out at the end of the deflation6

procedure, is performed by means of a linear interpolation:7

z = zk−1(1−
τ

h
) + zk

τ

h
(29)

within a local time-interval 0 ≤ τ ≤ h followed by an integration within this8

interval.9

This is an a priori stable process with a local error proportional to the10

third power of the time-step as it has been shown, for example, in [47].11

The resulting equation for a time-step between time-nodes k − 1 and k12

contains B̃ on both sides of the linear algebraic equation:13

(A− h

2
B̃)zk = (A +

h

2
B̃)zk−1 +

∫ k

k−1
f(t)dt, (30)

where matrices A and B (the original one, not the modified B̃), are given,14

for the case M = 5 (this is an example: a comparison with (7)–(8), where M15

is even, may be useful), by:16
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A =


Tc 0 0 0 0 0
0 −T1 0 0 0 0
0 0 T2 0 0 0
0 0 0 −T3 0 0
0 0 0 0 T4 0
0 0 0 0 0 −T5

 , (31)

B =


−Sc −Cc 0 0 0 0
−CT

c S1 C1 0 0 0
0 CT

1 −S2 −C2 0 0
0 0 −CT

2 S3 C3 0
0 0 0 CT

3 −S4 −C4

0 0 0 0 −CT
4 S5

 , (32)

Matrices A and B in (31)–(32) are block-diagonal ones; however, this prop- 1

erty is lost when B is replaced by B̃ following the deflation process: for 2

instance, with a rank-2 complement, see (14), if one complex eigensolution is 3

deflated, or with a rank-1 complement, see (15), for a single real eigensolu- 4

tion. 5

Nevertheless, the decomposition of the fully filled matrix [A − h
2
B̃] can 6

be avoided and replaced by the decomposition of the original pair [A− h
2
B]. 7

Indeed, taking into account (14) or (15) the left-hand side of the modified 8

problem (30) used to compute the solution at time-node k, once the solution 9

at time-node k − 1 is known, can be rewritten in this form: 10

[A− h

2
B̃]zk = [A− h

2
B− h

2

ns∑
j=1

LjR
T
j ]zk = fk; (33)

fk = [A +
h

2
B̃]zk−1 +

∫ k

k−1
f(t)dt, (34)

where the shortcut notation 11

B̃ = B +
ns∑
j=1

LjR
T
j (35)

has been employed, and ns = n?r+n?c is the number of deflation steps required 12

to shift all eigenvalues (the n?r real ones and the n?c complex conjugate pairs) 13

having a positive real part. 14
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It can be easily checked that matrices Lj and Rj appearing in (35) are1

given, in the case of a pair of complex-conjugate eigenvalues by:2

Lj = −ε APj(Q
T
j APj)

−1, Rj = ATQj, (36)

while in the case of a real eigenvalue they are simply:3

Lj = −ε Axj(y
T
j Axj)

−1, Rj = ATyj, (37)

For the subsequent developments, it is useful noticing that, taking into ac-4

count the properties of matrix addition and multiplication, the cumulative5

effect of the deflation procedure can be written in this way, as a simple prod-6

uct of the two matrices L and R:7

ns∑
j=1

LjR
T
j = LRT . (38)

Matrices L andR are simply obtained by pulling together, column by column8

(in the same order) the Lj and the Rj matrices which appear in (36) or (37):9

L =
[
L1 L2 · · · Lns

]
=
[
l1 · · · lnd

]
, (39)

R =
[
R1 R2 · · · Rns

]
=
[
r1 · · · rnd

]
, (40)

where nd = n?r + 2n?c is the total number of columns of matrices L and R.10

The procedure in order to solve problem (33)–(34) runs as follows:11

1. First step. Solve the system of linear algebraic equations with the12

original (i.e. not deflated) tridiagonal matrix B:13

[A− h

2
B]w = fk (41)

and save the value into an auxiliary variable w.14

2. Second step. With the amount of nd right-hand sides lj solve the prob-15

lem:16

[A− h

2
B]x?j = lj, (j = 1, . . . , nd) (42)

collecting the results into matrix X? defined as:17

X? =
[
x?1 · · · x?nd

]
. (43)
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Actually, the sequence of computations performed in this step can be 1

written synthetically as 2[
(A− h

2
B)

]
X? = L. (44)

Since the solution of the linear algebraic system defined by (42) or (44) 3

involves the same l.h.s. as (41), the decomposition of [A− h
2
B] can be 4

performed only once in the first step and then used here, too. 5

3. Third step. Compute the solution zk at time node k with a suitable 6

combination of the solutions w, and X?: 7

zk = w + X?c; cT =
[
c1 · · · cnd

]
, (45)

by solving the following system of linear algebraic equations: 8

[I− h

2
RTX?]c =

h

2
RTw, (46)

which defines the nd coefficients cj (j = 1, . . . , nd) of the linear com- 9

bination (45). Thus, for instance, if only one real spurious eigenvalue 10

has to be shifted, nd = 1 and (46) becomes a scalar equation for c1. It 11

is worth noticing that in (46) I is an identity matrix of order nd. 12

The correctness of this sequence can be checked by rewriting the original 13

equation, see (33), [A− h
2
B̃]zk = fk by using zk = w + X?c: 14[

(A− h

2
B)− h

2
LRT

]
[w + X?c]− fk = 0, (47)

and taking into account that, by (41): 15[
(A− h

2
B)

]
w − fk = 0, (48)

while, by (39) and (44), (47) becomes: 16

L

[
c− h

2
RT (w + X?c)

]
= 0. (49)

Now it is easy to distinguish within the square brackets of (49), with some 17

rearrangements, the appearance of (46). 18
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A simple example illustrating the basic steps of the procedure described1

above is presented in Appendix A.2

The evaluation of the term (A + h
2
B̃)zk−1 contributing to the right-hand3

side fk —see (34)— should be organized in a numerically convenient way,4

too, as it is shown in the following:5

(A +
h

2
B̃)zk−1 = (A +

h

2
B)zk−1 +

h

2
L
[
RTzk−1

]
. (50)

Here, for a better memory allocation strategy, the product p? =
[
RTzk−1

]
6

has to be calculated first, and only afterwards the matrix multiplication Lp?7

has to be computed.8

Another possible strategy to solve problem (33)–(34) without explicitly9

using matrix B̃ consists in adding the deflated part of B by making use of10

this larger partitioned matrix:11  A− h
2
B L

h
2
RT I

 zk

a?

 =

 fk

0

 . (51)

It is an easy task verifying that the solution of the system of linear algebraic12

equations (51), when internal variables a? are statically condensed, is exactly13

the same as that of system (33)–(34). However this formulation, even though14

it is more compact and elegant, does not preserve the sparsity of the original15

matrices A and B: therefore it requires a larger amount of memory and,16

preventing the use of linear algebra tools which have been devised for banded17

matrices, is less convenient from a computational point of view.18

4. Example: Rotor on unbounded soil-domain during short-circuit19

torque excitation20

A soil-foundation-rotor interaction problem shown in Figure 1 is used21

in order to demonstrate the procedure and to count the global amount of22

operations when taking care for the banded matrices.23

The foundation is modeled as a perfectly rigid one; thus in a section plane24

there are only three degrees-of-freedom (DOFs): the vertical displacement25

w, the horizontal displacement u, and the rocking rotation ϕ. The angle ϕ26

is multiplied with a characteristic length, L like ϕL with L = 5 m, in order27

to have DOFs with common physical dimensions. Here, only the coupled28

horizontal and rocking motions (u and ϕL) will be considered, while the29
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Figure 1: A sketch of the problem: a rotor supported by a slab foundation on inclined
piles.

vertical motion w, which is decoupled, can be studied separately as a single 1

DOF system. 2

In electrical engineering, the short-circuit torque of machines is a critical 3

event and has to be studied. In situations, where precise machine-data are 4

not available, the German code DIN 4024 (Foundations of machines) [48] 5

presents this estimate for the torque: 6

Msc(t) = −M0 + 10M0 exp(
−t
0.4

)

[
sin(ΩN t)−

1

2
sin(2ΩN t)

]
+M0 exp(

−t
0.15

).

(52)
In (52), whose time evolution is plotted in Figure 2, time is denoted by t, and 7

must be expressed in s; ΩN is the nominal angular frequency of the machine 8

and M0 is the available nominal bracing-moment. 9

For the considered problem and taking into account Figure 1 for the 10

meaning of the adopted symbols, the following input data set has been used: 11

height of rotor axis with reference to contact point with soil, hr = 5 m; foun- 12

dation thickness, hf = 0.4 m; rotor mass, mr = 6000 kg; rotor moment of 13

inertia with respect to contact point with soil, Jr = 196, 000 kg·m2; founda- 14
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Short-circuit problem
 time excitation according to DIN 4024/88

Figure 2: Prescribed time evolution of the short-circuit torque according to German code
DIN 4024 (Foundations for machines) [48].

tion mass (excluding rotor), mf = 18, 000 kg; foundation moment of inertia1

(excluding rotor) with respect to contact point with soil, Jf = 54, 960 kg·m2;2

bracing moment, M0 = 1, 000, 000 N·m; nominal angular frequency of the3

machine, ΩN = 78.53982 rad/s.4

The soil is modeled as a half-space as well as a stratum on bedrock. The5

dynamic stiffness of the soil in the frequency-domain has been transferred to6

the time-domain in [49] by a rational approximation and the same data are7

used here: in particular, for the Padé rational approximation an orderM = 78

Please cite this document as: A. Cazzani, P. Ruge “Stabilization by
deflation for sparse dynamical systems without loss of sparsity”Mechanical
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in the nominator and M + 1 = 8 in the denominator has been adopted. 1

The dynamic stiffness coefficients Khh, KhrL = KrLh, KrLrL: 2[
f̂u
f̂ϕL

]
=

[
Khh KhrL

KrLh KrLrL

] [
û
ϕ̂L

]
. (53)

in the frequency-domain are those taken from [49] and are shown in Fig- 3

ures 3, 4 and 5. 4

In the time-domain the generalized forces fu, fϕL in the interface are de- 5

scribed by means of a first-order ODE with additional internal DOFs zf : 6

A

 u̇
ϕ̇L
żf

−B

 u
ϕL
zf

 =

 fu
fϕL
0

 . (54)

As already mentioned in Section 1, A is a block-diagonal matrix and B is 7

block-tridiagonal. For the coupled horizontal-rocking motion of the founda- 8

tion plate each block is a 2× 2 matrix. 9

From the side of the foundation-plate with the rotor the equations of 10

motion with respect to the coupling interface contain the generalized coupling 11

forces fu, fϕL as well, but with opposite sign. 12

mr(ü+ ϕ̈hr) +mf (ü+ ϕ̈hf/2) = −fu,
mr(ü+ ϕ̈hr)hr +mf (ü+ ϕ̈hf/2)hf/2 + (Jf + Jr)ϕ̈ = −fϕ,

where fϕL = fϕ/L and mr, mf , Jr, Jf denote, respectively, the mass of the 13

rotor and of the foundation and the mass-moment of inertia of the rotor and 14

of the foundation, both measured with reference to the origin of the reference 15

system. 16

An inertia matrix J = JT is defined in the following way: 17

J =

 mr +mf St

St Jr + Jf

 ,
altogether with St = [mrhr +mfhf/2] /L, denoting the total first-order mass 18

moment. Hence, inertia forces can be given this expression: 19 −fu
−fϕL

 = J

 ü

Lϕ̈

 .
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Figure 3: Complex stiffness modeled as a function of the angular frequency Ω: horizontal
stiffness coefficient Khh, for order of Padé’s approximation M = 7. Hollow marks denote
the assigned values, elaborated from [50] when piles are inclined at 10°. Real and imaginary
part of stiffness are plotted for both cases of stratum on bedrock and of elastic half-space.

In order to describe the whole coupled soil-foundation-rotor problem the1

equations of motion for the rotor plus foundation system are converted into2

a system of first-order ODE by introducing the additional state-variables3

vx = u̇ and ωL = ϕ̇L:4
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Figure 4: Complex stiffness modeled as a function of the angular frequency Ω: rocking
stiffness coefficient KrLrL, for order of Padé’s approximation M = 7. Hollow marks denote
the assigned values, elaborated from [50] when piles are inclined at 10°. Real and imaginary
part of stiffness are plotted for both cases of stratum on bedrock and of elastic half-space.

[
02 J
J 02

]
v̇x
ω̇L
u̇
ϕ̇L

−[ J 02

02 02

]
vx
ωL
u
ϕL

 =


0
0
0

Msc(t)/L

−


0
0
fu
fϕL

 . (55)

Here 02 denotes a 2×2 null matrix; the torqueMsc(t) caused by short-circuit 1
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Figure 5: Complex stiffness modeled as a function of the angular frequency Ω: coupled
horizontal-rocking stiffness coefficient KhrL, for order of Padé’s approximation M = 7.
Hollow marks denote the assigned values, elaborated from [50] when piles are inclined at
10°. Real and imaginary part of stiffness are plotted for both cases of stratum on bedrock
and of elastic half-space.

has been added to the right-hand side. These equations represent together1

the complete coupled problem,2

Accż−Bccz = f , (56)

where Acc, Bcc, ż, z and f are defined in the following way:3
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Acc =



02 J 02 02 · · · 02 02 02

JT A0 02 02 · · · 02 02 02

02 02 A1 02 · · · 02 02 02

02 02 02 A2 · · · 02 02 02
...

...
...

... . . . ...
...

...
02 02 02 02 · · · AM−2 02 02

02 02 02 02 · · · 02 AM−1 02

02 02 02 02 · · · 02 02 AM


, (57)

1

Bcc =



J 02 02 02 · · · 02 02 02

02 B0 −I2 02 · · · 02 02 02

02 −I2 B1 I2 · · · 02 02 02

02 02 I2 B2 · · · 02 02 02
...

...
...

... . . . ...
...

...
02 02 02 02 · · · BM−2 ∓I2 02

02 02 02 02 · · · ∓I2 BM−1 ±I2
02 02 02 02 · · · 02 ±I2 BM


, (58)

2

ż =


v̇x
ω̇yL
u̇
ϕ̇L
żf

 , z =


vx
ωyL
u
ϕL
zf

 , f =


0
0
0

Msc(t)/L
0

 , (59)

where, according to [49], matrices Ck (with k = c, 1, . . . ,M − 1) in (32) 3

change to 2 × 2 identity matrices, I2; similarly A0 = Tc, A1 = −T1, . . . , 4

AM = ±TM and B0 = −Sc, B1 = S1, . . . , BM = ∓SM are the 2× 2 block- 5

diagonal terms appearing in matrices A and B, see, for instance, (7)–(8) and 6

(31)–(32). 7

It should be noticed that when in (57)–(58) there appear ± or ∓, the 8

upper sign holds when M is an even number, the lower one when M is odd. 9

Matrices Acc, (57), and Bcc, (58) are banded with no more than p = 3 10

elements outside the main-diagonal; thus the so-called bandwidth b is given 11

by b = 2p+1 = 7; moreover, forM = 7 there are exactly N = 2(M+1)+2 = 12

18 state-variables including the internal DOFs. 13

The numerical stability of the system (56) is studied by means of the 14

eigenvalues λj = αj + iβj (j = 1, . . . , N) of the eigenproblem λAccx = Bccx. 15
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In order to allow potentially interested readers to reproduce the presented1

results, the ingredients for building system matrices Acc and Bcc for the2

case of the elastic half-space soil are given in Appendix B. For the case of3

the stratum on bedrock and for other similar data, readers willing to make4

numerical experiments are invited to send a message to the authors.5

For the half-space soil, Table 1 shows that there are three unstable mem-6

bers: one complex pair and one real eigenvalue with positive real part.7

Table 1: Eigenvalues and corresponding vibration characteristics for the short-circuit prob-
lem, horizontal and rocking motions, half-space solution. An asterisk (∗) marks eigenvalues
to be modified by deflation.

j αj βj ‖λj‖
1, 2 −30.5377613398693 ± 36.9665527530850 47.9487318924852
3, 4 −36.7984233637257 ± 32.7541288282581 49.2641544873564
5, 6 −16.2610864194862 ± 88.4164692503083 89.8993602103636
7, 8 −25.0359229832008 ± 120.784488690714 123.351895599127

9, 10 −22.3272045634265 ± 150.726477047897 152.371174921267
11 ∗ 152.482140851938 0 152.482140851938

12, 13 ∗ 8.10500398591369 ± 175.763261659552 175.950036200098
14, 15 −57.3035477838088 ± 201.858923868905 209.834986916204
16, 17 −6.42370613097185 ± 397.101954620184 397.153907652472

18 −2751.30950243050 0 2751.30950243050

The corresponding dynamic response of the soil-foundation-rotor system8

due to the short-circuit torque is shown in Figure 6.9

For the stratum on bedrock only one unstable real eigenvalue appears in10

Table 2.11

Table 2: Eigenvalues and corresponding vibration characteristics for the short-circuit prob-
lem, horizontal and rocking motions, stratum on bedrock solution. An asterisk (∗) marks
eigenvalues to be modified by deflation.

j αj βj ‖λj‖
1, 2 −15.2645841513819 ± 32.5810580205685 35.9796174389649
3, 4 −26.2850396191873 ± 63.1075018576127 68.3627098533319
5, 6 −14.2097942649687 ± 99.4842342949862 100.493935768843
7, 8 −8.14501162040569 ± 104.820671438842 105.136646204766

9, 10 −8.61543766055009 ± 134.759207778025 135.034328402239
11, 12 −11.9965504452661 ± 152.037703945112 152.510264059463
13, 14 −20.9084707299802 ± 164.304196721182 165.629203972184

15 −248.557968086746 0 248.557968086746
16 ∗ 705.142315580316 0 705.142315580316

17, 18 −49.1789010052700 ± 784.590309391712 786.130089676937
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Figure 6: Dynamic response for the short-circuit problem, case of elastic half-space: time-
history for both horizontal and rocking displacements.

The dynamic response of the soil-foundation-rotor system due to the 1

short-circuit torque is shown for this case in Figure 7. 2

The integration of the system of first-order ODEs in (56) with the defini- 3

tions (57)–(59) is performed by means of a linear interpolation given by (29), 4

and recalled here for the reader’s convenience: 5

z = zk−1(1−
τ

h
) + zk

τ

h

within a time-step h and solving the resulting system of linear algebraic 6
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Figure 7: Dynamic response for the short-circuit problem, case of stratum on bedrock:
time-history for both horizontal and rocking displacements.

equations:1

(Acc −
h

2
B̃cc)zk = (Acc +

h

2
B̃cc)zk−1 +

∫ k

k−1
f(t)dt. (60)

The deflated matrix B̃cc contains its original Bcc plus the parts from modal2

deflation as shown in Section 2.3

The operation counts (multiplications and divisions) for solving full and4

banded N × N linear systems having a bandwidth b = 2p + 1 are approxi-5
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mately given as follows (see [8], [51]) in Table 3. 1

Table 3: Approximate operation counts for solving full and banded N × N systems of
linear algebraic equations.

Full matrix Banded matrix

LU -decomposition N3/3 Np(p+ 1)

Back-substitution (for 1 r.h.s. ) N2 N(2p+ 1)

Thus, in the present case, with N = 18 and p = 3 Table 4 shows the 2

benefits in terms of storage saving which can be achieved when the banded 3

properties of system matrices are exploited. 4

Table 4: Approximate operation counts when N = 18 and p = 3.

Full matrix Banded matrix

LU -decomposition 1944 216

Back-substitution (for 1 r.h.s. ) 324 126

A total evaluation concerning the operation count has to include addi- 5

tional numerical aspects like those descending from time-step adaption due 6

to error-estimation as shown in [47]. Then, LU -decomposition of the coef- 7

ficient matrix has to be done several times. And even when the computer 8

operational speed is very high, the amount of operations should be minimized 9

in order to reduce numerical noise due to truncation errors and in order to 10

reduce time-delay in system control. 11

5. Conclusions 12

The consistent numerical description of radiation of energy towards infin- 13

ity for unbounded domains is still a challenge. A significant progress in this 14

matter has been provided by the Scaled Boundary Finite Element Method. 15

A typical outcome of this method is a set of impedances which is interpolated 16

in a rational manner using a least-squares approach. 17

The rational realization can be replaced by a linear state-space formula- 18

tion in the frequency-domain with significantly banded state-space matrices 19

A, B using additional internal degrees of freedom. 20
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Typically this process is numerically sensitive and can be contaminated by1

numerical noise and thus artificial unstable solutions. By means of spectral2

shifting in combination with deflation these spurious parts can be stabilized.3

However, deflation adds dyadic products to the state-space matrices and thus4

destroys their sparseness.5

This paper presents an implicit procedure: the stabilized system with6

fully populated matrices due to deflation is nevertheless mainly treated by7

means of its banded non-deflated original state-space matrices A, B.8

Thus the amount of arithmetic operations can be reduced significantly,9

compared with that resulting from treating the fully-populated, explicitly10

deflated, system matrices.11

The procedure presented in this paper is useful in all those situations,12

where dyadic products are added to originally banded parents. Here, an13

application from transient soil-structure interaction with an unbounded soil-14

domain has been presented. Similar problems with coupled systems, includ-15

ing unbounded domains, are: soil-structure-soil interaction, dam-reservoir16

interaction, acoustic problems and diffusion, which is characterized by frac-17

tional derivatives.18

In the field of system identification numerical noise is a problem, too, and19

can be treated by implicit deflation exactly as it has shown in this paper.20
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Appendix A. Application of Sherman-Morrison method26

A very simple example of the use of Sherman-Morrison method for solv-27

ing a 5 × 5 linear system of algebraic equations with a banded structure is28

illustrated. By making use of the same notation adopted in 3, let matrix29

[A− (h/2)B], appearing in the l.h.s. of (41), have this expression:30
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[
A− h

2
B

]
=


4 −2 0 0 0
−2 3 −1 0 0

0 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 , (A.1)

whose tridiagonal banded structure is apparent. 1

Let moreover L and −(h/2)R, defined by (39)–(40), be: 2

L =


2 6
0 −5
1 1
0 −1
1 2

 , −h
2
R =


1 1
1 −1
1 0
1 1
1 −1

 . (A.2)

Thus, the correction due to deflation would be given in this case by: 3

−h
2
LRT =


8 −4 2 8 −4
−5 5 0 −5 5

2 0 1 2 0
−1 1 0 −1 1

3 −1 1 3 −1

 , (A.3)

which, when added to [A − h
2
B] would destroy its tri-diagonal structure, 4

resulting in a completely filled process matrix: 5

[
A− h

2
B̃

]
=

[
A− h

2
(B− LRT )

]
=


12 −6 2 8 −4
−7 8 −1 −5 5

2 −1 4 1 0
−1 1 −1 1 0

3 −1 1 2 1

 . (A.4)

Let the r.h.s. of (41) be: 6

fk =
[

2 −1 3 −1 4
]T

; (A.5)

then the First step of the procedure requires solving the linear system (41) 7

for the this r.h.s., resulting in the auxiliary variable w: 8

w =
[

1 1 2 2 3
]T
. (A.6)
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Now, considering that system (42) has to be solved twice— since in this1

case nd = 2—for these right-hand-sides, l1 and l2, corresponding to the two2

columns of matrix L:3

l1 =
[

2 0 1 0 1
]T
, l2 =

[
6 −5 1 −1 2

]T
, (A.7)

it is possible completing the Second step by loading the solutions into matrix4

X?, defined by (46):5

X? =


1 1
1 −1
1 0
1 0
1 1

 . (A.8)

Finally, before performing the Third step it is necessary to evaluate the two6

matrix products h
2
RTw and −h

2
RTX?, which give, respectively:7

h

2
RTw =

[
−9

1

]
, −h

2
RTX? =

[
5 1
0 1

]
. (A.9)

Then, solving (46), which assumes this simple form:8 [
6 1
0 2

]
c =

[
−9

1

]
, (A.10)

it is possible to compute the nd components of column matrix c:9

c =
1

12

[
−19

6

]
. (A.11)

These are needed for completing the solution zk with a suitable combination10

of the solutions w and X?c:11

zk =


1
1
2
2
3

− 19

12


1
1
1
1
1

+
1

2


1
−1

0
0
1

 =
1

12


−1
−13

5
5

23

 . (A.12)

In order to confirm the correctness of the above illustrated procedure,12

the same result may be obtained if system (33), with the completely filled13
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process matrix provided by the deflation procedure, see (A.4), is solved for 1

the original r.h.s. fk, namely (A.5): 2

[
A− h

2
B̃

]
zk = fk, ⇒ zk =

1

12

[
−1 −13 5 5 23

]T
. (A.13)

Appendix B. System matrices for the short-circuit problem 3

The building blocks for assembling the complete system matrices Acc 4

and Bcc, see (57)–(58), is the knowledge of the 2×2 matrices J; A0, . . . ,AM ; 5

B0, . . . ,BM . 6

Those which have been used in Section 4 in the case of a half-space 7

solution with M = 7 for analyzing the short-circuit problem, are given here 8

in a standard E20.15 Fortran format (with 15 significant figures, which are 9

suitable for the accuracy of double-precision variables): 10

J =

[
0.240000000000000E−4 0.672000001072884E−5
0.672000001072884E−5 0.100384000000000E−4

]
, (B.1)

A0 =

[
0.133644393751605E−2 0.287866237313723E−3
−0.115858660105272E−1 0.184347527166318E−1

]
, (B.2)

A1 =

[
0.843583416003512E−3 −0.719778973913755E−3
−0.115372067908800E−1 −0.984058566993428E−3

]
, (B.3)

A2 =

[
0.131228768389737E−2 0.153867486512852E−2
0.275038635221684E−1 0.133402120942196E−1

]
, (B.4)

A3 =

[
−0.864693318308295E−1 0.726481298490113E−2
0.279049021966555E−1 0.115813250447287E−2

]
, (B.5)

A4 =

[
0.156528659882495E−3 −0.535332491400231E−3
−0.281535724524854E−2 −0.614459018172883E−2

]
, (B.6)

A5 =

[
−0.717953332315951E+1 0.464138709812856E+0
0.192771932824898E+2 −0.118200788200538E+1

]
, (B.7)

A6 =

[
−0.163876893880059E−3 −0.656871935739603E−4
−0.263837585498842E−2 −0.102169192327277E−2

]
, (B.8)

A7 =

[
−0.218407123827608E+3 0.187549581862310E+2
0.829526018458060E+3 −0.726433888669744E+2

]
, (B.9)
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B0 =

[
−0.676435848824604E+0 0.343834535205479E+0
−0.241177187997159E+1 0.170610729181941E+1

]
, (B.10)

B1 =

[
−0.129826388936489E+1 0.108289052669685E+0
−0.525289313706782E+1 0.681327820621435E+0

]
, (B.11)

B2 =

[
0.734396443982700E+0 −0.179587118349401E+0
0.531296351564896E+1 −0.862601076631469E+0

]
, (B.12)

B3 =

[
0.115322613467869E+2 −0.556511787230093E+0
−0.495458854501284E+1 0.825211783729445E+0

]
, (B.13)

B4 =

[
0.153580946855786E+0 0.666483376899730E−1
0.154173717831747E+1 0.110232361857816E+1

]
, (B.14)

B5 =

[
0.814976785569525E+3 −0.536895780820735E+2
−0.153387036316747E+4 0.106600689152269E+3

]
, (B.15)

B6 =

[
0.117508543431825E−1 0.606572280673132E−2
0.171184615236513E+0 0.933145449295855E−1

]
, (B.16)

B7 =

[
0.189550702814661E+5 −0.948935931008649E+3
−0.858749448995366E+5 0.467857069789019E+4

]
, (B.17)

With these ingredients, and taking into account that 02 and I2 in eqs. (57)–1

(58) denote respectively a square null matrix and an identity matrix of or-2

der 2, the interested reader should be able to reproduce the same system3

matrices used for the first example.4

To define the corrections produced by the deflation procedure it is neces-5

sary to know the eigenvalues λj which require shifting, and the corresponding6

right-, xj and left-eigenvectors, yj. Parameter ε used for shifting the eigen-7

values has always assumed to be equal to 2αj, so that any shifted eigenvalue8

has been moved on the complex plane in a symmetric position, with reference9

to the imaginary axis, to its original one.10

For the considered problem, looking at the complete list of eigenvalues11

ordered by increasing magnitude given by Table 1, it is clear that the three12

eigenvalues which require shifting are: λ11 (real) and λ12–λ13 (a complex13

conjugate pair).14

The corresponding eigenvectors, whose components are ordered according
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to the same sequence appearing in Table 1, are the following:

λ11 = 152.482140851938;

x11 =



−0.100328487624792E+0
0.100000000000000E+1
0.655814506809039E−2
0.188868686452404E−2
−0.824924754643652E−2
0.383567611215899E−2
0.200148560668322E−1
−0.435223131105921E−2
−0.619346206274143E−1
0.833535554543501E−2
0.201044637366518E−1
−0.289997114316643E−3
−0.450708732788741E−2
0.118769374039790E−2
0.156548495567518E−1
0.539663969809698E−5
0.737335359392647E−4



, y11 =



0.100000000000000E+1
0.386739284516163E+0
0.655814506809041E−2
0.253629233138647E−2
−0.114647127421046E−1
−0.245185851984957E−2
−0.183667967704952E−1
0.707451098252881E−2
−0.133608238801449E−1
−0.153372480830304E−1
0.170626831745806E+0
−0.521345042616996E−2
−0.150414623569745E−2
−0.668817581517314E−3
0.513157142520315E−1
−0.582350678586097E−3
0.471775083500828E−4
0.113678010114319E−4



, (B.18)

λ12,13 = 8.10500398591369± i 175.763261659552;

x12,13 =



0.139537384952254E+0
0.130186352189687E+0
−0.688073380315063E−4
−0.286743714444453E−3
−0.240374003571563E−2
0.875298036171494E−3
−0.887543258800201E−3
−0.996646484972821E−3
−0.145844662052558E−1
−0.435853038695098E−2
0.110826801219336E−1
0.488881307577057E−3
0.419776435942652E−2
−0.415155431378067E−1
0.000000000000000E+0
−0.706827421946735E−3
−0.800352016096295E−2



± i



0.109082600777154E+0
−0.181228262129579E−1
−0.743864415715844E−3
−0.642382737898301E−3
0.177156933459235E−2
−0.154261914357317E−2
−0.428209489677169E−2
−0.898318143640441E−3
−0.407399925336061E−2
0.346392752002408E−2
−0.134693739052809E−1
−0.164171722346013E−3
−0.436044168084241E−2
−0.378171316722504E+0
0.100000000000000E+1
0.292019697260028E−3
0.515899190832424E−2



, (B.19)
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y12,13 =



0.232406562398519E+0
0.597679555905942E−1
0.201258831718102E−3
−0.181364517959250E−3
0.698014781161681E−3
−0.145847219513284E−2
−0.805365264947601E−2
0.637655565352687E−3
−0.737626347763209E−3
−0.295103891517964E−3
−0.117519686449649E−1
0.139209068596705E−2
0.650962578483376E−3
0.851813854232112E−4
0.000000000000000E+0
−0.244375447571072E−2
−0.104979082949310E−2
−0.248030042542863E−3



± i



−0.247321216457371E−1
0.347010946273614E−1
0.131298973736755E−2
0.348411352596378E−3
−0.239467302422923E−3
0.791771194123920E−3
0.202450216138866E−2
−0.333983674213373E−3
0.750739106579505E−3
0.442281841215438E−4
−0.166933847983288E−1
0.109386971432206E−2
−0.109262548700947E−2
−0.278198167134854E−3
0.100000000000000E+1
−0.647655525338316E−1
0.647877088375227E−3
0.178879269132340E−3



. (B.20)
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