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Abstract
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1 Introduction
The purpose of this paper is to study the blow-up phenomenon of nonnegative solu-
tions for some classes of reaction-diffusion systems under different boundary conditions
and when the reaction terms have a nonlocal functional dependence in space- and time-
dependent coefficients.

Let us consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u + k(t)up ∫

�
vq dx in � × (, t∗),

vt = �v + k(t)vp ∫

�
uq dx in � × (, t∗),

β ∂u
∂ν

+ αu =  on ∂� × (, t∗),

β ∂v
∂ν

+ αv =  on ∂� × (, t∗),

u(x, ) = u(x) on �,

v(x, ) = v(x) on �,

(.)

where the spatial domain � ⊂ R
N is bounded with smooth boundary ∂�, t∗ is the blow-

up time, k, k are two positive functions of t, and α,β ≥ . We assume that the initial data
u(x), v(x) are nonnegative functions satisfying the compatibility condition on ∂�; then
by the maximum principle [] the solution of (.) is nonnegative in its time interval of
existence [, τ ], τ < t∗.

The two equations in (.) are completely coupled via the nonlocal nonlinear sources
with p, q > .
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There are some important phenomena formulated as parabolic equations that are cou-
pled with nonlocal boundary conditions in mathematical modeling such as thermoelas-
ticity theory (see [, ], and []). In this case, the solution can be used to describe the
entropy per volume of the material. We remark that nonlocal terms may appear also on
the boundary conditions. Friedman [] investigated the behavior of the solutions of the
system

⎧
⎪⎪⎨

⎪⎪⎩

ut – Au = , x ∈ �, t > ,

u(x, t) =
∫

�
f (x, y)u(y, t) dy, x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �̄,

where A is a uniformly elliptic operator.
As for more general discussions on the dynamics of parabolic problems with nonlocal

boundary conditions, we refer to Pao [], where the following problem was considered:

⎧
⎪⎪⎨

⎪⎪⎩

ut – Au = h(x, u), x ∈ �, t > ,

α
∂u
∂ν

+ u =
∫

�
f (x, y)u(y, t) dy, x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �̄.

Recently, Kong and Wang [] obtained the blow-up conditions and blow-up profiles of the
following system by using some ideas of Souplet []:

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u +
∫

�
uαvp dx, vt = �v +

∫

�
uqvβ dx, x ∈ �, t > ,

u(x, t) =
∫

�
f (x, y)u(x, y) dy, v(x, t) =

∫

�
g(x, y)v(x, y) dy, x ∈ ∂�, t > ,

u(x, ) = u(x), v(x, ) = v(x), x ∈ �̄.

Furthermore, Zheng and Kong [] gave conditions for the global existence or nonexistence
of a solution to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u + uα
∫

�
vp dx, vt = �v + vβ

∫

�
uq dx, x ∈ �, t > ,

u(x, t) =
∫

�
f (x, y)u(x, y) dy, v(x, t) =

∫

�
g(x, y)v(x, y) dy, x ∈ ∂�, t > ,

u(x, ) = u(x), v(x, ) = v(x), x ∈ �̄.

Souplet [] studied the blow-up behavior of nonnegative solutions for some classes of
reaction-diffusion equations, where the reaction term may have a nonlocal functional de-
pendence either in space or in time (or possibly in both space and time). For each type
of problems, the author gave finite time blow-up results that significantly improved or
extended previous results of several authors.

Marras and Vernier Piro [] considered the following class of reaction-diffusion sys-
tems subject to nonlocal boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u + k(t)f (v), vt = �v + k(t)g(u), x ∈ �, t ∈ (, t∗),
∂u
∂n = k(t)

∫

�
uq dx, ∂v

∂n = k(t)
∫

�
vp dx, x ∈ ∂�, t ∈ (, t∗),

u(x, ) = u(x) ≥ , v(x, ) = v(x) ≥ , x ∈ �,
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where � is a bounded convex domain in R
N , N ≥ , with smooth boundary, and f , g , u,

and v are smooth nonnegative functions. The authors prove that, under certain condi-
tions on the data, the blow-up occurs at some finite time t∗, and, when its does, they derive
explicit lower and upper bounds. The case of a single equation is analyzed in [].

If the source term is local, for instance, of power type, results on blow-up behavior of the
solutions to parabolic problems under Dirichlet, Neumann, and Robin boundary condi-
tions are present in [] and [] (see also []). In the case of a source term combination of
a nonlocal term with an exponential one, Pao points out applications to thermal explosion
in combustion theory (see [] and the references therein).

The novelty of this paper is in associating with system (.) Dirichlet, Neumann, and
Robin boundary conditions and to present methods working in all the cases with the aim to
obtain upper and lower bounds for blow-up time and also to prove the global existence of
solutions. Nevertheless, we treat separately the three cases since the proofs in the Dirichlet
problem (β = ) and in the Neumann problem (α = ) are not particular cases of the Robin
problem: in fact, we use the properties connected with the eigenvalues of the fixed, free,
and elastically supported membrane problems, respectively, defined in problems (.),
(.), and (.) (see []).

For other interesting results concerning the membrane response, which includes an elas-
tic response and viscous behavior, the readers may refer to [, ].

The paper is organized as follows. In Section  (Section .), we consider a spatial do-
main � ⊂ R

N and derive an upper bound of the blow-up time by constructing a blowing
up subsolution of our problem, which implies that our solution also blows up. In Sec-
tions . and ., we restrict our investigation to a domain � ⊂R

 and obtain respectively
a lower bound for t∗ and the conditions to avoid the blow-up phenomenon.

In Section , we extend results in Section  to our problem when the Dirichlet boundary
condition is replaced by the Neumann one. In particular, in Sections . and ., the ex-
tension is immediate; however, in Section ., we have to rely on an inequality that allows
us to estimate the integral term containing the gradient of the solution.

In Section , under appropriate variations, the results of Section  are extended. Specifi-
cally, in order to obtain a lower bound of t∗ and the nonblow-up of the solution, to manage
the boundary integral term, we use the variational definition of the first eigenvalue of the
elastically supported problem.

Throughout the paper, for clarity, we indicate with t∗
D , t∗

N , and t∗
R the blow-up times of

the solutions to (.) under Dirichlet, Neumann, and Robin boundary conditions, respec-
tively.

2 Estimates of t∗
D

In this section, we consider system (.) under the Dirichlet boundary condition (β = 
and α = ):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = �u + k(t)up ∫

�
vq dx in � × (, t∗

D),

vt = �v + k(t)vp ∫

�
uq dx in � × (, t∗

D),

u = , v =  on ∂� × (, t∗
D),

u(x, ) = u(x) ≥ , v(x, ) = v(x) ≥  on �.

(.)
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2.1 Upper bound for t∗
D

We will prove that the solution (u, v) blows up in finite time t∗
D and derive an upper bound

of t∗
D . To this end, we construct a blowing up subsolution (u, v) of (.).

We recall that (u, v) ∈ C,(Q) ∪ C(Q̄), Q = � × (, T), is a subsolution of (.) if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – �u – k(t)up ∫

�
vq dx ≤  in � × (, T),

vt – �v – k(t)vp ∫

�
uq dx ≤  in � × (, T),

u ≤ , v ≤  on ∂� × (, T),

u(x, ) ≤ u, v(x, ) ≤ v on �,

(.)

so that if (u, v) blows up at time T , that is,

lim
t→T

(u, v) = +∞,

then (u, v) blows up in a finite time t∗
D < T .

In order to find a subsolution of (.), we first prove the following:

Lemma . Let s(t) be the unique solution of the problem

⎧
⎨

⎩

s′(t) = –as(t) + asγ (t), a, a > ,γ > ,

s() = s,
(.)

with constant

s >
(

a

a

) 
γ –

.

Then s(t) blows up in finite time

T = ln

[(
asγ –



asγ –
 – a

) 
(γ –)a

]

. (.)

Proof We easily find the solution of (.):

s(t) =
[

a
a

–
(

asγ –
 – a

asγ –


)

e(γ –)at
]– 

γ –
,

which blows up at time T defined in (.). �

Let � be a bounded domain in R
N , and let us denote

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ = min{m(p – ) + nq + , n(p – ) + mq + } > ,

k = min(,T){k(t), k(t)},
a = λ,

a = minx∈�{ 
m kϕ

m(p–)
 |�|–mq, 

n kϕ
n(p–)
 |�|–nq},

(.)
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where |�| is the measure of �, m, n ≥ , p > , q > , and ϕ and λ are respectively the first
eigenfunction and the corresponding eigenvalue of the fixed membrane problem

⎧
⎨

⎩

�ϕ(x) + λϕ(x) = , ϕ(x) > , x ∈ �,

ϕ(x) = , x ∈ ∂�,
(.)

with
∫

�

ϕ
 (x) dx = . (.)

We seek an unbounded subsolution of (.) of the form

⎧
⎨

⎩

u := s(t)nϕ(x)n,

v := s(t)mϕ(x)m,
(.)

with ϕ the first eigenfunction of (.), m, n ≥ , and s(t) ∈ C the solution of (.). We
note that (u, v) blows up in finite time T . We now prove that (u, v) is a subsolution of (.).

Theorem . Let (u, v) be the solution of (.). Assume that Lemma . holds. If

u ≥ sn
ϕ

n
 , v ≥ sm

 ϕm
 , m, n ≥ , (.)

then (u, v) blows up in finite time t∗, and

t∗
D ≤ T = ln

[(
asγ –



asγ –
 – λ

) 
(γ –)λ

]

. (.)

Proof We consider (u, v) defined in (.) and compute

ut – �u – k(t)up
∫

�

vq dx

= nsn–s′ϕn – n(n – )snϕ
(n–)
 |∇ϕ| + nλsnϕn

 – k(t)snp+mqϕ
np


∫

�

ϕ
mq
 dx

≤ nsn–s′ϕn + nλsnϕn
 – k|�|–mqsnp+mqϕ

np


= nsn–ϕn


[

s′ + λs –
k|�|–mq

n
sn(p–)+mq+ϕ

n(p–)


]

. (.)

In the last step, we have used the Hölder inequality and definition (.) of k and (.).
Since γ >  and s(t) is the solution of (.) that blows up at time T , taking into account
(.), inequality (.) becomes

ut – �u – k(t)up
∫

�

vq dx

≤ nsn–ϕn


(

asγ –
k|�|–mq

n
sn(p–)+mq+ϕ

n(p–)


)

≤ . (.)



Marras and Vernier Piro Boundary Value Problems  (2017) 2017:2 Page 6 of 16

Moreover,

u(x, t) = s(t)nϕ(x)n =  in ∂� × (, T),

and initially

u(x, ) = sn
ϕ(x)n ≤ u(x) in �.

Then u(x, t) ≤ u(x, t).
Similarly,

⎧
⎪⎪⎨

⎪⎪⎩

vt – �v – k(t)vp ∫

�
uq dx ≤  in � × (, T),

v =  in ∂� × (, T),

v(x, ) = sm
 ϕ(x)m ≤ v(x) in �,

(.)

so that v(x, t) ≤ v(x, t).
Then (u, v) is a subsolution of (.) that blows up at time T defined in (.). Then (u, v)

blows up at finite time t∗
D , which is bounded above by (.). �

2.2 A lower bound for t∗
D

Let � ⊂ R
 be a bounded domain with the origin inside, star-shaped, and convex in two

orthogonal directions, with boundary ∂� smooth enough, and let [, τ ], τ < t∗
D , be the

time interval of existence of the solution (u, v) of (.).
We define

�(t) =
∫

�

up dx +
∫

�

vp dx = (t) + �(t) (.)

with initial value

� =
∫

�

up
 dx +

∫

�

vp
 dx, (.)

and we prove the following:

Theorem . Let � be defined in (.), and (u, v) be a classical solution of (.) that
becomes unbounded in the �-norm at some finite time t∗

D . If

p > ,  < q < p, (.)

then

t∗
D ≥

⎧
⎪⎨

⎪⎩

Ā–( 
�


) if  < q ≤ ,

Ã–( 
q–



�

 q–


) if  < q < p.
(.)

Proof Differentiating (.), we have

�′ =  ′(t) + �′(t), (.)
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and using the first equation in (.) and the divergence theorem, we obtain

 ′(t) = p
∫

�

up–ut dx

= p
∫

�

up–�u dx + pk

∫

�

up– dx
∫

�

vq dx

= –p(p – )
∫

�

u(p–)|∇u| dx + pk

∫

�

up– dx
∫

�

vq dx. (.)

In order to estimate the last term of (.), we use the Hölder inequality, (.), and the
arithmetic inequality

arbs ≤ ra + sb, r + s = , a, b > , (.)

to obtain

pk

∫

�

up– dx
∫

�

vq dx

≤ pk

(∫

�

up dx
) p–

p |�| 
p

∫

�

vq dx

≤ (p – )


k

∫

�

up dx +
|�|


k

(∫

�

vq dx
)p

≤ (p – )


k

∫

�

up dx +
|�|+p– 

 q


k

(∫

�

vp dx
) 

 q

. (.)

The term
∫

�
up dx in the last step can be estimated making use of the following Sobolev-

type inequality (see Lemma A in []):

∫

�

up dx ≤
{


ρ

∫

�

up dx + p
(

 +
d
ρ

)∫

�

up–|∇u|dx
} 


(.)

with ρ = min∂�(x · ν) >  and d = max� |x|, valid in a bounded domain of R with the
origin inside, star-shaped and convex in two orthogonal directions. By means of (.)
and the fundamental inequality

(a + b)

 ≤ √


(
a


 + b



)

for a, b > , (.)

we have

(p – )


k

∫

�

up dx ≤ p

(∫

�

up dx
) 


+ p

(∫

�

up–|∇u|dx
) 


(.)

with

p = 
√


(p – )


k

(


ρ

) 


, p = 
√


(p – )


k

[

p
(

 +
d
ρ

)] 


.
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From the Schwarz inequality and (.), in (.), we have

(p – )


k

∫

�

up dx ≤ p

 +

p


ε +


ε

∫

�

u(p–)|∇u|dx (.)

with arbitrary ε >  to be chosen later. Combining (.), (.), and (.), we obtain

 ′(t) ≤ A

 + A

 + A�

 q + A

∫

�

u(p–)|∇u| dx (.)

with

A = p, A =
p


ε, A =

|�|+p– 
 q


k, A =


ε

– p(p – ). (.)

A similar computation leads to

�′(t) ≤ A�

 + A�

 + A

 q + A

∫

�

v(p–)|∇v| dx. (.)

Substituting (.) and (.) into (.), we have

�′(t) ≤ A
(



 + �



)

+ A
(
 + �) + A

(



 q + �


 q)

+ A

[∫

�

u(p–)|∇u| dx +
∫

�

v(p–)|∇v| dx
]

, (.)

and using in (.) the inequality

ac + bc ≤ (a + b)c, c > , a, b > , (.)

we arrive at

�′(t) ≤ A�

 + A�

 + A�

 q

+ A

[∫

�

u(p–)|∇u| dx +
∫

�

v(p–)|∇v| dx
]

. (.)

Now choose ε such that A = . Then (.) becomes

�′(t) ≤ A�

 + A�

 + A�

 q. (.)

If � blows up at time t∗
D , then there exists a time t ≥  such that �(t) ≥ � for all t ≥ t,

and we have

�′ ≤
⎧
⎨

⎩

A(t)� if  < q ≤ ,

B(t)� 
 q if  < q < p,

(.)

valid for t ≥ t and with

A(t) = A�
– 


 + A + A�


 q–
 , B(t) = A�


 (–q)
 + A�

(– 
 q)

 + A.
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Integrating (.) from t to t∗
D , we obtain the desired lower bound (.) with Ā– and

Ã– the inverse functions of Ā(t) =
∫ t

 A(τ ) dτ and Ã(t) =
∫ t

 B(τ ) dτ , respectively. �

2.3 Nonblow-up case
In this section, we derive conditions on data such that the blow-up phenomenon cannot
occur. Let (u, v) be the solution of (.). We consider the auxiliary function � defined
in (.) and prove the following:

Theorem . Let � ⊂ R
 be a bounded domain with the origin inside, star-shaped and

convex in two orthogonal directions, with boundary ∂� smooth enough. If (.) holds
and if

f (�) = A�


 + A�


 + A�


 q–
 < C

λ

p , C > , (.)

with λ the first eigenvalue of the fixed membrane problem (.) and A, A, A defined
in (.), then � cannot blow up.

Proof We follow the proof of Theorem . up to (.), which we rewrite for clarity as

�′ ≤ A�

 + A�

 + A�

 q + A

[∫

�

u(p–)|∇u| dx +
∫

�

v(p–)|∇v| dx
]

. (.)

Let us choose ε in the last term of (.) such that A = –C ≤ . Observe that

⎧
⎨

⎩

C
∫

�
u(p–)|∇u| dx = C

p

∫

�
|∇up| dx,

C
∫

�
v(p–)|∇v| dx = C

p

∫

�
|∇vp| dx.

(.)

From the Rayleigh principle we obtain

C
p

[∫

�

∣
∣∇up∣∣ dx +

∫

�

∣
∣∇vp∣∣ dx

]

≥ Cλ

p

[∫

�

up dx +
∫

�

vp dx
]

=
Cλ

p �. (.)

Replacing (.) in (.), we have

�′ ≤ A�

 + A�

 + A�

 q –

Cλ

p � = –�

[
Cλ

p – f (�)
]

(.)

with f (�) = A�

 + A�

 + A�

 q–.

If (.) and (.) hold, then by the comparison principle, �′ ≤  for t > , and �

cannot blow up. �
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3 Estimates of t∗
N

In this section, we consider system (.) under the Neumann boundary condition (β = 
and α = ):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = �u + k(t)up ∫

�
vq dx in � × (, t∗

N ),

vt = �v + k(t)vp ∫

�
uq dx in � × (, t∗

N ),
∂u
∂ν

= , ∂v
∂ν

=  on ∂� × (, t∗
N ),

u(x, ) = u(x) ≥ , v(x, ) = v(x) ≥  on �.

(.)

In this case, in order to obtain explicit upper and lower bounds of the blow-up time t∗
N ,

we can repeat all the assumptions in Sections . and ., but now the normal derivative
vanishes on the boundary.

3.1 Upper bound of t∗
N

In order to obtain an upper bound of t∗
N , we seek an unbounded subsolution of prob-

lem (.):
⎧
⎨

⎩

u := s(t)nφ(x)n,

v := s(t)mφ(x)m,
(.)

with n, m ∈N and s(t) satisfying Lemma ..
Here we put γ , k, a as in (.) and a = μ, where μ and φ are, respectively, the second

eigenvalue and eigenfunction of the following free membrane problem:
⎧
⎨

⎩

�φ(x) + μφ(x) = , x ∈ �,
∂φ(x)
∂ν

= , x ∈ ∂�,
(.)

with
∫

�

φ
 (x) dx = .

Following the steps in Section ., with the above changes, we prove the following:

Theorem . Let (u, v) be the solution of (.). Assume that Lemma . holds. If

u ≥ sn
φ

n
 , v ≥ sm

 φm
 , n, m ∈ N, (.)

then (u, v) blows up in finite time t∗, and

t∗
N ≤ T = ln

[(
asγ –



asγ –
 – μ

) 
(γ –)μ

]

. (.)

3.2 Lower bound of t∗
N

Theorem . Let � be defined in (.), and (u, v) be a classical solution of (.) that
becomes unbounded in the �-norm at some finite time t∗

N . If

p > ,  < q < p, (.)
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then

t∗
N ≥

⎧
⎪⎨

⎪⎩

B̄–( 
�


) if  < q ≤ ,

B̃–( 
q–



�

 q–


) if  < q < p.
(.)

The proof follows the reasoning in Section .: taking into account that when we apply
the divergence theorem in (.), the Neumann boundary condition must be used, we
get (.). Now we remark that the Sobolev inequality (.) also holds for a function
with vanishing normal derivative on the boundary. In this way, the first-order differential
inequality (.) is obtained from which we achieve (.).

3.3 Nonblow-up case
Regarding the nonblow-up case under the Neumann boundary condition, we cannot use
the Rayleigh principle. We now prove a lemma that plays an important role in the proof
of Theorem ..

Lemma . Let � be a convex domain in R
 with sufficiently smooth boundary. If w is a

C-function, then

∫

�

∣
∣∇w

n

∣
∣ dx ≥ m

(∫

�

w
n
 dx

) 


– m

∫

�

wn dx (.)

with m, and m defined further.

Proof We recall inequality (.) in []:

∫

�

w
n
 dx ≤ 

 


{


ρ

∫

�

wn dx +
(

 +
d
ρ

)(∫

�

wn dx
) 


(∫

�

∣
∣∇w

n

∣
∣ dx

) 

} 


(.)

valid in a convex domain � ∈ R
 with sufficiently smooth boundary and with ρ =

min∂�(x · ν) >  and d = max� |x|.
Using the arithmetic inequality (.) in (.), we have

(∫

�

w
n
 dx

) 
 ≤ c

∫

�

wn dx + c

∫

�

∣
∣∇w

n

∣
∣ dx (.)

with c =
√


ρ

+ ε

√

 , c = 

√

ε
, ε > .

Thus, by (.) we can take (.) with m = 
√

ε and m =  ε
ρ

+ ε
 . �

Now, we can prove following theorem.

Theorem . Let � ⊂ R
 be a bounded domain with the origin inside, star-shaped and

convex in two orthogonal directions, with boundary ∂� smooth enough. We assume that

m|�|– 
 – m ≥  (.)

with m, m defined in Lemma ..
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If (.) holds and if

f (�) = A�


 + A�


 + A�


 q–
 < C̄, C̄ > , (.)

with A, A, A defined in (.), then � cannot blow up.

Proof Following the proof of Theorem . up to (.), we have

�′ ≤ A�

 + A�

 + A�

 q –

C
p

[∫

�

∣
∣∇up∣∣ dx +

∫

�

∣
∣∇vp∣∣ dx

]

. (.)

In the last term of (.), now using (.) with w = u or w = v and n = p, we obtain

C
p

[∫

�

∣
∣∇up∣∣ dx +

∫

�

∣
∣∇vp∣∣ dx

]

≥ m

[(∫

�

up dx
) 


+

(∫

�

vp dx
) 


]

–
C
p m�. (.)

By the Hölder inequality we can deduce

(∫

�

up dx
) 

 ≥ |�|– 


∫

�

up dx,
(∫

�

vp dx
) 

 ≥ |�|– 


∫

�

vp dx. (.)

Replacing (.) in (.), we obtain

C
p

[∫

�

∣
∣∇up∣∣ dx +

∫

�

∣
∣∇vp∣∣ dx

]

≥ C
p

(
m|�|– 

 – m
)
�. (.)

Substituting (.) into (.), we arrive at

�′ ≤ –
C
p

(
m|�|– 

 – m
)
� + A�


 + A�

 + A�

 q. (.)

In view of (.), (.) can be rewritten as

�′ ≤ –�
[
C̄ – f (�)

]
(.)

with f (�) = A�

 + A�

 + A�

 q– and C̄ = C

p (m|�|– 
 – m).

If (.) and (.) hold, then, by the comparison principle, �′ ≤  for t > , and �

cannot blow up. �

4 Estimates of t∗
R

In the case of Robin boundary condition, the extension of Theorems ., ., and . is
not so immediate.
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We consider problem (.) with β = , α > :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u + k(t)up ∫

�
vq dx in � × (, t∗

R),

vt = �v + k(t)vp ∫

�
uq dx in � × (, t∗

R),
∂u
∂ν

+ αu =  on ∂� × (, t∗
R),

∂v
∂ν

+ αv =  on ∂� × (, t∗
R),

u(x, ) = u(x) on �,

v(x, ) = v(x) on �.

(.)

4.1 Upper bound of t∗
R

We look for a blowing up subsolution of problem (.):

⎧
⎨

⎩

u := s(t)nψ(x)n,

v := s(t)mψ(x)m,
(.)

with n, m ∈N and s(t) satisfying Lemma ..
Here we put γ , k, a as in (.) and a = ξ, where ξ and ψ are, respectively, the first

eigenvalue and the corresponding eigenfunction of the elastically supported membrane
problem

⎧
⎨

⎩

�ψ(x) + ξψ(x) = , ψ(x) > , x ∈ �,
∂ψ(x)

∂ν
+ αψ = , x ∈ ∂�,

(.)

with

∫

�

ψ
 (x) dx = .

Following the steps in Section ., with the right changes, the following result holds.

Theorem . Let (u, v) be the solution of (.). Assume that Lemma . holds. If

u ≥ sn
ψ

n
 , v ≥ sm

 ψm
 , n, m ∈N, (.)

then (u, v) blows up in finite time t∗, and

t∗
R ≤ T = ln

[(
asγ –



asγ –
 – ξ

) 
(γ –)ξ

]

. (.)

4.2 Lower bound of t∗
R

In order to obtain an explicit lower bound of t∗
R of the solution of problem (.), we con-

sider the auxiliary function (.), and we follow the arguments in Section . to prove the
following:
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Theorem . Let � be defined in (.), and (u, v) be a classical solution of (.) that
becomes unbounded in the �-norm at some finite time t∗

R. If

p > ,  < q < p, (.)

then

t∗
R ≥

⎧
⎪⎨

⎪⎩

B̄–( 
�


) if  < q ≤ ,

B̃–( 
q–



�

 q–


) if  < q < p.
(.)

Proof Differentiating (.), we have

�′ =  ′(t) + �′(t), (.)

and using the first equation in (.) and the divergence theorem, we obtain

 ′(t) = p
∫

�

up–ut dx = p
∫

�

up–�u dx + pk

∫

�

up– dx
∫

�

vq dx

= –pα

∫

∂�

up ds – p(p – )
∫

�

u(p–)|∇u| dx

+ pk

∫

�

up– dx
∫

�

vq dx. (.)

In order to estimate the last term of (.), following the steps in the proof of Theorem .,
we obtain

pk

∫

�

up– dx
∫

�

vq dx

≤ pk

(∫

�

up dx
) p–

p |�| 
p

∫

�

vq dx

≤ (p – )


k

∫

�

up dx +
|�|+p– 

 q


k

(∫

�

vp dx
) 

 q

≤ A

 + A

 + A�

 q (.)

with A, A, A defined in (.).
Now we estimate the first term in (.). To this end, we use the variational definition of

the first eigenvalue ξ of problem (.). We have

–pα

∫

∂�

up ds ≤ p(p – )
∫

�

u(p–)|∇u| dx – pξ

∫

�

up dx

= p(p – )
∫

�

u(p–)|∇u| dx – pξ . (.)

Replacing (.) and (.) in (.), we have

 ′(t) ≤ A

 + A

 + A�

 q – pξ . (.)
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Similarly, for �, we have

�′(t) ≤ A�

 + A�

 + A

 q – pξ�. (.)

Substituting (.) and (.) into (.), we obtain

�′(t) ≤ A
(



 + �



)

+ A
(
 + �) + A

(



 q + �


 q) – pξ�

≤ A�

 + A�

 + A�

 q + pξ�, (.)

where in the last step we have used the inequality

ac + bc ≤ (a + b)c, c > , a, b > .

If � blows up at time t∗
R, then there exists a time t ≥  such that �(t) ≥ � for t ≥ t, and

we have

�′ ≤
⎧
⎨

⎩

A(t)� if  < q ≤ ,

B(t)� 
 q if  < q < p,

(.)

valid for t ≥ t and with

A(t) = A�
– 


 + A + A�


 q–
 + pξ�

–
 ,

B(t) = A�

 (–q)
 + A�

(– 
 q)

 + A + pξ�
– 

 q
 .

Integrating (.) from t to t∗
R, we obtain the desired lower bound (.) with B̄– and B̃–

the inverse functions of B̄(t) =
∫ t

 A(τ ) dτ and B̃(t) =
∫ t

 B(τ ) dτ , respectively. �

4.3 Nonblow-up case
Theorem . Let � ⊂ R

 be a bounded domain with the origin inside, star-shaped and
convex in two orthogonal directions, with boundary ∂� smooth enough. If (.) holds and
if

f (�) = A�


 + A�


 + A�


 q–
 < pξ, (.)

with A, A, A defined in (.) and ξ the first eigenvalue of (.), then � cannot blow up.

Proof We follow the proof of Theorem . up to (.). We have

�′(t) ≤ –�
[
pξ – f (�)

]
(.)

with f (�) = A�

 + A�

 + A�

 q–.

If (.) and (.) hold, then by the comparison principle, �′ ≤  for t > , and � cannot
blow up. �

Competing interests
The authors declare that they have no competing interests.



Marras and Vernier Piro Boundary Value Problems  (2017) 2017:2 Page 16 of 16

Authors’ contributions
Both authors contributed equally and significantly in writing this paper. Both authors read and approved the final
manuscript.

Acknowledgements
The authors are very grateful to the anonymous referee for his/her helpful suggestions and comments.
The authors are members of G.N.A.M.P.A. (I.N.d.A.M.) and were supported by University of Cagliari.

Received: 10 September 2016 Accepted: 29 November 2016

References
1. Sperb, R: Maximum Principles and Their Applications. Math. in Sci. and Engineering, vol. 157. Academic Press, New

York (1981)
2. Day, WA: A decreasing property of solutions of parabolic equations with applications to thermoelasticity. Q. Appl.

Math. 40(4), 468-475 (1983)
3. Day, WA: Heat Conduction Within Linear Thermoelasticity. Springer Tracts in Natural Philosophy, vol. 30. Springer,

New York (1985)
4. Friedman, A: Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions. Q. Appl. Math.

44(3), 401-407 (1986)
5. Pao, CV: Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions.

J. Comput. Appl. Math. 88(1), 225-238 (1998)
6. Kong, LH, Wang, MX: Global existence and blow-up of solutions to a parabolic system with nonlocal sources and

boundaries. Sci. China Ser. A 50(9), 1251-1266 (2007)
7. Souplet, P: Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source.

J. Differ. Equ. 153(2), 374-406 (1999)
8. Zheng, S, Kong, L: Roles of weight functions in a nonlinear nonlocal parabolic system. Nonlinear Anal. 68(8),

2406-2416 (2008)
9. Souplet, P: Blow-up in nonlocal reaction-diffusion equations. SIAM J. Math. Anal. 29, 1301-1334 (1998)
10. Marras, M, Vernier Piro, S: Reaction-diffusion problems under non-local boundary conditions with blow-up solutions.

J. Inequal. Appl. 2014, 167 (2014)
11. Marras, M, Vernier Piro, S: Explicit estimates for blow-up solutions to parabolic systems under nonlocal boundary

conditions. Comptes Rendus de L’Académie Bulgare des Sciences 67(4), 459-466 (2014)
12. Marras, M, Vernier-Piro, S, Viglialoro, G: Blow-up phenomena in chemotaxis systems with a source term. Mathematical

Methods in the Applied Sciences. doi:10.1002/mma.3728
13. Viglialoro, G: Blow-up time of a Keller-Segel-type system with Neumann and Robin boundary conditions. Differ.

Integral Equ. 29(3-4), 359-376 (2016)
14. Chen, S: Global existence and blowup for quasilinear parabolic equations not in divergence form. J. Math. Anal. Appl.

401(1), 298-306 (2013)
15. Pao, CV: Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory. J. Math. Anal. Appl.

166, 591-600 (1992)
16. Henrot, A: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006)
17. Lubarda, VA, Marzani, A: Viscoelastic response of thin membranes with application to red blood cells. Acta Mechanica

202(116) (2009). doi:10.1007/s00707-008-0005-y
18. Ruggieri, M, Valenti, A: Exact solutions for a nonlinear model of dissipative media. J. Math. Phys. 52(4), 043520 (2011).

doi:10.1063/1.3577958
19. Payne, LE, Philippin, GA, Vernier Piro, S: Blow up phenomena for a semilinear heat equation with nonlinear boundary

condition, II. Nonlinear Anal. 73, 971-978 (2010)
20. Payne, LE, Schaefer, PW: Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl.

Anal. 85, 1301-1311 (2006)

http://dx.doi.org/10.1002/mma.3728
http://dx.doi.org/10.1007/s00707-008-0005-y
http://dx.doi.org/10.1063/1.3577958

	Blow-up time estimates in nonlocal reaction-diffusion systems under various boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Estimates of t*D
	Upper bound for t*D
	A lower bound for t*D
	Nonblow-up case

	Estimates of t*N
	Upper bound of t*N
	Lower bound of t*N
	Nonblow-up case

	Estimates of t*R
	Upper bound of t*R
	Lower bound of t*R
	Nonblow-up case

	Competing interests
	Authors' contributions
	Acknowledgements
	References


