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Abstract: Context-awareness has been recognized as a very desirable feature for mobile 
internet services. This paper considers the acquisition of context information 
for continuous services, i.e., services that persist in time, like streaming 
services. Supporting context-awareness for these services requires the 
continuous monitoring of context information. The paper presents the 
extension of a middleware architecture for the reconciliation of distributed 
context information to support context-aware continuous services. The paper 
also addresses optimization issues and illustrates an adaptive video streaming 
prototype used to test the middleware. 
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1. INTRODUCTION 

Internet services provided to mobile users can be divided into two broad 
categories: instantaneous (or one-shot) services and continuous services. 
Examples of services in the first category are web browsing, search for the 
closest pharmacy, and delivery of a message with the current balance of a 
certain bank account. Services in the second category persist much longer in 
time and are typically characterized by multiple transmissions of data by the 
service provider. Examples are multimedia streaming, navigation services, 
location-based recommendation services, and publish/subscribe services. 

Services in the first category can be implemented with context-aware 
features if some context information can be obtained at the time of service 
request and if the service application logic can take this information into 
account when answering to a specific request. Context-awareness is much 
more challenging for continuous services, since changes in context should be 
taken into account during service provisioning. As an example, consider an 
adaptive streaming service. Typically, parameters used to determine the most 
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appropriate media quality include a number of context parameters, as, for 
example, an estimate of the available bandwidth and the battery level on the 
user’s device. Note that this information may be owned by different entities, 
e.g., the network operator and the user’s device, respectively. With a naïve 
approach, the application logic should constantly monitor these parameters, 
possibly by polling servers in the network operator’s infrastructure as well as 
the user’s device for parameter value updates. Moreover, the application 
logic should internally re-evaluate the rules that determine the streaming bit 
rate (e.g., “if the user’s device is low on memory, decrease the bitrate”). This 
approach has a number of shortcomings, including: (i) client-side resource 
consumption; (ii) high response times due to the polling strategy; (iii) 
complexity of the application logic; (iv) poor scalability, since for every user 
the service provider must continuously request context information and re-
evaluate its rules. 

An alternative approach is to provide the application logic with 
asynchronous notifications of relevant context changes, on the basis of its 
specific requirements. However, when context information must be 
aggregated from distributed sources which may possibly deliver conflicting 
values, as well as provide different dependency rules among context 
parameters, the management of asynchronous notifications is far from trivial. 
The CARE middleware (Agostini et Al., 2004; Bettini and Riboni, 2004) 
was originally designed to support instantaneous context-aware mobile 
services in an environment characterized by distributed context sources. The 
main contribution of this paper is indeed the extension of the CARE 
middleware to include a mechanism of asynchronous notifications, enabling 
context-awareness also for continuous mobile services. Technically, the 
extension involves algorithms to identify context sources and specific 
context parameter thresholds for these sources, with the goal of minimizing 
the exchange of data through the network and the time to re-evaluate the 
rules that lead to the aggregated context description. Our solutions are also 
experimentally validated with service prototypes. In the paper we briefly 
illustrate an adaptive video streaming prototype that is being used to test the 
middleware. 

While several frameworks have been proposed to support context 
awareness (see e.g., Butler et Al., 2002; Hull et Al., 2004; Chen et Al., 2004; 
Bellavista et Al., 2003), we have extensively described elsewhere (Agostini 
et Al., 2004) that CARE has some unique features in dealing with distributed 
and possibly conflicting context information. The extension to the support of 
asynchronous context change notifications still preserves these unique 
features. The work on stream data management has probably the closer 
connection with the specific problem we are tackling. Indeed, each source of 
context data can be seen as providing a stream of data for each context 
parameter it handles. One of the research issues considered in that area is the 
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design of filter bound assignment protocols with the objective of reducing 
communication cost (see, e.g., Chengy et Al., 2005). Since filters are the 
analogous of triggers used in our approach to issue asynchronous 
notifications, we are investigating the applicability of some of the ideas in 
that field to our problem. 

The rest of the paper is organized as follows: Section 2 describes the 
CARE middleware architecture and features; Section 3 contains the 
principles and technical details for managing asynchronous notifications; 
Section 4 shows how the extension has been implemented; Section 5 briefly 
describes the streaming service used to test the middleware; Section 6 
concludes the paper. 

2. THE MIDDLEWARE ARCHITECTURE 

The CARE (Context Aggregation and REasoning) middleware has been 
presented in detail elsewhere (Agostini et Al., 2004; Bettini and Riboni, 
2004). Here we only describe what is needed to understand the extension to 
support continuous services. 

2.1 Overview 

 

Figure 1. Architecture overview and data flow upon a user request 

 
In our middleware, three main entities are involved in the task of building 

an aggregated view of context information, namely: the user with his/her 
devices, the network operator with its infrastructure, and the service provider 



4 Claudio Bettini, Dario Maggiorini, Daniele Riboni 
 
with its own infrastructure. Clearly, the architecture has been designed to 
handle an arbitrary number of entities. In CARE we use the term profile to 
indicate a set of context parameters, and a profile manager is associated with 
each entity; profile managers are named user profile manager (UPM), 
operator profile manager (OPM), and service provider profile manager 
(SPPM), for the user, the network operator and the service provider, 
respectively. Adaptation and personalization parameters are determined by 
policy rules defined by both the user and the service provider, and managed 
by their corresponding profile managers. In Figure 1 we illustrate the system 
behavior by describing the main steps involved in a service request. At first 
(step 1) a user issues a request to a service provider through his device and 
the connectivity offered by a network operator. The HTTP header of the 
request includes the URIs of UPM and the OPM. Then (step 2), the service 
provider forwards this information to the CONTEXT PROVIDER asking for the 
profile information needed to perform adaptation. In step 3, the same module 
queries the profile managers to retrieve distributed profile data and user’s 
policies. Profile data are aggregated by the MERGE module in a single profile 
which is given, together with policies, to the Inference Engine (IE) for policy 
evaluation. In step 4, the aggregated profile is returned to the service 
provider. Finally, profile data are used by the application logic to properly 
adapt the service before its provision (step 5). Our architecture can also 
interact with ontological reasoners, but this aspect will not be addressed in 
this paper. 

2.2 Profile aggregation 

In the following we show how possibly conflicting data can be 
aggregated into a single profile. 

2.2.1 Profile and policy representation 

Essentially, profiles are represented adopting the CC/PP (Klyne et Al., 
2004) specification, and can possibly contain references to ontological 
classes and relations. However, for the sake of this paper, we can consider 
profiles as sets of attribute/value pairs. Each attribute semantics is defined in 
a proper vocabulary, and its value can be either a single value, or a 
set/sequence of single values. 

Policies are logical rules that determine the value of profile attributes on 
the basis of the values of other profile attributes. Hence, each policy rule can 
be interpreted as a set of conditions on profile data that determine a new 
value for a profile attribute when satisfied. 
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Example 1  Consider the case of a streaming service, which determines 
the most suitable media quality on the basis of network conditions and 
available memory on the user’s device. The MediaQuality is determined by 
the evaluation of the following policy rules: 

  
R1: "If AvBandwidth ≥ 128kbps And Bearer =’UMTS’ Then Set NetSpeed=’high’" 
R2: "If NetSpeed=’high’ And AvMem ≥ 4MB Then Set MediaQuality=’high’" 
R3: "If NetSpeed=’high’ And AvMem < 4MB Then Set MediaQuality=’medium’" 
R4: "If NetSpeed! =’high’ Then Set MediaQuality=’low’"   

 
Rules R2, R3 and R4 determine the most suitable media quality 

considering network conditions (NetSpeed) and available memory on the 
device (AvMem). In turn, the value of the NetSpeed attribute is determined 
by rule R1 on the basis of the current available bandwidth (AvBandwidth) 
and Bearer. 

2.2.2 Conflict resolution 

We recall that, once the CONTEXT PROVIDER has obtained profile data 
from the other profile managers, at first this information is passed to the 
MERGE module which is in charge of merging profiles. Conflicts can arise 
when different values are provided by different profile managers for the 
same attribute. For example, suppose that OPM provides for the AvBandwidth 
attribute a certain value x, while the SPPM provides for the same attribute a 
different value y, obtained through some probing technique. In order to 
resolve this type of conflict, the CONTEXT PROVIDER has to apply a 
resolution rule at the attribute level. These rules (called profile resolution 
directives) are expressed in the form of priorities among entities, which 
associate to every attribute an ordered list of profile managers. 

 
Example 2  Consider the following profile resolution directives, set by 

the provider of the streaming service cited in Example 1: 
  

PRD1: setPriority AvBandwidth = (OPM, SPPM, UPM) 
PRD2: setPriority MediaQuality = (SPPM, UPM)   

 
In PRD1, the service provider gives highest priority to the network 

operator for the AvBandwidth attribute, followed by the service provider 
and by the user. The absence of a profile manager in a directive (e.g., the 
absence of the OPM in PRD2) states that values for that attribute provided by 
that profile manager should never be used. The conflict described above is 
resolved by applying PRD1. In this case, the value x is chosen for the 
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available bandwidth. The value y would be chosen in case the OPM does not 
provide a value for that attribute.  

 
Once conflicts between attribute values provided by different profile 

managers are solved, the resulting merged profile is used for evaluating 
policy rules. Since policies can dynamically change the value of an attribute 
that may have an explicit value in a profile, or that may be changed by some 
other policies, they introduce nontrivial conflicts. The intuitive strategy is to 
assign priorities to rules having the same head predicate on the basis of its 
profile resolution directive. Hence, rules declared by the first entity in the 
profile resolution directive have higher priority with respect to rules declared 
by the second entity, and so on. When an entity declares more than one rule 
with the same head predicate, priorities are applied considering the explicit 
priorities given by that entity. 

 
Example 3  Consider the set of rules shown in Example 1 and profile 

resolution directives shown in Example 2 . Suppose that R2 and R3 are 
declared by the service provider, and R4 is declared by the user. Since the 
service provider declared two rules with the same attribute in the head, it 
has to declare an explicit priority between R2 and R3. Suppose the service 
provider gives higher priority to R2 with respect to R3. Since the SPPM has 
higher priority with respect to the UPM, according to the profile resolution 
directive regarding MediaQuality (i.e., PRD2), if p(R) is the priority of rule 
R, we have that:  

 
 p(R2)>p(R3)>p(R4) 
 
The intuitive evaluation strategy is to proceed, for each attribute A, 

starting from the rule having A() in its head with the highest priority, and 
continuing considering rules on A() with decreasing priorities till one of them 
fires. If none of them fires, the value of A is the one obtained by the MERGE 
module on A, or null if such a value does not exist. A more in-depth 
discussion of conflict resolution can be found in (Bettini and Riboni, 2004). 

3. SUPPORTING CONTINUOUS MOBILE 
SERVICES 

In this section we describe a trigger mechanism for supporting continuous 
mobile services (Maggiorini and Riboni, 2005). This mechanism allows 
profile managers to asynchronously notifying the service provider upon 
relevant changes in profile data on the basis of triggers. Triggers in this case 
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are essentially conditions over changes in profile data (e.g., available 
bandwidth dropping below a certain threshold, or a change of the user’s 
activity) which determine the delivery of a notification when met. In 
particular, when a trigger fires, the corresponding profile manager sends the 
new values of the modified attributes to the CONTEXT PROVIDER module, 
which should then re-evaluate policies. 

3.1 Trigger-based mechanism 

 

Figure 2. Trigger mechanism 

 
Figure 2 shows an overview of the mechanism. To ensure that only useful 

update information is sent to the service provider, a deep knowledge of the 
service characteristics and requirements is needed. Hence, the context 
parameters and associated threshold values that are relevant for the 
adaptation (named monitoring specifications) are set by the service provider 
application logic, and communicated to the CONTEXT PROVIDER. Actual 
triggers are generated by the CONTEXT PROVIDER –according to the 
algorithms presented in the following of this section– and communicated to 
the proper profiles managers. Since most of the events monitored by triggers 
sent to the UPM are generated by the user device, the UPM communicates 
triggers to a light server module resident on the user’s device. Note that, in 
order to keep up-to-date the information owned by the UPM, each user device 
must be equipped with an application monitoring the state of the device 
against the received triggers (named MONITOR in Figure 2), and with an 
application that updates the UPM when a trigger fires. Each time a profile 
manager receives an update for a profile attribute value that makes a trigger 
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fire, it forwards the update to the CONTEXT PROVIDER. Then, the CONTEXT 
PROVIDER re-computes the aggregated profile, and any change satisfying a 
monitoring specification is communicated to the application logic. In order 
to show the system behavior, consider the following example. 

 
Example 4  Consider the case of the streaming video service introduced 

in Example 1. Suppose that a user connects to this service via a UMTS 
connection, and that at first the available bandwidth is higher than 128kbps, 
and the user device has more than 4MB available memory. Thus, the 
CONTEXT PROVIDER, evaluating the service provider policies, determines a 
high MediaQuality (since rules R1 and R2 fire). Consequently, the service 
provider starts the video provision with a high bitrate. At the same time, the 
application logic sets a monitoring specification regarding MediaQuality. 
Analyzing policies, profile resolution directives, and context data, the 
CONTEXT PROVIDER sets triggers to the OPM and to the UPM/device, asking a 
notification in case the available bandwidth and the available memory, 
respectively, drop below certain thresholds. Suppose that, during the video 
provision, the user device runs out of memory. Then, the UPM/device sends a 
notification (together with the new value for the available memory) to the 
CONTEXT PROVIDER, which merges profiles and re-evaluates policies. Since 
this time policy evaluation determines a lower MediaQuality (since rule R3 
fires), the video bitrate is immediately lowered by the application logic.  

3.2 Monitoring specifications 

In order to keep the re-evaluation of rules to a minimum, it is important to 
let the application logic to precisely specify the changes in context data it 
needs to be aware of in order to adapt the service. These adaptation needs, 
called monitoring specifications, are expressed as conditions over changes in 
profile attributes. As an example, consider the provider of the continuous 
streaming service shown in Example 1. The application logic only needs to 
be aware of changes to be applied to the quality of media. Hence, its only 
monitoring specification will be:  

 
MediaQuality(X),   X ≠ $old_value_MediaQuality, 

 
where $old_value_MediaQuality is a variable to be replaced with the 

value for the MediaQuality attribute, as retrieved from the aggregated 
profile. Monitoring specifications are expressed through an extension of the 
language used to define rule preconditions in our logic programming 
language (Bettini and Riboni, 2004). This extension involves the 
introduction of the additional special predicate difference, which has the 
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obvious semantics with respect to various domains, including spatial, 
temporal, and arithmetic domains. For instance, the monitoring specification:  

 
Coordinates(X),   difference(X, $old_value_Coordinates ) > 200 meters 

 
will instruct the CONTEXT PROVIDER to notify changes of the user 

position greater than 200 meters. 

3.3 Minimizing unnecessary updates 

In general, allowing the application logic to specify the changes in 
context data it is interested to does not prevent that unnecessary updates are 
sent to the CONTEXT PROVIDER. We define an update to the value of a profile 
attribute as unnecessary if it does not affect the aggregated profile. In the 
context of mobile service provisioning, the cost of unnecessary updates is 
high, in terms of client-side bandwidth consumption (since updates can be 
sent by the user’s device), and server-side computation, and can compromise 
the scalability of the architecture. In order to avoid inefficiencies, the 
application logic does not directly communicate monitoring specifications to 
the profile managers. Instead, monitoring specifications are communicated to 
the CONTEXT PROVIDER, which is in charge of deriving the actual triggers 
and performing the optimizations that will be described in the following of 
this section. 

3.3.1 Baseline algorithm 

The baseline algorithm for trigger derivation consists of the following 
steps: a) set a trigger regarding the attribute A

i
 for each monitoring 

specification c
A

i
 regarding A

i
, b) communicate the trigger to every profile 

manager, and c) repeat this procedure considering each precondition of the 
rules having A

i
 in their head as a monitoring specification. As a matter of 

fact, if A
i
 is an attribute whose value can be possibly modified by policies 

(i.e., an attribute that appears in the head of some policy rule), it is not 
sufficient to monitor the single A

i
 attribute. For instance, consider rule R2 in 

Example 1. The value of the MediaQuality attribute depends on the values of 
other attributes, namely NetSpeed and AvMem. Hence, those attributes must 
also be kept up-to-date in order to satisfy a monitoring specification 
regarding MediaQuality. For this reason, the CONTEXT PROVIDER sets new 
triggers regarding those attributes. Note that this mechanism must be 
recursively repeated accordingly to step c). For example, since NetSpeed 
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depends on AvBandwidth and Bearer, the CONTEXT PROVIDER would set two 
triggers regarding those attributes. Generally speaking, for each monitoring 
specification c

A
i
 regarding an attribute A

i
 whose value was set by rule r'

A
i
, 

triggers must be set for checking that the preconditions of rule r'
A

i
 are still 

valid, and for monitoring the preconditions of the other rules that can set a 
value for A

i
. 

The use of the baseline algorithm would lead to a number of unnecessary 
updates, as will be shortly explained in Example 5. We devised two 
optimizations, presented in the following of this section, which avoid a large 
number of unnecessary updates while preserving useful ones. 

3.3.2 Optimization based on profile resolution directives 

Any update that does not affect the profile obtained after the MERGE 
operation is unnecessary. Indeed, since we assume that neither policies, nor 
profile resolution directives can change during service provision, the 
aggregated profile does not change as long as the profile obtained after the 
merge operation remains the same. Hence, the first optimization considers 
the profile resolution directives used by the merge operation. The semantics 
of merge ensures that the value provided by an entity e

i
 for the attribute a

j
 

can be overwritten only by values provided by e
i
 or provided by entities 

which have higher priority for the a
j
 attribute.  

 
Example 5  Consider the profile resolution directive on the attribute 

AvBandwidth given in Example 2 (PRD1). Suppose that the OPM (the entity 
with the highest priority) does not provide a value for AvBandwidth, but the 
SPPM and the UPM do. The value provided by the SPPM is the one that will be 
chosen by the MERGE module, since the SPPM has higher priority for that 
attribute. In this case, possible updates sent by entities with lower priority 
than the SPPM (namely, the UPM) would not modify the profile obtained after 
the MERGE operation, since they would be discarded by the merge algorithm. 
As a consequence, the CONTEXT PROVIDER does not communicate a trigger 
regarding AvBandwidth to the UPM.  

 
Note that, if the application logic defines a monitoring specification 

regarding an attribute whose value is null (i.e., an attribute for which no 
profile manager provided a value), the corresponding trigger is 
communicated to every entity that appears in the profile resolution directive. 
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3.3.3 Optimization based on rule priority 

The second optimization exploits the fact that an attribute value set by the 
rule r'

A
i
 can be overwritten only by r'

A
i
 or by a rule having higher priority 

than r'
A

i
. As a consequence, values set by rules having lower priority than 

r'
A

i
 are discarded, and do not modify the aggregated profile. For this reason, 

the preconditions of rules r
A

i
 having lower priority with respect to r'

A
i
 should 

not be monitored. 
Generally speaking, for each monitoring specification c

A
i
, an implicit 

monitoring specification is created for each precondition of the rule r'
A

i
 that 

determined the last value for A
i
, and for the preconditions of the other rules 

having A
i
 in their head, and having higher priority than r'

A
i
. Rules with lower 

priority do not generate triggers. For each monitoring specification, the 
CONTEXT PROVIDER creates a trigger and communicates it to the proper 
profile managers, as explained in Section 3.3.2. 

 
Example 6  Consider rules R2, R3 and R4 in Example 1. We recall from 

Example 3 that p(R2)>p(R3)>p(R4), where p(R) is the priority of rule R. 
Rules are evaluated in decreasing order of priority. Suppose that R2 does 
not fire, while R3 fires. In this case, the preconditions of R2 (the only rule 
with higher priority in this example) must be monitored, since they can 
possibly determine the firing of this rule. Preconditions of R4 must not be 
monitored since, even if they are satisfied, R4 cannot fire as long as the 
preconditions of R3 are satisfied. The preconditions of R3 must be monitored 
in order to assure that the value derived by the rule is still valid. In case the 
preconditions of R3 do not hold anymore, rules with lower priority (R4 in 
this example) can fire, and their preconditions are added to the set of 
implicit monitoring specifications.  

4. SOFTWARE ARCHITECTURE 

The software architecture used to implement our middleware is shown in 
Figure 3. We have chosen Java as the preferred programming language, 
switching to more efficient solutions only when imposed by efficiency 
requirements. With regard to the inter-modules communication we have 
preferred, where possible, the web service paradigm. 
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Figure 3. The software architecture 

  
The PROFILE MEDIATOR PROXY (PMP) is a server-side Java proxy that is 

in charge of intercepting the HTTP requests from the user’s device, and of 
communicating the user’s profile (retrieved from the CONTEXT PROVIDER) to 
the application logic, by inserting profile data into the HTTP request headers. 
In this way, user profile data is immediately available to the application 
logic, which is relieved from the burden of asking the profile to the CONTEXT 
PROVIDER, and of parsing CC/PP data. The PMP is also in charge of storing 
the monitoring specifications of the application logic. When the PMP receives 
a notification of changes in profile data, it communicates them to the 
application logic by means of an HTTP message. Given the current 
implementation of the PMP, the application logic can be developed using any 
technology capable of parsing HTTP requests, including JSP, PHP, Cocoon, 
Java servlets, ASP .NET, and many others. The application logic can also 
interact with provisioning servers based on protocols other than HTTP. For 
instance, in the case of the adaptive streaming server presented in Section 5, 
profile data are communicated to the streamer by a PHP script through a 
socket-based protocol. 
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CC/PP parsing is performed using RDQL, a query language for RDF 
documents implemented by the Jena Toolkit1 . User and service provider 
policies are represented in RuleML (Boley et Al., 2001). The evaluation of 
the logic program is performed by an efficient, ad-hoc inference 
engine developed using C. 

Profile data, policies and triggers are stored by the profile managers into 
ad-hoc repositories that make use of the MySQL DBMS. Each time a profile 
manager receives an update of profile data, the TRIGGER MONITOR evaluates 
the received triggers, possibly notifying changes to the CONTEXT PROVIDER. 
The UPM has some additional modules for communicating triggers to a 
server application executed by the user device. The communication of 
triggers is based on a socket protocol, since the execution of a SOAP server 
by some resource-constrained devices could be unfeasible. 

The TRIGGER MONITOR module on the user’s device is in charge of 
monitoring the status of the device (e.g., the battery level and available 
memory) against the received triggers. The LOCAL PROXY is the application 
that adds custom fields to the HTTP request headers, thus providing the 
CONTEXT PROVIDER with the user’s identification, and with the URIs of his 
UPM and OPM. At the time of writing, modules executed on the user device 
are developed using C# for the .NET (Compact) Framework. 

5. AN ADAPTIVE MULTIMEDIA STREAMING 
SERVICE 

As already discussed in previous work (Maggiorini and Riboni, 2005), 
multimedia streaming adaptation can benefit from an asynchronous 
messaging middleware. In order to demonstrate the effectiveness of our 
solution, we implemented a streamer prototype based on the middleware 
described in this paper. We chose the VideoLan Client (VLC)2 as a starting 
point to develop a customized client system, because it is an open platform 
and multiple operating systems are supported. The client is intended to run 
on windows workstations and windowsCE PDAs in order to achieve the 
largest possible population of users. VLC contacts the streaming service 
provider performing an HTTP request that has been modified by a local 
proxy adding in the HTTP headers the URIs of UPM and OPM. Then, the 
client waits for the video feed to come on a specific port. The HTTP request 
from VLC is received by the PMP module, which, as explained in Section 4, 
asks the CONTEXT PROVIDER for the aggregated profile information. The 

 
1http://jena.sourceforge.net/ 
2http://www.videolan.org/ 
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returned attribute/value pairs are included in the HTTP request header and 
the request is forwarded to the streamer application logic. Upon receiving the 
request, the streamer opens all the video files with the different encodings. 
Based on the context parameter values, the application logic selects an 
appropriate encoding, and the streamer starts sending over the network UDP 
packets containing frames belonging to the selected encoding. The streamer 
has been implemented on a Linux system. Network streaming is performed 
thanks to a specific file format, in which video data is already divided in 
packets, and a network timestamp is associated to each packet. Moreover, 
this streaming file format supports any kind of encoding, thus making the 
service independent by any specific format or codec. 

We now illustrate how changes in context are detected and notified by the 
middleware to the streamer application logic. When the PMP module receives 
the user request, it recognizes that is directed to a continuous service, and 
retrieves from the media description all the monitoring specifications related 
to the requested feed, which in the case of our streamer prototype consist 
only of the MediaQuality parameter. Using the specification, the CONTEXT 
PROVIDER computes the set of required triggers, accordingly to the 
algorithms reported in Section 3, and illustrated by Example 6. Triggers are 
then set on the OPM, UPM/device to monitor available bandwidth and battery 
level, respectively. Upon firing of one of the triggers, the new value is 
forwarded to the CONTEXT PROVIDER, which recomputes the value for the 
MediaQuality parameter. If the new value differs from the previous one, it is 
forwarded to the PMP which issues a special HTTP request to the streamer 
application logic. The application logic selects a different encoding based on 
the new value; the feeder process is notified and forced to change the file 
from which the video frames are taken. The experiments performed with the 
current prototype, despite being quite preliminary at the time of writing, are 
based on a full implementation and demonstrate the viability of our solution. 

6. CONCLUSIONS 

We presented the extension of the CARE middleware to support context-
aware continuous services. In particular, we focused on optimizations to 
avoid unnecessary remote context updates which would strongly affect 
scalability. An adaptive video streamer has been used for a practical 
evaluation of the functionality of our middleware.  

The natural extension of the CARE architecture will be related to session 
handoff. We experience a session handoff every time a user switches device 
and/or network connection. The main issue here is to efficiently describe all 
context data regarding the current session in order to guarantee a seamless 
migration to the new device. In the case of our video streaming prototype, 
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session handoff will be easy to accomplish, since session data can be easily 
described as the current frame number and media quality. In a more general 
scenario, involving a possibly huge number of context data, session handoff 
is much more challenging, and is the subject of future work. 
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