

DISTRIBUTED CONTEXT MONITORING FOR
CONTINUOUS MOBILE SERVICES

Claudio Bettini, Dario Maggiorini, Daniele Riboni
DICo, University of Milan, via Comelico 39, I-20135, Milan, Italy

Abstract: Context-awareness has been recognized as a very desirable feature for mobile
internet services. This paper considers the acquisition of context information
for continuous services, i.e., services that persist in time, like streaming
services. Supporting context-awareness for these services requires the
continuous monitoring of context information. The paper presents the
extension of a middleware architecture for the reconciliation of distributed
context information to support context-aware continuous services. The paper
also addresses optimization issues and illustrates an adaptive video streaming
prototype used to test the middleware.

Key words: Context-awareness, adaptation, continuous mobile services

1. INTRODUCTION

Internet services provided to mobile users can be divided into two broad
categories: instantaneous (or one-shot) services and continuous services.
Examples of services in the first category are web browsing, search for the
closest pharmacy, and delivery of a message with the current balance of a
certain bank account. Services in the second category persist much longer in
time and are typically characterized by multiple transmissions of data by the
service provider. Examples are multimedia streaming, navigation services,
location-based recommendation services, and publish/subscribe services.

Services in the first category can be implemented with context-aware
features if some context information can be obtained at the time of service
request and if the service application logic can take this information into
account when answering to a specific request. Context-awareness is much
more challenging for continuous services, since changes in context should be
taken into account during service provisioning. As an example, consider an
adaptive streaming service. Typically, parameters used to determine the most

2 Claudio Bettini, Dario Maggiorini, Daniele Riboni

appropriate media quality include a number of context parameters, as, for
example, an estimate of the available bandwidth and the battery level on the
user’s device. Note that this information may be owned by different entities,
e.g., the network operator and the user’s device, respectively. With a naïve
approach, the application logic should constantly monitor these parameters,
possibly by polling servers in the network operator’s infrastructure as well as
the user’s device for parameter value updates. Moreover, the application
logic should internally re-evaluate the rules that determine the streaming bit
rate (e.g., “if the user’s device is low on memory, decrease the bitrate”). This
approach has a number of shortcomings, including: (i) client-side resource
consumption; (ii) high response times due to the polling strategy; (iii)
complexity of the application logic; (iv) poor scalability, since for every user
the service provider must continuously request context information and re-
evaluate its rules.

An alternative approach is to provide the application logic with
asynchronous notifications of relevant context changes, on the basis of its
specific requirements. However, when context information must be
aggregated from distributed sources which may possibly deliver conflicting
values, as well as provide different dependency rules among context
parameters, the management of asynchronous notifications is far from trivial.
The CARE middleware (Agostini et Al., 2004; Bettini and Riboni, 2004)
was originally designed to support instantaneous context-aware mobile
services in an environment characterized by distributed context sources. The
main contribution of this paper is indeed the extension of the CARE
middleware to include a mechanism of asynchronous notifications, enabling
context-awareness also for continuous mobile services. Technically, the
extension involves algorithms to identify context sources and specific
context parameter thresholds for these sources, with the goal of minimizing
the exchange of data through the network and the time to re-evaluate the
rules that lead to the aggregated context description. Our solutions are also
experimentally validated with service prototypes. In the paper we briefly
illustrate an adaptive video streaming prototype that is being used to test the
middleware.

While several frameworks have been proposed to support context
awareness (see e.g., Butler et Al., 2002; Hull et Al., 2004; Chen et Al., 2004;
Bellavista et Al., 2003), we have extensively described elsewhere (Agostini
et Al., 2004) that CARE has some unique features in dealing with distributed
and possibly conflicting context information. The extension to the support of
asynchronous context change notifications still preserves these unique
features. The work on stream data management has probably the closer
connection with the specific problem we are tackling. Indeed, each source of
context data can be seen as providing a stream of data for each context
parameter it handles. One of the research issues considered in that area is the

Distributed Context Monitoring for Continuous Mobile Services 3

design of filter bound assignment protocols with the objective of reducing
communication cost (see, e.g., Chengy et Al., 2005). Since filters are the
analogous of triggers used in our approach to issue asynchronous
notifications, we are investigating the applicability of some of the ideas in
that field to our problem.

The rest of the paper is organized as follows: Section 2 describes the
CARE middleware architecture and features; Section 3 contains the
principles and technical details for managing asynchronous notifications;
Section 4 shows how the extension has been implemented; Section 5 briefly
describes the streaming service used to test the middleware; Section 6
concludes the paper.

2. THE MIDDLEWARE ARCHITECTURE

The CARE (Context Aggregation and REasoning) middleware has been
presented in detail elsewhere (Agostini et Al., 2004; Bettini and Riboni,
2004). Here we only describe what is needed to understand the extension to
support continuous services.

2.1 Overview

Figure 1. Architecture overview and data flow upon a user request

In our middleware, three main entities are involved in the task of building

an aggregated view of context information, namely: the user with his/her
devices, the network operator with its infrastructure, and the service provider

4 Claudio Bettini, Dario Maggiorini, Daniele Riboni

with its own infrastructure. Clearly, the architecture has been designed to
handle an arbitrary number of entities. In CARE we use the term profile to
indicate a set of context parameters, and a profile manager is associated with
each entity; profile managers are named user profile manager (UPM),
operator profile manager (OPM), and service provider profile manager
(SPPM), for the user, the network operator and the service provider,
respectively. Adaptation and personalization parameters are determined by
policy rules defined by both the user and the service provider, and managed
by their corresponding profile managers. In Figure 1 we illustrate the system
behavior by describing the main steps involved in a service request. At first
(step 1) a user issues a request to a service provider through his device and
the connectivity offered by a network operator. The HTTP header of the
request includes the URIs of UPM and the OPM. Then (step 2), the service
provider forwards this information to the CONTEXT PROVIDER asking for the
profile information needed to perform adaptation. In step 3, the same module
queries the profile managers to retrieve distributed profile data and user’s
policies. Profile data are aggregated by the MERGE module in a single profile
which is given, together with policies, to the Inference Engine (IE) for policy
evaluation. In step 4, the aggregated profile is returned to the service
provider. Finally, profile data are used by the application logic to properly
adapt the service before its provision (step 5). Our architecture can also
interact with ontological reasoners, but this aspect will not be addressed in
this paper.

2.2 Profile aggregation

In the following we show how possibly conflicting data can be
aggregated into a single profile.

2.2.1 Profile and policy representation

Essentially, profiles are represented adopting the CC/PP (Klyne et Al.,
2004) specification, and can possibly contain references to ontological
classes and relations. However, for the sake of this paper, we can consider
profiles as sets of attribute/value pairs. Each attribute semantics is defined in
a proper vocabulary, and its value can be either a single value, or a
set/sequence of single values.

Policies are logical rules that determine the value of profile attributes on
the basis of the values of other profile attributes. Hence, each policy rule can
be interpreted as a set of conditions on profile data that determine a new
value for a profile attribute when satisfied.

Distributed Context Monitoring for Continuous Mobile Services 5

Example 1 Consider the case of a streaming service, which determines
the most suitable media quality on the basis of network conditions and
available memory on the user’s device. The MediaQuality is determined by
the evaluation of the following policy rules:

R1: "If AvBandwidth ≥ 128kbps And Bearer =’UMTS’ Then Set NetSpeed=’high’"
R2: "If NetSpeed=’high’ And AvMem ≥ 4MB Then Set MediaQuality=’high’"
R3: "If NetSpeed=’high’ And AvMem < 4MB Then Set MediaQuality=’medium’"
R4: "If NetSpeed! =’high’ Then Set MediaQuality=’low’"

Rules R2, R3 and R4 determine the most suitable media quality

considering network conditions (NetSpeed) and available memory on the
device (AvMem). In turn, the value of the NetSpeed attribute is determined
by rule R1 on the basis of the current available bandwidth (AvBandwidth)
and Bearer.

2.2.2 Conflict resolution

We recall that, once the CONTEXT PROVIDER has obtained profile data
from the other profile managers, at first this information is passed to the
MERGE module which is in charge of merging profiles. Conflicts can arise
when different values are provided by different profile managers for the
same attribute. For example, suppose that OPM provides for the AvBandwidth
attribute a certain value x, while the SPPM provides for the same attribute a
different value y, obtained through some probing technique. In order to
resolve this type of conflict, the CONTEXT PROVIDER has to apply a
resolution rule at the attribute level. These rules (called profile resolution
directives) are expressed in the form of priorities among entities, which
associate to every attribute an ordered list of profile managers.

Example 2 Consider the following profile resolution directives, set by

the provider of the streaming service cited in Example 1:

PRD1: setPriority AvBandwidth = (OPM, SPPM, UPM)
PRD2: setPriority MediaQuality = (SPPM, UPM)

In PRD1, the service provider gives highest priority to the network

operator for the AvBandwidth attribute, followed by the service provider
and by the user. The absence of a profile manager in a directive (e.g., the
absence of the OPM in PRD2) states that values for that attribute provided by
that profile manager should never be used. The conflict described above is
resolved by applying PRD1. In this case, the value x is chosen for the

6 Claudio Bettini, Dario Maggiorini, Daniele Riboni

available bandwidth. The value y would be chosen in case the OPM does not
provide a value for that attribute.

Once conflicts between attribute values provided by different profile

managers are solved, the resulting merged profile is used for evaluating
policy rules. Since policies can dynamically change the value of an attribute
that may have an explicit value in a profile, or that may be changed by some
other policies, they introduce nontrivial conflicts. The intuitive strategy is to
assign priorities to rules having the same head predicate on the basis of its
profile resolution directive. Hence, rules declared by the first entity in the
profile resolution directive have higher priority with respect to rules declared
by the second entity, and so on. When an entity declares more than one rule
with the same head predicate, priorities are applied considering the explicit
priorities given by that entity.

Example 3 Consider the set of rules shown in Example 1 and profile

resolution directives shown in Example 2 . Suppose that R2 and R3 are
declared by the service provider, and R4 is declared by the user. Since the
service provider declared two rules with the same attribute in the head, it
has to declare an explicit priority between R2 and R3. Suppose the service
provider gives higher priority to R2 with respect to R3. Since the SPPM has
higher priority with respect to the UPM, according to the profile resolution
directive regarding MediaQuality (i.e., PRD2), if p(R) is the priority of rule
R, we have that:

 p(R2)>p(R3)>p(R4)

The intuitive evaluation strategy is to proceed, for each attribute A,

starting from the rule having A() in its head with the highest priority, and
continuing considering rules on A() with decreasing priorities till one of them
fires. If none of them fires, the value of A is the one obtained by the MERGE
module on A, or null if such a value does not exist. A more in-depth
discussion of conflict resolution can be found in (Bettini and Riboni, 2004).

3. SUPPORTING CONTINUOUS MOBILE
SERVICES

In this section we describe a trigger mechanism for supporting continuous
mobile services (Maggiorini and Riboni, 2005). This mechanism allows
profile managers to asynchronously notifying the service provider upon
relevant changes in profile data on the basis of triggers. Triggers in this case

Distributed Context Monitoring for Continuous Mobile Services 7

are essentially conditions over changes in profile data (e.g., available
bandwidth dropping below a certain threshold, or a change of the user’s
activity) which determine the delivery of a notification when met. In
particular, when a trigger fires, the corresponding profile manager sends the
new values of the modified attributes to the CONTEXT PROVIDER module,
which should then re-evaluate policies.

3.1 Trigger-based mechanism

Figure 2. Trigger mechanism

Figure 2 shows an overview of the mechanism. To ensure that only useful

update information is sent to the service provider, a deep knowledge of the
service characteristics and requirements is needed. Hence, the context
parameters and associated threshold values that are relevant for the
adaptation (named monitoring specifications) are set by the service provider
application logic, and communicated to the CONTEXT PROVIDER. Actual
triggers are generated by the CONTEXT PROVIDER –according to the
algorithms presented in the following of this section– and communicated to
the proper profiles managers. Since most of the events monitored by triggers
sent to the UPM are generated by the user device, the UPM communicates
triggers to a light server module resident on the user’s device. Note that, in
order to keep up-to-date the information owned by the UPM, each user device
must be equipped with an application monitoring the state of the device
against the received triggers (named MONITOR in Figure 2), and with an
application that updates the UPM when a trigger fires. Each time a profile
manager receives an update for a profile attribute value that makes a trigger

8 Claudio Bettini, Dario Maggiorini, Daniele Riboni

fire, it forwards the update to the CONTEXT PROVIDER. Then, the CONTEXT
PROVIDER re-computes the aggregated profile, and any change satisfying a
monitoring specification is communicated to the application logic. In order
to show the system behavior, consider the following example.

Example 4 Consider the case of the streaming video service introduced

in Example 1. Suppose that a user connects to this service via a UMTS
connection, and that at first the available bandwidth is higher than 128kbps,
and the user device has more than 4MB available memory. Thus, the
CONTEXT PROVIDER, evaluating the service provider policies, determines a
high MediaQuality (since rules R1 and R2 fire). Consequently, the service
provider starts the video provision with a high bitrate. At the same time, the
application logic sets a monitoring specification regarding MediaQuality.
Analyzing policies, profile resolution directives, and context data, the
CONTEXT PROVIDER sets triggers to the OPM and to the UPM/device, asking a
notification in case the available bandwidth and the available memory,
respectively, drop below certain thresholds. Suppose that, during the video
provision, the user device runs out of memory. Then, the UPM/device sends a
notification (together with the new value for the available memory) to the
CONTEXT PROVIDER, which merges profiles and re-evaluates policies. Since
this time policy evaluation determines a lower MediaQuality (since rule R3
fires), the video bitrate is immediately lowered by the application logic.

3.2 Monitoring specifications

In order to keep the re-evaluation of rules to a minimum, it is important to
let the application logic to precisely specify the changes in context data it
needs to be aware of in order to adapt the service. These adaptation needs,
called monitoring specifications, are expressed as conditions over changes in
profile attributes. As an example, consider the provider of the continuous
streaming service shown in Example 1. The application logic only needs to
be aware of changes to be applied to the quality of media. Hence, its only
monitoring specification will be:

MediaQuality(X), X ≠ $old_value_MediaQuality,

where $old_value_MediaQuality is a variable to be replaced with the

value for the MediaQuality attribute, as retrieved from the aggregated
profile. Monitoring specifications are expressed through an extension of the
language used to define rule preconditions in our logic programming
language (Bettini and Riboni, 2004). This extension involves the
introduction of the additional special predicate difference, which has the

Distributed Context Monitoring for Continuous Mobile Services 9

obvious semantics with respect to various domains, including spatial,
temporal, and arithmetic domains. For instance, the monitoring specification:

Coordinates(X), difference(X, $old_value_Coordinates) > 200 meters

will instruct the CONTEXT PROVIDER to notify changes of the user

position greater than 200 meters.

3.3 Minimizing unnecessary updates

In general, allowing the application logic to specify the changes in
context data it is interested to does not prevent that unnecessary updates are
sent to the CONTEXT PROVIDER. We define an update to the value of a profile
attribute as unnecessary if it does not affect the aggregated profile. In the
context of mobile service provisioning, the cost of unnecessary updates is
high, in terms of client-side bandwidth consumption (since updates can be
sent by the user’s device), and server-side computation, and can compromise
the scalability of the architecture. In order to avoid inefficiencies, the
application logic does not directly communicate monitoring specifications to
the profile managers. Instead, monitoring specifications are communicated to
the CONTEXT PROVIDER, which is in charge of deriving the actual triggers
and performing the optimizations that will be described in the following of
this section.

3.3.1 Baseline algorithm

The baseline algorithm for trigger derivation consists of the following
steps: a) set a trigger regarding the attribute A

i
 for each monitoring

specification c
A

i
 regarding A

i
, b) communicate the trigger to every profile

manager, and c) repeat this procedure considering each precondition of the
rules having A

i
 in their head as a monitoring specification. As a matter of

fact, if A
i
 is an attribute whose value can be possibly modified by policies

(i.e., an attribute that appears in the head of some policy rule), it is not
sufficient to monitor the single A

i
 attribute. For instance, consider rule R2 in

Example 1. The value of the MediaQuality attribute depends on the values of
other attributes, namely NetSpeed and AvMem. Hence, those attributes must
also be kept up-to-date in order to satisfy a monitoring specification
regarding MediaQuality. For this reason, the CONTEXT PROVIDER sets new
triggers regarding those attributes. Note that this mechanism must be
recursively repeated accordingly to step c). For example, since NetSpeed

10 Claudio Bettini, Dario Maggiorini, Daniele Riboni

depends on AvBandwidth and Bearer, the CONTEXT PROVIDER would set two
triggers regarding those attributes. Generally speaking, for each monitoring
specification c

A
i
 regarding an attribute A

i
 whose value was set by rule r'

A
i
,

triggers must be set for checking that the preconditions of rule r'
A

i
 are still

valid, and for monitoring the preconditions of the other rules that can set a
value for A

i
.

The use of the baseline algorithm would lead to a number of unnecessary
updates, as will be shortly explained in Example 5. We devised two
optimizations, presented in the following of this section, which avoid a large
number of unnecessary updates while preserving useful ones.

3.3.2 Optimization based on profile resolution directives

Any update that does not affect the profile obtained after the MERGE
operation is unnecessary. Indeed, since we assume that neither policies, nor
profile resolution directives can change during service provision, the
aggregated profile does not change as long as the profile obtained after the
merge operation remains the same. Hence, the first optimization considers
the profile resolution directives used by the merge operation. The semantics
of merge ensures that the value provided by an entity e

i
 for the attribute a

j

can be overwritten only by values provided by e
i
 or provided by entities

which have higher priority for the a
j
 attribute.

Example 5 Consider the profile resolution directive on the attribute

AvBandwidth given in Example 2 (PRD1). Suppose that the OPM (the entity
with the highest priority) does not provide a value for AvBandwidth, but the
SPPM and the UPM do. The value provided by the SPPM is the one that will be
chosen by the MERGE module, since the SPPM has higher priority for that
attribute. In this case, possible updates sent by entities with lower priority
than the SPPM (namely, the UPM) would not modify the profile obtained after
the MERGE operation, since they would be discarded by the merge algorithm.
As a consequence, the CONTEXT PROVIDER does not communicate a trigger
regarding AvBandwidth to the UPM.

Note that, if the application logic defines a monitoring specification

regarding an attribute whose value is null (i.e., an attribute for which no
profile manager provided a value), the corresponding trigger is
communicated to every entity that appears in the profile resolution directive.

Distributed Context Monitoring for Continuous Mobile Services 11

3.3.3 Optimization based on rule priority

The second optimization exploits the fact that an attribute value set by the
rule r'

A
i
 can be overwritten only by r'

A
i
 or by a rule having higher priority

than r'
A

i
. As a consequence, values set by rules having lower priority than

r'
A

i
 are discarded, and do not modify the aggregated profile. For this reason,

the preconditions of rules r
A

i
 having lower priority with respect to r'

A
i
 should

not be monitored.
Generally speaking, for each monitoring specification c

A
i
, an implicit

monitoring specification is created for each precondition of the rule r'
A

i
 that

determined the last value for A
i
, and for the preconditions of the other rules

having A
i
 in their head, and having higher priority than r'

A
i
. Rules with lower

priority do not generate triggers. For each monitoring specification, the
CONTEXT PROVIDER creates a trigger and communicates it to the proper
profile managers, as explained in Section 3.3.2.

Example 6 Consider rules R2, R3 and R4 in Example 1. We recall from

Example 3 that p(R2)>p(R3)>p(R4), where p(R) is the priority of rule R.
Rules are evaluated in decreasing order of priority. Suppose that R2 does
not fire, while R3 fires. In this case, the preconditions of R2 (the only rule
with higher priority in this example) must be monitored, since they can
possibly determine the firing of this rule. Preconditions of R4 must not be
monitored since, even if they are satisfied, R4 cannot fire as long as the
preconditions of R3 are satisfied. The preconditions of R3 must be monitored
in order to assure that the value derived by the rule is still valid. In case the
preconditions of R3 do not hold anymore, rules with lower priority (R4 in
this example) can fire, and their preconditions are added to the set of
implicit monitoring specifications.

4. SOFTWARE ARCHITECTURE

The software architecture used to implement our middleware is shown in
Figure 3. We have chosen Java as the preferred programming language,
switching to more efficient solutions only when imposed by efficiency
requirements. With regard to the inter-modules communication we have
preferred, where possible, the web service paradigm.

12 Claudio Bettini, Dario Maggiorini, Daniele Riboni

Figure 3. The software architecture

The PROFILE MEDIATOR PROXY (PMP) is a server-side Java proxy that is

in charge of intercepting the HTTP requests from the user’s device, and of
communicating the user’s profile (retrieved from the CONTEXT PROVIDER) to
the application logic, by inserting profile data into the HTTP request headers.
In this way, user profile data is immediately available to the application
logic, which is relieved from the burden of asking the profile to the CONTEXT
PROVIDER, and of parsing CC/PP data. The PMP is also in charge of storing
the monitoring specifications of the application logic. When the PMP receives
a notification of changes in profile data, it communicates them to the
application logic by means of an HTTP message. Given the current
implementation of the PMP, the application logic can be developed using any
technology capable of parsing HTTP requests, including JSP, PHP, Cocoon,
Java servlets, ASP .NET, and many others. The application logic can also
interact with provisioning servers based on protocols other than HTTP. For
instance, in the case of the adaptive streaming server presented in Section 5,
profile data are communicated to the streamer by a PHP script through a
socket-based protocol.

Distributed Context Monitoring for Continuous Mobile Services 13

CC/PP parsing is performed using RDQL, a query language for RDF
documents implemented by the Jena Toolkit1 . User and service provider
policies are represented in RuleML (Boley et Al., 2001). The evaluation of
the logic program is performed by an efficient, ad-hoc inference
engine developed using C.

Profile data, policies and triggers are stored by the profile managers into
ad-hoc repositories that make use of the MySQL DBMS. Each time a profile
manager receives an update of profile data, the TRIGGER MONITOR evaluates
the received triggers, possibly notifying changes to the CONTEXT PROVIDER.
The UPM has some additional modules for communicating triggers to a
server application executed by the user device. The communication of
triggers is based on a socket protocol, since the execution of a SOAP server
by some resource-constrained devices could be unfeasible.

The TRIGGER MONITOR module on the user’s device is in charge of
monitoring the status of the device (e.g., the battery level and available
memory) against the received triggers. The LOCAL PROXY is the application
that adds custom fields to the HTTP request headers, thus providing the
CONTEXT PROVIDER with the user’s identification, and with the URIs of his
UPM and OPM. At the time of writing, modules executed on the user device
are developed using C# for the .NET (Compact) Framework.

5. AN ADAPTIVE MULTIMEDIA STREAMING
SERVICE

As already discussed in previous work (Maggiorini and Riboni, 2005),
multimedia streaming adaptation can benefit from an asynchronous
messaging middleware. In order to demonstrate the effectiveness of our
solution, we implemented a streamer prototype based on the middleware
described in this paper. We chose the VideoLan Client (VLC)2 as a starting
point to develop a customized client system, because it is an open platform
and multiple operating systems are supported. The client is intended to run
on windows workstations and windowsCE PDAs in order to achieve the
largest possible population of users. VLC contacts the streaming service
provider performing an HTTP request that has been modified by a local
proxy adding in the HTTP headers the URIs of UPM and OPM. Then, the
client waits for the video feed to come on a specific port. The HTTP request
from VLC is received by the PMP module, which, as explained in Section 4,
asks the CONTEXT PROVIDER for the aggregated profile information. The

1http://jena.sourceforge.net/
2http://www.videolan.org/

14 Claudio Bettini, Dario Maggiorini, Daniele Riboni

returned attribute/value pairs are included in the HTTP request header and
the request is forwarded to the streamer application logic. Upon receiving the
request, the streamer opens all the video files with the different encodings.
Based on the context parameter values, the application logic selects an
appropriate encoding, and the streamer starts sending over the network UDP
packets containing frames belonging to the selected encoding. The streamer
has been implemented on a Linux system. Network streaming is performed
thanks to a specific file format, in which video data is already divided in
packets, and a network timestamp is associated to each packet. Moreover,
this streaming file format supports any kind of encoding, thus making the
service independent by any specific format or codec.

We now illustrate how changes in context are detected and notified by the
middleware to the streamer application logic. When the PMP module receives
the user request, it recognizes that is directed to a continuous service, and
retrieves from the media description all the monitoring specifications related
to the requested feed, which in the case of our streamer prototype consist
only of the MediaQuality parameter. Using the specification, the CONTEXT
PROVIDER computes the set of required triggers, accordingly to the
algorithms reported in Section 3, and illustrated by Example 6. Triggers are
then set on the OPM, UPM/device to monitor available bandwidth and battery
level, respectively. Upon firing of one of the triggers, the new value is
forwarded to the CONTEXT PROVIDER, which recomputes the value for the
MediaQuality parameter. If the new value differs from the previous one, it is
forwarded to the PMP which issues a special HTTP request to the streamer
application logic. The application logic selects a different encoding based on
the new value; the feeder process is notified and forced to change the file
from which the video frames are taken. The experiments performed with the
current prototype, despite being quite preliminary at the time of writing, are
based on a full implementation and demonstrate the viability of our solution.

6. CONCLUSIONS

We presented the extension of the CARE middleware to support context-
aware continuous services. In particular, we focused on optimizations to
avoid unnecessary remote context updates which would strongly affect
scalability. An adaptive video streamer has been used for a practical
evaluation of the functionality of our middleware.

The natural extension of the CARE architecture will be related to session
handoff. We experience a session handoff every time a user switches device
and/or network connection. The main issue here is to efficiently describe all
context data regarding the current session in order to guarantee a seamless
migration to the new device. In the case of our video streaming prototype,

Distributed Context Monitoring for Continuous Mobile Services 15

session handoff will be easy to accomplish, since session data can be easily
described as the current frame number and media quality. In a more general
scenario, involving a possibly huge number of context data, session handoff
is much more challenging, and is the subject of future work.

 ACKNOWLEDGEMENTS

This work has been partially supported by Italian MIUR (FIRB "Web-
Minds" project N. RBNE01WEJT_005).

REFERENCES

Agostini, A., Bettini, C., Cesa-Bianchi, N., Maggiorini, D., Riboni, D., Ruberl, M., Sala, C.,
and Vitali, D., 2004, Towards highly adaptive services for mobile computing, Proc. of
IFIP TC8 Working Conference on Mobile Information Systems (MOBIS), Springer, pp.
121–134.

Bellavista, P., Corradi, A., Montanari, R., and Stefanelli, C, 2003, Context-aware middleware
for resource management in the wireless Internet, IEEE Trans. Soft. Eng., Special Issue on
Wireless Internet, 29(12):1086–1099.

Bettini, C., and Riboni, D., 2004, Profile aggregation and policy evaluation for adaptive
Internet services, Proc. of the First Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services (Mobiquitous), IEEE, pp. 290–298.

Boley, H., Tabet, S., and Wagner, G., 2001, Design rationale of RuleML: a markup language
for Semantic Web rules, Proc. of the International Semantic Web Working Symposium
(SWWS), pp. 381–401.

Butler, M., Giannetti, F., Gimson, R., and Wiley, T., 2002, Device independence and the Web,
IEEE Internet Comp., 6(5):81–86.

Chen, H., Finin, T., and Joshi, A., 2004, Semantic Web in the context broker architecture,
Proc. of the Second IEEE International Conference on Pervasive Computing and
Communications (PerCom 2004), IEEE, pp. 277–286.

Chengy, R., Kaox, B., Prabhakary, S., Kwanx, A., and Tu, Y., 2005, Adaptive stream filters
for entity-based queries with non-value tolerance, Proc. of VLDB 2005, International
Conference on Very Large Databases.

Hull, R., Kumar, B., Lieuwen, D., Patel-Schneider, P., Sahuguet, A., Varadarajan, S., and
Vyas, A., 2004, Enabling context-aware and privacy-conscius user data sharing, Proc. of
the 2004 International Conference on Mobile Data Management, IEEE, pp. 187–198.

Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M. H., and Tran, L., 2004,
Composite capability/preference profiles (CC/PP): structure and vocabularies 1.0. W3C
recommendation, http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/.

Maggiorini, D., and Riboni, D., 2005, Continuous media adaptation for mobile computing
using coarse-grained asynchronous notifications, 2005 International Symposium on
Applications and the Internet (SAINT 2005), Proc. of the Workshops, IEEE, pp. 162–165.

