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Abstract

Intelligent Data Analysis (IDA) is a methodology for extracting useful

knowledge from data, with special emphasis on human involvement

in the analysis process. Within IDA, dimensionality reduction meth-

ods play an important role, as they enable to represent data in low-

dimensional spaces. With this representation, it is indeed possible to

discover hidden structures in data by disregarding irrelevant informa-

tion.

Non-negative Matrix Factorization (NMF) is a low-rank approxima-

tion method that is widely used for dimensionality reduction and clus-

tering. Its characteristic non-negativity constraint leads to represent-

ing data as linear additive combinations of latent factors, which, in

turn, can be interpreted as building-blocks of the final data. NMF can

play a prominent role among dimensionality reduction methods within

IDA, yet classical approaches to NMF may fail to provide data repre-

sentations that are semantically relevant, hence easily interpretable,

for the data analyst.

In this thesis, new variants of NMF have been proposed, with the aim

of extracting semantically relevant features, so as to improve the use-

fulness of NMF within IDA. The common theme of these variants is

the ability of injecting prior information in the factorization process.

The first proposal concerns an initialization method for NMF based

on Subtractive fuzzy Clustering (SC). In fact, NMF needs some initial

matrices before starting the factorization process. Several alternatives

exist, but most of them require the a-priori specification of the rank,

i.e. the dimensionality of the new subspace the data will lie in the

new representation. The use of SC enables to automatically deter-

mine the rank, by exploiting some additional information concerning



the similarity of data being provided by the analyst. This approach

has been applied to document clustering, where an improvement of

the interpretability of the results coming from NMF has been empiri-

cally observed. Moreover, when NMF is used for clustering documents

in latent topics, the resulting prototypes are more representative of

these topics than when other initialization techniques are used.

The second proposal is mainly focused on the optimization process of

NMF. The point of departure is the observation that classical NMF

returns a new representation of data that can be hardly described

in terms of parts, a part being a selection of features of the original

space where a linear correlation holds for a subset of data. To enforce

a part-based representation, the standard NMF optimization process

has been modified so as to take into account a binary mask that regu-

lates the factorization process so as to describe data as composition of

parts conforming to the mask. The resulting Masked NMF (MNMF)

puts at the analyst’s disposal a tool to query the dataset so as to ex-

tract a subset of the available data which can be represented in terms

of user-specified parts. This approach, called Query-based NMF, is

accompanied by some metrics that evaluate the quality of the query

in terms of representativeness of MNMF results as well as their con-

formity to the query. The whole approach has been tested on some

synthetic data and a benchmark dataset so as to show the potential

benefits within IDA.

The third and last proposal is a modification of Non-negative Ma-

trix Underapproximation (NMU), which in turn is a variant of NMF

where the factorization process is carried out via an iterative approx-

imation of the original data matrix in rank-one matrices. Here, NMU

has been modified in order to accommodate some constraints that

enhance the interpretability of the final results. In essence, these con-

straints enforce sparsity and spatial (local) information, thus resulting

particularly suited for hyper-spectral images, where the proposed ap-

proach has been successfully applied to classify the pixels of real-world

images according to the materials of the scanned objects.



These three proposals show that a proper injection of expert knowl-

edge in the factorization process enables the discovery of hidden struc-

tures in data that could be easily interpreted by the data analyst. In

all cases, an interaction is established between the analyst and the

computational machinery, thus achieving an intelligent support for

data analysis.

Part of this research work has been accomplished within a 5-months

studentship at the University of Mons, under the supervision of prof.

Nicolas Gillis.
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Chapter 1

Introduction

The amount of available data has grown dramatically over the past fifty years.

Every year more than 200 Exabytes of data are generated. Huge quantities of

digital data are produced daily from different sources: numerical data from satel-

lites or sensors, textual data — both structured and unstructured — from web

sites, emails, forums, newsgroups, public and private digital archives, images,

videos, are just some examples. Data overload is a fact of life for all of us in the

information era.

Although this profusion of information potentially allows to satisfy all infor-

mation needs, it also presents some limits: the larger is the amount of data the

fewer are the possibilities to capture, discover and understand useful knowledge

to guide action or decision making [Bierig et al.; Liu and Motoda, 2007].

Clearly human capabilities prove to be unsuitable to process big amounts

of data, therefore automatic mechanisms, which are able to assist humans in

extracting useful information and knowledge from rapidly growing volumes of

digital data are indispensable and an extensive effort of research in this direction

has been made in the last years.

Intelligent Data Analysis (IDA) aims to the intelligent application of human

expertise and computational models for advanced data analysis. Automatic tools

which strive for involving the analyst in the process of data analysis and extract-

ing useful patterns from big data can be enumerated among IDA methods. In this

scenario, techniques coming from different areas (such as statistics, artificial in-

telligence, data mining, machine learning, optimization, dynamic programming)
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which favour the interaction with users and produce understandable knowledge

could be favoreably exploited in IDA.

Non-negative Matrix Factorizations are powerful techniques recently proposed

to uncover latent low-dimensional structures intrinsic in high-dimensional data

and provide a non-negative part-based representation of data [Berry et al., 2007;

Cichocki et al., 2009; Gillis, 2014; Lee and Seung, 1999, 2001; Zhang, 2011].

Non-negativity enhances meaningful interpretations of mined information and

distinguishes NMF from other traditional dimensionality reduction algorithms,

such as Principal Component Analysis (PCA) [Jolliffe, 1986] or Singular Value

Decomposition (SVD) [Golub and Van Loan, 2001].

However, the understandability of the results obtained by applying classical

NMF is not guaranteed a priori as they often do not correspond with the intuitive

notions of parts in the original data. Several variants of constraints and various

regularization terms have been proposed to improve NMF capabilities so as to

make the extracted parts easier to understand by the data analyst.

This thesis aims to propose three NMF variants by enhancing understand-

ability so as to improve the applicability of NMF in IDA.

First, an initialization technique for NMF based on the Subtractive fuzzy

clustering algorithm (SC) is proposed. It has been applied to document clustering

application showing its ability to enhance the quality of the clustering results in

term of interpretability of the cluster centers.

Second, an approach for injecting user knowledge in the factorization process,

by masking the basis matrix (one of the products of NMF) is presented. Masking

enables the decomposition of data into user-defined parts, which are consequently

easy to understand by the analyst. The results of Masked NMF helps the analyst

to identify which subset of the available data are best represented by the specified

parts, thus extracting potentially useful knowledge from large quantities of data.

Finally a constrained modification of Non-Negative Matrix Underapproxima-

tion (NMU) algorithm for hyperspectral images is described1. Non-negative ma-

trix factorizations are widely used in hyperspectral imaging due to their capability

of separating constituent materials of the objects represented in the images, and

1This research result has been achived in collaboration with professor Nicolas Gillis, after
a five months studentship at the University of Mons (Belgium).
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to correctly classify the pixels according to these materials. Moreover it has been

shown that sparsity and local information about pixels in images, when incor-

porated in the factorization process, lead to better results in term of separation

of materials and classification of pixels [Gillis and Plemmons [2013]; Gillis et al.

[2012]]. A new NMU algorithm incorporating prior information PNMU (both

sparsity and local information) has been developed. Tests on real datasets have

shown that the proposed method outperforms the standard NMU algorithm and

its constrained versions.

This thesis is organized as follows: in paragraph 2.1 an overview of IDA and

its objective is given, while paragraph 2.2 focuses on NMF techniques. Than

the three proposed approaches are reported in chapters 4, 5, and 6 respectively.

For each method, experimental results demostrating the effectiveness are shown.

Future perspectives are sketched in the conclusing chapter 7.

3



Chapter 2

Preliminaries and Problem

Statement

2.1 Intelligent Data Analysis

Data are collections of values or measurements. They can be numbers, words,

observations or even descriptions of things. In this chapter we will simply refer

to data as a collection of numerical values recording the magnitude of different

attributes and/or features that describe the problem under study.

Hand writes “data analysis is what we do when we turn data into information”

[Hand, 1997]. Intelligent data analysis is the intelligent way to do it. Moreover,

he gives a definition of information: “It is what we extract from data when we

attempt to answer some questions. Before extracting information which can shed

light on a question, one must be clear about what that question is”. This is a

crucial point in IDA: the analysis is driven by the questions that the analyst

wants to answer to, otherwise it would be unintelligent.

IDA is an iterative process that enables the combination of human expertise

and computational models to automatically extract useful patterns, event corre-

lations and in general, understandable knowledge which would otherwise remain

hidden in the data under consideration [Berthold and Hand, 1999]. A data an-

alyst could be interested in describing data by finding patterns and anomalies,

or just by summarizing them; in this case the term exploratory data analysis is

4



used. Contrariwise, when the analyst is interested in verifying some hypoteses

about the structure in data, e.g. differences among groups of data, evolution of

the attribute values, etc., the term confirmatory data analysis is used. IDA is a

multidisciplinary discipline that comes from the intersection of several research

fields, the most important ones are Statistics and Machine Learning.

IDA and Knowledge Discovery from Data (KDD) are tightly correlated, yet

with some noteworthy differences. Both are aimed at identifying valid, novel,

potentially useful, and ultimately understandable patterns in data [Fayyad et al.,

1996]; however IDA emphasizes the importance of the prior knowledge possessed

by human experts that intelligently guide the analysis process in an interactive

and iterative way [Berthold et al., 2010]. Data Mining is one step of the KDD

process and refers to the set of tools that allow to automatically extract knowledge

from large amounts of data [Fayyad et al., 1996]. However, a full automatization

of the data analysis process is impossible [Berthold et al., 2010], for this reason

IDA is focused on the human contribution to the analysis process.

Holmes and Peek [2007] categorize IDA methods in three main classes: data

exploration, classification and prediction, dimensionality reduction . Data explo-

ration plays a fundamental role in data analysis. Analysts look at data for dis-

covering relations among features, trends, anomalies or outliers, relations among

features and classes, etc. Most of these techniques rely on visual tools to repre-

sent information. IDA-based approaches for data exploration integrate automatic

techniques with a-priori user knowledge in the exploration process, thus enabling

user interaction. Classification and prediction methods are used in several do-

mains dealing with real data. Machine learning literature provides many different

techniques for classification (both supervised, semi-supervised or unsupervised)

and prediction. Most of them are based on some automatic learning tools to ac-

quire knowledge that can be used for classifying (or predicting) unobserved data.

However, only few of them are capable of yielding knowledge that is intelligible

to users (e.g. knowledge expressed in form of rules), a mandatory requirement

for their use within IDA. Learning interpretable knowledge from data is a topic

of current research in Machine Learning and Computational Intelligence. In this

context are located dimensionality reduction techniques, that represent data in a

reduced space through feature selection and extraction. This facilitates to man-

5



age, understand and visualize data. Because of their tight relationship with NMF,

a brief overview of such techniques is outlined in the following subsection.

2.1.1 Dimensionality Reduction techniques

Often, in high-dimensional data not all the measured variables are “important”

for understanding the underlying phenomena of interest. Hence, mechanisms that

transform data and reduce the number of original variables are frequently used.

Let X ∈ Rn×m be the observation data matrix, where each columns vec-

tor is composed by n observations for each of the m dimensional variable in

x = (x1, . . . ,xm)>. In this formalization, the dimension of data is meant the

number of variables that are measured on each observation, while the term di-

mensionality of X indicates the number m of original features. A dimensionality

reduction method is a transformation of a given data matrix X into a meaning-

ful representation S ∈ Rn×k of reduced dimensionality k ≤ m [Van der Maaten

et al., 2008]. The low dimensional vectors s = (s1, . . . , sk)>, with k ≤ m cap-

ture information in the original data, according to some particular criteria. The

components of s are called “hidden components” or “latent factors”, while —

depending on the particular research context one is working with— the m mul-

tivariate vectors are alternatively named “variables”, “attributes” or “features”.

Dimensionality reduction methods mitigate the curse of dimensionality [Bellman,

1961], which refers to difficulties related to data analysis when data dimension-

ality increases; these methods are able to overcome problems coming from data

sparseness and noise, and can be adopted as a visualization tool to show multi-

variate data in a human intelligible form.

Dimensionality reduction techniques can be categorized in two classes: (i) fea-

ture selection and (ii) feature extraction. A feature selection method is a process

that selects a subset of k original (and supposed relevant) features for spanning

a reduced space that may better describe the phenomena of interest. Feature se-

lection mechanisms reduce the computational costs, but a good trade-off between

accuracy of the results and efficiency is needed.

On the oher hand, feature extraction methods try to capture hidden proper-

ties of data and discover the minimum number of uncorrelated or lowly correlated
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factors that can be used to better describe the phenomena of interest. It is ac-

complished by the creation of new features obtained as functions of the original

data. Reduction of the computational complexity of data both in time (for elab-

oration) and in space (for storage) and the discovery of latent structure hidden in

data, (meaningful structures and/or unexpected relationships among variables)

are some of the advantages resulting from feature extraction methods.

The simplest dimensionality reduction methods are linear and derive each of

the k ≤ m components of the new variables in S as a linear combination of the

original variables:

S = XA, (2.1)

or equivalently

X = SB, (2.2)

being A ∈ Rm×k and B ∈ Rk×m appropriate linear transformation weight matri-

ces. Equation (2.2) makes clear the motivation why the new variables in S are

called hidden or latent factors. Principal Component Analyisis (PCA) [Hotelling,

1933; Jolliffe, 1986; Pearson, 1901], Factor Analysis (FA) [Spearman, 1904], In-

dipendent Component Analysis (ICA) [Hyvärinen, 1999], Linear Discriminant

Analysis (LDA) [Fisher, 1936], CUR decomposition [Mahoney and Drineas, 2009]

are all well known linear dimensionality reduction techniques used for analyzing

multivariate data. Among linear dimensionality reduction methods, the most

widely used in the context of IDA is PCA.

2.1.1.1 Principal Component Analysis

Principal component analysis is the best, in the least-square error sense, linear

dimensionality reduction technique [Jackson, 2003; Jolliffe, 1986]. It is based on

the covariance matrix of the variables and seeks to reduce the dimensionality of

data matrix X by finding few orthogonal linear combinations (the principal com-

ponents – PCs) of the original variables with the largest variance. The first PC is

the linear combination of the original data with the largest variance; the second

PC is the linear combination with the second largest variance and orthogonal to
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the first PC, and so on. The principal components are given by:

Y = XU, (2.3)

where U ∈ Rm×m is an orthogonal weight matrix computed as the orthogo-

nal factor of the spectral decomposition of the covariance matrix X>X of the

stardardized data matrix X1. Therefore, the columns of the matrix U are the

eigenvectors of the covariance matrix. These eigenvectors (principal axes) map a

data vector from the original space of m variables to a new space of k variables

which are uncorrelated over the dataset. Hence keeping only the first k < m

principal components a dimensional reduction on k-dimensional subspace of the

original data is derived.

Moreover, it is proven that the transformed data matrix, obtained by only

considering the first k < m principal components, is the best least-squares k-

approximation of the original data X (this result is known as the Eckart–Young–

Mirsky theorem [Golub et al., 1987]).

Figure 2.1 shows the behaviour of PCA of a data matrix collecting points

that belong to a bivariate Gaussian distribution centered in the coordinates (1, 3).

Standard deviation of data is 3 in the direction (0.878, 0.478) and 1 in the or-

thogonal direction. The first principal component (PC1) captures information

in the direction of the maximum variability in data, instead the second princi-

pal component (PC2) is orthogonal to the first one and captures information in

the second most variable direction. The principal axes are therefore the bases

of the rotated space and are centered in the center of the points. This is a sim-

ple example where the dimensionality of the original data space and that of the

transformed one are the same. As an example of dimensionality reduction, one

can represent the same points using the first principal axis only: in this case a

one dimensional space is obtained where data points are projected onto.

In many applications, the most of data variance can be captured by the first

two (or three) PCs: this makes the PCA a widely used visualization tool in IDA.

However, even though the PCs are uncorrelated variables constructed as linear

1Since the values of the variance of data depends on the scale of the variables, usually the
original data contained in X are subject to a standardization process so that each variable has
mean zero and standard deviation one.
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Figure 2.1: Graphical illustration of PCA. From Wikipedia, the free encyclopedia.

combinations (with mixed signs) of the original variables, and have some desir-

able properties (they are orthogonal and ordered in a descreasing manner w.r.t.

the variance of original data), they do not necessarily correspond to meaningful

physical quantities. Hence, a clear interpretation of the results provided by PCA

is sometimes difficult to be derived.

To clarify this point consider the computer vision problem of human face

recognition, where PCA has been largely adopted to obtain a set of basis images

— the eigenfaces — that can be linearly combined to reconstruct images in the

original dataset of face [Turk and Pentland, 1991]. As it can be observed by

Figure 2.3 (left panel), eigenfaces are not physically intuitive and far to correspond

to what humans use to explain why a face is a face. In particular, because of the

presence of negative signs in the components of principal axes, PCA reconstructs

the original data adding up some basis images and subtracting others: this may

not make sense in some applications. A simply question can be posed:“What

does it mean to subtract a face basis?”

These considerations can be extended to documents, genes, preferences, ques-

tionaries and to all non-negative data. In the following section 2.2, a review of

Non-negative Matrix Factorization is given. It is able to represent original data by

only additive, not subtractive, combinations of some basis vectors. This charac-

teristic of parts-based representation is appealing because it reflects the intuitive

notion of combining parts to form a whole providing more distinct and clearer
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dimensionality reduction results and a easier understandability of the obtained

results.

2.2 Non-Negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is a computational technique for linear

dimensionality reduction of a given data matrix X, which is able to explain data

in terms of additive combination of non-negative factors that represent realistic

building blocks for the original data (provided that data are non-negative too)

[Cichocki et al., 2009; Gillis, 2014; Lee and Seung, 1999, 2001; Zhang, 2011].

The non-negativity constraint is useful for learning part-based representa-

tions and has a twofold motivation. First in many applications one knows that

the quantities involved cannot be negative (for example by the rules of physics).

Second intuitively parts are generally combined additively (and not subtracted)

to form a whole and physiological principles assume that humans learn objects

as part-based [Lee and Seung, 1999]. Hence, non-negativity potentially enhances

meaningful interpretations of information mined from a given data matrix, al-

lowing to a better understanding of the results obtained by the analysis process:

this makes NMF a suitable computational models for IDA.

2.2.1 NMF mathematical formulation

Formally, given a nonnegative data matrix X = [x1,x2, . . . ,xm] ∈ Rn×m
+ , where

xi ∈ Rn
+ are n−dimensional column vectors representing samples1, NMF aims to

approximate X into the product of two lower rank non-negative matrices — a

basis matrix W = [w1,w2, . . . ,wk] ∈ Rn×k
+ and an encoding matrix H = (hij) ∈

Rk×m
+ — such that

X ≈ WH, (2.4)

or, equivalently,

xj ≈
k∑
i=1

wihij. (2.5)

1Henceforth a matrix is denoted with an uppercase letter, e.g. X, its elements with the
corresponding lowercase letter, e.g. xij , a column vector in lowercase boldface, e.g. xi
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where W and H both have non-negative elements (namely, W ≥ 0 and H ≥ 0)

and the product matrix (WH) is of rank k with (n+m)k ≤ nm.

2.2.2 NMF optimization problem

To compute a non-negative matrix factorization (2.4) of a given data matrix X,

some quality measures have to be taken into account to evaluate how well the

product (WH) approximates the data matrix X. Particularly, some divergence

function

D : Rn×r
+ × Rr×m

+ → R+,

can be adopted if it possesses the following properties: (i) it is continuously

differentiable (at least once) in both variables; (ii) it is individually convex in W

and H; and (iii) it equals 0, if and only if X = WH [Dhillon and Sra, 2005].

It should be observed that the divergence D is a function of the factor matrices

W and H, but it is also parametrized by the input data matrix X. This depen-

dence can be expressed by writing D(X;W,H) [Tandon and Sra, 2010]. Using

the previous formalization, the NMF problem may be re-written as a non-linear

constrained optimization problem over the divergence D, that is:

min
W≥0,H≥0

D(X;W,H). (2.6)

The most frequently adopted instance of (2.6) leads to the minimization of

min
W≥0,H≥0

D(X;W,H) = ‖X −WH‖2
F , (2.7)

where ‖ · ‖F denotes the Frobenius norm. Many other divergence measures have

also been used, the interested reader can refer to [Dhillon and Sra, 2005].

The most popular approach to numerically solve the NMF optimization prob-

lem is the multiplicative update algorithm proposed by [Lee and Seung, 2001].

Particularly, it can be shown that the square Frobenius distance measure (2.7)

is non-increasing under the Lee and Seung’s iterative update rules described in

Algorithm 1.

Lee and Seung update rules can be interpreted as a diagonally rescaled gradi-
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Algorithm 1 Lee and Seung multiplicative update rules (NMF)

Initialize non-negative matrices W (0) and H(0)

while Stopping criteria are not satisfied do
W ← W � (V H>)� (WHH>)
H ← H � (W>V )� (W>WH)

end while
{� and � denotes the Hadamard product, that is the element-wise matrix
multiplication and the element-wise division, respectively.}

ent descent method (i.e., a gradient descent method using a rather large learning

rate).

Additional constraints on the factors W and/or H, such as sparsity or orthog-

onality, may be (approximately) enforced by means of the introduction of penalty

functions or constraint modification of the minimization problem (2.6). Some ex-

amples are the non-negative sparse encoding factorization (NMFSC) proposed in

[Hoyer, 2002], which has the peculiarity of controlling the statistical sparsity of

the factor matrices W and H, in order to discover part-based representations that

are more separate than those given by standard NMF. Furthermore, orthogonal

non-negative matrix factorizations (ONMF) attempt to obtain the basis and/or

the encoding matrix with columns as orthogonal as possible, in order to minimize

the number of basis components required to represent the data and the redun-

dancy between different basis [Choi, 2008b]. Constrained variants of NMF will

be detailed in paragraph 3.2.

2.2.3 NMF drawbacks

Uniqueness

NMF are not free from drawbacks. First, it should be pointed out that the basis

and the encoding factors in (2.4) are not unique. For instance, when an arbitrary

invertible matrix A ∈ Rk×k can be found, such that the two matrices W ′ = WA

and H ′ = A−1H are non-negative, then another factorization X ≈ W ′H ′ exists.

Such a transformation is always possible if A is an invertible non-negative matrix.

However, in this situation, the result of the transformation is simply a scaling

and permutation of the original matrices [Berman and Plemmons, 1979]. The
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NMF problem is a difficult non-convex optimization problem. Indeed, it has been

proved in [Vavasis, 2007] that finding the global optimum for the minimization

problem in (2.7) is a NP-hard problem, and so a numerical method for solving

the NMF problem could only guarantee at most locally optimal solutions.

Factorization rank

On the other hand, to obtain NMF for a given data matrix X, the number

k of rank factor must be provided. This number k is problem dependent and

identifies the number of factors to be used in order to explain data and it plays a

fundamental role in the factorization process. In fact, different values of k lead to

different factorization results. This is an open issue when dealing with NMF as

well as with methods devoted to reduce the dimensionality of multivariate data

(for instance, SVD needs to fix the number of singular components or in the k-

means clustering the user has to choose the number of desired clusters [Maisog,

2009]). This problem can be solved as done in PCA or ICA, where the number of

components to be considered the true signals and those to be considered merely

noice is decided a-posteriori using classic methods such as Cattell’s scree test

[Cattell, 1966] or Kaiser’s rule [Kaiser, 1960].

Initialization

All algorithms for computing NMF are iterative and require initialization of the

basis and the encoding matrices [Berry et al., 2007; Wild et al., 2004; Wild, 2003].

As previously observed, the computed non-negative factorization is not unique:

one can obtain different answers depending on the initialization of matricesW and

H. Hence different initializations may find different local minima in the search

space. Moreover, the efficiency of many NMF algorithms is affected by the selec-

tion of the starting matrices: poor initialization often results in slow convergence

or lower error reduction. Furthermore, the problem of selecting an appropriate

initialization becomes more complex when additional structures or constraints

are imposed on the factorized matrices, or when the data possess special mean-

ing. Different initialization mechanisms have been proposed in literature: some

of them lead to rapid error reduction and faster convergence of the adopted NMF
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algorithm, others lead to a good overall error accuracy at convergence [Bout-

sidis and Gallopoulos, 2008; Buciu et al., 2006]. However, there does not exist

a definitive suggestion about the best initialization strategy to be adopted for

different NMF algorithms [Del Buono and Lucarelli, 2010]. A taxonomy of the

initialization techniques for NMF is given in paragraph 3.1.

2.2.4 Interpretation of the basis and encoding matrices

The results of NMF applied to a data matrix X have an immediate geometri-

cal interpretation. According to (2.5), the columns of the matrix W are basis

vectors spanning a subspace in k ≤ n dimensions, called NMF-subspace, while

each column of the encoding matrix H represents the new coordinates of the cor-

responding data sample in the NMF-subspace. From a numerical point of view,

each data sample is approximated by a linear combination of vectors in W , where

the linear coefficients are grouped in a column of H corresponding to the data

sample. Therefore, the elements hij codify the amount of the factors (i.e. the

columns of W ) used to reconstruct each sample of X in the NMF-subspace.

The coefficients hij in each column of H define the importance of each basis

vector in approximating the data sample: if a coefficient is very small, then the

corresponding basis vector is useless in approximating the sample. Under some

hypoteses1, the basis vectors can be interpreted as prototypes of data clusters.

In this case, the coefficients hij can be easily interpreted as membership degrees

of each sample to each cluster.

Examples of successful applications of NMF are: basic student skills describ-

ing student questionnaire results in educational data mining [Desmarais, 2011];

topics represented as bag of words in text mining [Shahnaz et al., 2006]; anatomic

parts of images describing human faces in face identification problems [Guillamet

and Vitrià, 2002; Sun et al., 2009]; part-based representation of digital charac-

ters for object recognition [Guillamet and Vitrià, 2003; Liu and Zheng, 2004];

community categories extracted to describe users networks [Wang et al., 2011];

diversified portfolio describing trends in stock markets in financial data mining

[Drakakis et al., 2008; Ribeiro et al., 2009]; topics used to clusterize social tags

1The use of NMF in clustering applications will be detailed in paragraph 3.2.2.
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data [Chen et al., 2014]; users-items relations in recommender systems [Gu et al.,

2010]; chemical constituents in air pollution relevations [Hopke, 1985; Kim et al.,

2003]; musical instrument frequencies for music classification [Benetos et al., 2005,

2006a,b]; endmembers of consituent materials of hyperspectral images [Burger

and Geladi, 2007; Gillis and Plemmons, 2013; Gillis et al., 2013; Jia and Qian,

2007; Ma et al., 2014; Pauca et al., 2006]; genes in microarray data [Brunet et al.,

2004; Carmona-Saez et al., 2006; Devarajan, 2008; Ding et al., 2006; Mej́ıa-Roa

et al., 2008; ?]. Other successful applications of NMF, where interpretability is a

key requirement, belong to molecular pattern discovery [Gao and Church, 2005;

Kim and Park, 2007] and object detection [Casalino et al., 2012].

A key aspect of NMF, that is advantageous for its application in IDA, stands

in the possibility of approximating data samples as linear combination of factors,

where the factors are subsets of the same features used to represent data sam-

ples. Therefore, unlike other low-rank approximation techniques, NMF allows to

represent data as composition of parts, being each part expressed with the same

features used in data. This makes the results of NMF easily interpretable for the

analyst, who can intelligently guide the factorization process, in order to achieve

results that are interesting and useful for understanding the problem at hand.

2.2.5 Comparison of NMF and PCA

As stated before, PCA can be used as tool in IDA because of its dimensionality

reduction and visualization capability. However, it presents some drawbacks (such

as the presence of mixed sign values) and several research papers demonstrated

that it is outperformed by NMF in many applications such as face recognition

[Cichocki et al., 2009; Guillamet and Vitrià, 2003]. In the following, some of the

differences among these two techniques are briefly highlighted [Zinovyev et al.,

2013].

Uniqueness . PCA is able to find the global minimum of the optimization

problem, while NMF usually is trapped into local minima: this implies that the

set of principal components is unique, while NMF has multiple solutions (in terms

of basis and encoding matrices).

To overcome NMF non-uniqueness problem, bootstrapping techniques can be
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used, several executions of the factorization are performed and the most frequent

solutions selected.

Ranking . Principal components are naturally ranked accordingly to the

quantity of variance they explain. On the contrary, factors in NMF have no

ordering and are all equally important. This causes a problem to appropriate

choose the value of the rank parameter k. When PCA is applied, no specification

of the value k is provided: all the eigenpairs are computed and then the most

important components are selected according to the proportion of variance one

wants to preserve. Instead, when NMF is applied, the parameter k has to be

specified (by user) as input parameter for the factorization. The choice of the

rank value is problem dependent: usually, different factorizations are performed

with different rank values and then the results are evaluated accordingly to the

target of the analysis.

Orthogonality . Principal components are orthogonal directions which cap-

ture the variance in data. On the other hands, factors obtained by NMF are

positive vectors that better approximate data, but they are not necessarily or-

thogonal. They are the bases of the hypercone containing all data and are able

to preserve local data structure in this subspace. Figure 2.2 shows the principal

components and the factors returned by PCA and NMF (left and right panels,

respectively) when applied to non-negative 2-dimensional data matrix.

The orthogonality constraint is a desiderable property, however this implies

the presence of some negative values in the elements of principal components

that, as previously highlighted, does not make sense in some contexts. The

non-negativity constraint is always violated by PCA, even when it is applied to

non-negative data. Hence, the interpretability of data is lost when moving from

original data space to the reduced low dimensionality subspace. From Figure 2.2

(left panel) it can be observed that, starting from samples in the positive orthant,

after transforming them by PCA, samples belonging to the line assume negative

values. On the contrary (right panel), NMF preserves the non-negativity of data

that leads to a part-based representation.

The interpretability of the factors is one of the strength point in NMF.

The parts-based representation obtained by NMF is more intuitive and human-

understandable than the holistic results of PCA. A clear example is illustrated
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Figure 2.2: Comparison between principal factors (left panel) and NMF latent
factors (right panel).

in Figure 2.3 in the context of facial image recognition problem [Lihong et al.,

2008]. PCA provides for the eigenfaces that are prototypical faces containing all

kinds of facial traits (left panel), while NMF basis vectors represent particular

facial traits: different kinds of eyes, noses, mouths (right panel).

Figure 2.3: Comparison between bases extracted with PCA (left panel) and NMF
(right panel).
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Chapter 3

Related Work

In this chapter the literature of NMF techniques for injecting prior knowledge in

the factorization process, will be shown. First, a taxonomy of the initilization

mechanisms for NMF will be shown in section 3.1. Than the constrained versions

of NMF will be detailed in section 3.2 to show their influence to intelligently

analyze data

3.1 Initialization mechanisms for NMF

All algorithms for NMF are iterative. They require the computation of initial

matrices W (0) and/or H(0) by some numerical mechanism and then alternately

update W and H until the divergence measure does not present appreciable

changes (i.e., D(X;W,H) is bounded by a fixed tolerance). This mechanism

unavoidably yields to converge to locally optimal solutions. Hence, in practice,

the local minima from several different starting points should be compared, using

the results of the best local minimum found. However, this is prohibitive on large,

realistically-sized problems.

Not only different NMF algorithms produce different NMF factors, but also

the same NMF algorithm, run with slightly different initial matrices, could pro-

duce different NMF factors. Therefore, the choice of the initial pair (W (0), H(0))

plays a crucial role for the convergence speed of the iterative algorithm and for

the improvement of the algorithm performance. Moreover, when NMF is ap-
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plied in a particular context, such as text document clustering, it can be of some

importance that initial factors also possess meaningful interpretations.

Different initialization mechanisms have been proposed to improve the per-

formance of the NMF algorithms: some of them lead to rapid error reduction

and faster convergence of the standard NMF algorithm, others lead to better

overall error accuracy at convergence. A wide range of approaches have been

presented in literature to alleviate the initialization problem: random initializa-

tion, prototype-based clustering methods (such as k-means and Fuzzy C-means)

[Wild et al., 2004; Wild, 2003; Xue et al., 2008], feature extraction techniques

(such as, SVD, PCA and ICA) [Boutsidis and Gallopoulos, 2008; Buciu et al.,

2006; Casalino et al., 2011], meta-heuristic search algorithms (such as genetic

algorithms) [Janecek and Tan, 2011; Rezaei et al., 2011].

As evidenced by some authors [Albright et al., 2006; Boutsidis and Gallopou-

los, 2008], the goodness of an initialization strategy for NMF can be assessed

either when (i) rapid error reduction and fast convergence occur or (ii) a better

overall error at convergence is obtained. Some experimental evidences have been

obtained when the first criteria are considered, however, the quality of the pair

(W,H) in terms of overall error is quite difficult to understand especially when

other features such as interpretability or added structure reveal to be impor-

tant. Hence, initialization of NMF remains an open problem and to date there

does not exist a definitive suggestion about the best initialization strategy to be

adopted for any NMF algorithm or a standard procedure to justify the choice of

a particular NMF initialization scheme.

Initialization schemes can be classified in:

- simple mechanisms, based on some kind of randomization;

- complex schemes, based on clustering algorithms or on some alternative low

rank factorization;

- evolutionary schemes, based on techniques mimicking optimization strate-

gies observed in nature.

Figure 3.1 sketches a purposely conceived categorization of the initialization al-

gorithms appeared in the survey of literature on NMF.
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Figure 3.1: Classification of the initialization schemes which appeared in the
literature panorama.

The class of simple initialization mechanisms includes: (i) the random ini-

tialization, (ii) several variants of random choices of columns in X used to build

W (0) together with random or zeros initialization of H(0). Random initialization

produces dense matrices W (0) and H(0) of dimension n×r and r×m, respectively,

with elements randomly generated in a specified subinterval of positive numbers

(generally, [0,1]). This simple initialization mechanism has the advantages of

requiring low computational cost and negligible processing time, nevertheless it

does not generally provide a good first estimate for NMF algorithms [Smilde et al.,

2004], especially when alternating least squares algorithms are adopted [Albright

et al., 2006].

Random variants include:

(i) random Xcol initialization. This scheme computes each column of the ba-

sis matrix W (0) by averaging p columns of X randomly chosen and generates
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H(0) (when required) via the random initialization. Random Xcol initial-

ization builts basis vectors from the given data matrix; hence, as observed

in [Albright et al., 2006], when X is sparse, this initialization scheme forms

a sparse initial basis matrix W (0), which represents a more reasonable choice

than using random initialization. However, performance of NMF algorithms

initialized by random Xcol scheme are comparable by those obtained using

random initialization [Langville, 2005].

(ii) random-C initialization. This scheme computes each column of the basis

matrixW (0) by averaging a random subset of vectors chosen from the longest

(in the 2-norm) columns of the data matrix X and generates H(0) (when

required) via the random initialization. In the case the data matrix X

is very sparse, on the average this method chooses the densest columns

for initialization. The main idea underlying this variant of random Xcol

initialization is that the choice of the densest columns might be more likely

to be the centroid centers [Albright et al., 2006].

(iii) co-occurrence initialization. This scheme firstly forms the co-occurrence

matrix XX> and then randomly chooses the k columns of the initial factor

W (0) among the densest columns of the co-occurrence matrix and gener-

ates H(0) (when required) via the random initialization. The co-occurrence

scheme has the advantage of producing a basis matrix which includes some

hidden information on the initial data (i.e., term-term similarities when

a document clustering scenario is considered), however, it requires higher

computational cost than simple random initialization.

Complex initialization strategies exploit clustering algorithms or some alter-

native low rank factorization scheme to construct the initial pair (W (0), H(0)) in

order to provide structured initialization pairs. Schemes among this class can be

classified into:

(i) clustering based methods. These mechanisms provide initializations based

on a data-density sample of initial data locations. Schemes in this class

construct initial low rank factors W (0) and H(0) adopting some clustering

method.
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Clustering based initializatiosn appeared in literature are: spherical k-

means (k-means) initialization (alzso known as centroid initialization) [Xue

et al., 2008] and Fuzzy C-Means (FCM) initialization [Rezaei et al., 2011;

Zheng et al., 2007]. Specifically, the former is used to partition the columns

of the data matrix X into k clusters and select the centroid representative

vector for each cluster (these are known as cluster centroid vectors or con-

cept vectors). Then these vectors are used to initialize the columns of W (0).

The elements on the encoding matrix H(0), instead, are initialized with the

distances from each data point to every centroid. Moreover, H(0) could

be the binary partition matrix, or can be computed either random or as

arg minH≥0 ‖X −W (0)H‖F . The FCM scheme, instead, initializes the ma-

trix W (0) with the cluster centers and H(0) with the fuzzy partition matrix

(more details can be found in [Zheng et al., 2007]). It should be pointed out

that both spherical k-means and FCM initializations need to be themselves

initialized.

(ii) low-rank approximation based methods. These mechanisms provide

initialization based on the eigenstructure of the initial data. Among low-

rank approximation based methods, we can include:

- SVD-centroid initialization, which initializes W (0) with the cen-

troid decomposition of the SVD factor V 1 of the data matrix X, when

this factor is available [Langville, 2005];

- PCA and ICA initialization, which initialize the pair (W (0), H(0))

with the non-negative principal and independent components, respec-

tively, extracted from the initial data matrix X (the non-negativity of

the components obtained from PCA and ICA is met by truncation of

the negative values) [Zhao et al., 2008];

1The singular value decomposition (SVD) of a data matrix X ∈ Rn×m is X = UΣV T, where
U ∈ Rn×n is an orthogonal matrix, Σ ∈ Rn×m is a diagonal matrix, and V ∈ Rm×m is the
transpose of an orthogonal matrix. The columns of U are orthonormal eigenvectors of XXT,
the columns of V are orthonormal eigenvectors of XTX. They are called: the left-singular
vectors and right-singular vectors of X respectively. The diagonal entries Σii are known as the
singular values of X, and they are the square roots of eigenvalues from U or V in descending
order.
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- Lanczos bidiagonalization process to get a low-rank approxima-

tion of a non-negative matrix. This mechanism has been recently pro-

posed as initialization strategy for all existing ONMF algorithms and

contains a little random because of free choice of the vector used to

start the bidiagonalization process see [Wang et al., 2012];

- Non-negative Double Singular Value Decomposition (NNDSVD).

This is the only initialization mechanism containing no randomiza-

tion and is based on two SVD processes, the one approximating the

data matrix, the other approximating positive section of the result-

ing partial SVD factors via peculiar properties of unit rank matrices.

Specifically, first the matrix X is decomposed into its rank k SVD,

X =
∑k

i=1 σiCi, where Ci = uiv
>
i . Then each Ci is decomposed into

positive and negative components Ci = C+
i − C−i , being C+

i the near-

est (in sense of Frobenius norm) positive approximation of rank 2 to

Ci. Then the SVD of C+
i is computed to obtain its dominant singular

triplet. After these two SVD processes, the first column and row vec-

tors in W (0) and H(0) are initialized using dominant singular triplet

of X, while subsequent column and row vectors in W (0) and H(0) are

equal respectively to the singular triplets of C+
i .

NNDSVD initialization proved to increase the performance of NMF

algorithm on several datasets [Anbumalar et al., 2013; Boutsidis and

Gallopoulos, 2008; Heinrich et al., 2008; Xiaojun, 2011] and its great

advantage lies in the uniqueness of the computed initial factors (we

address the reader to [Boutsidis and Gallopoulos, 2008] for detailed

description of NNDSVD initialization and properties).

Generally speaking, complex initialization strategies require higher computa-

tional costs, but they could produce fast error reductions, high convergence rates

in NMF algorithms and reduce to the minimum or definitely do not require the

use of any randomization step.

The last class of initialization schemes is the class of evolutionary initializa-

tions which generally operate on a population of solutions in the search space with

techniques typical of evolutionary processes. Evolutionary initialization schemas

23



Initializ. Pros Cons Costs

Random easy; dense (W (0), H(0)) O((n+m)k)
cheap to compute; with no intuitive meaning;

k assigned a priori

k-means reduces NMF iterations; dense W (0);
intuitive meaning of W (0) expensive; O(nmk)

k assigned a priori

FC-means intuitive meaning of dense (W (0), H(0))
(W (0), H(0)) expensive; O(nmk)

k assigned a priori
NNDSVD no randomization; expensive O(nmk)

structured (W (0), H(0)) r assigned a priori;

Table 3.1: Pros, cons and the computational complexity of the initialization
methods for NMF which have been adopted in the experimental session.

include genetic algorithms, particle swarm optimizations, differential evolution,

etc. [Janecek and Tan, 2011; Snasel et al., 2008; Stadlthanner et al., 2006]. As

complex initialization schemas, evolutionary initializations present high compu-

tational costs, but demonstrate the advantage of parallel implementation. To

conclude this brief reviews of initialization mechanisms appeared in the litera-

ture panorama, in Table 3.1, the main advantages and the principal drawbacks

of the most adopted initialization schemas have been summarize, together with

the indication of the computational costs required to perform one step of these

initializations [Albright et al., 2006; Wild et al., 2004]. It should be pointed out

that both complex and evolutionary schemas need some iterations to meet a rea-

sonable stopping criteria or the reach an appreciable value of fitness functions.

Particularly, the column of costs in Table 3.1 reports the computational complex-

ity required by the most adopted complex initialization schemes: hidden in this

notation there is a factor that depends on the number of iterations required by

the specific scheme. This number, which is unknown a priori, depends on the

iterative nature of any complex initialization scheme which has to satisfy some

stopping criteria before providing the initial pair (W (0), H(0)).
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3.2 Constrained NMF

The key feature of NMF is to decompose the original data as combinations of

parts. However, without any constraint the resulting parts could not be as in-

tuitive as to help analyst in a clear understanding of data. In order to be easy

to understand, parts should be composed by a small number of features; how-

ever, this structural requirement must be imposed in the factorization process.

This can be achieved through different possible variants of NMF which have been

proposed in literature.

More specifically, the objective function

f(W,H) = ‖X −WH‖2
F , (3.1)

that is minimized by the NMF factorization process1 can be modified in several

ways in order to introduce additional properties on the resulting matrices. For

example, a penalty term could be added to f(W,H) in order to enforce sparseness

[Hoyer, 2004] as well as to enhance smoothness [Essid and Févotte, 2013] or to

improve clustering ability of NMF [Ding et al., 2005; Li and Ding, 2006, 2013].

Hence, a more general objective function can be formulated

f (W,H) = ‖X −WH‖2
F + αJ1 (W ) + βJ2 (H) , (3.2)

where the penalty terms J1 (W ) and J2 (H) add contraints to the original problem,

whilst the regularization parameters α and β balance the trade-off between the

approximation error and additional constraints.

Penalization terms are used in order to constrain the factorization process

to yield more interpretable results, so as to be more suitable for IDA. In the

following, constrained variants of NMF have been reviewed.

1In this chapter we mainly consider NMF based on the error function described in Equa-
tion 3.1, but other divergence measures could be used (e.g. generalized Kullback-Leibler diver-
gence, α-divergence). Anyway, technical details apart, the general ideas described in the section
still hold.
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3.2.1 Sparse NMF

Sparseness is a quality that “refers to a representational scheme where only a

few units (out of a large population) are effectively used to represent typical data

vectors” [Hoyer, 2004]. Sparse representation of hidden factors makes them easier

to be interpreted because the resulting parts are structurally simple.

In fact, NMF naturally promotes a sparse representation of data. The ma-

trices W and H describe the relationships among the original features and the

latent factors, and among the latent factors and the samples, respectively. Thus,

there will be many zero-entries in these matrices where such relationships are not

present in data. When the basis matrix W is sparse, basis vectors representing

data subspace are sparse, thus only few features are used to describe the latent

factors. This enables a part-based representation where each part is very simple

and, therefore, easy to understand by the analyst. Similarly, when the enconding

matrix H is sparse, then each sample is described by few (or just one) latent fac-

tors. This means that it possible to easily explain data samples as a composition

of few parts.

Sparseness is desirable because it enhances interpretability; however it could

negatively affect the accuracy of the approximation. Thus, sparseness should

be regulated, but this is not possible in standard NMF unless some additional

constraints are added. In [Hoyer, 2002, 2004], the classical NMF optimization

algorithm has been modified to include the sparseness constraint. The basic idea

is to introduce a measure of sparseness of a k-dimensional vector x as follows1:

sparseness(x) =

√
k − (‖x‖1)/(‖x‖2)√

k − 1
. (3.3)

This measure is then used to design a projected gradient descent algorithm that

controls both sparseness and non-negativity. In essence, this algorithm essentially

takes a step in the direction of the negative gradient of the cost function (3.1), and

subsequently projects the solution onto the constraint space, that is the cone of

1The function in Equation 3.3 yields values in the interval [0, 1], where 0 indicates the
minimum degree of sparseness obtained when all the elements xi have the same absolute value,
while 1 indicates the maximum degree of sparseness, which is reached when only one component
of the vector x is different from zero.
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non-negative matrices with a prescribed degree of sparseness ensured by imposing

the degree of sparseness to sW and sH for the matrices W and H, respectively.

Depending on the specific application of NMF, a desired degree of sparseness

for W and H can be imposed. For example, when data samples represent images,

high sparseness in both the encoding and the bases matrices is convenient. This

allows to generate small pieces (factors) of the whole images, and few of them

are used to describe each image. Differently, in a medical application where each

data sample represent the symptoms of a patient and latent factors are diseases,

we should expect to have a sparse encoding matrix H (because we expect patients

have one or few more diseases) but W could be dense (since each disease could

cause a large number of symptoms).

The prominent role of the data analyst to intelligently guide the factorization

process is clear from these simple examples. Based on the questions the analyst

wants to ask, and depending on the problem she needs to solve, the NMF process

is modified by tuning the sparseness degree of its factors. Many variants of sparse

NMF have been proposed subsequently to Hoyer’s paper [Hoyer, 2002]. Some ex-

amples are Sparse Nonnegative Matrix Factorization, SNMF [Gao and Church,

2005; Kim and Park, 2007; Liu et al., 2003; Pauca et al., 2006], non-smooth Non-

negative Matrix Factorization [Pascual-Montano et al., 2006], LocalNMF [Feng

et al., 2002; Li et al., 2001], Non-Negative Matrix Underapproximation (NMU)

[Gillis and Glineur, 2010].

3.2.2 Orthogonal NMF and clustering capabilities

Dimensionality reduction can be exploited for endowing NMF with clustering ca-

pabilities. The theoretical relationship between NMF (with additional orthogonal

constraints on its factors), k-means and spectral-based clustering was demon-

strated [Ding et al., 2005], while the mathematical equivalence between orthogo-

nal NMF and a weighted variant of spherical k-means was proved together with

some indications about the cases in which orthogonal NMF should be preferred

over k-means and spherical k-means [Pompili et al., 2012] .

Clustering is one of the most useful tools in IDA, since it produces a summa-

rized view of data that helps the analyst to understand data by means of compact

27



and informative representations of large collections of samples [Berthold et al.,

2010]. Many different clustering methods exist in literature, like hiearchical clus-

tering, prototype-based clustering and density-based clustering (just to cite the

most important ones). Hierarchical clustering yields a collection of nests groups of

data, while in prototype-based clustering groups are represented in a compressed

form through a prototype, i.e. an element belonging to the same domain of data.

Finally, in density-based clustering groups are formed in regions of data space

where data are more crowded. The choice of the most appropriate method is up

to the data analyst.

In the case that prototype-based clustering is a convenient method for the

problem at hand, NMF could be a valid tool. NMF has been widely used in

clustering applications [Shahnaz et al., 2006; Xu et al., 2003] where the factors W

and H have been interpreted in terms of cluster centroids and cluster membership,

respectively.

From a geometric point of view, columns of W are the axes of the sub dimen-

sional space where samples are spanned. They represent latent feature estracted

from data. Vector samples are clustered according to their closeness to these

basis vectors.

NMF without constraints finds a convex hull containing data points. How-

ever Ding et al. [2005] pointed out that adding orthogonality constraint to NMF

algorithms is necessary to improve their clustering capabilities. In fact, the bases

obtained from orthogonal NMF tend to point to the center of the clusters. The

minimization problem in Equation 3.1 has been modified imposing orthogonality

constraint to the rows of the encoding matrix H as follows:

min
W≥0,H≥0

‖X −WH‖2
F , s.t. HH> = I. (3.4)

Orthogonality constraint on the matrix H forces samples belonging to the

same cluster to be closer to same bases. In the same manner, a feature clustering

can be achieved by imposing the orthogonality constraint on the columns of the

basis matrix W (i.e. W>W = I).

As a natural consequence, [Ding et al., 2005] proposed a new minimiza-

tion problem. Simultaneously clustering of both features and objects (i.e. co-
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clustering) has been archieved imposing orthonormality constraints on both columns

of W and rows of H.

min
W≥0,H≥0

‖X −WH‖2
F , s.t. WTW = I, HHT = I. (3.5)

In this representation the matrix W is the clustering indicator matrix, and the

rows of the matrix H are the cluster centers for the features clustering problem;

whilst the matrix H is the clustering indicator matrix, and the columns of the

matrix W are the cluster centers for the objects clustering problem. However,

this double orthogonality constraint is very restrictive and it leads to a rather

poor matrix low-rank approximation. Different multiplicative updates for NMF

preserving orthogonality were recently proposed [Choi, 2008a; Del Buono, 2009;

J. and S., 2010]. To overcome the limits of the two factor orthogonal NMF,

tri-factors NMF–TNMF has been proposed. Particularly, TNMF adds an extra

factor to absorb the different scales of X,W ,H and to allow different number of

clusters for features and objects, that is

X ≈ USV, (3.6)

being X ∈ Rn×m
+ , U ∈ Rn×k

+ , S ∈ Rk×l
+ , V ∈ Rl×m

+ , where the number of rows in

S correspond to the number of feature-clusters k, whilst the number of columns

to the number of objects-clusters l.

The interested reader can find a deep investigation about NMF algorithms

with ortogonality constraint and their application in clustering on [Lazar and

Doncescu, 2009; Li and Ding, 2006, 2013; Mirzal, 2011].

3.2.3 Semi-Supervised NMF

NMF is an unsupervised machine learning algorithm, in fact it allows to auto-

matically extract human-significative feature from data and to reduce the di-

mensionality of data. As it has been shown in the previous paragraph, classical

NMF algorithms, and constrained ones, are widely used in clustering applications.

They group data in a unsupervised way, but without taking in account any prior

information of data. However, when class labels are available, this knowledge
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could be injected in the factorization process, to improve the quality of cluster-

ing. Labelling dataset could be difficult, expensive, or time consuming, and often

incomplete labels are available. Semi-supervised learning methods use a large

amount of unlabeled data, together with labelled data, to train the process [Pise

and Kulkarni, 2008].

Different algorithms have been also proposed in the context of NMF to inject

a-priori knowledge. This can be done extending the objective function in Equa-

tion 3.1 to include extra terms containing the available a-priori knowledge (that

could be class labels associated to the samples or pairwise constraints provided

by the user, which indicate data to be clustered together –must link– and data

that have not to be clustered together –cannot link). Research on NMF is going

in the direction of considering it an interactive tool, instead of a black box. Semi-

supervised NMFs allows to modify the factorization process taking in account the

knowlege of the analyst. Some examples are [Cai et al., 2009; Chen et al., 2007,

2008, 2010; Cho and Saul, 2011; He et al., 2014a,b; Heiler and Schnörr, 2006; Jing

et al., 2012; Lee et al., 2010; Liu and Wu, 2010; Liu et al., 2012; Lyubimov and

Kotov, 2013; Wang et al., 2009, 2004; Yang and Hu, 2007].
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Chapter 4

Subtractive clustering for seeding

non-negative matrix

factorizations

All algorithms for computing non-negative matrix factorization are iterative,

therefore particular emphasis must be placed on a proper initialization of NMF

because of its local convergence. The problem of selecting appropriate starting

matrices becomes more complex when data possess special meaning as in docu-

ment clustering. The first proposal presented in this thesis concerns the adoption

of the subtractive clustering algorithm as a scheme to generate initial matrices

for non-negative matrix factorization algorithms. It has been applied to a docu-

ment clustering application and it has been shown to enhance the quality of the

clustering results in term of interpretability of the cluster centers.

4.1 Proposed method

In this section, an initialization schema for NMF algorithms, inspired by the

subtractive clustering (SC) algorithm [Chiu, 1994], is presented. In particular,

after recalling the main steps performed by the subtractive clustering, the use of

the cluster results to generate the initial (W (0), H(0)) pair for any NMF iterative

algorithm is illustrated.
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It should be pointed out that, all clustering methods adopted to initialize

NMF algorithms [Wild et al., 2004; Wild, 2003; Xue et al., 2008] need to fix the

number of clusters corresponding to the rank factor k, defining the dimensionality

of the NMF-subspace. SC, instead, is able to automatically discover the most

appropriate value of k, when an estimation of distance among data is provided.

The proposed method has been applied to document clustering. Document

representation as term-document matrix and clustering approach using NMF are

detailed in the following paragraphs.

4.1.1 Data representation

In Information Retrieval (IR), the well known bag-of-words approach is com-

monly used to represent document corpora as numerical matrices. In this con-

text, a collection of m documents is represented as a term-document matrix

X = [x1,x2, . . . ,xm] ∈ Rn×m
+ where each document xi ∈ Rn

+ is an n−dimensional

column vector of terms. Each entry xij indicates the contribution (weight) of

the i-th term to the specification of the semantics of the j-th document. Sev-

eral term weighting schemes have been proposed in literature [Polettini, 2004],

however three general components could be identified:

aij = gitijdj. (4.1)

Where gi is the global weight of the i-th term, tij is the local weight of the i-

th term in the j-th document and dj is the normalization factor for the j-th

document. In this thesis term frequency–inverse document frequency - (tf-idf)

weighting scheme has been used. It is a numerical statistic that is intended to

reflect how important a word is to a document in a collection. In this scheme the

local weight of the i-th term in the j-document is evaluated by term-frequency

measure tf :

tij =
nij∑
k nkj

= tfij, (4.2)

with i = 1, . . . , n and j = 1, . . . ,m, where nij is the frequency of the i-th term

in the j-document,
∑

k nkj is the frequency of all the terms in document j; the
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global weight of the i-th term is evaluated by inverse term frequency measure idf :

gi = log
m

|{d : ti ∈ d}|
= idfi, (4.3)

where m is the total number of documents, the denominator counts the number

of documents where i-th term appears, and di is the L2 normalization.

4.1.2 NMF for document clustering

Xu et al. [2003] proposed the use of NMF techniques for document clustering.

Given a term-document matrix X, a nonnegative matrix factorization produces

basis vectors wi that isolate a subset of words denoting a particular concept or

topic, while each column vector in H contains the encoding values of the linear

combination of basis vectors to be used to approximate X. Therefore, each doc-

ument can be identified as a combination of specific basis vectors, and therefore,

it can be grouped as belonging to specific topics with different weights. Basis

vectors in W represent cluster centers. Differently from other dimensionality re-

duction techniques they are directly interpretable from human expert, since each

column wi is a bag of word. From a geometric point of view, each concept repre-

sents an axis in the new subspace where data are spanned. Documents are vectors

in this subspace, represented as linear combination of basis vectors weighted by

coefficients in H. Figure 4.1 shows a simple example with three documents rep-

resented in a subspace described by two bases w1 and w2. ”Insurance” and ”car”

are the semantics associated to the bases. Documents are grouped to the most

close concept in term of euclidean distance. In the example document one be-

longs to the cluster identified by the concept car, and documents two and three

to the custer insurance. Each document xi is assigned to the cluster center that

corresponds to the basis with the highest value in the column hi. Algorithm 2

specifies the steps used to cluster a document collection with NMF techniques.

To make the solution unique, the authors require that the Euclidean lengths of

wi are one. For this purpose columns of W are normalized, and columns of H

are accordingly adjusted in order to preserve the factorization results (lines 5.14

and 5.15).

Different NMF techniques and different initialization methods lead to differ-
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Figure 4.1: Example of document space created by NMF.

ent solutions. Particularly, as it has been discussed in Sec. 2.2.3 the number of

concepts k is problem dependent. The choice of this parameter influences the

effectiveness of an intelligent data analysis of NMF results. The proposed initial-

ization method based on Subtractive clustering algorithm could be able to suggest

a suitable number of concepts needed to describe the document collection.

4.1.3 Subtractive Clustering Initialization

Consider the data matrix X = [x1,x2, . . . ,xm], where without loss of generality,

each column vector xj ∈ Rn is assumed to be normalized to have unitary L2

norm.

SC assumes that each data point is a potential cluster center and calculates

a measure of the likelihood that each data point would define the actual cluster

center, based on the potential of surrounding data points defined as follows:

pj =
m∑
k=1

exp

(
− 4

r2
a

‖xj − xk‖2
2

)
, (4.7)

being ra a positive constant representing a normalized radius defining a neigh-

borhood. According to (4.7), high potential values correspond to a data point

with many neighborhood data points. Hence, the potential of each data point is
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Algorithm 2 Document Clustering based on NMF

Require: Document collection D
Require: Number of concepts k

1: Construct the term-document matrix X of document collection D
2: Perform NMF to carry out W and H
3: Normalize matrices W and H with:

wij ←
wij√∑n
i=1w

2
ij

(4.4)

hij ← hij

√√√√ n∑
i=1

w2
ij (4.5)

for each column j = 1 . . .m of W and H.
4: Use columns of W as cluster centers
5: Use terms in each basis wi to get the prototype of each cluster
6: Use coefficients hij to assign each document to a cluster.

Assign document dj to cluster k if:

k = arg max
i
hij (4.6)

computed and then the point with the highest potential is selected as the first

cluster center. Then, in order to avoid that points near the first cluster center

could be selected as another center of the same cluster, an amount of potential

proportional to the distance of each data point from the first cluster center is

subtracted from it. After the potential reduction, the data point with the highest

remaining potential is selected as the second cluster and the potential of each

data point is further reducted, according to their distance to the second cluster

center. Formally, after the k-th cluster center x̃k has been obtained with potential

p̃k, the potential of each data point is reduced by:

pj ← pj − p̃k exp

(
− 4

r2
b

‖xj − x̃k‖2
2

)
, j = 1, . . . ,m, (4.8)

where rb is a positive constant. The process of finding new cluster centers and

reducing the potential of all data iterates until the remaining potential of all data

points is bounded by some fraction of the potential p̃1 of the first cluster center.

35



The stopping criterion usually adopted is p̃r < 0.15p̃1.

After the stopping criterion is satisfied, the SC applied to X provides: the

number k of clusters, the cluster centroids and their potential values p̃r, r =

1, . . . , k.

The initial matrices W (0) and H(0) are constructed as follows. The basis

matrix collects the cluster centroid vectors x̃k ordered by decreasing values of their

potential p̃k, i.e., W (0) = [x̃1, x̃2, . . . , x̃r]. The encoding matrix H(0) provides the

degree to which each data is assigned to each cluster. Particularly, the elements

h
(0)
rj , r = 1, . . . , k and j = 1, . . . ,m, provide the fuzzy membership value for the

j-th data in the r-th cluster and are computed by

h
(0)
rj =

exp
(
−1

2

‖xj−w
(0)
r ‖22

σ2

)
∑k

i=1 exp

(
−1

2

‖xj−w
(0)
i ‖

2
2

σ2

) , (4.9)

being k the total number of clusters and σ2 = ra2

8
.

Membership degrees are normalized because SC does not ensure the approx-

imation X ≈ WH with the original membership degrees. By using (4.9) each

column xj is defined by the weighted mean of the prototypes in W (0).

4.1.4 Significance of the parameters in SC

SC is based on two hyper-parameters, ra and rb. The value of ra confines the

influence of data samples in determining the potential of a sample within a radius

of length ra. Indeed, it is easy to show that a sample located at distance ra

from another sample contributes to the potential of the latter by less than 0.02.

The value of ra could be therefore interpreted as the minimum distance that is

acceptable for two samples to belong to different clusters.

SC uses the parameter rb to reduce the potential of candidate cluster proto-

types that are too close to an actual prototype. The potential of a candidate

cluster prototype located at distance rb from the current cluster prototype is in-

deed reduced by less than 0.02. Thus, the interpretation of rb is the minimum

distance that is acceptable for two cluster prototypes. Since cluster prototypes

belong to different clusters by definition, then rb should not be smaller than ra.
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Usually, the setting rb = 1.5ra is suggested in literature.

4.1.5 Computational complexity

The computational complexity of SC is defined by the summation of two main

terms. The first term involves the computation of a distance matrix between

sample couples, which requires O(nm2) arithmetic operations. Once the distance

matrix is computed, SC makes a number of iterations equal to the number of

clusters to be discovered; in each cycle the computation of (8) is carried out,

which requires O(m) operations.

Most of the time is therefore required to compute the distance matrix, while

the second step is very fast. However, the distance matrix can be computed just

once for each dataset, and re-used in each run of SC. This favours re-running SC

several times for finding the best configuration of hyper-parameters ra and rb.

4.2 Experimental Results

This paragraph is devoted to the illustration of the session of experiments that

have been performed in order to demonstrate the effectiveness of the proposed

initialization method. Five document datasets, which are described in subsec-

tion 4.2.1, have been used. Particularly, these experiments allow us both to assess

the main characteristic of the proposed SC initialization scheme when compared

with other complex initialization methods (i.e., Fuzzy C-means - FCM, k-means,

Non-negative Singular Value Decomposition - NNSVD) and to provide some in-

sights on the the performance of different NMF algorithms (i.e. Lee and Seung

Multiplicative Update algorithm, Alternate Least Squared - ALS, Orthogonal

NMF - ONMF, Sparse NMF - NMFSC), when these are initialized by complex

initialization schemes. Besides the initialization proposal and the most commonly

used complex initialization schemes, also the simple random initialization mech-

anism has been included, which could be considered the benchmark initialization

scheme for any NMF algorithm. A study on the effects of hyper-parameters

regulating the behaviour of the proposed SC initialization scheme has been pre-

liminary conducted and the results discussed in subsection 4.2.3. Evaluations of
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Dataset Documents Terms Classes Sparsity
CSTR 639 4016 4 98.56%
WebKB4 2785 7287 4 98.94%
Reuters8 5485 14551 8 97.37%
Reuters10 201 4184 10 99.74%
Newsgroups10 500 13709 10 99.15%

Table 4.1: Summary of the dataset statistics.

both initializations and NMF algorithms performances are provided and the ob-

tained results are discussed in subsection 4.2.4 together with some results about

the behaviour of NMF algorithms when stopping criteria are varied.

All the numerical results have been obtained by implementing the algorithms

in Matlab 7.7 codes (the used codes for initialization and NMF are all publicly

available) and running them on a machine equipped with an Intel Core Quad

CPU Q6600 2.40 GHz.

4.2.1 Datasets

In the experiments, five datasets, which are detailed below, have been employed

to evaluate the performance of the proposed initialization on different conditions.

The dataset differ in number of terms and documents, contents and number of

classes in which documents are categorized. Table 4.1 summarizes the dataset

statistics reporting the number of documents, the number of terms composing the

dictionary of the collection, the number of classes in which the documents are a

priori grouped and the percentage of sparsity (i.e., percentage of zero elements)

of the term-by-document matrix.

Each dataset has been pre-processed, by removing the stop words using an

English common words dictionary, applying Porter stemming algorithm and leav-

ing out local or global frequent terms. The term-by-document matrix has been

composed using the standard TF-IDF weights, with cosine normalization. The

open source software Term-Matrix Generator(TMG)1 has been applied for these

tasks.

1http://scgroup20.ceid.upatras.gr:8000/tmg/

38



CSTR. This dataset contains URCS Technical Reports : the abstracts of tech-

nical reports (TRs) published in the Department of Computer Science at

University of Rochester between 1991 and 20021. The dataset contains

639 documents expressed by a dictionary composed of 4016 terms. These

documents are grouped into four categories corresponding to four research

areas: Natural Language Processing (NLP), Robotics/Vision, Systems and

Theory;

WebKB4. This dataset contains the web-pages collected by the World Wide

Knowledge Base (WebKb) project of the CMU text learning group. These

pages were collected from the Computer Science departments of various uni-

versities in 1997 and manually classified into seven different classes: student,

faculty, staff, department, course, project, and other. The WebKB4 dataset

includes the documents from the four most populous categories: project,

course, faculty and student. A subset2 containing only 2, 785 documents

expressed by a dictionary composed of 7, 287 terms, have been used.

Reuters. The Reuters-21578 dataset3 contains documents collected from the

Reuters newswire in 1987. The full dataset contains 21, 578 documents

manually classified into 52 categories. Due to the fact that the class distri-

bution for these documents is very skewed and the categories are highly cor-

related, we considered two sub-collections: Reuters8 and Reuters10, which

differ in terms of document-term ratio and number of classes.

• Reuters8. This is a high dimensional dataset4 composed by a dic-

tionary of 14, 551 terms and 5, 485 documents grouped into only eight

categories: acq, crude, earn, grain, interest, money, ship, trade.

• Reuters10. This is a simpler dataset5 created by selecting 20 files

each from the 10 largest classes in the Reuters-21578 collection. There

are 10 directories labelled by the topic name (acq, corn, crude, earn,

1http://www.cs.rochester.edu/trs/
2http://web.ist.utl.pt/acardoso/datasets/
3http://www.daviddlewis.com/resources/testcollections/reuters21578/
4Defined starting from the training set at: http://web.ist.utl.pt/acardoso/datasets
5http://archive.ics.uci.edu/ml/datasets/Reuters+Transcribed+Subset
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grain, interest, money, ship, trade, wheat), each of them containing 20

files of transcriptions.

Newsgroups. The entire Newsgroups10 1 dataset contains about 20,000 articles,

subdivided into 20 categories. The first 50 documents, for each of the top

10 categories have been considered, obtaining a small subset of only 500

documents, named Newsgroups10. This dataset is used to verify the results

on a dataset with a small number of documents for each category and a

relatively high number of categories.

4.2.2 Evaluation metrics

The primary concern has been the evaluation of overall initialization-factorization

process. The initialization strategies have been compared both in terms of effec-

tiveness of the starting pair (W (0), H(0)) and of run-time required to compute

these initial factors (this time was evaluated in seconds). The initial error – that

is the value assumed by the divergence measure D into the pair (W (0), H(0)) –

has been used to measure the initial reconstruction error. It should be pointed

out that the run-time value for the random initialization has been omitted (being

negligible) and that this initialization scheme produces full initial matrices with

poor accuracy.

NMF algorithms with different initializations have been compared in terms of

values of the divergence function D into the final pair (W (fin), H(fin)), where the

matrices W (fin) and H(fin) are obtained when the stopping criteria are satisfied.

The behaviour of the divergence measure D during the iteration process has

been also provided. For a fair comparison among all the algorithms, the same

stopping criteria have been adopted: common maximum number of iterations

(maxiter = 500) and fixed tolerance (toll = 10−6) for the difference between two

subsequent values of the divergence measure D.

1http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
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4.2.3 Effects of SC parameters

The first step performed during the experimental session was the empirically

evaluation of the influence of the hyper-parameters (i.e., ra and rb) in the SC ini-

tialization. It should be pointed out that these parameters influence the clusters

number, so that they determine the proper rank factor k in the context of NMF.

In fact, a strong point of the SC initialization scheme lies in its capability of sug-

gesting the most suitable rank value (i.e., the number of final clusters obtained

at the end of the SC process) to be used for a given dataset, when average dis-

tance between data is estimated. Table 4.2 reports the computational times (in

seconds) needed to compute the matrix of Euclidean distances among documents

for each adopted dataset.

CSTR Newsgroup10 WebKB4 Reuters8 Reuters10
2.84 3.65 82.25 158.42 0.48

Table 4.2: Computational times (in seconds) required to construct the matrices
of Euclidean distances between different columns of each data matrix

Being, ra and rb the hyper-sphere cluster and penalty radius in the data

space, respectively, they can be estimated on the basis of the distances among

the documents in the term-by-document matrix. Since documents in each dataset

possess unit Euclidean norm, they lie on the surface of the unitary hyper-sphere,

so that the distance value among any two documents varies in the interval [0,
√

2] 1

(i.e., the minimum value 0 corresponds to two identical documents, the maximum

value
√

2 corresponds to term totally different documents).

Due to the high multidimensionality of the datasets adopted in the exper-

iments, high distance values among documents were observed, hence only a

rightmost-side subinterval of [0,
√

2] was considered for determining ra values

(the used interval corresponds to the 5th-95th percentile range of the observed

1Given two documents xi, xj ∈ Rn, the distance between xi and xj is evaluated by d =
‖xi − xj‖2. When xi = xj , the vectors are overlapped and their distance d = 0. On the
contrary, when the document vectors are orthogonal, and lie in the unit sphere (i.e. in the

2-dimensional case xi =
1
0

and xj =
0
1

) their distance, measured by the Euclidean norm, is

d =
√∑n

r=1 (xi − xj)2 =
√

2.
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document distance values). Table 4.3 indicates the range interval for parameters

ra for each of the adopted dataset.

CSTR Newsgroup10 WebKB4 Reuters8 Reuters10
[1.3476, 1.4142] [1.3851, 1.4142] [1.3612, 1.4142] [1.3148, 1.4142] [1.3221, 1.4137]

Table 4.3: Interval values for the parameter ra obtained from the 5th-95th per-
centile range of document distance values for each dataset used in the experimen-
tal session.

The SC algorithm was run for different values of ra in the chosen range and

the number of clusters suggested by the SC was observed. Since this algorithm

is also subjected to the rb penalty parameter, for each fixed value of ra, the

variation of clusters number when rb = α ∗ ra, with α ∈ [1, 2] has been evaluated.

Particularly, a large variation in the final numbers of clusters was observed. In

particular, the increase of α produces a reduction of the number of clusters (since

more documents are clustered in each cluster). Hence, this parameter identifies

the granularity of the results.

Figure 4.2 shows the effects on the number of different clusters obtained when

SC scheme is applied to the selected datasets, when the parameter rb is varied.

The results evidence that the SC algorithm is quite sensitive to the parameter rb.

Accordingly to this preliminary study on the effects of the hyper-parameters,

the value α = 1.51 has been selected to be used in the following part of the

experimental session. This choice reflects a more stable behaviour of the SC

scheme and suggests a number of clusters more suitable from an interpretability

point of view.

4.2.4 Results

The results of the numerical experiments conducted to compare the SC scheme

with other initialization methods could be analyzed from different points of view:

the particular NMF algorithm to be initialized, the used dataset, the number of

suggested bases. First, the effectiveness of the initialization methods has been

evaluated; then the influence of different initializations on NMF algorithm per-

formance has been discussed.

1rb = 1.5ra
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(a) (b)

(c) (d)

(e)

Figure 4.2: Suggested number of clusters when the coefficient α is varied. Pictures
refer to the adopted datasets: (a) CSTR , (b) Newsgroup10, (c) Reuters8, (d)
Reuters10, (e) WebKB4.
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Tables 4.4-4.8 summarize the effectiveness of both initialization methods and

NMF algorithms (initialized with different schemes) on approximating the adopted

datasets. The first two columns report the initial errors and the run-time values

of every initialization scheme, the remaining columns report the evaluation of the

NMF algorithm, that is the final error and the number of iterates performed till

the stopping criteria are satisfied. Each row in the table points out the initializa-

tion schemes adopted. For each dataset, the initialization-factorization process

has been performed for different values of the rank factor k. The choice of the

particular value corresponds to the number of clusters suggested by SC algorithm

with the parameters configuration set as described in subsection 4.2.3. This value

has been used as a priori information for the other initialization schemes in or-

der to produce data approximations belonging to a low-rank space of the same

dimensions.

It has been observed that the SC initialization scheme requires the lowest com-

putational time to compute the pair (W (0), H(0)), but it demonstrates a slightly

increase of the initial error with respect to the others complex initialization mech-

anisms. This behaviour depends on the construction of the basis vector in W ,

which are taken to be the most representative (in term of potential) documents

of the collection. The final errors for NMF algorithms initialized by SC are

nearly always comparable with the performance obtained by other initializations.

However, it has to be reminded that the NMF problem is a non-convex optimiza-

tion task, so the initialization-factorization process could only guarantee locally

optimal solutions. On the other hand, the number of iterations performed by

NMF algorithms when initialized by SC scheme, results to be lower (in half of

the trials) than the other complex initialization schemes, except for the k-means

initialization.

As concerning the results obtained by k-means initialization, it should be

reminded that NMF are equivalent to a relaxed form of k-means clustering and

the latter represents a low rank approximation of the original data matrix [Ding

et al., 2005]. Basically, k-means seeks a point-wise way to solve the formulation

of clustering as a matrix factorization. Hence, the initial error for the k-means

initialization results lower than those given by other initialization schemes, and

is closer to the final errors (with respect to all the NMF algorithms). In fact,
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(a) Rank factor k = 10

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.0163 320.66 293.44 70 282.43 112 293.53 316 286.12 341
FCM 7.7878 310.10 282.53 244 282.63 84 283.24 499 286.67 500
NNSVD 0.1277 300.43 283.45 130 282.42 34 284.14 366 286.27 500
Rand - 6.1031e7 282.19 500 282.44 48 283.01 499 286.26 324
k-means 40.2523 288.83 286.60 9 282.79 48 288.53 327 288.99 42

(b) Rank factor k = 11

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.0118 317.40 291.59 269 280.38 97 291.75 166 284.48 321
FCM 10.0858 310.10 280.28 500 280.74 147 281.38 499 284.48 500
NNSVD 0.1387 300.65 281.57 166 280.37 114 282.29 240 284.67 500
Rand - 6.9296e7 281.02 500 281.05 163 281.32 499 284.88 475
k-means 41.83 287.92 285.58 13 280.74 80 287.87 307 288.21 51

(c) Rank factor k = 12

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.0086 315.41 290.54 147 278.82 123 290.74 410 283.31 404
FCM 9.4267 310.10 279.12 500 278.98 140 279.53 499 283.64 500
NNSVD 0.1566 300.93 279.75 185 278.48 117 280.50 237 283.10 500
Rand - 8.5154e7 278.78 500 278.67 93 279.62 499 283.21 500
k-means 81.0650 286.09 283.83 13 278.62 174 286.20 357 286.72 57

Table 4.4: Performance of the NMF algorithms initialized with different strategies
applied to CSTR dataset for different value of the rank factor k.

during the initialization phase, k-means algorithm finds a quite optimal clusters,

which are only refined by NMF algorithms (with high convergence rate). Despite

of its good convergence rate, k-means scheme requires high computational cost in

the initialization which grows quickly as the dimensions of the term-by-document

matrix increase.

Figure 4.3 provides some illustrative examples of the performance of all the

initialization methods used in this paper combined with the NMFSC algorithm

when applied to some of the adopted datasets. As it can be observed, SC scheme

provides initial values that enable the NMFSC algorithm to reduce the value of the

initial error after very few iterations and at a low overall cost, at levels slightly

better than those obtained after running the algorithm with one of the other

initializations. Similar behaviour of the SC-NMFSC initialization-factorization

scheme can be observed for all trials we have conducted and for any adopted
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(a) Rank factor k = 10

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.0082 257.59 234.57 59 229.78 47 234.61 19 232.39 258
FCM 16.9350 246.45 229.89 500 229.76 42 230.44 499 232.43 500
NNSVD 0.3620 238.50 230.17 76 229.76 21 230.33 150 232.23 187
Rand - 1.5705e8 229.78 500 229.83 56 229.95 470 232.28 500
k-means 138.7318 234.36 232.67 40 229.81 71 233.13 75 234.50 135

(b) Rank factor k = 11

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.0077 254.74 233.39 60 228.55 55 233.44 222 231.42 395
FCM 18.7174 246.45 228.48 500 228.48 44 229.05 499 231.23 500
NNSVD 0.3750 237.87 228.90 89 228.43 32 229.09 151 231.19 198
Rand - 1.9538e8 228.47 428 228.54 34 228.69 499 231.35 500
k-means 185.8935 233.19 231.60 90 228.91 66 232.10 202 233.69 156

Table 4.5: Performance of the NMF algorithms initialized with different strategies
applied to Newsgroups10 dataset for different rank factor k.

(a) Rank factor k = 7

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.4858 2904.19 2467.31 500 2427.13 284 2468.36 499 2496.88 500
FCM 399.5160 2666.17 2426.72 500 2429.59 226 2432.04 403 2498.70 500
NNSVD 0.5269 2531.84 2432.45 310 2426.58 254 2434.38 499 2510.31 500
Rand - 9.5854e8 2425.92 500 2426.58 263 2431.59 499 2503.27 500
k-means 1030.903 2497.71 2475.80 14 2427.13 273 2484.15 441 2523.77 126

(b) Rank factor k = 8

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.4429 2831.15 2455.04 500 2413.06 456 2456.54 499 2487.87 500
FCM 393.3133 2666.17 2413.46 500 2411.08 171 2420.49 499 2488.48 500
NNSVD 0.5802 2532.94 2417.45 347 2411.08 154 2419.62 379 2501.39 500
Rand - 1.2174e9 2410.78 500 2411.08 166 2413.53 499 2486.59 500
k-means 660.6835 2465.12 2444.43 18 2413.06 240 2478.61 499 2499.64 147

Table 4.6: Performance of the NMF algorithms initialized with different strategies
applied to Reuters8 dataset for different rank factor k.
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(a) Rank factor k = 9

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.0020 96.38 86.53 92 83.04 52 86.71 373 84.33 294
FCM 3.3035 95.36 83.13 311 83.11 103 83.63 499 84.47 500
NNSVD 0.1201 91.95 83.69 152 83.10 52 84.17 499 84.53 349
Rand - 1.6569e7 82.94 427 83.02 195 83.57 317 84.46 500
k-means 10.1670 85.61 84.94 15 83.18 166 86.33 333 85.82 53

(b) Rank factor k = 10

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.0016 94.48 85.53 94 82.04 142 85.73 322 83.52 304
FCM 3.6644 95.36 81.97 500 82.25 186 82.66 494 83.63 500
NNSVD 0.1371 92.08 82.74 205 82.05 66 83.26 499 83.66 279
Rand - 1.9581e7 81.95 433 82.12 189 82.57 499 83.66 486
k-means 9.9055 84.88 83.96 79 82.12 212 85.12 216 84.88 139

(c) Rank factor k = 11

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.0027 92.72 84.62 94 81.10 140 84.82 324 82.78 500
FCM 4.0298 95.36 80.98 500 80.99 95 81.69 499 82.77 500
NNSVD 0.1471 92.52 81.83 211 81.04 500 82.39 310 82.83 500
Rand - 2.3196e7 81.16 500 81.11 102 81.63 499 82.90 419
k-means 7.6596 84.03 83.01 17 81.18 153 84.12 271 84.10 51

Table 4.7: Performance of the NMF algorithms initialized with different strategies
applied to Reuters10 for different rank factor k.

(a) Rank factor k = 10

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.1988 1437.30 1310.25 176 1288.84 43 1310.47 381 1301.51 500
FCM 52.1340 1358.41 1289.35 500 1289.22 78 1292.43 499 1302.25 500
NNSVD 0.6578 1329.05 1291.99 335 1289.27 95 1292.28 499 1302.54 500
Rand - 4.7344e8 1289.27 500 1289.14 183 1290.72 327 1303.32 500
k-means 1687.948 1312.55 1306.05 26 1290.86 323 1315.80 499 1311.59 100

(b) Rank factor k = 11

Eff. of init. NMFLS ALS ONMF NMFSC

Initial. Time Err. Err. iter Err. iter Err. iter Err. iter

SC 0.1393 1426.05 1304.92 174 1283.76 137 1305.15 356 1297.55 500
FCM 57.7798 1358.41 1285.17 500 1283.94 268 1285.37 499 1298.48 500
NNSVD 0.6718 1330.34 1286.52 310 1284.25 140 1288.61 499 1298.11 500
Rand - 5.6985e8 1285.05 500 1283.91 102 1290.28 413 1297.25 500
k-means 2281.688 1307.42 1300.67 42 1284.83 206 1308.70 499 1307.46 79

Table 4.8: Performance of the NMF algorithms initialized with different strategies
applied WebKB4 dataset for different rank factor k.
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(a) (b)

(c) (d)

Figure 4.3: Objective function behaviour during the iteration process for the
NMFSC algorithm applied on the different datasets: (a) CSRT with k = 10, (b)
Reuters8 with k = 8, (c) Reuters10 with k = 9, (d) WebKB4 with k = 10.
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(a) (b)

(c) (d)

Figure 4.4: Objective function behaviour during the iteration process for the ALS
algorithm applied on the different datasets: (a) CSRT with k = 11, (b) Reuters8
with k = 8, (c) Reuters10 with k = 9, (d) WebKB4 with k = 11.

dataset.

Figure 4.3 provides some illustrative examples of the performance of all the

initialization methods used in this paper combined with the ALS algorithm when

applied to some of the adopted datasets. Also in this case the initial values

provided by the SC scheme allow to a fast reduction of the objective function

after few iterations leading to a final error which is comparable with the values

reached by NNSVD (which demonstrated to be the better initialization scheme

for ALS algorithm). Tables 4.9 and 4.10 report the final error and the number

of iterates of NMFSC and ALS algorithms, respectively, when initialized with
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different schemes and the tolerance toll is varied.

From the illustrative plots depicting the behaviour of the objective function

during the learning process, some considerations about the influence of the stop-

ping criteria on the NMF algorithms can also be drawn . As previously observed,

both NMFSC and ALS algorithm appear to take some advantages in terms of fast

convergence when initialized by SC scheme. This means that the curve depicting

the values of the objective function presents a knee behaviour before converging

to its asymptotic behaviour. Varying the tolerance value adopted in the stopping

criteria does not influence the presence of this elbow, but only the number of

least significant digits in which two subsequent values of the divergence measure

D differs. Consequently, the number of iterations performed by the NMF algo-

rithm to satisfy the fixed tolerance decreases (respectively, increases) when the

fixed tolerance is reduced.

Moreover either for NMFLS or for ONMF initialized by SC did not show this

kind of behaviour in the course of this investigation. For NMFLS and ONMF,

only the NNSVD scheme outperforms the other complex initializations.

4.2.5 Effects of the rank on the cluster granularity

As demonstrated in [Xu et al., 2003], when applied on document data corpora,

NMF can be interpreted in terms of document clustering: particularly each col-

umn vector of the basis matrix W is a semantic feature that could be represented

by its ten highest frequency words. Moreover, each column of the encoding ma-

trix H allows to represent documents of X in the subspace defined by W . In this

scenario, each document in the original dataset X is assigned to the semantic

feature with the highest value in its columns.

Although clustering is an unsupervised method, labeled data are commonly

used to assign documents to some classes which are a-priori known. Particularly,

when NMF is used for tackling a document clustering problem, the factor rank

k is chosen equal to the number of original classes in which the data have been

initially grouped.

Reasonably, this class structure might be quite different from the unknown

cluster structure underlying the data, so that this a-priori choice of the rank
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(a) Dataset Reuters10 with rank value k = 9

10 10−2 10−3 10−4 10−5 10−6

Initial Err iter Err iter Err iter Err iter Err iter Err iter
SC 84.78 7 84.42 16 84.35 35 84.33 91 84.33 168 84.33 294

FCM 94.66 2 94.66 2 84.57 71 84.49 227 84.48 345 84.48 500
NNSVD 85.07 8 84.67 21 84.58 51 84.54 126 84.54 216 84.54 349

Rand 85.44 19 84.83 36 84.57 79 84.55 131 84.46 500 84.46 500
k-means 85.86 2 85.83 4 85.83 7 85.82 14 85.82 27 85.82 53

(b) Dataset CSTR, with rank value k = 10

10 10−2 10−3 10−4 10−5 10−6

Initial Err iter Err iter Err iter Err iter Err iter Err iter
SC 287.63 15 286.37 54 286.14 89 286.13 127 286.12 209 286.12 341

FCM 308.66 2 308.64 3 308.64 3 286.68 197 286.68 332 286.68 500
NNSVD 286.69 10 286.40 20 286.30 47 286.28 86 286.27 253 286.27 500

Rand 287.92 22 286.38 62 286.29 87 286.27 150 286.27 210 286.27 324
k-means 289.03 2 289.01 3 289.00 7 289.00 12 289.00 22 289.00 42

(c) Dataset Reuters8 with rank value k = 8

10 10−2 10−3 10−4 10−5 10−6

Initial Err iter Err iter Err iter Err iter Err iter Err iter
SC 2489.78 25 2488.48 81 2487.96 188 2487.88 393 2487.87 500 2487.87 500

FCM 2621.88 4 2491.61 352 2488.48 500 2488.48 500 2488.48 500 2488.48 500
NNSVD 2506.39 49 2502.09 126 2501.48 268 2501.40 457 2501.39 500 2501.39 500

Rand 2489.55 62 2487.04 147 2486.71 247 2486.61 426 2486.60 500 2486.60 500
k-means 2499.85 4 2499.70 9 2499.65 20 2499.64 41 2499.64 78 2499.64 147

(d) Datset WebKB4 with rank factor k = 10

10 10−2 10−3 10−4 10−5 10−6

Initial Err iter Err iter Err iter Err iter Err iter Err iter
SC 1305.08 21 1302.17 139 1301.58 265 1301.53 334 1301.51 500 1301.51 500

FCM 1354.33 2 1354.33 2 1354.33 3 1354.33 4 1354.33 5 1302.26 500
NNSVD 1303.54 17 1302.88 39 1302.62 104 1302.56 250 1302.55 430 1302.55 500

Rand 1308.16 32 1304.74 150 1304.23 303 1303.32 500 1303.32 500 1303.32 500
k-means 1311.67 2 1311.64 3 1311.60 10 1311.60 23 1311.60 50 1311.60 100

Table 4.9: Behaviour of NMFSC algorithm when varying the tolerance value
adopted in the stopping criteria.
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(a) Dataset Reuters10 with rank factor k = 9

10 10−2 10−3 10−4 10−5 10−6

Initial Err iter Err iter Err iter Err iter Err iter Err iter
SC 83.21 3 83.07 6 83.05 13 83.04 21 83.04 33 83.04 52

FCM 83.71 8 83.36 16 83.12 43 83.11 59 83.11 77 83.11 103
NNSVD 83.26 6 83.13 10 83.11 15 83.11 29 83.11 45 83.11 52

Rand 84.00 9 83.22 28 83.21 33 83.02 153 83.02 172 83.02 195
k-means 83.74 6 83.42 16 83.36 28 83.19 135 83.19 147 83.19 166

(b) Dataset CSTR with rank factor k = 11

10 10−2 10−3 10−4 10−5 10−6

Initial Err iter Err iter Err iter Err iter Err iter Err iter
SC 280.84 10 280.43 27 280.38 37 280.38 43 280.38 45 280.38 97

FCM 280.96 14 280.77 18 280.75 23 280.75 29 280.75 38 280.75 147
NNSVD 280.55 6 280.41 10 280.38 17 280.38 30 280.38 35 280.38 114

Rand 281.33 12 281.10 18 281.06 27 281.06 40 281.06 48 281.06 163
k-means 281.68 12 281.22 20 281.20 25 280.75 65 280.75 74 280.75 80

(c) Dataset Reuters8 with rank factor k = 8

10 10−2 10−3 10−4 10−5 10−6

Initial Err iter Err iter Err iter Err iter Err iter Err iter
SC 2415.55 11 2415.31 18 2415.15 66 2415.14 69 2415.14 70 2413.07 456

FCM 2411.72 9 2411.01 22 2410.99 26 2410.99 26 2410.99 26 2411.08 171
NNSVD 2411.46 11 2411.09 19 2411.07 23 2411.07 24 2411.07 24 2411.08 154

Rand 2412.08 27 2412.02 29 2411.05 66 2411.05 67 2411.05 67 2411.08 166
k-means 2413.25 17 2413.13 21 2413.07 41 2413.06 58 2413.06 62 2413.07 240

(d) Dataset WebKB4 with rank factor k = 11

10 10−2 10−3 10−4 10−5 10−6

Initial Err iter Err iter Err iter Err iter Err iter Err iter
SC 1283.89 18 1283.78 21 1283.76 26 1283.76 32 1283.76 36 1283.76 137

FCM 1284.42 24 1283.97 36 1283.93 45 1283.93 47 1283.93 47 1283.94 268
NNSVD 1284.51 15 1284.29 20 1284.26 27 1284.26 33 1284.27 80 1284.26 140

Rand 1284.37 19 1283.91 29 1283.89 36 1283.89 41 1283.89 42 1283.91 102
k-means 1285.40 22 1285.09 30 1284.85 74 1284.84 111 1284.84 161 1284.84 206

Table 4.10: Behaviour of ALS algorithm when varying the tolerance value adopted
in the stopping criteria.
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factor could lead to poor results with incorrect extracted features.

On the other hand, SC initialization scheme can help the proper analysis of

the structure of the data due to its capability of suggesting a most suitable value

for the parameter k.

The following tables report the semantic feature extracted by the NMFSC

algorithm initialized with SC scheme when CSTR dataset is considered. The

reported basis vectors have been obtained with rank value k = 4 and k = 11. The

first value represents the number of classes into which the originally documents

have been grouped while the second value represents the embedded information

automatically extracted by the SC initialization algorithm.

The four a priori classes in the CSTR dataset were: Natural Language Pro-

cessing (NLP), Robotics/Vision, Systems and Theory.

The feature extracted by the NMF with k = 4 are not able to describe ex-

haustively these topics as shown in Table 4.11.

W1 W2 W3 W4

memori set task object

share select manipul recognit

program class robot imag

parallel polynomi control train

cach hierarchi plan view

perform prove visual learn

coher complet method system

applic string freedom imageri

data bound space represent

multiprocessor collaps real supervis

Table 4.11: Example of semantic feature extracted with NMFSC algorithm and

SC initializiation when CSTR dataset is considered. Rank value set to k = 4.

Table 4.12, on the other hand, reports the features extracted at the end of

the NMF process performed with rank k = 11. Particularly, the last row of the

table reports the semantic concepts which have been associated to the extracted
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features.

As it can be observed, these semantic concepts slightly differ from the a-priori

classes, but they appear to be more specific and reflect the presence of some

geometric properties underlying the data that are captured by the clusters.

These results assess the effectiveness of the proposed initialization method. A

point of originality in using SC initialization scheme lies in its capability of sug-

gesting the most suitable rank value k for a given dataset. In fact, as discussed

in Sec. 4.1.4, the parameters ra and rb allow to set the radius of the hyper-sphere

clusters according with the locality property of the data documents in the Eu-

clidean space. This means that documents which were close in the original space

remain close in the subspace obtained at the end of the NMF learning process. As

it has been shown in the example, the granularity of the problem suggested by the

SC method enables the extraction of more interpretable semantic features than

using the number of known classes as factor rank. The increased interpretability

reflects the concepts enclosed in the most representative documents selected by

the SC scheme to be the basis vector in W (0).
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W1 W2 W3 W4 W5

lock heterogen coher train database

syncrhron loop cach recognit itemset

barrier load memori object mine

scalab balanc share learn algorithm

multiprogram processor hardware view rule

mutual netwotk protocol image cluster

reader schedul softwar system associ

writer compil perform supervis frequent

schedul parallel multiprocessor unlabel transact

exclus commun dsm geometr discoveri

parallel heterogeneous operating object datamining

programming networks systems recognition

W6 W7 W8 W9 W10 W11

visual select hard parallel object probabilist

fixat set nontrivi program imag log

predict polynomi rice transform featur space

respons hierarchi theorem data kei automata

neural reduct prove control method ture

model function bound local recognit error

filter string count compil cluster finit

task complet properti model system class

cortic collaps nondetermin optim invari machin

scene equival circuit array base nondeterminist

neural complexity computability algorithms image finite

networks theory theory recognition state

for visual. automata

Table 4.12: Example of semantic features extracted using NMFSC algorithm and

SC initializiation when CSTR dataset is considered. Rank factor k = 11.
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Chapter 5

Part-based data analysis with

Masked Non-negative Matrix

Factorization

The second proposal concerns a novel masked nonnegative matrix factorization

algorithm which is used either to explain data as a composition of interpretable

parts (which are actually hidden in them) as well as to introduce knowledge

in the factorization process. Masking enables the decomposition of data into

user-defined parts, which are consequently easy to understand by the analyst.

The results of Masked NMF enables the analyst to understand which subsets of

the available data are best represented by the specified parts, thus extracting

potentially useful knowledge from large quantities of data.

5.1 Proposed method

The non-negativity characterization of NMF makes it a useful tool for Intelligent

Data Analysis (IDA). In fact, the non-negativity makes NMF capable of repre-

senting data as an additive combination of common factors. Moreover, if such

factors have some physical meaning (i.e., they can be interpreted in the domain of

the considered problem), NMF allows to explain data as a composition of parts,

being each part a factor. The problem of interpreting parts as small selections
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of features is faced. More precisely, the column vectors of W are constrained so

that only a small subset of elements is non-zero. This representation of parts

could be very useful for IDA, since it is able to highlight some local linear rela-

tionships existing among features that hold for a subset of data. To this purpose,

a new optimization problem for NMF has been introduced, which constrains the

columns of the base matrix W to possess a small number of non-zero elements.

Then, a query-based approach is adopted, where the structure of the base matrix

is defined by a user-provided mask matrix. In this way, the analyst can specify

the parts she is interested to discover in data: the proposed technique, in fact,

extracts the subset of data that are actually represented by these parts.

5.1.1 Masked NMF

The non-negativity constraints imposed by NMF often are not enough to produce

factors that represent useful knowledge. Usually these columns are very dense;

moreover, different configurations of W and H lead to the same approximation

of X, thus it could be difficult to associate a physical meaning to the factors.

To overcome the limits of classical NMF and to inject a-priori knowledge in the

factorization process, the concept of part has been introduced. From the vector

representation of data it is possible to observe that each sample is represented by

a vector x ∈ Rn
+ of n features {f1, ..., fn}. A part p is defined as a sparse vector

in Rn where at least two components are non-zero. A feature belongs to a part

iff its value is non-zero. In this way the factorization process is constrained to

describe data as a linear correlation of different parts, whose features are linearly

correlated among them. The structure of the part (i.e. the features set to zero,

thus excluded by the part), as well as the number of parts, constitutes the a-priori

knowledge and is user-defined.

To obtain basis factors that are able to extract parts, the columns wk in W

are constrained to contain only few non-zero elements. Factors possessing this

type of structure enable the elicitation of local linear relationships in subsets of

data.

A binary matrix P ∈ {0, 1}n×k, with the same dimensions of the basis matrix

W is used as mask for the NMF problem. Particularly, the mask matrix P is
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Figure 5.1: Example of query matrix P .

used to identify the parts that the analyst would like to extract from data. This

is accomplished by defining P as a set of k column vectors, where each element

in a column is 1 if the corresponding feature has to be selected, 0 if it has not

be considered. Figure 5.1 shows an example of query matrix P . Features one

and four have been selected in part one. It means that the analyst is looking for

linear relationships between these two features in data. Similarly features two,

three and five have been selected in part two, and features one, five and six in

part three.

To incorporate the additional constraint described above, the NMF minimiza-

tion problem (2.7) has been extended to automatically impose the structure of

the mask P to the basis matrix W :

min
W≥0,H≥0

1

2
‖X − (P �W )H‖2

F +
1

2
λ
∥∥∥P � W̃∥∥∥2

F
, (5.1)

where w̃ij = exp (−wij) and P ∈ {0, 1}n×k and λ ≥ 0 is a regularization parame-

ter.

The objective function in (5.1) is composed by two terms: the first one rep-

resents a weighted modification of the classical NMF problem where the mask

matrix P is used to fix the structure the basis matrix W has to possess. The

second term is a penalty term used to enhance the elements wij corresponding

to elements pij = 1. For this purpose the exponential function has been chosen:

when the value of an entry wij of W is small it is increased by the penalty term,

when it is high the penalty tends to zero. The choice of the exponential func-
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tion allow us to prevent that zero values correspond to features that we want to

include in the parts. The regularization parameter λ ≥ 0 is used to balance the

influence of the two terms.

5.1.2 Updating Rules

The objective function (5.1) automatically imposes the structure of the mask P in

the factor matrix W , minimizing the non-relevant elements in W and maximizing

(when they are actually present) the relevant elements in it. It should be observed,

however, that the objective function (5.1) is not convex in both variables W and

H. So, it is thus unrealistic to find the global minima for it. However, an iterative

updating algorithm to obtain the local optima of (5.1) can be derived.

First the minimization of the objective function (5.2) is discussed:

O =
1

2
‖X − (P �W )H‖2

F +
1

2
λ
∥∥∥P � W̃∥∥∥2

F
, (5.2)

with w̃ij = exp(−wij) and P ∈ {0, 1}n×k

It can can be rewritten as:

O =
1

2
trace

(
(X − (P �W )H)> (X − (P �W )H)

)
+ (5.3)

+
1

2
λtrace

((
P � W̃

)> (
P � W̃

))
.

Particularly, denoted by Ψ = [ψij] and Φ = [φij] the Lagrangian multiplier for

the constraints wij ≥ 0 and hij ≥ 0, the Lagrangian function associated to the

minimization problem (5.1) is given by:

L =
1

2
trace

(
(X − (P �W )H)> (X − (P �W )H)

)
+ λtrace

((
P � W̃

)> (
P � W̃

))
+ trace (ΨW ) + trace (ΦH) , (5.4)
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The partial derivatives of L with respect to W and H are:

∂L

∂W
= (P �W )HH> − P �

(
XH>

)
+

1

2
λ (−2)P � W̃ + Ψ; (5.5)

∂L

∂H
= (P �W )> (P �W )H − (P �W )>X + Φ. (5.6)

Imposing the Karush-Kuhn-Tucker conditions for the optimality:

∂L

∂W
= 0;

∂L

∂H
= 0; (5.7)

W �Ψ = 0; H � Φ = 0; (5.8)

W ≥ 0; H ≥ 0, (5.9)

the following equations, for wij and hij, are given:

−
(
(P �W )HH>

)
ij
wij+ (5.10)

+
(
P �

(
XH>

))
ij
wij + λ (P � exp (−W ))ij wij = 0,(

− (P �W )> (P �W )H
)
ij
hij +

(
(P �W )>X

)
ij
hij = 0. (5.11)

These equations lead to the following updating rules:

wij ← wij

[
P �

(
XH>

)]
ij

+ λ
(
P � W̃

)
ij

[(P �W ) (HH>)]ij + ε
; (5.12)

hij ← hij

[
(P �W )>X

]
ij[

(P �W )> (P �W )H
]
ij

+ ε
, (5.13)

where the constant ε = 10−12 has been introducted to prevent division by zero.

We will refer to equations 5.12 and 5.13 as Masked NMF (MNMF).

5.1.3 Normalization

The data matrix X has to be normalized so as to lay in the unit sphere (i.e.

‖xi‖2 = 1 for i = 1, . . . ,m). This requirement has been adopted because NMF
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works in a vectorial space, where data are vectors and not points. Normalization

eliminates information related to the lenght of the vectors, but preserving direc-

tions. After a MNMF run, columns of W are normalized in L2 together with the

matrix H in order to preserve the factorization results. This is accomplished by:

wij ←
wij√∑n
i=1 w

2
ij

, (5.14)

hvt ← hvt

√√√√ n∑
i=1

w2
iv, (5.15)

for each column j = 1 . . . k of W , and each column t = 1 . . .m of H.

5.1.4 Representativeness

A representativeness measure has been defined to estimate the effectiveness of

the mask matrix P in representing structure of data. It quantifies the matching

between structures holding in data and the structure imposed to the basis vectors

in W by the mask matrix P .

For each sample xi the representativeness measure Reps has been evaluated

as in (5.16). It measures the effectiveness of the parts in W in reconstucting

each sample and it is composed by two factors. The first is the inverse of the

reconstruction error of each sample (in term of mean squared error, MSE). In

fact the lower is the reconstruction error, the better is the reconstuction of the

samples using parts in W and coefficients in H. The second factor of the function

indicates the contribution of the parts in the reconstruction. This factor is used

to enhance the weights of samples reconstucted by parts the analyst is looking

for. Formally:

Reps (xi,W,hi) =
1

‖xi −Whi‖2
F

k∑
j=1

hji, (5.16)

where xi e hi are respectively the i-th columns of X and H, hji is the element of

H on the j-th row and i-th column.

An example of the measure Reps for all sample in a dataset is shown in
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Figure 5.2: Example of the representativeness measure Reps of each sample in a
dataset.

Figure 5.2. In the example the samples in [151, 200] have representativeness

values equal to zero, because the parts in the mask matrix P are not able to

describe them1.

Using a thereshold tR on the values of representativeness, it is possible to

select the set Gt of well represented samples:

Gt = {xi ∈ X/Reps(xi,W,hi) ≥ tR} . (5.17)

A global measure of representativeness for the factorization results is than given

by:

Rep (X,W,H) =
|Gt|
m

, (5.18)

where |G| is the cardinality of the set Gt and m is the number of samples.

Rep (X,W,H) has values in the interval [0, 1]. The lowest value 0 means that

parts in W are not representative for the dataset X at the precision level tR. On

the contrary 1 means that parts in W are completely adeguate to describe data in

X. Values in the interval indicate the percentage of samples well represented. The

mask matrix P is not directly used in the representativeness measure described

in (5.18), but it is implicitly involved, as it determines the structure of the parts

1A deep investigation on the MNMF results is given in the section 5.2.
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in W .

The choice of thereshold tR is related to the precision of the reconstruction

the analyst is looking for. Samples with a value of Reps higher than thereshold

tR belong to Gt (5.17):

1

‖xi −Whi‖2
F

k∑
j=1

hji ≥ t. (5.19)

The reconstruction error of samples is inversely proportional to thereshold tR:

‖xi −Whi‖2
F ≤

∑k
j=1 hji

tR
. (5.20)

Since columns in H are normalized in L2, each entry hij has values in [0, 1]. The

sum of the elements in each columns could have maximum value equal to the

number k of parts:

‖xi −Whi‖2
F ≤

k

tR
. (5.21)

5.1.5 Conformity

The representativeness measure is not sufficient to evaluate the effectiveness of a

MNMF result. In fact, it does verity that the structure of the vector bases wi

matches with the structure of the parts pi. Indeed when the analyst is looking

for parts that does not capture the structure in data, values in wi could be close

to zero. In this case MNMF uses parts that are different from those the analyst

was looking for. It is therefore necessary to quantify the similarity between the

structure in P and the structure obtained in the basis matrix W after MNMF.

The conformity measure of each column of W and P is defined as the cosine

of the two corresponding column vectors:

Confp (wi,pi) =
wi

Tpi

‖wi‖2 ‖pi‖2

. (5.22)

It evaluates the angle between the basis vector wi and the corresponding mask

vector pi. When wi = pi the vectors are overlapped and this angle is 0 (the cosine
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is 1). On the other hand the greater is this angle, the bigger is the difference

between the vectors wi and pi. Since the zero-elements in the basis vectors wi

are imposed by pi, these differences derive from elements in wi that have low

values for some selected features. From a semantically point of view, this means

that these features do not contribute to the part. Thus conformity has values

in [0, 1]. When structure in wi does not match with structure in pi, conformity

value is zero, whilst when the two structures overlap it is one.

It is possible to use a threshold tC suggesting when the two structures coincide.

A global measure of conformity is given by:

Conf (W,P ) = min
1≤i≤k

(Confp (wi,pi)) . (5.23)

5.1.6 Query based MNMF

The query based MNMF algorithm has been designed in order to allow the ana-

lyst to specify what parts she is interested to discover. The proposed approach

extracts the subset of data that are actually represented by the parts, discarding

the data in the matrix X that do not find a neat representation by the parts.

As it has been shown in subsection 2.2.4, when a NMF of a given data matrix

X is computed, each sample is approximated in a low-rank subspace (of k di-

mensionality) by Equation 2.5. Particularly, the elements of each columns of the

encoding matrix H codify the information needed to identify the factors (columns

of W ) used to reconstruct each sample of X in the low-rank subspace. Therefore,

the elements in a column of H identify the importance of each basis vector in ap-

proximating the data sample: if a coefficient is very small, then the corresponding

basis vector is useless in approximating the sample; as a consequence, the data

sample does not contain the part represented by this basis vector. Information

stored in the matrix H can be used therefore for Intelligent Data Analysis.

Algorithm

Algorithm 3 formally describes the proposed approach to analyse data through

MNMF. Particulalrly, the steps of the proposed approach are justified and de-
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scribed in the following.

Given a data matrix X, the query based MNMF algorithm first executes

MNMF with a mask matrix P where the data analyst has previously specified

the relationships she is interested to discover. MNMF is an iterative updating

algorithm based on the classical multiplicative algorithm [Lee and Seung, 2001].

It alternatively updates the matrices W and H according to the rules in (5.12)

and (5.13) (lines 3 and 4 of algorithm 3) while stopping criterion is not satisfied

(line 2).

After MNMF optimization, the resulting matrices (W,H) are normalized in

L2 (lines 6 and 7).

Then the conformity of the basis matrixW to the mask matrix P , Confp (W,H)

(5.23) is verified (line 9). If the structure of W does not correspond to the parts

specified by the analyst, the process is stopped. Low values of conformity means

that parts, the analyst is looking for are not present in data. Therefore the algo-

rithm returns the set of column indices of W that differ from the corresponding

columns of P . This feedback allow the analyst to modify her query, and re-run

the algorithm with a new mask matrix P .

Otherwise, when the basis matrix catches the structure in P , each sample

is evaluated in term of a representativeness measure Reps (5.18) (line 10). Low

values of representativity for a subset of samples means that MNMF was not able

to find the parts in W in that subset, so the analysis could be restricted to the

subset of data Gt (line 11) where the parts have been recognized.

The samples in the matrix X that have not been reconstructed using the

parts which the analyst is looking for, are then removed from the matrix X. The

remaining columns after this removal procedure form a new data matrix that is

denoted by X ′ (line 13). This approach allows the selection of the samples in

data that are actually represented by the specified parts.

At the end of the selection process, MNMF could be re-run for the subset

of the selected data samples. The objective of this last step is to re-compute

the values in the base and encoding matrices without taking into account data

samples that are not composed by the selected parts. This provides a more precise

estimation of the parts and their contribution in the data samples.
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Algorithm 3 QMNMF

Require: X ∈ Rn×m
+ {Dataset}

Require: P ∈ {0, 1}n×k {Query mask}
Require: λ {Regularization parameter}
Require: W0 ∈ Rn×k

+ and H0 ∈ Rk×m
+ {Initial matrices W and H}

Require: tR > 0 and tC ∈ [0, 1] {Thresholds for Representativeness and Confor-
mity measures}

1: Normalize X
2: while stopping criterion not satisfied do
3: update matrix W according to (5.12)
4: update matrix H according to (5.13)
5: end while
6: Normalize matrix W according to (5.14)
7: Adjust matrix H according to (5.15)
8: Evaluate Conf (W,P ) according to (5.23)
9: if Conf (W,P ) > tc then

10: Evaluate Reps (xi,W,hi), ∀i = 1, . . . , n, according to (5.2)
11: Evaluate Gt for thereshold t, according to (5.17)
12: Compute the column index set J = j : xj ∈ Gt

13: Select data samples X ′ = X[1 : n, J ] {all rows and columns in J}
14: return W ∈ Rn×k

+ {selected parts}
15: return H ∈ Rk×m

+ {coefficents}
16: return X ′ ∈ Rn×m′

+ {data subset}
17: else
18: Compute the column index set

R = r : Confp (wr,pr) < tC with r = 1, . . . , k
19: return R {parts not representing structures in data}
20: end if

Stop-criteria

Note that since MNMF is an iterative algorithm that converges to zero, the

adopted stopping criteria (line 2) is based on the difference between two following

values of the objective function: the computation of updates stops when the

difference is lower than a prescribed small value ε.

Formally, set E = Obj(i) − Obj(i − 1), where Obj(i) indicates the value of

the objective function at the i− th iterate, then
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stop =

{
true if E ≤ ε

false otherwise.

Initialization

Being the MNMF algorithm based on the gradient descent method, it is sensi-

tive to the starting point. As stardart choice, the matrices W and H have been

initialized using two random matrices W0 and H0 (line 3), however different ini-

tializations can lead to better results [Boutsidis and Gallopoulos, 2008; Casalino

et al., 2011, 2014], further experiments will be aimed to examine this aspect.

5.2 Experimental Results

This section illustrates the experiments that have been performed in order to

show the effectiveness of the proposed method. First, a preliminary data analysis

has been conducted. For this purpose, a synthetic dataset has been constructed

and three mask matrices P has been adopted queries. The behaviour of Query-

based MNMF algorithm has been illustrated, when an optimal mask, a correct

mask and a wrong mask are used. Further experiments have been conducted on

the well known Iris dataset to better highlight the semantics associated to the

selected parts.

5.2.1 Synthetic dataset

A dataset X ∈ R6×450 of six features has been synthetically generated in a specific

way to evaluate the ability of the proposed approach in finding parts in data.

To generate the data samples, two random variables from a Gaussian distri-

bution with mean 50 and variance 5 have been used: s1 ∼ N(50, 5) and s2 = αs1

(negative values have been cropped to 0). Four combinations of two out of six

features have been generated, namely (1, 2), (2, 3), (3, 5), (4, 6). For each com-

bination of features (i1, i2) a correponding random basis c has been defined, so

that ci1 = s1, ci2 = s2 and ci = 0 for i /∈ {i1, i2}. A multiplicative factor α = 3

has been used for random bases corresponding to combinations (1, 2) and (3, 5),
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Figure 5.3: Graphical illustration of the synthetic dataset X.

whilst a value α = 2 for (2, 3) and (4, 6). Finally, the dataset, has been generated,

in blocks of 50 samples, each block being defined as a combination of the random

bases c. Let denote ch, with h = 1, . . . , 4, the random bases corresponding re-

spectively to the combinations (1, 2), (2, 3), (3, 5), (4, 6), the synthetic dataset is

constructed as follows: c1, c2, c3, c4, c1 +c2, c1 +c3, c2 +c3, c3 +c4, c1 +c2 +c3.

Figure 5.3 shows a graphical representation of the data matrix. It should be

observed that the boxes represent fifty sequential data generated with the same

linear combination.

Optimal Mask

In the optimal case, Query-based MNMF is used to query data matrix with the

mask Popt that imposes on the factors matrix W the same structure occurring in

the dataset (Figure 5.4). Figure 5.5 shows basis matrix W and encoding matrix

H returned after applying MNMF to the data matrix. As it can be observed,

the factor W possesses the same structure of Popt. This means that parts that

are looked for, are actually in data. This result is confirmed by the conformity

values of the columns of W and P , ConfP
(
wi,popti

)
,that are 0.8959, 0.9498,

0.8969, 0.9491, for i = 1 . . . 4. Empirical tests suggest that values of conformity

lower than a threshold tC = 0.80 denote bases with structures that do not allow

a good reconstruction of the data. In this case values are close to the maximum

conformity value 1.
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P =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 0 1
0 0 1 0
0 0 0 1


Figure 5.4: Optimal mask matrix P containing all the parts in data.

Figure 5.5: Basis matrix W and encoding matrix H obtained applying MNMF
to synthetic data with optimal query mask P .

From the encoding matrix H, it could be pointed out that MNMF is able to

recognize samples in dataset that were constructed using parts in P . In fact each

block of samples has been reconstructed using the parts that correspond to the

random bases that have been used to generate original samples.

Representativity of the mask mask Popt is the maximum value 1 for tR = 107.

This means that all samples in dataset have been reconstructed with parts in P

with high precision.

However this is the best scenario. In the following paragraphs the behavior of

QMNMF is shown when the analyst is looking for parts that partially cover the

structure in data, or, in the worst scenario, are not able to describe data.
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P1 =


1 0
1 0
0 1
0 0
0 1
0 0


Figure 5.6: Mask matrix P1 containing parts in data.

Figure 5.7: Basis matrix W and encoding matrix H obtained applying MNMF
to synthetic data with query mask P1.

Ideal case

In the ideal case, Query-based MNMF is used to query data matrix with the

mask P1 that imposes on the factors matrix W a partial structure occurring in

the dataset (Figure 5.6). The mask P1 allows to verify if the proposed QMNMF is

able to recognize as relevant the examples in dataset that have been constructed

using the parts specified by the query mask. The query submitted to the algo-

rithm does not cover all the examples in the dataset, so it is expected that the

procedure selects a subset of it containing only the relevant data. The following

detailed analysis shows the behavior of MNMF in reconstructing samples when

they contain the parts in P1, linear relationship of these parts, and when there

are not parts in the mask adequate to describe them.

Figure 5.7 shows the basis matrix W and the encoding matrix H returned

after applying MNMF the matrix. As it can be observed, the factor W possesses

the same of structure of P1. Moreover the values of the conformity measure of
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the two bases w1 and w2 are respectively 0.87 and 0.9977. These values are close

to the maximum value one. This suggests that parts in P do actually catch the

structure in data. From the encoding matrix H, it could be pointed out that

MNMF is able to recognize samples in dataset that were constructed using parts

in P1. Samples from 1 to 50 composed by the the first two features in X (whose

linear correlation is captured by w1) have been correctly reconstructed in H using

only the first part. Similarly, samples from 101 to 150 have been reconstructed

using the part w2 representing the relationship between the features three and

five.

Query Based MNMF algorithm, after applying MNMF, selects samples that

have values of representativeness Reps higher than a thereshold tR. Figure 5.8

shows values of Reps and the samples that have been selected using a threshold

tR = 103: blocks of samples [1, 50], [101, 150], [201, 250], [301, 350], [401, 450]. Of

course the choice of the threshold tR is problem dependent. Moreover, different

thresholds tR lead to different solutions. The choice of a suitable threshold is duty

of the analyst. The value of the reconstuction error she expects could suggest the

value of tR.

MNMF can recognize parts that are composed linearly to describe data. This

is the case of the samples from 401 to 450 that have been generated adding

data composed by the first two features and data composed by the third and

fifth. These samples have been reconstructed in the matrix H using both the

bases w1 and w2 capturing the linear correlation between respectively first and

second features, and third and fifth features. Samples from 201 to 250 have been

generated adding data composed by the first two features and data composed by

the second and third. Since these features are partially captured from parts in

P1, the algorithm returns them. The same behaviour is observed in samples from

301 to 350.

When the algorithm does not find parts that are able to correctly reconstruct

the samples in data it returns values of representativeness Reps lower than thresh-

old tR. This beavior suggests to the analyst that the parts she is looking for in

data are not enough to describe them.

An extreme case are the samples from 151 to 200 that have been completely

constructed using a part that is not in P1, the algorithm returns no parts for this

71



Figure 5.8: Values of Reps for samples in synthetic dataset.

P2 =


1 0
0 1
0 0
0 1
0 0
1 0


Figure 5.9: Mask matrix P2 not containing parts in data.

samples. Hence, the proposed Query Based MNMF algorithm suggests which

parts correctly reconstruct data.

The value of total representativity quantifies the matching between the struc-

ture in P and the structure in data. In this case it is 0.56, that means 50% of

samples uses part in P1.

The non-ideal case

In the non-ideal case, Query-based MNMF is used to query data matrix with the

mask P2 that does not represent the structure hidden in data (i.e., both columns

in P2 represent parts that are not present in data (Figure 5.9). This mask allows

to verify the behaviour of the proposed Query-basd MNMF when the analyst is

looking for parts that do not correctly decribe data.

The basis matrix W returned by MNMF with matrix mask P2 has columns

composed by one of the two values very close to the maximum value 1, and the

second one close to 0 (Figure 5.10). This behaviour suggests that the algorithm

has not been able to impose the structure to the basis matrix, which, instead,
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W2 =


0.13 0

0 0.996
0 0
0 0.08
0 0

0.99 0


Figure 5.10: Basis matrix W obtained applying MNMF to synthetic data with
mask matrix P2.

uses canonical bases. The conformity measure confirms this observation. In fact,

conformity values ConfP (wi,pi) of basis and mask matrix columns are 0.7939

and 0.7664.

When the mask matrix does not contain parts in data, QMNMF algorithm

stops. The analyst should then modify her query according to the received feed-

back.

5.2.2 Iris Dataset

In this section, the behaviour of the proposed approach has been illustrated when

the well known Iris dataset is adopted [Bache and Lichman, 2013]. The dataset

is composed by 150 samples grouped in three different classes: Iris-Setosa, Iris-

Veriscolor, Iris-Virginica (Figure 5.12). Each sample is a four dimensional vector

describing: sepal length, sepal width, petal length, petal width. Figure 5.111

shows data represented in subspaces generated by couples of features.

Two experiments have been conducted in order to highlight the use of a specific

mask to select features and extract samples which are described by these parts.

Particularly, the aim is to discover if there exists any linear correlation between

the features in the data samples. The use of a real dataset better highlights the

semantic associated to the parts.

Relationship between lengths and widths of iris flowers

The goal of the first experiment is to verify the existence of relationships between

sepal and petal lengthts and sepal and petal widths of Iris Dataset. Features

involved in relationships that are looked for have been selected and a mask matrix

1”Anderson’s Iris data set” by Indon - Own work. Licensed under Creative Commons
Attribution-Share Alike 3.0 via Wikimedia Commons
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Figure 5.11: The scatterplot of Iris flower data set, collected by Edgar Anderson
and popularized in the Machine learning community by Ronald Fisher.

Figure 5.12: Iris Setosa, Iris Versicolor, Iris Virginica.
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P3 (Figure 5.13) has been generated according to this choice. Particularly, the first

part specifies a relationships between sepal and petal lengthts (represented by the

first and third features of dataset), whilst the second part specifies relationships

between sepal and petal widths (represented by the second and fourth features

of dataset).

Figure 5.13: Query mask P3 used to verify relationships between sepal and petal
lengthts and sepal and petal widths of Iris Dataset.

MNMF has been executed on Iris dataset with mask P3 and parameter λ =

0.5. The basis matrix W3 illustrated in Figure 5.14 preserves the structure im-

posed by the query masks, moreover the parts are represented by significative

values. This result suggests to the analyst that parts she is looking for are ac-

tually present in data, i.e., there is correlation between the selected features in

data. The conformity measure confirms this result. In fact the conformity of

the first columns of W3 and P3 is Conf ((w3)1, (p3)1) = 0.97 that is close to the

maximum. On the other hand the conformity of the second columns of W3 and

P3 is Conf ((w3)2, (p3)2) = 0.88, which is smaller than the previous one, but still

significative.

After establishing the presence of relationships in data, the aim of the algo-

W3 =


0.85 0

0 0.96
0.53 0

0 0.29


Figure 5.14: Basis matrix W3 obtained with MNMF, masks P3 and λ = 0.5.
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rithm is to find the subset of samples in which these relationships hold. Query-

based MNMF algorithm uses the representativeness measure with a defined thresh-

old tR = 104 for this purpose. Figure 5.15 shows representativeness measure

Reps (xi,W,hi) of samples in Iris dataset computed with MNMF, query mask P3

and λ = 0.5 .

Figure 5.15: Representativeness Reps (xi,W,hi) of samples in Iris dataset com-
puted with MNMF, query mask P3 and λ = 0.5.

It could be pointed out that the three classes are well separated (the first fifty

samples belong to class Setosa, from 51 to 100 to Versicolor and the last fifty

to Virginica). This means that the two parts contribute with different values

to reconstruct data. Using a threshold tR = 104, the algorithm selects samples

belonging to classes versicolor and to virginica. Using a more selective threshold,

only samples belonging to the class versicolor are selected. The choice of the

threshold value influences the results returned from the algorithm. The threshold

value needs to be provided by the analyst who is able to exploit his specific

knowledge of the problem under consideration to intelligently analyze data. After

selection MNMF is re-run on the modified dataset composed by samples with

representativity values higher than this threshold tR. The reconstruction error,

evaluated in term of Mean Squared Error (Equation 5.2.2) obtained removing

samples that have not been well reconstructed is 0.0023, which is smaller than
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the error obtained with the entire dataset (0.0176): the approximation of the

subset of data is better than that of the entire dataset. This result is explained

by the fact that parts in P3 are more suitable to describe data in the subset

instead of those in the whole dataset. Raising the threshold tR and reducing

dataset to samples belonging to class versicolor, the obtained reconstructing error

is 6.51 ∗ 10−4, much smaller than the previous ones.

MSE =
1

2

‖X −WH‖2
F

m
. (5.24)

These considerations help the analyst to conclude that a relationship between

lengths and widths of Iris flowers holds for the samples belonging to the class

Versicolor and some samples of Virginica.

Relationship between sepals and petals of iris flowers

The goal of the second experiment is to verify the existence of relationships be-

tween sepal and petal dimensions of iris flowers. MNMF has been executed on

Iris dataset with mask P4 illustrated in Figure 5.16 with parameter λ = 0.5.

Figure 5.16: Query mask P4 used to verify relationships between sepal and petal
measures of Iris Dataset.

In this example, as well as in the first one, the basis matrix W4 illustrated

in Figure 5.17 preserves the structure imposed by the query mask, and the parts
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W4 =


0.88 0
0.48 0

0 0.95
0 0.31


Figure 5.17: Basis matrix W4 obtained with MNMF, masks P4 and λ = 0.5.

contain significative values. Thus a correlation between the selected features

exists for a subset of samples. Conformity measures confirms this result. In

fact they are close to the maximum value one: Conf ((w4)1, (p4)1) = 0.96 and

Conf ((w4)2, (p4)2) = 0.89.

The subset of samples in which this relationships hold is suggested by QM-

NMF algorithm according to representativeness values of samples. Figure 5.19

shows the representativeness measureReps (xi,W,hi) obtained with MNMF, mask

matrix P4 and λ = 0.5. Using a threshold tR = 5 · 105 most of samples belonging

to class Setosa have been discarded. On the contrary, most of samples belonging

to classes Virginica and Versicolor are preserved. This value is smaller than the

recostraction error on the entire dataset (which is 0.0035).

Further confirmation of this result could be obtained observing the encoding

matrix H4 obtained with MNMF mask P4 (Figure 5.18). Observing the graph

one can figures out that samples from 1 to 50 (belonging to the classe Setosa)

can be represented using only the first bases w1. In fact, the elements in w1

assume almost the maximum value, that is 1, while the elements in w2 assume

values close to zero. This explain low values of representativeness. Moreover this

means that in this subset of data there is a linear relationship between the sepal

features of the Iris, but not between the petal features. On the contrary samples

from 51 to 150 (belonging to Versicolor and Virginica), have been reconstructed

using both bases w1 and w2.

After identifying the subset of samples, original dataset is modified and MNMF

is executed on it. The reconstruction error obtained removing samples that have

not been well reconstructed is 0.0012 smaller than that obtained with the entire

dataset 0.0035.

Even in this case, results confirm that there are linear correlations between

sepal and petal features holding for samples belonging to Versicolor and Virginica.
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Figure 5.18: Encoding matrix H4 obtained with MNMF mask P4, λ = 0.5.

Figure 5.19: Representativeness Reps (xi,W,hi) of samples in Iris dataset com-
puted with MNMF, query mask P4 and λ = 0.5.
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Observations

It is worth to highlight that the threshold tR is correlated to the precision of the

reconstruction of each sample. In fact representativeness of each sample is defined

by Equation 5.16 in terms of inverse of reconstuction error of each sample and

sum of coefficients in encoding matrix H. Thus from examples one and two it

could be pointed out that results obtained in the second experiments have higher

precision than those obtined in the first. From a semantic point of view, this

means that relationships between sepal and petal measures are more significative

than those between lengths and widths.

Data visualization

As it has been widely discussed in subsection 2.2.4, NMF is a dimensionality

reduction technique, where column vectors of W are basis defining the new sub-

space, and coefficients in encoding matrix H specify coordinates of samples in

the new subspace.

When MNMF is adopted, each basis vector wi has a semantic meaning ac-

cording to features that have been selected in it. Moreover when a factorization

rank k equals to two or three is chosen, it is possible to visualize data in the

subspace. Further analysis could be conducted in this space.

Figure 5.20 illustrates data samples represented in the subspace defined by

parts (w3)1 and (w3)2 corresponding to the semantic concepts lengths and widths

respectively. The graph shows that samples are grouped in two well separated

groups. The first group is composed by samples belonging to class Setosa whilst

the second group is composed from samples belonging to classes Versicolor and

Virginica, which are mixed. Moreover, samples in the first group have lenght

values varying in [0.75, 0.87], and widths values varying in [0.4, 0.6]. Instead

samples in the second group have length values varying in [0.87, 0.95], and widths

values varying in [0.3, 0.5] (this values are normalized in L2). Furthermore the

position of points in the space suggests that the first dimension is more important

in defining samples than the second one, in fact samples are more close to the

first axes.

Similar considerations can be derived observing Figure 5.21, that illustrates
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Figure 5.20: Data samples represented in the subspace defined by parts (w3)1 and
(w3)2 corresponding to the semantic concepts lengths and widths respectively.

data samples represented in the subspace defined by parts (w4)1 and (w4)2 corre-

sponding to the semantic concepts sepal and petal dimensions respectively. The

class Setosa is well separed from the others. The sepal distances have more in-

fluence on data than the petal ones, indeed data are more close to the first axis.

Samples belonging to the class Setosa have the biggest sepals ([0.95, 1]) and the

smallest petals ([0.2, 0.4]). The classes Versicolor and Virginica are not well sep-

ared, however the samples belonging to the two classes present differences in the

dimensions of the sepals and the petals. The class Versicolor has samples with

sepals length in [0.8, 0.85], and petals in [0.4, 0.6], whilst the Virginica’s sepals

vary in [0.75, 0.8], and petals in [0.6, 0.7].
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Figure 5.21: Data samples represented in the subspace defined by parts (w4)1

and (w4)2 corresponding to the semantic concepts sepal and petal dimensions
respectively.
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Chapter 6

Priors for Nonnegative Matrix

Underapproximation of

Hyperspectral Images

The third proposal concerns a modification of a constrained non-negative ma-

trix factorization algorithm that has been used to analyze hyperspectral images

(HSI). Basic information on hyperspectral images, together with the application

of factorization processes to analyze them will be detailed in sections 6.1.1 and

6.1.2, respectively. Than the proposed method will be explained together with

its mathematical formulation. Finally, section 6.2 will show the effectiveness of

the proposed method in analyzing four real dataset.

6.1 Proposed method

Hyperspectral images represent the same scene at different wavelengths. They are

widely used in data analysis processes detecting constituent materials represented

in the images. For this purpose NMF has been shown to be a useful analysis

tool. NMU is a recent non-negative matrix factorization algorithm that has been

effectively used to analyze hyperspectral images. In this thesis a modification of

the NMU algorithm has been proposed in order to incorporate prior information

in the factorization process. In particular spatial information of the pixels in the
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images and a sparsity constraint on the abundance matrix1 have been added.

This constrained version of NMU allows to extract materials that are represented

in the HSI in a more efficient way than the classical NMU, and its previous

constrained modifications.

6.1.1 Hyperspectral Images

A hyperspectral image (HSI) is a three dimensional data cube providing the elec-

tromagnetic reflectance of a scene at varying wavelengths, measured by hyper-

spectral remote sensors [Gillis et al., 2012]. Reflectance is the percentage of the

light hitting a material that is then reflected by that material (as opposed to being

absorbed or transmitted) [Shippert, 2003]. Reflectance varies with wavelength for

most materials because energy at certain wavelengths is scattered or absorbed to

different degrees [Smith, 2006]. Some materials will reflect the light at certain

wavelengths, while other materials will absorb it at the same wavelengths.

This property of hyperspectral images is used to uniquely identify constitu-

tive materials in a scene and classify pixels according to materials they contain.

Figure 6.2 shows an hyperspectral datacube of Urban dataset, acquired with the

imaging spectrometer Hymap c©, and the spectral signatures (plots of reflectance

curves: reflectance versus wavelength) for vegetation and soil.

Hyperspectral datacubes can be represented by two dimensional pixel-wavelength

matrices M = [m1,m2, . . . ,mm] ∈ Rn×m
+ . Columns mi ∈ Rn

+ are original im-

ages that have been converted into n-dimensional column vectors (stacking the

columns of the image matrix into a single vector). Rows mj ∈ Rm
+ are the spectral

signatures of the pixels (see Figure 6.2). Each entry mij represents the reflectance

of the i-th pixel at the j-th wavelength.

6.1.2 Non-Negative Matrix Factorization for Hyperspec-

tral Unmixing

The spectral signature of each pixel results from the additive combination of

the non-negative spectral signatures of its constitutive materials [Gillis et al.,

1In hyperspectral imaging abundances are the relative contributions of each material to the
to each pixel.
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Figure 6.1: Example of Hyperspectral Image.

2012]. Due to its part-based representation and non-negativity constraint, NMF

is a suitable tool to analyze hyperspectal images. It is used to identify spectral

signatures of constitutive materials, and classify pixels according to materials

they contain (end-members).

More precisely, given an hyperspectral datacube represented by a two dimen-

sional matrix M ∈ Rn×m
+ , NMF approximates it with the product of two factor

matrices U ∈ Rn×k
+ and V ∈ Rk×m

+ such that the spectral signature of each pixel

(rows of matrix M) is approximated by the additive linear combination of the

spectral signatures of the constitutive materials (rows of matrix V ), weighted by

coefficients uij representing the the abundance of the j-th endmember at the i-th

pixel. For each pixel i, we have:

mi ≈
k∑
j=1

uijvj, (6.1)

where mi are the rows of the data matrix M and vj are the rows of the matrix

V 1.

Figure 6.2 shows NMF approximation of the Hyperspectral datacube of Ur-

1Note that when NMF is used to approximate the rows of the data matrix, row vectors vj

are the bases of the new subspace, and U is the coefficient matrix.
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Figure 6.2: Example of non-negative matrix factorization of a hyperspectral im-
age.

ban dataset1. The abundances of endmembers (columns of U) represent images

in which only pixels belonging to the actual material are visible. The spectral

signatures of constitutive materials are represented by row in V . In the example

of Figure 6.2, mainly six constitutive materials are present: road, grass, dirt, two

kind of roof tops and trees.

6.1.3 Non Negative Matrix Underapproximation

Experimental observations have shown that NMF is not able to correctly separate

the end-members, due to the non-uniqueness of its solutions.

More recently, Gillis and Glineur [2010] have proposed a new algorithm to

1Available at http://www.agc.army.mil/hypercube/
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solve NMF problems sequentially: the Nonnegative Matrix Underapproximation

(NMU). They have shown that NMU outperforms NMF for hyperspectral unmix-

ing for the following reasons:

1. The solution is unique (under some assumptions) [Gillis and Plemmons,

2011];

2. The factorization rank does not need to be chosen a priori;

3. Solutions are sparser than NMF leading to better decomposition into parts

[Gillis and Glineur, 2010].

NMU is based on a recursive approach to solve NMF by imposing the up-

per bound constraint uvT ≤ M to the factor matrices, that ensures their non-

negativity.

Formally, given a data matrix M ∈ Rm×n and a rank 1 ≤ k ≤ min (m,n),

NMU solves the following rank-one optimization problem:

minimize :
∥∥M − uvT

∥∥2

F

subject to : uvT ≤M,

u ≥ 0, v ≥ 0.

(6.2)

where u ∈ Rm
+ and v ∈ Rn

+. A non-negative residual matrix R = M − uvT ≥ 0 is

than obtained, and the same procedure can be recursively applied on the residual

matrices Ri obtained at each iteration. After k steps, NMU provides a rank-k

NMF of the data matrix M .

Further modifications of original NMU algorithm were made by adding prior

information into the model. Particularly the sparsity constraint on the abun-

dance matrix [Gillis and Plemmons, 2013] and spatial information about pixels

[Gillis et al., 2012] have been proposed and their ability in improving the NMU

performances has been shown.

In this thesis a modification of NMU including both sparsity constraint and

spatial information is proposed, and experimental results show the effectiveness of

the method in detecting constitutive materials (end-members) so as to correctly

classify pixels according to materials.
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Figure 6.3: Example of neighbor pixels of a given pixel xi.

6.1.4 Spatial Information

The key idea of the proposed variant is that in each hyperspectral image, neighbor

pixels are likely to contain the same materials. In [Gillis et al., 2012] it has been

demonstrated that the addition of spatial information to NMU improves the

decomposition of the hyperspectral images. Figure 6.3 shows neighboring pixels

of a given pixel xi. In the algorithm the diagonal pixels have not been included

in the neighborhood. However it could be easily modified to include them.

To do so the following regularization term is added to the objective function

(6.2). The aim is to minimize distances (in terms of abundances) between each

pixel and its neighbors:

m∑
i=1

∑
j∈N(i)

|ui − uj| = 2 ‖Nu‖1 , (6.3)

where N (i) is the set of neighboring pixels of pixel i, and N ∈ RK×m is a neighbor

matrix that indicates for each pixel xi its neighbors such that each pair (i, j) of

neighboring pixels is represented by a row in which:

N (k, i) = 1 and N(k, j) = −1 (6.4)
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X =

(
x1 x2 x3

x4 x5 x6

)
N =



1 −1 0 0 0 0
1 0 0 −1 0 0
−1 1 0 0 0 0
0 1 0 0 −1 0
0 1 −1 0 0 0
0 −1 1 0 0 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 0 0 1 −1 0
0 0 0 −1 1 0
0 −1 0 0 1 0
0 0 0 0 1 −1
0 0 −1 0 0 1
0 0 0 0 −1 1
0 0 0 0 0 0


Figure 6.4: Example of neighbor matrix N of a simple matrix X.

with 1 ≤ i < j ≤ m and K is the number of neighboring pairs (K ≤ 4m, because

each pixel has at most 4 neighbors: the pixels in the middle of the image have four

neighbors, on the border three, on the corner only two). Equation 6.1.4 shows a

simple example of neighbor matrix N of a small pixel matrix X. The l1-norm is

more suitable for image analysis due to its ability to preserve the edges, on the

contrary the l2-norm would smooth them out.

6.1.5 Sparsity Information

The key idea of the proposed modification is that each material is present in

a relatively small number of pixel, and each pixel contains a small number of

constitutive materials. Thus it is possible to constraint column vectors of U to

possess only few non-zero elements. Gillis and Plemmons [2013] demonstrate that

sparse NMU leads to better decompositions than standard NMU. A regularization

term, based on the l1-norm heuristic approach, is added to the objective function

(6.2), in order to minimize the non-zero entries of u: ‖u‖1 where ‖u‖2 = 1.
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6.1.6 Optimization problem

Adding the sparsity constraint and the spatial information to NMU (6.2), leads

to the following minimization problem:

min
u∈Rm

+ ,v∈Rn
+

∥∥M − uvT
∥∥2

F
+ ϕ ‖u‖1 + µ ‖Nu‖1 , (6.5)

such that ‖u‖2 = 1, uvT ≤M.

The objective function is composed by three terms: the first one is the classical

mean of squared residuals, the second term imposes the sparsity to the abundance

matrix U , and the third term adds spatial information. The regularization pa-

rameters µ and ϕ are used to balance the influence of the three terms. We will

refer to (6.5) as Priors in NMU (PNMU).

In [Gillis and Glineur, 2010] approximate solutions for the NMU problem 6.2

are obtained by solving the Lagrangian dual

max
Λ≥0

min
x≥0,y≥0

L (x, y, Λ) =
∥∥M − xyT

∥∥2

F
+ 2

∑
i,j

(
xyT −M

)
ij
Λij, (6.6)

where Λ ∈ Rm×n is the matrix containing the Lagrangian multipliers of the un-

derapproximation constraints1. The authors prove that for a fixed Λ, the problem

minx≥0,y≥0 L (x, y, Λ), called Lagrangian Relaxation of 6.2, is equivalent to

max
x≥0,y≥0

xT (M − Λ) y, such that ‖x‖2 = ‖y‖2 = 1. (6.7)

In order to inject prior information in the factorization process, the regular-

ization terms for the sparsity and spatial information have been added to 6.7.

For a fixed y approximate solutions of (6.5) can be obtained by solving the

1In the following variables x and y are used to indicate the column vectors ur and vr for
r = 1 . . . k
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subproblem:

max
‖x‖2=1,x≥0,‖y‖2=1,y≥0

xT (M − Λ) y − ϕ ‖x‖1 − µ ‖Nx‖1︸ ︷︷ ︸
= f (x)

 . (6.8)

6.1.7 Algorithm

Algorithm 4 formally describes the alternating scheme to solve the NMU problem

with sparsity and spatial constraints (6.5).

Alternate scheme

A simple exact block-coordinate descent scheme is used to find good solutions

to problem (6.8). This is achieved by applying the following alternating scheme

that optimizes one block of variables while keeping the other fixed:

1. y ← max((M−Λ)Tx,0)
‖max((M−Λ)Tx,0)‖

2

(lines 21 and 22);

2. x← P (Lx+∇f (x)) (from line 12 to line 12),

where L is the Lipschitz constant of ∇f (x) which is equals to the largest

eigenvalue of B and with

P (s) =


max(0,s)
‖max(0,s)‖2

if ‖max (0, s)‖2 ≥ 1

max (0, s) otherwise;

3. Λ← max
(
0, Λ+ αk

(
xyT −M

))
(from line 24 to line 30).

The variables y and Λ are updated as in the original NMU algorithm, whilst

the update of x has been modified in order to take into account the penalty terms.

The update of x involves the derivative of L1-norm that is non-differentiable.

Gillis et al. [2012] suggest to use iteratively re-weighted least squares (IRWLS )

to approximate L1-norm. After k iteration it is possible to replace ‖Nx‖1 with:

‖Nx‖1 ≈ xT

(
NTW (k)TW (k)N︸ ︷︷ ︸

= B

)
x, (6.9)
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where W (k) = diag
(
W (k)

)
and w

(k)
i =

(∣∣Nx(k)
∣∣
i
+ ε
)− 1

2 (lines 12 and 32).

For this reason gradient descent equation (line 17) becomes:

∇f (x) = (M − Λ) y − ϕ− µ (Bx) . (6.10)

Moreover since B is very large (but sparse), it is computational costly to

exactly compute its largest eigenvalue, so Gillis et al. [2012] propose to use several

steps of the power method (line 13) to understimate the Lipschitz constant L. In

this way the algorithm takes larger steps.

Initialization

Variables (x, y, Λ) have been initialized with an approximate solution of NMU

using the algorithm from [Gillis and Plemmons, 2013] (line 4).

Heuristic for the choice of the penalty parameter µ

The heuristic for the choice of the penalty parameter µ proposed in [Gillis et al.,

2012], has been used (line 15):

µ = µk
‖Ay‖∞
‖Bx‖∞

, (6.11)

for some µk ∈ [0, 1].

Heuristic for the choice of the penalty parameter ϕ

The heuristic for the choice of the penalty parameter ϕ proposed in [Gillis and

Plemmons, 2013], has been used (line 7):

ϕ = ϕk ‖(M − Λ) y‖∞ , (6.12)

for some ϕk ∈ R+.
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Algorithm 4 NMU incorporating spatial and sparseness information

Require: M ∈ Rm×n
+ , k ∈ N+, ϕk ∈ R+, 0 ≤ µk ≤ 1, ε ∈ R+,maxiter, iter.

Ensure: (U, V ) ∈ Rm×k
+ ×Rk×n

+ s.t. UV ≤M with U containing sparseness and

locality information.

1: Generate the matrix N according to (6.4);

2: for k = 1 : r do

3: z = rand(n,1); % Estimate of the eigenvector of B associated with the

largest eigenvalue

4: [x, y, Λ] = rank-one underapproximation(M); % Initialization of (x, y) with

an approximate solution to NMU (6.2)

5: uk ← x; vk ← y; x← x
‖x‖2

; y ← y
‖y‖2

;

6: wi = (|Nx|i + ε)−0.5 ; W = diag(w); % Initialization of IRWLS weights

7: ϕ = ϕk ‖(M − Λ) y‖∞ % Setting of the sparsity parameter ϕ

8: x = max (0, (x− ϕk)) ; x = x
‖x‖2

;

9: for p = 1 : maxiter do

10: A = M − Λ;

11: % Update of x

12: B = (WN)T (WN) ;

13: for l = 1 : iter z = Bz; z = z
‖z‖2

; %Power method

14: for l = 1 : iter do

15: µ = µk
‖Ay‖∞
‖Bx‖∞

; % Setting of the spatial parameter µ

16: L = max
(
ε, µ

(
zTBz

))
% Approximated Lipschitz constant

17: ∇f(x) = Ay − µBx− ϕk;
18: x← P (Lx+∇f (x)) ;

19: end for

20: % Update of y

21: y ← max
(
0, ATx

)
;

22: if ‖y‖2 6= 0 then y ← y
‖y‖2

;

23: %Update of Λ and save (x, y)

24: if x 6= 0 and y 6= 0 then

25: σ = xTAy; uk ← x; vk ← σy;

26: Λ← max
(

0,Λ− 1
j+1

(
M − ukvT

k

))
;

27: else

28: Λ← Λ
2
;

29: x← uk
‖uk‖2

; y ← vk
‖vk‖2

;

30: end if

31: % Update of the weights

32: wi = (|Nx|i + ε)−0.5 ; W = diag(w);

33: end for

34: M = max
(
0,M − ukvT

k

)
;

35: end for
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6.2 Experimental Results

In this section, experiments which have been conducted are shown. Four datasets,

differing for the total number of pixels and materials have been used, in order to

test the effectiveness of the proposed method in correctly detecting materials in

images and reduce noise in the basis elements.

All the numerical results have been obtained by implementing the algorithms

in Matlab 7.8 codes and running them on a machine equipped with an Intel(R)

Xeron(R) CPU E5420 Dual Core 250 GHz, RAM 8.00 GB

It has to be pointed out that parameters ϕ for the sparsity information and µ

for local information strongly influence the results and the convergence of the al-

gorithm. For this reason, different run of the algorithm 4, varying the parameters

ϕ and µ, have been performed.

Differently from classical NMU that is completely unsupervised, NMU with

prior information requires human supervision for tuning this parameters. In the

following sections the influence of the parameters on the results will be discussed.

6.2.1 Hubble

Hubble database consists of 100 hyperspectral images of the Hubble telescope1

composed by 128 × 128 pixels. Figure 6.5 shows the eight materials the images

are composed of: Honeycomb Side, Copper Stripping, Green Glue, Aluminum,

Solar Cell, Honeycomb Top, Black Rubber Edge and Bolts.

Figure 6.5: Materials of the Hubble teleschope. From left to right: Honey-
comb Side,Copper Stripping, Green Glue, Aluminum, Solar Cell, Honeycomb
Top, Black Rubber Edge and Bolts.

1Available at http://www.agc.army.mil/hypercube/
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The following set of parameters have been used for the experiment: maxiter =

500, ϕk ∈ [0, 1], µk ∈ [0, 1], with a step of 0.1, iter = 10 and a rank k = 8.

Figure 6.6 shows the effect of the parameters ϕ and µ on the results of PNMU.

High values of the locality parameter µ lead to a loss of the sharpness in the abun-

dance images (see Figure 6.6 (b)), whilst high values of the sparsity parameter

ϕ lead to a loss of information in the abuncance images that does not correctly

classify pixels belonging to different materials (see Figure 6.6¡ (a)).

Moreover it has to be pointed out that the sparsity and locality parameters

influence each other. In fact when the sparsity is high there are few pixels to be

taken into account, and the locality information applyied to them enhances its

influence. Figure 6.7 shows an example of bases obtained with a high value of

locality information µk = 0.6 and high sparisity ϕk = 0.6. As it could be observed

the borders of the images are lost, the images are confused and the algorithm is

not able to recognize the pure materials.

Figure 6.8 shows a comparison of the bases obtained with standard NMU

(a), NMU with sparsity constraint (b), NMU with local information (c), PNMU

(d). It could be observed that the standard NMU does not converge to a good

solution, since bases does not represent pure materials, but a mix of them. The

sparsity constraint improves this result leading to more separate bases. However

it could be noted that the segments in the images are dashed. When local infor-

mation is added to NMU, the bases have well defined borders, but materials are

more mixed than in the sparse case. Finally, when both the sparsity and local

prior informations are added to NMU, bases are more sparse but the borders are

more clear. Moreover PNMU is able to separate more materials, giving a better

decomposition.

6.2.2 Cuprite

The second dataset that has been used is Cuprite dataset1. It is more complex

than Hubble dataset in terms of number of pixels, and details of the depicted

images. It consists of 188 images with 250× 191 pixels, and in literature, about

20 different materials (minerals) have been identified Gillis et al. [2012]. Cuprite

1Available at http://speclab.cr.usgs.gov/PAPERS.imspec.evol/aviris.evolution.html.It
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(a) Basis elements of PNMU for Hubble telescope when only the local infor-
mation is added to NMU (µk = 0 and ϕk = 0.1).

(b) Basis elements of PNMU for Hubble telescope when only the sparsity cos-
traint is added to NMU (µk = 0.1 and ϕk = 0).

Figure 6.6: Comparison of bases obtained with PNMU varying the locality and
sparsity constraints.
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Figure 6.7: Basis elements of PNMU for Hubble telescope with µk = 0.6 and
ϕk = 0.6.

has been used to show the effectiveness of the method, in detect materials and

classify image pixels according to the materials they belong to, when it is used in

real contexts.

The experiments have been runned with the following set of parameters:

maxiter = 500, iter = 10, ϕk ∈ [0, 1], µk ∈ [0, 0.5], with a step of 0.05 and

a rank k = 21.

The locality parameter µ is strongly dependent by the complexity of the scene

that is depicted in the images. In fact it enhances the membership values of the

neighborhood of a given pixel, to the material to which the pixel belongs. The

more the images are detailed, the stronger is the influence of the local information

on the factorization results. For this reason the experiments have been runned

with a maximum value of µk = 0.5, higher values give not significative results,

and with a small step. Figure 6.9 shows basis elements obtained with PNMU

with parameters µk that regulates the local information equals to the maximum

value 0.5. It could be observed that the results are poor, and the basis images

are blurry and sparse (even if sparsity has not been imposed to the algorithm).

Similarly, high values of sparsity lead to poor results. Figure 6.10 shows basis

elements obtained with PNMU with parameters ϕk, that regulates the sparsity

of the bases, equals to the maximum value 1. The method does not converge,

some bases have few non-zero pixels belonging to the actual material, and the
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(a) Basis elements of NMU for Hubble telescope
(PNMU with parameters µk = 0 and ϕk = 0).

(b) Basis elements of NMU with sparsity constraint
for Hubble telescope (PNMU with parameters µk =
0 and ϕk = 0.2).

(c) Basis elements of NMU with local information for
Hubble telescope (PNMU with parameters µk = 0.3
and ϕk = 0).

(d) Basis elements of PNMU for Hubble telescope
with parameters µk = 0.3 and ϕk = 0.2.

Figure 6.8: Comparison of bases obtained with NMU variants for Hubble dataset.
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Figure 6.9: Basis elements of PNMU for Cuprite dataset with parameters µk = 0.5
and ϕk = 0

remaining bases do not capture any material.

Figure 6.10: Basis elements of PNMU for Cuprite dataset with parameters µk = 0
and ϕk = 1.

As it has been previously discussed with Hubble dataset, sparsity and locality

parameters influence each other. Indeed the higher the sparsity is, the less the

pixels in the image are, so the influence of the locality parameter, on the final

results, exponentially grows. Figure 6.11 shows the first six bases obtained fixing

the locality (ϕk = 0.5) and varying the sparsity (µk = 0.1, 0.2, 0.3, 0.4, 0.6). Small

variations of the sparsity cause big losses of the clarity in the bases. For this reason

a small step is used to vary the parameters.
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(a) First six basis elements of PNMU for Cuprite
dataset with parameters µk = 0.5 and ϕk = 0.1.

(b) First six basis elements of PNMU for Cuprite
dataset with parameters µk = 0.5 and ϕk = 0.2.

(c) First six basis elements of PNMU for Cuprite
dataset with parameters µk = 0.5 and ϕk = 0.3.

(d) First six basis elements of PNMU for Cuprite
dataset with parameters µk = 0.5 and ϕk = 0.4.

(e) First six basis elements of PNMU for Cuprite
dataset with parameters µk = 0.5 and ϕk = 0.6.

Figure 6.11: Study of the influence of the locality term on the bases when the
sparsity grows.
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The proposed method has been compared with the standard NMU algorithm

Gillis and Glineur [2010] and its variants with sparsity information Gillis and

Plemmons [2013] and local information Gillis et al. [2012] on Cuprite dataset.

Figures 6.12 and 6.13 show the basis elements obtained with the four variants

of the NMU algorithm. Figure 6.12(a) reports the bases obtained with standard

NMU, it could be observed that the images are not clear, and the bases contain

noise pixels. The sparsity constraint on the basis vectors allow to remove the

noise, but nevertheless the borders of the part of the images that belong to the

specific materials are not well defined (figure 6.12(b)). Local information about

pixels in the images helps to obtain better results in term of edge definition, but

the basis images are still noisy (figure 6.13(a)). Combining sparsity constraint

and local information in the factorization process improves the results. Figure

6.13(b) shows the bases obtained with PNMU for Cuprite dataset with parameters

µk = 0.1 and ϕk = 0.2. The images are clear, there is not noise, and the edges

are well defined.

6.2.3 Urban

The HYDICE Urban dataset1 consists of 210 images at different spectral bands,

each composed by 307 × 307 pixels. Data are mainly composed of 6 materials:

road, dirt, trees, roofs, grass and metal.

The following set of parameters have been used for the experiment: maxiter =

500, ϕk ∈ [0, 1], µk ∈ [0, 1], with a step of 0.1, iter = 10 and a rank k = 6.

Without loss of precision, the dataset has been pre-processed reducing its

dimensionality to facilitate the computation. For each image the number of pixels

has been halved considering only one pixel every two.

Figure 6.14 shows the best solution obtained with µk = 0.1 and ϕk = 0.3. Re-

sults suggest that even when the value of locality parameter µ is low (µk = 0.1)

it gives too much information to the process leading to shade images. Moreover

a justification to this result is given by the complexity of the depicted scene.

When the selected areas are small (as in the case of the fifth and sixth bases)

the influence of the local information is stronger than in the other bases. How-

1Available at http://www.agc.army.mil/hypercube/

101



(a) Basis elements of NMU for Cuprite dataset (PNMU with parameters µk = 0 and
ϕk = 0).

(b) Basis elements of NMU with sparsity constraint for Cuprite dataset (PNMU with
parameters µk = 0 and ϕk = 0.2).

Figure 6.12: Comparison of bases obtained with NMU and NMU with sparsity.
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(a) Basis elements of NMU with local information for Cuprite dataset (PNMU with
parameters µk = 0.1 and ϕk = 0).

.
(b) Basis elements of PNMU for Cuprite dataset with parameters µk = 0.1 and ϕk =
0.2.

Figure 6.13: Comparison of bases obtained with NMU with local information and
with PNMU
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ever it is worth to note that materials in the bases are well separated. Further

improvements will be addressed to separately tune parameters µ and ϕ for each

basis.

Figure 6.14: Basis elements of PNMU for Urban dataset with parameters µk = 0.1
and ϕk = 0.3.

6.2.4 San Diego airport

The San Diego airport dataset consists of 158 images composed by 400×400 pix-

els. There are four basic types of materials: road surfaces, roofs, trees and grass,

but there are mainly three different types of road surfaces [Gillis and Plemmons,

2013].

The same pre-processing phase, as for Urban dataset, has been conducted to

accelerate the computation.

The following set of parameters have been used for the experiment: maxiter =

300, ϕk ∈ [0.2, 0.3] with a step of 0.01, µk ∈ [0, 1] with a step of 0.1, iter = 10,

and a rank k = 8.
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As for the Urban dataset, the complexity of the scene compromises the ac-

curacy of the results. Particularly PNMU is able to recognize roofs in the first

basis, roads of type two in the forth basis, grass in the third, and roads of type

one in the second mixed with other materials. It is clear that basis two needs

more sparsity, whilst in the case of basis one and seven local information has too

much influence, and the images result blurry.

Bases three, six and eight have captured some outliers. This behaviour could

be prevented by using a lower bound on the density of u.

Figure 6.15: Basis elements of PNMU for San Diego airport dataset with param-
eters µk = 0.01 and ϕk = 0.27.

105



Chapter 7

Conclusions and Future Work

In this thesis the use of matrix factorization as intelligent data analysis tool, has

been studied. Particularly three different approaches have been proposed.

NMF has been widely used in document clustering applications, due to its

capability to suggest interpretable concepts to group data. However, NMF algo-

rithms are iterative, and very sensitive to the initial basis and encoding matrices.

The use of the subtractive clustering (SC) schema has been proposed because,

differently from other schemes, it does not require the specification of the number

of clusters (and the corresponding rank used in factorization) but other hyper-

parameters that may be more significant in problems where the number of clusters

cannot be known a-priori. The experimental results, based on benchmark doc-

ument collections, provide some interesting properties emerging from the use of

SC for initializing the factorization algorithms. Particularly, it has been shown

that SC is able to suggest a suitable rank k for detecting interpretable concepts

from documents.

A novel NMF algorithm, namely Masked NMF has been proposed in order

to overcome the limitations of classical NMF and to introduce knowledge in the

factorization process, making the proposed MNMF algorithm a useful tool for

IDA. The query-based approach has been adopted to allow the analyst to specify

what parts she is interested to discover. As shown in the numerical examples, the

proposed approach is able to extract the subset of data that are actually repre-

sented by the parts, discarding the data in the matrix X that do not find a neat

representation by the parts and returning the subset of samples that contains
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the selected parts. Future work can be addressed to assess the performance of

the query based MNMF approach on different real datasets as well as to further

investigate its capability of selecting local features hidden in data. Particularly,

an automatic tool to support the analyst in selecting parts by mask matrices will

be developed. The problem of find the best mask according to some criteria is a

combinatorial problem with an exponential complexity. A genetic algorithm to

optimize the mask matrix P , searching in the space of all the possible combina-

tions of P , will be investigated.

A variant of standard NMU applyied to hyperspectral images has been pro-

posed in order to use prior information into the factorization process. Sparsity

constraint on the abundance matrix U has been shown to lead to better results

than standard NMU. Local information about pixels were shown to reduce noise,

because pixel belonging to the neighborhood are more willing to belong to the

same material. In this thesis a variant of NMU, named PNMU, that adds both

sparsity and local information to the process has been proposed. Experiments

on the Hubble telescope dataset have shown the effectiveness of the method in

detecting materials represented in images, and the influence of the priors on the

results. Additional experiments on Cuprite dataset have shown the effectiveness

of the method when real data are considered. Further experiments on Urban

dataset and San Diego airport dataset have shown some limits of the proposed

method. Particularly the necessity of allow the separate tuning of the sparsity

and locality parameters for the different bases, has emerged. For this reason

further work will be addressed in this direction.
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