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Abstract

In this paper, we find the critical exponent for global small data solutions to the Cauchy problem in Rn, for
dissipative evolution equations with power nonlinearities |u|p or |ut |

p,

utt + (−∆)δut + (−∆)σu =

|u|p,|ut |
p.

Here σ, δ ∈ N \ {0}, with 2δ ≤ σ. We show that the critical exponent for each of the two nonlinearities is related to
each of the two possible asymptotic profiles of the linear part of the equation, which are described by the diffusion

equations:

vt + (−∆)σ−δv = 0,

wt + (−∆)δw = 0.

The nonexistence of global solutions in the critical and subcritical cases is proved by using the test function method
(under suitable sign assumptions on the initial data), and lifespan estimates are obtained. By assuming small initial
data in Sobolev spaces, we prove the existence of global solutions in the supercritical case, up to some maximum
space dimension n̄, and we derive Lq estimates for the solution, for q ∈ (1,∞). For σ = 2δ, the result holds in any

space dimension n ≥ 1. The existence result also remains valid if σ and/or δ are fractional.
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1. Introduction

In this paper, we look for the critical exponents for global small data solutions toutt + (−∆)δut + (−∆)σu = |u|p, t ≥ 0, x ∈ Rn,

(u, ut)(0, x) = (u0, u1)(x),
(1)
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with σ ∈ N \ {0}, δ ∈ N, and to utt + (−∆)δut + (−∆)σu = |ut |
p, t ≥ 0, x ∈ Rn,

(u, ut)(0, x) = (u0, u1)(x),
(2)

with σ, δ ∈ N \ {0}. When 2δ ≤ σ, we prove that these critical exponents are, respectively,

p0 := 1 +
2σ

(n − 2δ)+
, (3)

p1 := 1 +
2δ
n
. (4)

By critical exponent we mean that suitable global small data solutions exist in the supercritical case, whereas global
solutions cannot exist, under suitable sign assumption on the data, in the critical and subcritical case. The term (−∆)δut

represents a damping term. When δ > 0, the damping is sometimes said to be structural (or strong). In the case n ≤ 2δ,
the notation p0 = ∞ in (3) (see Notation 4 in Section 1.3) denotes that the nonexistence result holds for (1) for
any p > 1.

Exponents (3) and (4) are easily found by homogeneity arguments when 2δ ≤ σ, whereas the same arguments
lead to the exponents 1 + 2σ/(n − σ) and 1 + σ/n, respectively, for (1) and (2), when 2δ ≥ σ. Indeed, by using a
quite standard test function method, we prove that global, weak, solutions cannot exist, under suitable sign assumption
on the data, for critical and subcritical powers, in all these cases (Theorems 1 and 2), and we prove some lifespan
estimates for the local solutions.

On the other hand, it is well-known that existence of global small data solutions may not be proved in the whole
supercritical range, for some partial differential equations, as a counterpart of a nonexistence result related to ho-
mogeneity arguments. For instance, the critical exponent 1 +

√
2 for the existence of global small data solutions to

the semilinear wave equation utt − ∆u = |u|p in space dimension n = 3 (see [27]) is strictly greater than the critical
exponent 2 found by homogeneity arguments [29] (see [19, 20], and the reference therein, for the existence exponent
in higher space dimension).

By the converse, in 2001, G. Todorova and B. Yordanov [46] proved global existence of small data solution for
the semilinear damped wave equation (σ = 1 and δ = 0 in (1)),utt − ∆u + ut = |u|p, t ≥ 0, x ∈ Rn,

(u, ut)(0, x) = (u0, u1)(x),
(5)

in the supercritical range p > 1+2/n, by assuming small data in weighted energy space. Here 1+2/n is Fujita exponent,
obtained by homogeneity arguments (see, in particular, [47]). By only assuming data in Sobolev spaces, the existence
result was proved in space dimension n = 1, 2 in [25], by using energy methods, and in space dimension n ≤ 5 in [38],
by using Lr − Lq estimates, 1 ≤ r ≤ q ≤ ∞.

Indeed, the main difference with respect to the wave equation with no dissipation, is that the damping term ut in (5)
produces the diffusion phenomenon. This effect modifies the asymptotic profile of the solution to the corresponding
linear problem so that it can be described by the solution to a heat equation with suitable initial data (see [23] and,
later, [22, 30, 40]).

We mention that, recently, the first author, together with S. Lucente and M. Reissig [12, 14], studied a wave
equation with time-dependent dissipation, for which the existence exponent coincides with Fujita exponent in space
dimension n = 1, 2, and it is larger than this latter in (odd) space dimension n ≥ 3.

Having in mind that the asymptotic profile of solutions to the linear part of the equation influences the critical
exponent for the problem with power nonlinearity, we consider the linear evolution equation related to models (1)
and (2): utt + (−∆)δut + (−∆)σu = 0, t ≥ 0, x ∈ Rn,

(u, ut)(0, x) = (u0, u1)(x).
(6)
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For any δ ≥ 0, the equation in (6) is a dissipative σ-evolution equation (it is called, sometimes, 2σ-th order damped
wave equation, or with other names). In particular, its energy (see Notation 2 in Section 1.3)

E(t) =
1
2
∥ut(t, ·)∥2L2 +

1
2
∥|D|σu(t, ·)∥2L2

is non-increasing, due to:
E′(t) = −∥|D|δut(t, ·)∥2L2 .

Moreover, if 2δ ∈ [0, σ) (effective damping, according to the classification introduced in [9]), the solution to (6) may
be written as the sum of two terms, whose asymptotic profiles as t → ∞ are described by the solutions to the two
diffusion problems [7, 28]: vt + (−∆)σ−δv = 0,

v(0, x) = f (u0, u1, δ),
(7)wt + (−∆)δw = 0,

w(0, x) = g(u0, u1, σ, δ),
(8)

for suitable f , g. In the limit case δ = 0, the asymptotic profile of u is always described by the solution to (7)
(since w(t, x) = e−tw(0, x)). Therefore, in view of our previous discussion, when 2δ ∈ [0, σ), it is a natural expectation
that global existence of small data solutions to (1) holds in the supercritical range p > p0 (as proved in [46] for δ = 0
and σ = 1). The second, natural, question that arises is if global existence of small data solutions to (2) holds in the
supercritical range p > p1. In particular, this second question is meaningful only if δ > 0 (since p1 = 1 for δ = 0).

The main goal of our paper is to give a positive answer to these questions.
The answer is positive in the easier, limit, case 2δ = σ (see [42]), even if the solutions to (7) and (8) no longer

describe the asymptotic profile of the solution to (6). On the other hand, in the case 2δ > σ, the asymptotic profile
of the solution is completely different, in particular, the wave structure appears and oscillations come into play (the
case σ = δ = 1 has been studied into details by R. Ikehata [24]), consistently with the classification introduced in [9].
For this reason, if 2δ > σ we cannot expect, in general, an existence result in the whole supercritical range p >

1+ 2σ/(n−σ)+ in (1) or p > 1+σ/n in (2), as it happened for the semilinear wave equation. Moreover, when δ > σ,
completely different phenomena appear in the linear equation, with respect to the case δ ∈ [0, σ] (see Section 9).

In order to prove our existence result for 2δ ∈ [0, σ), we derive suitable, sharp, decay estimates for the linear
evolution problem (6). The sharpness of the estimates for (6) is guaranteed by the diffusion phenomenon, i.e. by the
sharpness of the estimates for the solutions to (7) and (8). These linear estimates can be easily extended, in the limit
case 2δ = σ.

Our existence result remains valid in the supercritical case, even for non integer values of σ, δ, if we denote by
(−∆)b = |D|2b, the fractional Laplacian operator defined by its action |D|2b f = F−1(|ξ|2b f̂ ), where F is the Fourier
transform with respect to the space variable, and f̂ = F f (see Notation 2 in Section 1.3), and we replace the usual
Sobolev spaces Wm,q with Bessel potential spaces Hm,q, in our statements, when m is not an integer. However, if the
exponents σ, δ are non-integer, then the test function method cannot be applied, in general, to prove the non existence
counterpart of the existence result.

In the case of structurally damped waves with power nonlinearity |u|p, i.e. σ = 1 and δ ∈ (0, 1] in (1), the first
global existence result has been obtained by the first author and M. Reissig [15] in low space dimension, by using
energy estimates. For 2δ ∈ (0, 1], the existence critical exponent was p0 = 1 + 2/(n − 2δ)+, whereas for 2δ ∈ (1, 2],
the existence of global small data solutions was proved only for p > 1 + (1 + 2δ)/(n − σ)+. In particular, in the
case σ = δ = 1, there appeared a gap between the exponent 1+ 3/(n− 1) and the nonexistence exponent 1+ 2/(n− 1)
found by homogeneity arguments and test function method.

By taking advantage of some linear Lr − Lq estimates, 1 ≤ r ≤ q ≤ ∞, obtained in [39], the result for 2δ ∈ (0, 1]
was later extended by the authors [8] to higher space dimensions, up to some maximum dimension, monotonously
tending to∞ as 2δ→ 1.
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The difficulty in dealing with higher space dimension is related to the loss of regularity appearing when one
deals with Lq − Lq estimates, with q ∈ (1, 2). Indeed, these estimates come into play in a natural way to deal with
power nonlinearities |u|p, when p ∈ (1, 2), and the critical exponent eventually becomes smaller than 2 in high space
dimension n (for instance, Fujita exponent 1 + 2/n is smaller than 2 in space dimension n ≥ 3).

The loss of regularity for Lq − Lq estimates, with q ∈ (1, 2), is related to the wave structure of the equation at high
frequencies, as studied into details in [38] for (5). However, the presence of the structural damping in (6), when δ > 0,
generates a smoothing effect on the solution, which does not appear for the classical damping ut. This smoothing
effect allows us to recover the additional regularity by using estimates which are singular at t = 0. The singularity
order is proportional to n(σ− 2δ)/2δ, and it vanishes at σ = 2δ. This effect explains, roughly speaking, the possibility
to employ these estimates in higher space dimensions when σ/(2δ) tends to 1.

We conclude this overview, citing a few results about damped evolution operators, with σ > 1. The linear damped
plate equation without rotational inertia corresponds to take σ = 2 in (6). On the other hand, linear estimates for
the damped plate equation with rotational inertia −∆utt, for which a regularity-loss type decay appears, has been
investigated in [1, 3, 5, 45].

A general result for linear evolution equations, which includes model (6), has been recently obtained in [4].
This result can be easily applied to study global existence of small data solutions for the problem with power
nonlinearity |u|p, but in absence of more general Lr − Lq estimates, global existence for all supercritical expo-
nents p > p0 = 1 + 2σ/(n − 2δ)+ could only be proved, following the ideas in [25], in low space dimension.

For several existence/nonexistence and blow-up results for higher order nonlinear equations, not only of parabolic
type, but also of hyperbolic type, and for dispersion and Schrödinger equations, we address the reader to the book
of V.A. Galaktionov, E.L. Mitidieri and S.I. Pohozaev [18]. In particular, higher order diffusion equations (see later,
(10)) are considered in Section 2.8 in [18] (see also [17]).

Finally, we mention that the first author and E. Jannelli recently found an explicit way to construct a dissipative
term for any linear higher order hyperbolic equation and to obtain the long time decay estimates [11] for the solution
of the related Cauchy problem, providing the basic tool to investigate small data global solutions in presence of a
power nonlinearity.

1.1. Motivation for this paper

The main motivation for this paper is related to the “shape” of the two critical exponents for problems (1) and (2).
It is well-know that critical exponents for the existence of small data global solutions are related to the decay rate of
the solution in suitable space, which are fixed to deal with the nonlinearity. The linear equation (6) has two possible
types of decay rates, each one related to one of the two diffusion problems in (7)-(8), in particular, to its scaling
properties (see Section 2.3). According to which norm is considered for the solution, one or the other profile appears.

In this paper, we show that the critical exponent p0 in (3) for problem (1) is related to the scaling properties of the
operator in (7) with nonlinearity |I2δv|p, namely,

vt + (−∆)σ−δv = |I2δv|p. (9)

Here I2δ stands for the Riesz potential, roughly speaking, the inverse of (−∆)δ (see later, Notation 2 in Section 1.3).
Equation (9) is formally obtained by deleting utt in (1) and setting v = (−∆)δu. The well-known Riesz potential
mapping properties motivate why no existence result holds if n ≤ 2δ.

On the other hand, the critical exponent p1 in (4) for problem (2) is related to the scaling of the operator in (8)
with nonlinearity |w|p, namely,

wt + (−∆)δw = |w|p. (10)

This latter equation is formally obtained by deleting (−∆)σu in (2) and setting w = ut.
This interesting phenomenon only appears in the case of structural damping, i.e. if δ > 0 (since (10) reduces to an

ordinary differential equation if δ = 0).
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The second motivation for this paper is to obtain sharp Lr − Lq estimates, with 1 < r ≤ q < ∞, for the linear
problem, and optimal estimates for the Lq norm of the solution and its time derivative, with q ∈ (1,∞), for the
nonlinear problem. In the special case σ = 2δ, this task can be easily accomplished, also for 1 ≤ r ≤ q ≤ ∞ (see [6]
for σ = 1 and fractional δ = 1/2). On the other hand, several difficulties appear if 2δ < σ. In particular, apart
from the special case σ = 1 which we consider in Section 8 (for which L1 − L1 and L∞ − L∞ linear estimates are
available), we rely on a multiplier theorem (Theorem 10). In particular, we show how the smoothing effect created by
the structural damping allows to use linear estimates with a singularity at t = 0 of order lesser than 1, when dealing
with the nonlinear problem.

As an additional benefit, thanks to the obtained Lr − Lq estimates in the case of non integer powers σ and/or δ,
the maximum space dimension for which we may state our global existence result for any supercritical power, tends
to ∞ as σ − 2δ → 0, allowing us to avoid the restriction on the space dimension, coming from to the usual Sobolev
embeddings Hk ⊂ L∞, n < 2k (see Remark 2.4).

1.2. Two sample models

Before going into details of our result, we present two sample models, to which our result applies, setting δ = 1
and σ = 2, 3, in (1) and (2).

Example 1.1. Let us consider the semilinear plate equation with strong damping:

utt + ∆
2u − ∆ut =

|u|p,|ut |
p.

The critical exponent is 1 + 4/(n − 2)+ for the power nonlinearity |u|p, and 1 + 2/n for the power nonlinearity |ut |
p.

Assuming u1 sufficiently small in L1 ∩ L∞, and u0, together with its first and second derivatives, sufficiently small
in L1 ∩ L∞, we find global existence of small data solutions to (1), for any space dimension n ≥ 3 and power p >

1 + 4/(n − 2), and to (2), for any space dimension n ≥ 1 and power p > 1 + 2/n, and we derive Lq estimates for the
solution, for any q ∈ [1,∞] (Theorem 5). Global solutions cannot exist, under a suitable sign assumption on u1, in
space dimension n = 1, 2 for any p > 1, and in space dimension n ≥ 3, for any p ∈ (1, 4/(n − 2)] (Theorem 1), and in
space dimension n ≥ 1, for any p ∈ (1, 1 + 2/n] (Theorem 2), respectively.

Example 1.2. Let us consider:

utt − ∆
3u − ∆ut =

|u|p,|ut |
p,

(11)

in space dimension n = 3. The critical exponent is 7 for the power nonlinearity |u|p, and 5/3 for the power nonlinear-
ity |ut |

p. These exponents correspond to the critical exponents of the problems

vt + ∆
2v = |I2v|p,

wt − ∆w = |w|p,

respectively (see (9) and (10)). Assuming u0 and u1 sufficiently small in L1 ∩ L∞, together with their derivatives, up
to the order 5 and 2, respectively, we find global existence of small data solutions to (1) and (2), in the supercritical
ranges p > 7 and p > 5/3, respectively, and we derive Lq estimates of the solution for any q ∈ (1,∞) (Theorems 6
and 7). Additional details are given in Section 2.4.

Global solutions cannot exist, under a suitable sign assumption on u1, for any p ∈ (1, 7] (Theorem 1) and for
any p ∈ (1, 5/3] (Theorem 2), respectively.
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1.3. Notation

Through this paper, we use the following.

Notation 1. Let f , g : Ω → R be two functions. We use the notation f ≈ g if there exist two constants C1,C2 > 0
such that C1g(y) ≤ f (y) ≤ C2g(y) for all y ∈ Ω. If the inequalities hold in a neighborhood of some ȳ ∈ Ω, we use the
notation f ∼ g (as y→ ȳ).

If the inequality is one-sided, namely, if f (y) ≤ Cg(y) (resp. f (y) ≥ Cg(y)) for all y ∈ Ω, then we write f ≲ g
(resp. f ≳ g).

Notation 2. We denote f̂ = F f , the Fourier transform of a function f with respect to the x variable. For b ≥ 0, we
denote by |D|b f = F−1(|ξ|b f̂ ), the possibly fractional Laplace operator, and by Ib f = F−1(|ξ|−b f̂ ), the Riesz potential
operator.

Notation 3. Let χ0, χ1 be C∞c (Rn) cut-off nonnegative functions satisfying

χ0 + χ1 = 1, supp χ0 ⊂ {|ξ| ≤ 1/2}, and suppχ1 ⊂ {|ξ| ≥ 1/4}.

In particular, it follows that χ0 = 1 in {|ξ| ≤ 1/4} and χ1 = 1 in {|ξ| ≥ 1/2}. To localize a function g at low and high
frequencies, we denote gχ j = F

−1(χ j ĝ), j = 0, 1.

Notation 4. By [·] : R→ N, we denote the floor function:

[x] = max{n ∈ N : n ≤ x}.

By (x)+ we denote the positive part of x ∈ R, i.e. (x)+ = max{x, 0}. As usual, we set 1/(x)+ = ∞, when x ≤ 0.

Notation 5. For any q ∈ [1,∞], and m ∈ N, we denote by Wm,p = {∂αx u ∈ Lp, |α| ≤ m} the usual Sobolev space of
order m, with W0,p = Lp. For s ∈ [0,+∞), we denote by Hs the Bessel potential space:

Hs =
{
(1 − |D|2)

s
2 f ∈ L2

}
.

We recall that Hs = W s,2, for s ∈ N.

Notation 6. For any q ∈ [1,∞], we denote by q′ its Hölder conjugate, i.e. q′ = q/(q − 1).

Notation 7. For any p ∈ [1,∞), by Lp
loc we denote the space of distributions, whose restrictions on any compact

subset, are in Lp.

1.4. Scheme of the paper

For the ease of reading, we summarize the various arguments treated in each Section:

• in Section 2.1, we state our nonexistence results and lifespan estimates (Thorems 1, 2, 3 and 4);

• in Section 2.2, we state our existence result in the special, easier, case 2δ = σ (Theorem 5);

• in Section 2.3, we discuss the linear estimates, related to the asymptotic profile for (7) or (8);

• in Section 2.4, we state our existence results in the case 2δ < σ (Theorems 6, 7, 8 and 9);

• in Section 2.5, we discuss how the critical exponents change if the initial data are not in L1;

• in Section 2.6, we give some comments about the case of classical damping, i.e. for δ = 0, in (1);

• in Section 2.7, we discuss some extension of our result to more general power-type nonlinearities;

6



• in Section 3, we prove the non existence results and the lifespan estimates;

• in Section 4, we state and prove the linear low frequencies and high frequencies estimates, which we will use
to deal with the nonlinear problem;

• in Section 5, we give a detailed proof of Theorem 5;

• in Section 6, we prove our main results (Theorems 6 and 7), following the steps introduced in Section 5;

• in Section 7, we sketch how to modify the proof in Section 6 to prove Theorems 8 and 9;

• in Section 8, we discuss which improvements are possible in the special case σ = 1;

• in Section 9, we prove a local existence result for problems (1) and (2) in the energy space.

2. Main result

In the following, we first state the nonexistence result in the subcritical and critical cases (Section 2.1), then we
look for global solutions in the supercritical case, in different spaces (all of them, in particular, include the energy
space), according to five different cases.

In Section 2.2, we consider the special, easier, case 2δ = σ, looking for energy solutions to (1) which also verify
u ∈ L1∩L∞, and for Wσ,1∩Wσ,∞ solutions to (1), which also verify ut ∈ L1∩L∞. For this model, we can prove global
existence of small data solutions in any space dimension n ≥ 1, and derive estimates for the solution in Lq, 1 ≤ q ≤ ∞.

In Section 2.4, we consider the case 2δ < σ, but we replace the L1 ∩ L∞ additional regularity with an Lη ∩ Lq̄

additional regularity, for any small η and large q̄. We derive estimates for the solution in Lq, with q ∈ [η, q̄]. In the
second part of Section 2.4, we only ask additional Lmin{2,p} regularity to the energy solutions, but we consider higher
order energies. Consequently, we derive estimates for the solution in Lq, only for min{2, p} ≤ q ≤ 2p, where the upper
bound is due to the use of Gagliardo-Nirenberg inequality.

2.1. The critical exponent via test function method

We first give a definition of weak solution to (1) and (2).

Definition 1. Let p > 1. We say that u ∈ Lp
loc([0,∞)×Rn) is a global weak solution to (1), or that u ∈ L1

loc([0,∞)×Rn)
with ut ∈ Lp

loc([0,∞) × Rn), is a global weak solution to (2), if, for any test function F ∈ C∞c ([0,∞) × Rn), it holds:

I =
∫ ∞

0

∫
Rn

u(t, x)
(
Ftt(t, x) − (−∆)δFt(t, x) + (−∆)σF(t, x)

)
dxdt

−

∫
Rn

u1(x) F(0, x) dx +
∫
Rn

u0(x) (Ft(0, x) − (−∆)δF(0, x)) dx, (12)

where

I =
∫ ∞

0

∫
Rn
|u(t, x)|pF(t, x) dxdt, or I =

∫ ∞

0

∫
Rn
|ut(t, x)|pF(t, x) dxdt,

respectively.
Let T > 0. We say that u ∈ Lp

loc([0,T ] × Rn) is a local weak solution to (1), or that u ∈ L1
loc([0,T ] × Rn)

with ut ∈ Lp
loc([0,T ] × Rn), is a local weak solution to (2), if (12) is verified for the test functions as above, under the

additional assumption that supp F ⊂ [0,T ] × Rn.

Integrating by parts, classical solutions to (1) and (2), are also weak solutions, according to Definition 1.
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Remark 2.1. Several results of local existence of solutions to (1) and (2) may be given. For the sake of brevity, we
only state a local existence result for energy solutions, postponing the statement and its proof to Section 9. As a
consequence of this result, local solutions to (1) and (2), in the weak sense of Definition 1, exist, assuming data in
a suitable space. We prove the result for powers p which may belong either to the subcritical ranges in Theorems 1
and 2, or to the supercritical ranges in Theorems 8 and 9.

Theorem 1. Let δ ∈ N, σ ∈ N \ {0}, and assume that u0 = 0, whereas u1 ∈ L1 verifies∫
Rn

u1(x) dx > 0. (13)

Then there exists no global weak solution to (1):

• for any p > 1 if n ≤ min{2δ, σ};

• for any

p ∈
(
1, 1 +

2σ
n −min{2δ, σ}

]
,

if n > min{2δ, σ}.

Moreover, for any fixed g ∈ L1, verifying (13), there exists C > 0 such that, for any subcritical value of p, the maximal
existence time T of the local solution satisfies

T ≤ Cε−
κ

2σp′−(n+κ) , κ = 2σ −min{2δ, σ}, (14)

where we set u1 = εg, ε ∈ (0, 1), as initial data. Here p′ = p/(p − 1).

Theorem 2. Let δ, σ ∈ N \ {0}, and assume that u0 = 0, whereas u1 ∈ L1 verifies (13). Then there exists no global
weak solution to (2) for any

p ∈
(
1, 1 +

min{2δ, σ}
n

]
.

Moreover, for any fixed g ∈ L1, verifying (13), there exists C > 0 such that, for any subcritical value of p, the maximal
existence time T of the local solution satisfies

T ≤ Cε−
κ

κp′−(n+κ) , κ = min{2δ, σ}, (15)

where we set u1 = εg, ε ∈ (0, 1), as initial data. Here p′ = p/(p − 1).

Into determinate the critical exponents in Theorems 1 and 2, the assumption that the initial data belong to L1 plays
an essential role. If the L1 assumption is dropped, the critical exponents change accordingly. This effect is well-
known for the dissipative wave equation [26]. Dropping the assumption of initial data in L1 may also influence the
nonexistence result, as the following two results show.

Theorem 3. Let δ ∈ N, σ ∈ N \ {0}, and assume that u0 = 0, whereas u1 ∈ L1
loc verifies

u1(x) ≥ ε(1 + |x|)−µ, for some ε ∈ (0, 1) and µ < n. (16)

Then there exists no global weak solution to (1):

• for any p > 1 if µ ≤ min{2δ, σ};

• for any

p ∈
(
1, 1 +

2σ
µ −min{2δ, σ}

)
,

if µ > min{2δ, σ}.
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Moreover, there exists C > 0, independent of ε, such that, for any subcritical value of p, the maximal existence time T
of the local solution satisfies

T ≤ Cε−
κ

2σp′−(µ+κ) , κ = 2σ −min{2δ, σ}. (17)

Theorem 4. Let δ, σ ∈ N \ {0}, and assume that u0 = 0, whereas u1 ∈ L1
loc verifies (16). Then there exists no global

weak solution to (2) for any

p ∈
(
1, 1 +

min{2δ, σ}
µ

)
.

Moreover, there exists C > 0, independent of ε, such that, for any subcritical value of p, the maximal existence time T
of the local solution satisfies

T ≤ Cε−
κ

κp′−(µ+κ) , κ = min{2δ, σ}. (18)

In other words, the parameter µ in (16) in Theorems 3 and 4, plays the role once played by the space dimension n in
Theorems 1 and 2. Assumption (16) on the initial data is inspired by [35].

We will prove Theorems 1, 2, 3 and 4, using the test function method. A deep description of the test function
method can be found in [33], see also [31, 32, 34, 35].

2.2. Global existence in the special case 2δ = σ

For the ease of reading, we first discuss the easiest case σ = 2δ.

Theorem 5. Let n ≥ 1, 2δ = σ, and p > p0 = 1 + 2σ/(n − σ)+ in (1), or p > p1 = 1 + σ/n, in (2).
Then there exists a sufficiently small ε > 0 such that for any data

(u0, u1) ∈ A × B := (Wσ,1 ∩Wσ,∞) × (L1 ∩ L∞), ∥u0∥A + ∥u1∥B ≤ ε, (19)

there exists a global solution

u ∈ C([0,∞),Wσ,1 ∩Wσ,∞) ∩ C1([0,∞), L1 ∩ L∞)

to (1) or (2). Also, for any q ∈ [1,∞], the solution to (1) or (2) satisfies the decay estimate

∥(|D|σu, ut)(t, ·)∥Lq ≲ (1 + t)−
n
σ

(
1− 1

q

)
(∥u0∥A + ∥u1∥B). (20)

Moreover, the solution verifies the estimate

∥u(t, ·)∥Lq ≲ (1 + t)1− n
σ

(
1− 1

q

)
(∥u0∥A + ∥u1∥B). (21)

Estimates (20) and (21) coincide with the estimates obtained for the corresponding linear problem (6).
Global existence of small data solutions in some supercritical range (p j, p̄], in the case 2δ = σ has been recently

proved in low space dimension in [42]. Theorem 5 extends this result to any supercritical power p > p j, in any space
dimension n ≥ 1.

2.3. Asymptotic linear estimates

We will derive estimates with no loss of information, with respect to the linear problem, also for 2δ ∈ [0, σ) in (1)
and 2δ ∈ (0, σ) in (2). However, when 2δ ∈ (0, σ), the asymptotic profile for ∥u(t, ·)∥Lq and ∥ut(t, ·)∥Lq , where u is the
solution to the linear problem (6), changes whether condition

n
(
1 −

1
q

)
− 2δ ≥ 0, (22)

holds or not (see [7, 28] and, later, Proposition 4.1). Condition (22) may be written in a more compact form as
n ≥ 2δq′, where q′ is the Hölder conjugate of q.
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More precisely, under suitable assumption on the data, in particular for u1 ∈ L1, with û1(0) , 0 (i.e. with nonzero
integral), the solution to (6) verifies

∥|D|b∂k
t u(t, ·)∥Lq ∼ ∥|D|bI2δ∂

k
t v(t, ·)∥Lq + ∥|D|bI2δ∂

k
t w(t, ·)∥Lq ∼ t−

1
2(σ−δ)

{
n
(
1− 1

q

)
+b−2δ

}
−k
+ t−

1
2δ

{
n
(
1− 1

q

)
+b−2δ

}
−k, (23)

as t → ∞, where v and w are the solution to (7) and (8), with suitable data v(0, ·),w(0, ·) ∈ L1. We remark that the term
in brackets in (23) is the same in both profiles, for v and w, since the only difference between equations (7) and (8), is
the power of the Laplacian.

One may see that, for b = σ and k = 0, the term in the brackets in (23) is nonnegative, due to σ ≥ 2δ. Therefore,
∥|D|σu(t, ·)∥Lq ∼ t−γq as t → ∞, where γq is the nonnegative exponent defined as

γq :=
1

2(σ − δ)

{
n
(
1 −

1
q

)
+ σ − 2δ

}
. (24)

On the other hand, if we set b = 0, then the sign of the term in the brackets in (23) changes whether (22) holds or not.
Therefore, ∥∂k

t u(t, ·)∥Lq ∼ t−βq−k, as t → ∞, where

βq :=


1

2(σ − δ)

{
n
(
1 −

1
q

)
− 2δ

}
if n ≥ 2δq′,

n
2δ

(
1 −

1
q

)
− 1 if n ≤ 2δq′.

(25)

Since these estimates for the solution to (6) are optimal, they are also optimal for global small data solutions to the
semilinear problems (1) and (2).

Remark 2.2. The fact that the asymptotic profile of ∥∂k
t u(t, ·)∥Lq changes whether (22) holds, or not, has an interesting

consequence on the critical exponent for problems (1) and (2).

• The critical exponent p0 in (3) for (1) is the solution to pβp = 1. In particular, it follows that (22) holds
for q = p0, so that the decay rate t−βp0 is the same obtained for ∥I2δv(t, ·)∥Lp0 in (7). Indeed, p0 is related to the
scaling of (9). We also remark that, if n ≤ 2δ, then ∥u(t, ·)∥Lq decays for no q ∈ (1,∞), and this explains why no
existence result holds.

• The critical exponent p1 in (4) for (2) is the solution to p(βp + 1) = 1. In particular, it follows that (22) does not
hold for q = p1, so that the decay rate t−βp1−1 is the same obtained for ∥I2δwt(t, ·)∥Lp1 in (8). Indeed, p1 is related
to the scaling of (10).

Estimates (23) are of special interest when q = 2, therefore we also set:

θb :=


n + 2b − 4δ

4(σ − δ)
if n + 2b ≥ 4δ,

n + 2b
4δ

− 1 if n + 2b < 4δ,
(26)

so that ∥|D|b∂k
t u(t, ·)∥L2 ∼ t−θb−k, as t → ∞.

As it is well-known, estimates on Hb basis are very useful to manage power nonlinearities, due to the (fractional)
homogeneous Sobolev embedding (equivalently, by the mapping properties of the Riesz potential):

∥ f ∥Lq ≲ ∥|D|n
(

1
2−

1
q

)
f ∥L2 , ∀q ∈ [2,∞). (27)

In particular, it is clear that

βq = θb ⇐⇒ b = n
(

1
2
−

1
q

)
, ∀q ∈ [2,∞), (28)

where βq and θb are as in (25) and (26).
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2.4. Global existence for 2δ < σ
Due to the lack of L1 − L1 linear estimates for the general case σ , 1 (the special case σ = 1 is discussed in

Section 8), we cannot look for solutions with additional L1∩L∞ regularity for u, and/or for ut, as we did in Theorem 5.
Therefore, we will look for solutions which verify u ∈ C([0,∞), Lη∩Lq̄), if we consider (1), and ut ∈ C([0,∞), Lη∩Lq̄)
if we consider (2), for some η ∈ (1,min{2, p}], and for sufficiently large q̄ < ∞.

Theorem 6. Let 2δ ∈ [0, σ), assume that the space dimension n > 2δ satisfies n ≤ n0, where

n0 = n0(σ, δ) := max
{

n ∈ N : n <
2(σ + 2δ)
σ − 2δ

}
, (29)

and let p > p0 in (1). Then there exist a sufficiently large M ∈ [2p,∞) and a sufficiently small ε > 0 such that for any
data

(u0, u1) ∈ A × B :=
(
Wσ+2δ,1 ∩Wσ+2δ,∞) × (

W2δ,1 ∩W2δ,∞), with ∥u0∥A + ∥u1∥B ≤ ε, (30)

and for any η ∈ (1,min{2, p}] and q̄ ∈ [M,∞), there exists a global solution

u ∈ C([0,∞), Lη ∩ Hσ ∩ Lq̄) ∩ C1([0,∞), L2)

to (1). Also, decay estimates

∥|D|σu(t, ·)∥L2 ≲ (1 + t)−γ2 (∥u0∥A + ∥u1∥B), (31)

∥ut(t, ·)∥L2 ≲ (1 + t)−β2−1(∥u0∥A + ∥u1∥B), (32)

hold, and the solution verifies the estimate

∥u(t, ·)∥Lq ≲ (1 + t)−βq (∥u0∥A + ∥u1∥B), ∀q ∈ [η, q̄], (33)

where γq and βq are defined in (24) and (25).

Theorem 7. Let 2δ ∈ (0, σ), and assume that the space dimension satisfies n ≤ n1, where

n1 = n1(σ, δ) := max
{

n ∈ N : n <
4δ

σ − 2δ

}
, (34)

and let p > p1 in (2). Then there exist a sufficiently large M ∈ [2p,∞) and a sufficiently small ε > 0 such that for any
data as in (30), and for any η ∈ (1,min{2, p}] and q̄ ∈ [M,∞), there exists a global solution

u ∈ C([0,∞),Wσ,η ∩Wσ,q̄) ∩ C1([0,∞), (Lη ∩ Lq̄))

to (2). Also, the solution satisfies the decay estimates

∥|D|σu(t, ·)∥Lq ≲ (1 + t)−γq (∥u0∥A + ∥u1∥B), ∀q ∈ [η, q̄], (35)

∥ut(t, ·)∥Lq ≲ (1 + t)−βq−1(∥u0∥A + ∥u1∥B), ∀q ∈ [η, q̄], (36)

where γq and βq are defined in (24) and (25), as well as estimate (33).

We notice that n j(σ, δ)↗ ∞ as σ/(2δ)→ 1, for both j = 0, 1.

Remark 2.3. In the regularity obtained for the solution in both Theorems 6 and 7 it appears a loss of regularity, with
respect to the initial data. This loss of regularity is related to the employment of linear estimates on Lq − Lq basis,
with q , 2. Indeed, at short time and low frequencies, the solution to (6) has the same structure of the solution to
the evolution equation utt + (−∆)σu = 0, without dissipative terms, for which the loss of regularity is a well-known
phenomenon (see, for instance, [37, 41]). The loss of regularity in Theorems 6 and 7 could be reduced, fixing the
space dimension n and the power nonlinearity p, and modifying accordingly the proofs in Section 6, but this aim is
beyond the scope of this paper.

The data regularity Hσ+2δ × H2δ is obtained by adding to the standard regularity for energy solutions Hσ × L2, an
additional power 2δ, which comes by the use of singular estimates (see Section 4.1).
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Remark 2.4. Since σ and δ are integers, the condition 2δ < σ implies that σ − 2δ ≥ 1, and this makes the assump-
tion on the maximum space dimension (29) more restrictive than the assumption that guarantees that Hσ+2δ embeds
in L∞, i.e. n < 2(σ + 2δ). They are equivalent only for σ − 2δ = 1. The same comparison can be made between
assumption (34) and the assumption that guarantees that H2δ embeds in L∞, i.e. n < 4δ.

For this reason, if one is not interested in having Lη regularity of the solution, for small η > 1, the maximum
space dimension for which the global existence result holds can be improved by using Sobolev embeddings, at least
when σ − 2δ > 1. This approach is employed in Theorems 8 and 9.

By the converse, if we consider fractional values of σ and/or δ, we can no longer exclude that σ − 2δ is in (0, 1).
In this latter case, assumptions (29) and (34) in Theorems 6 and 7 are less restrictive than the corresponding condi-
tions n < 2(σ + 2δ) and n < 4δ, related to the Sobolev embeddings Hσ+2δ ⊂ L∞ and H2δ ⊂ L∞.

Theorem 8. Let 2δ ∈ [0, σ), n > 2δ, and fix p in (1), such that

p0 = 1 +
2σ

n − 2δ
< p < 1 +

2(σ + 2δ)
(n − 2(σ + 2δ))+

. (37)

Define

κ := max
{

n
2

(
1 −

1
p

)
, σ

}
, (38)

and assume that the space dimension satisfies

n
(

1
p
−

1
2

)
+

(σ − 2δ) < σ + 2δ. (39)

Then there exists a sufficiently small ε > 0 such that for any data

(u0, u1) ∈ A × B :=
(
Wσ+2δ,1 ∩ Hσ+2δ) × (

W2δ,1 ∩ H2δ), with ∥u0∥A + ∥u1∥B ≤ ε, (40)

and for η := min{2, p}, there exists a global solution

u ∈ C([0,∞), Lη ∩ Hκ) ∩ C1([0,∞),Hκ−σ)

to (1). Also, estimates

∥|D|bu(t, ·)∥L2 ≲ (1 + t)−θb (∥u0∥A + ∥u1∥B), ∀b ∈ [0, κ], (41)

∥|D|but(t, ·)∥L2 ≲ (1 + t)−θb−1(∥u0∥A + ∥u1∥B), ∀b ∈ [0, κ − σ], (42)

hold, where θb is defined in (26). Moreover, if p < 2, the solution verifies the estimate

∥u(t, ·)∥Lq ≲ (1 + t)−βq (∥u0∥A + ∥u1∥B), ∀q ∈ [p, 2], (43)

where βq is defined in (25).

The restriction from above in (37) guarantees that κ < σ + 2δ in (38).

Theorem 9. Let 2δ ∈ (0, σ) and fix p in (2), such that

p0 = 1 +
2δ
n
< p < 1 +

4δ
(n − 4δ)+

. (44)

Define

κ :=σ +
n
2

(
1 −

1
p

)
, (45)
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and assume that the space dimension satisfies

n
(

1
p
−

1
2

)
+

(σ − 2δ) < 2δ. (46)

Then there exists a sufficiently small ε > 0 such that for any data as in (40), and for η := min{2, p}, there exists a
global solution

u ∈ C([0,∞),Wσ,η ∩ Hκ) ∩ C1([0,∞), Lη ∩ Hκ−σ)

to (2). Also, estimates (41) and (42) hold. Moreover, if p < 2, the solution verifies estimate (43) and

∥ut(t, ·)∥Lq ≲ (1 + t)−βq−1(∥u0∥A + ∥u1∥B), ∀q ∈ [p, 2], (47)

where βq is defined in (25).

Remark 2.5. We notice that, for any fixed p, assumption (39) is less restrictive than assumption (29), whereas as-
sumption (46) is less restrictive than assumption (34). Replacing p = p0 in (39) and, respectively, p = p1 in (46), one
obtains a bound on the space dimension n, given by

n
(

1
p j
−

1
2

)
+

<
(1 − j)σ + 2δ

σ − 2δ
, (48)

which remains valid for any exponent p sufficiently close to the critical one.

Example 2.6. Coming back to Example 1.2, the critical exponent for (11) is 1 + 6/(n − 2)+ for the power nonlinear-
ity |u|p, and 1 + 2/n for the power nonlinearity |ut |

p. In this paper:

• we prove global existence of small data solutions to problem (1), for any

1 +
6

n − 2
< p < 1 +

10
(n − 10)+

in space dimension 3 ≤ n ≤ 20 (Theorem 8); in space dimension 3 ≤ n ≤ 9, we derive Lq estimates of the
solution for any q ∈ (1,∞) (Theorem 6);

• we prove global existence of small data solutions to problem (2), for any

1 +
2
n
< p < 1 +

4
(n − 4)+

in space dimension 1 ≤ n ≤ 6 (Theorem 9); in space dimension n ≤ 3, we derive Lq estimates of the solution
for any q ∈ (1,∞) (Theorem 7).

For any n ≥ 1, global solutions cannot exist, under a suitable sign assumption on u1, in the critical and subcritical
cases (Theorems 1 and 2).

2.5. Critical exponents for initial data not in L1

As we previously discussed, Theorems 3 and 4 do not contradict the existence results for p > p0 and for p > p1,
proved in Sections 2.2 and 2.4, since (16) implies that u1 < L1, more precisely, if µ ∈ [0, n) then u1 < L

n
µ .

Indeed, it is known that the critical exponent for semilinear problems like (1) and (2) changes if the L1 assumption
on the initial data is replaced by an Lm assumption, for m ∈ (1, 2] (see, for instance, [26]). More precisely, assuming
small initial data in Lm, m ∈ (1, 2], and in the energy space, the critical exponent to (1) and (2), when 2δ ≤ σ, is then
related to the p-th power of the decay rate for the Lm − Lmp linear estimate for u and, respectively, ut, that is,

(1 + t)−min
{

n
2m(σ−δ) (p−1)− δ

σ−δ p, n
2mδ (p−1)−p

}
,
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(1 + t)−min
{

n
2m(σ−δ) (p−1)− δ

σ−δ p+p, n
2mδ (p−1)

}
.

We can see that the role played by the space dimension n when data are small in L1, is now played by the parame-
ter n/m. In other words, the critical exponents are (see Remark 2.2):

p0(n/m) = 1 +
2mσ

n − 2mδ
, p1(n/m) = 1 +

2mδ
n
. (49)

The global existence of small data solutions for p > p0(n/m) and p > p1(n/m), may be easily obtained with minor
modifications in the statements and the proofs in this paper. In particular, it is much easier to prove the analogous
of Theorems 8 and 9, when initial data are only assumed small in the energy space, namely, setting m = 2 in (49).
Indeed, in general, one should set η = min{2,mp}, so that η = 2 when m = 2, for any p.

Then, Theorems 3 and 4 provide the nonexistence counterpart for any p < p0(n/m) and p < p1(n/m), fixing a
suitable µ = µ(p) > n/m. It only remains open the problem to prove the nonexistence result at the critical values p =
p0(n/m) and p = p1(n/m).

2.6. The case of classical damping: δ = 0

In the limit case δ = 0, i.e. when the damping is external or frictional, there is no smoothing effect, so that the
singularity employed in the high frequencies estimates do not appear. Our results for (1) remain valid but we have
no result for (2) (conditions (34) and (46) are never verified for δ = 0). Indeed, the asymptotic profile of the solution
to (6) is always described by the solution to (7) in (23), except for the limit case of ∥∂k

t u(t, ·)∥L1 ∼ t−k, as t → ∞.
Therefore, the main interest of this paper is when δ > 0, even if the case δ = 0 is included in Theorems 6 and 8.

2.7. Some generalizations of the problem

With minor modifications, it is possible to consider more regular solutions in Theorems 6 and 7, but asking more
regularity influences the maximum space dimension where the estimates employed to manage the high frequencies
part of the solution are not too singular at t = 0 (see later, Section 4.1). By assuming extra regularity for the solution
in Theorems 6 and 7, it becomes possible to consider nonlinearities like |Dαu|p, for α ∈ Nn, with a = |α| ∈ [0, σ+ 2δ),
or |Dβut |

p, for β ∈ Nn, with b = |β| ∈ [0, 2δ). Also, one may consider fractional derivatives in the nonlinearities, i.e.
||D|au|p or ||D|but |

p.
The global existence of small data solutions can then be proved in the supercritical cases p > p0(a) or p > p1(b),

where:
p0(a) = 1 +

2σ − a
(n + a − 2δ)+

, p1(b) = 1 +
2δ − b
n + b

.

These two exponents are, respectively, related to the linear decay rates for ∥|D|au∥pLp , when the asymptotic profile is
described by problem (7), and ∥|D|but∥

p
Lp , when the asymptotic profile is described by problem (8). The exponents are

consistent with the ones found in low dimension, in the case σ = 2δ, in [42].
The maximum space dimensions corresponding to n0 and n1 in Theorems 6 and 7 become:

n0(a) := max
{

n ∈ N : n <
2(σ + 2δ − a)

σ − 2δ

}
,

n1(b) := max
{

n ∈ N : n <
2(2δ − b)
σ − 2δ

}
.

One may proceed similarly for Theorem 5.
We omitted these results and their proofs to make the paper easier for the reader, but no substantial difficulty

appears and the extension of the calculations to cover these cases is quite straight-forward. In particular, in Section 4
we derived linear estimates in a more general setting, which covers what is needed to extend the nonlinear arguments
to nonlinearities like ||D|au|p or ||D|but |

p.
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However, unfortunately, the test function method employed to prove the optimality of the critical exponents
when σ and δ are integer, appears to be not directly extendable to deal with power nonlinearities containing spa-
tial derivatives of u.

We also remark that it is possible to modify the linear part of the equation, putting constant positive coefficients,
as in

utt + µ(−∆)δut + ν(−∆)σu = 0,

with µ, ν > 0. Linear estimates remains the same, as well as the nonlinear result. The choice to fix µ = ν = 1 has been
made for the sake of simplicity.

Other generalizations of the nonlinear problem, for which linear estimates obtained in Section 4 can be directly
applied, include models with nonlinear memory term, like∫ t

0
(t − s)−γ |u(s, x)|p ds,

and systems of nonlinear coupled equations.

3. Proof of the nonexistence results

The first part of the proof of Theorem 1 can be obtained as a modified application of Theorem 4.2 in [16], to the
operator

Lu = (L1 + L2)u,

with
L1u = utt, L2u = (−∆)δut + (−∆)σu,

quasi-homogeneous operators of type (4(σ − δ), 2(σ − δ), 1) and (2σ, 2(σ − δ), 1), respectively, if 2δ ≤ σ, and

L1u = utt + (−∆)σu, L2u = (−∆)δut,

quasi-homogeneous operators of type (2σ,σ, 1) and (σ + 2δ, σ, 1), respectively, if 2δ ≥ σ. Indeed, according to
Definition 2.2 in [16], an operator L(∂t, ∂x) is quasi-homogeneous of type (h, d1, d2), if, for any R > 0, it holds

L(Rd1τ,Rd2ξ) = RhL(τ, ξ).

The modification consists into consider the Cauchy problem for Lu = |u|p, instead of the Lioville problem for Lu ≥ |u|p

(see [47]). Then, the application of Theorem 4.2 in [16] gives nonexistence of weak solutions for any p > 1 such that:

(2(σ − δ) + n −min {4(σ − δ), 2σ}) p ≤ 2(σ − δ) + n,

i.e., (n − 2δ)(p − 1) ≤ 2σ, if 2δ ≤ σ, and for any p > 1 such that

(σ + n −min {2σ,σ + 2δ}) p ≤ σ + n,

i.e., (n − σ)(p − 1) ≤ 2σ, if σ ≥ 2δ. This concludes the proof of the nonexistence result. A direct proof of the non
existence result in Theorem 1 can also be easily obtained. We present it for three reasons: for the ease of reading, to
prove the lifespan estimate, and to give the basis of the proof of Theorem 3.
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Proof (Theorem 1). We fix a nonnegative, non-increasing, test function φ ∈ C∞c ([0,∞)) with φ = 1 in [0, 1/2]
and suppφ ⊂ [0, 1], and a nonnegative, radial, test function ψ ∈ C∞c (Rn), such that ψ = 1 in the ball B1/2,
and suppψ ⊂ B1. We also assume ψ(x) ≤ ψ(y) when |x| ≥ |y|. Here Br denotes the ball of radius r, centered at
the origin. We may assume (see, for instance, [16, 33]) that

φ−
p′

p
(
|φ′|p

′

+ |φ′′|p
′)
, ψ−

p′

p
(
|∆δψ|p

′

+ |∆σψ|p
′)
, are bounded. (50)

We remark that the assumption that δ and σ are integers plays a fundamental role here. Then, for R ≥ 1, we define:

φR(t) = φ(R−κt), ψR(x) = ψ(R−1x), (51)

for some κ > 0 which we will fix later.
Let us assume that u is a (global or local) weak solution to (1). Let R > 0, and also assume that R ≤ T κ, if u is a

local solution in [0,T ] × Rn. Replacing F(t, x) = φR(t)ψR(x) in (12), integrating by parts, and recalling that u0 = 0
and φR(0) = 1, we obtain∫ ∞

0

∫
Rn

u
(
φ′′RψR − φ

′
R(−∆)δψR + φR(−∆)σψR

)
dxdt −

∫
Rn

u1(x)ψR(x) dx = IR, (52)

where:

IR =

∫ ∞

0

∫
Rn
|u|pφRψR dxdt.

We may now apply Young inequality to estimate:∫ ∞

0

∫
Rn
|u|

(
|φ′′R |ψR + |φ

′
R| |(−∆)δψR| + φR |(−∆)σψR|

)
dxdt

≤
1
p

IR +
1
p′

∫ ∞

0

∫
Rn

(φRψR)−
p′

p
(
|φ′′RψR| + |φ

′
R(−∆)δψR| + |φR(−∆)σψR|

)p′ dxdt,

where p′ = p/(p − 1). Due to

φ′R(t) = R−κ(φ′)(R−κt), φ′′R (t) = R−2κ(φ′′)(R−κt),

(−∆)δψR(x) = R−2δ((−∆)δψ
)
(R−1x), (−∆)σψR(x) = R−2σ((−∆)σψ

)
(R−1x),

recalling (50), we may estimate ∫ ∞

0

∫
Rn

(φRψR)−
p′

p |φ′′RψR|
p′ dxdt ≤ C R−2κp′+n+κ,∫ ∞

0

∫
Rn

(φRψR)−
p′

p |φ′R(−∆)δψR|
p′ dxdt ≤ C R−(κ+2δ)p′+n+κ,∫ ∞

0

∫
Rn

(φRψR)−
p′

p |φR(−∆)σψR|
p′ dxdt ≤ C R−2σp′+n+κ.

We may now fix
κ = max{2(σ − δ), σ} = 2σ −min{2δ, σ},

so that, summarizing, we proved that

1
p′

IR ≤ C R−2σp′+n+κ −

∫
Rn

u1(x)ψR(x) dx.

Assume, by contradiction, that the solution u is global. Recalling assumption (13), in the subcritical case p < 1 +
2σ/(n+κ−2σ), it follows that IR < 0, for any sufficiently large R, and this contradicts the fact that IR ≥ 0. The critical
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case p = 1 + 2σ/(n + κ − 2σ) is treated in standard way, but we omit the details for the sake of brevity. Therefore, u
cannot be a global solution.

To prove the lifespan estimate in the subcritical case, we first notice that, for any fixed g ∈ L1, verifying (13), there
exists R̄ > 0 such that ∫

Rn
g(x)ψR(x) dx ≥ c > 0, ∀R ≥ R̄.

Assume that u is a local solution in [0,T ]×Rn, with T ≥ R̄κ. Then, setting R = T
1
κ we may define IR and, recalling u1 =

εg, we obtain:

0 ≤
1
p′

IR ≤ C R−2σp′+n+κ −

∫
Rn

u1(x)ψR(x) dx ≤ C T−
2σp′−(n+κ)

κ − cε.

Therefore, we derive (14), and this concludes the proof.

Proof (Theorem 2). As in the proof of Theorem 1, we fix a nonnegative, non-increasing, test function φ ∈ C∞c ([0,∞))
with φ = 1 in [0, 1/2] and suppφ ⊂ [0, 1], and a nonnegative, radial, test function ψ ∈ C∞c (Rn), such that ψ = 1 in the
ball B1/2, and suppψ ⊂ B1. We also assume ψ(x) ≤ ψ(y) when |x| ≥ |y|. We assume (50), and we define φR and ψR as
in (51).

Let ΦR ∈ C
∞
c ([0,∞)) be the test function defined by

ΦR(t) =
∫ ∞

t
φR(s) ds.

(Indeed, we notice that suppΦR ⊂ [0,Rκ], since suppφR ⊂ [0,Rκ]). In particular, Φ′R = −φR.
Let u be a (local or global) solution to (2). Let R > 0, and also assume that R ≤ T κ, if u is a local solution

in [0,T ] × Rn. Replacing F(t, x) = φR(t)ψR(x) in (12), integrating by parts, and recalling that u0 = 0 and φR(0) = 1,
we obtain ∫ ∞

0

∫
Rn

ut
(
−φ′RψR + φR(−∆)δψR + ΦR(−∆)σψR

)
dxdt −

∫
Rn

u1(x)ψR(x) dx = IR, (53)

where:

IR =

∫ ∞

0

∫
Rn
|ut |

pφRψR dxdt.

We may now apply Young inequality to estimate:∫ ∞

0

∫
Rn
|ut |

(
|φ′R|ψR + φR|(−∆)δψR| + ΦR|(−∆)σψR|

)
dxdt

≤
1
p

IR +
1
p′

∫ ∞

0

∫
Rn

(φRψR)−
p′

p
(
|φ′RψR| + |φR(−∆)δψR| + ΦR|(−∆)σψR|

)p′ dxdt,

where p′ = p/(p − 1). Due to

φ′R(t) = R−κ(φ′)(R−κt), (−∆)δψR(x) = R−2δ((−∆)δψ
)
(R−1x),

recalling (50), we may estimate ∫ ∞

0

∫
Rn

(φRψR)−
p′

p |φ′RψR|
p′ dxdt ≤ C R−κp′+n+κ ,∫ ∞

0

∫
Rn

(φRψR)−
p′

p |φR(−∆)δψR|
p′ dxdt ≤ C R−2δp′+n+κ .
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The difference, with respect to the proof of Theorem 1, is related to the estimate of the term containing Φ. In this

case, due to ΦR(t) ≤ ΦR(0) ≤ Rκ, and being Φp′

R φ
−

p′

p

R bounded (this latter can be proved, for instance, by applying the
integral mean theorem, as φR → 0) one gets:∫ ∞

0

∫
Rn

(φRψR)−
p′

p ΦR|(−∆)σψR|
p′ dxdt ≤ C R−2σp′+κp′+n+κ .

We may now fix κ = min{2δ, σ}, so that, summarizing, we proved that

1
p′

IR ≤ C R−κp′+n+κ −

∫
Rn

u1(x)ψR(x) dx.

Assume, by contradiction, that the solution u is global. Recalling assumption (13), in the subcritical case p < 1+ κ/n,
it follows that IR < 0, for any sufficiently large R, and this contradicts the fact that IR ≥ 0. The critical case p = 1+κ/n
is treated in standard way, but we omit the details for the sake of brevity. Therefore the solution u cannot be global.

To prove the lifespan estimate in the subcritical case, we proceed as in the proof of Theorem 1, obtaining

0 ≤
1
p′

IR ≤ C R−κp′+n+κ −

∫
Rn

u1(x)ψR(x) dx ≤ C T−
κp′−(n+κ)

κ − cε,

and this concludes the proof.

Remark 3.1. In the application of the test function method to problem (1), for 2δ < σ, one may see that the
part (−∆)δut + (−∆)σu of the linear equation is dominant, with respect to utt; the best scaling is given by (t, x) 7→
(R−2(σ−δ)t,R−1x). On the other hand, when studying problem (2), for 2δ < σ, the part utt + (−∆)δut is dominant with
respect to (−∆)σu, since the variable of the nonlinearity is ut; the best scaling is given by (t, x) 7→ (R−2δt,R−1x). This
effect is analogous to the fact that the critical exponent p0 and p1 are related to the asymptotic profile of problem (7)
and (8), respectively.

When 2δ > σ, the dominant part is utt + (−∆)σu, for both problems (1) and (2). Indeed, if 2δ ∈ (σ, 2σ], the
asymptotic profile of the solution is described by the solution to the evolution equation utt + (−∆)σu = 0, to which
the dissipative operator e−t(−∆)δ is applied (see [24] for the case σ = δ = 1). The profile becomes more complicated
for δ > σ (see Section 9).

Proof (Theorem 3). To prove Theorem 3, it is sufficient to follow the proof of Theorem 1, but replacing the estimate
for the initial data with: ∫

Rn
u1(x)ψR(x) dx ≥ ε

∫
Rn

(1 + |x|)−µ ψR(x) dx ≥ cεRn−µ.

As a consequence:
IR ≤ C R−2σp′+n+κ − cεRn−µ = Rn (

C R−2σp′+κ − cεR−µ
)
,

and the proof of both the nonexistence of global solutions, in the subcritical case, immediately follows. To prove
the lifespan estimate, it is sufficient to fix R = T

1
κ , where T is the maximal existence time of a local solution. This

concludes the proof.

Proof (Theorem 4). The proof of Theorem 4 is completely analogous to the proof of Theorem 3, but now we obtain

IR ≤ C R−κp′+n+κ − cεRn−µ = Rn (
C R−κp′+κ − cεR−µ

)
.

The proof follows.
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4. The linear estimates

Our main tool in proving our existence results consists in the use of linear Lq1 − Lq low-frequencies and Lq2 − Lq

high frequencies estimates for the solution to (6), with 1 ≤ q j ≤ q ≤ ∞, and q1, q2 are possibly different.
Let 2δ ∈ [0, σ) and let u be the solution to (6). After applying the Fourier transform, we can write

ûtt + |ξ|
2σû + |ξ|2δût = 0 ,

û(0, ξ) = û0(ξ) ,
ût(0, ξ) = û1(ξ) .

The roots of the full symbol λ2 + λ|ξ|2δ + |ξ|2σ are radial and have non-positive real parts:

λ±(|ξ|) =

 1
2
(
−1 ±

√
1 − 4|ξ|2(σ−2δ)) |ξ|2δ if 2|ξ|σ−2δ < 1,

1
2
(
−1 ± i

√
4|ξ|2(σ−2δ) − 1

)
|ξ|2δ if 2|ξ|σ−2δ > 1.

(54)

In particular,

λ+ ∼ −|ξ|
2(σ−δ) , λ− ∼ −|ξ|

2δ λ+ − λ− ∼ |ξ|
2δ as ξ → 0 (55)

ℜλ± = −
1
2
|ξ|2δ , ℑλ± ∼ ±|ξ|

σ , as |ξ| → ∞. (56)

We may write
u(t, x) = K0(t, |x|) ∗(x) u0(x) + K1(t, |x|) ∗(x) u1(x) ,

where

K̂0(t, |ξ|) =
λ+eλ− t − λ−eλ+ t

λ+ − λ−
, K̂1(t, |ξ|) =

eλ+ t − eλ− t

λ+ − λ−
. (57)

We first consider low-frequencies estimates.

Proposition 4.1. Let 2δ ∈ [0, σ) and χ0 as in Notation 3 in Section 1.3, a cut-off function localizing at low frequencies.
The low frequencies part of the solution to (6) satisfies the decay estimate

∥∂k
t |D|

buχ0 (t, ·)∥Lq ≲
1∑

j=0

(1 + t)
− 1

2(σ−δ)

(
n
(

1
q j
− 1

q

)
+b−2 jδ

)
−k
∥u j∥Lq j , (58)

for any q0, q1 ≥ 1, q ∈ [max{q0, q1},∞] and t ≥ 0, b ≥ 0 and k ∈ N, provided that

1
q1
−

1
q
+

b − 2δ
n
≥ 0 . (59)

If (59) does not hold, then the solution to (6) satisfies the estimate

∥∂k
t |D|

buχ0 (t, ·)∥Lq ≲ (1 + t)
− 1

2(σ−δ)

(
n
(

1
q0
− 1

q

)
+b

)
−k
∥u0∥Lq0 + (1 + t)

− 1
2δ

(
n
(

1
q1
− 1

q

)
+b

)
+1−k
∥u1∥Lq1 . (60)

A special exception is given in the case q1 = 1, q = ∞, k = 0, and 2δ − b = n. In this case, we may prove (60) with a
logarithmic power loss with respect to u1, namely:

∥|D|2δ−nuχ0 (t, ·)∥L∞ ≲ (1 + t)
− 1

2(σ−δ)

(
2δ−n

(
1− 1

q0

))
∥u0∥Lq0 + log(1 + t)∥u1∥L1 .

If δ = 0, then (59) is trivially verified, so that the low-frequencies decay estimates are given by (58).

Remark 4.1. Following the ideas in [7], in the special case σ = 1, one may show that estimates (58) and, respectively,
(60) are sharp, since ∥∂k

t |D|
buχ0 (t, ·)∥Lq asymptotically behaves, as t → ∞, as the corresponding norm for the solution

to (7) and, respectively, to (8), for a suitable choice of initial data.
We point out that estimate (60) for k = 0 improves the corresponding one obtained in [7].
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In order to prove our statement, we use a result for radial convolution kernels.

Lemma 4.1. [Lemma 3.1 in [7]] Let K(t, x) be a radial convolution kernel of the form

K(t, x) ∗(x) h = F−1( f (|ξ|)e−g(|ξ|)tĥ
)
,

with compactly supported h. Assume g(ρ) ≈ ρβ, and

| f (κ)(ρ)| ≲ ρα−κ

|g(κ)(ρ)| ≲ ρ−κg(ρ)

for some α > −1, and for any κ ≤ [(n + 3)/2]. Then

∥K(t, x) ∗(x) h∥Lq ≲ (1 + t)
− n
β

(
1

q1
− 1

q

)
− α
β ∥h∥Lq1 ,

for any 1 ≤ q1 ≤ q ≤ ∞, provided that q1 < q if α = 0 and f is not constant, and that

1
q1
−

1
q
≥
−α

n
, if α ∈ (−1, 0).

Lemma 4.1 allows to avoid the restrictions q j > 1 and q < ∞, which would come by using a general multiplier
theorem, like Theorem 2 in [36]. We notice that the restriction q1 < q appearing when α = 0 can be removed, for
sufficiently smooth f (namely, if f = C + f1(ρ), with f (k)

1 (ρ) = o(ρ−k)).

Proof (Proposition 4.1). First, assume that b − 2δ > −1 or k ≥ 1, so that we may directly apply Lemma 3.1 in [7].
Let ξ ∈ supp χ0, i.e., |ξ| ≤ 1/2, and fix the notation

K̂±1 (t, |ξ|) = ±
eλ± t

λ+ − λ−
,

K̂±0 (t, |ξ|) = λ∓ K̂±1 (t, |ξ|) .

Thanks to (55), we may estimate∥∥∥∥∂k
t |D|

bK−0 (t, ·) ∗(x) hχ0

∥∥∥∥
Lq

≲ (1 + t)
− 1

2δ

(
n
(

1
q0
− 1

q

)
+b

)
− σ−2δ

δ −k
∥h∥Lq0 ,∥∥∥∥∂k

t |D|
bK+0 (t, ·) ∗(x) hχ0

∥∥∥∥
Lq

≲ (1 + t)
− 1

2(σ−δ)

(
n
(

1
q0
− 1

q

)
+b

)
−k
∥h∥Lq0 ,

for any 1 ≤ q0 ≤ q ≤ ∞ and for any k ∈ N and b ≥ 0. Since σ > 2δ, the second decay rate is always worse than the
first one. Gluing our estimates, we conclude the proof.

When we derive Lq1 − Lq estimates for ∂k
t |D|

bK±1 ∗(x) hχ0 , a restriction on (p, q) appears if k = 0. Though, if k ≥ 1
or (59) holds, still using Lemma 3.1 in [7], we may estimate∥∥∥∥∂k

t |D|
bK−1 (t, ·) ∗(x) hχ0

∥∥∥∥
Lq

≲ (1 + t)
− 1

2δ

(
n
(

1
q1
− 1

q

)
+b

)
+1−k
∥h∥Lq1 ,∥∥∥∥∂k

t |D|
bK+1 (t, ·) ∗(x) hχ0

∥∥∥∥
Lq

≲ (1 + t)
− 1

2(σ−δ)

(
n
(

1
q1
− 1

q

)
+b

)
+ δ
σ−δ−k
∥h∥Lq1 .

The second decay rate is not better than the first one if, and only if, condition (59) holds, and they are equal if the
equality holds in (59). Gluing our estimates, we conclude the proof.

If k = 0 and (59) is violated, assuming for the sake of brevity that u0 = 0, it is sufficient to use (60) with k = 1, in

∥|D|buχ0 (t, ·)∥Lq ≲
∫ t

0
∥∂t |D|buχ0 (s, ·)∥Lq ds ≲ ∥u1∥Lq1

∫ t

0
(1 + s)

− 1
2δ

(
n
(

1
q1
− 1

q

)
+b

)
ds, (61)
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to derive the desired estimate. Indeed, the decay rate in (60) with k = 1 when (59) is violated is slower than (1 + t)−1,
so that ∫ t

0
(1 + s)

− 1
2δ

(
n
(

1
q1
− 1

q

)
+b

)
ds ≲ (1 + t)

1− 1
2δ

(
n
(

1
q1
− 1

q

)
+b

)
,

and this latter is an increasing power of (1 + t). This concludes the proof in the case b − 2δ > −1 or k ≥ 1.

Now let us assume that b − 2δ ≤ −1 and k = 0. Then we cannot directly apply Lemma 3.1 in [7] to K1. If q < ∞,
then we define s = 2δ − b − 1/2 ≥ 1/2. By Riesz potential mapping properties, we get∥∥∥∥|D|bK±1 (t, ·) ∗(x) hχ0

∥∥∥∥
Lq

≲
∥∥∥∥|D|b+sK±1 (t, ·) ∗(x) hχ0

∥∥∥∥
Lq†
,

1
q†
=

1
q
+

s
n
.

Then we may apply Lemma 4.1, with α = −1/2 (in particular, we notice that q† > 1). We proceed similarly if q = ∞
and q1 > 1, applying Lemma 4.1 to |D|b+sK±1 (t, ·) ∗(x) (Ishχ0 ). If q1 = 1 and q = ∞, the thesis follows by using standard
Fourier transform property and Hölder inequality,∥∥∥∥|D|bK±1 (t, ·) ∗(x) hχ0

∥∥∥∥
L∞

≲
∥∥∥∥|ξ|bK̂±1 (t, ·)ĥχ0

∥∥∥∥
L1

≲
∥∥∥∥|ξ|bK̂±1 (t, ·)

∥∥∥∥
L1
∥h∥L1 ,

provided that b + n > 2δ. If b + n = 2δ, we cannot employ the above estimate. Tough, by integrating as in (61), we
obtain:

∥|D|2δ−nuχ0 (t, ·)∥L∞ ≲
∫ t

0
∥∂t |D|2δ−nuχ0 (s, ·)∥L∞ds ≲ ∥u1∥L1

∫ t

0
(1 + s)−1ds,

and this concludes the proof.

We now consider high-frequencies estimates. We recall a variant of Mikhlin-Hörmander multiplier theorem, for
kernels localized at high frequencies, obtained by A. Miyachi.

Theorem 10 (Theorem 1 in [36]). Let q ∈ (1,∞), k = [n/2] + 1 (see Notation 4 in Section 1.3) and a ≥ 0. Suppose
that m ∈ Ck(Rn\ {0}), m(ξ) = 0 if |ξ| ≤ 1, and

|∂
β
ξm(ξ)| ≤ C |ξ|−na

∣∣∣∣ 1
q−

1
2

∣∣∣∣(A|ξ|a−1)|β|, |β| ≤ k,

for |ξ| ≥ 1, with some constant A ≥ 1. Then Tm = F
−1(m(t, ξ))∗(x), defined by the action Tm f (t, ·) = F−1(m(t, ξ) f̂ (ξ)),

is continuously bounded from Lq into itself and

∥Tm f ∥Lq ≤ C An
∣∣∣∣ 1

q−
1
2

∣∣∣∣∥ f ∥Lq .

Theorem 10 is stated only for q ∈ (1, 2) in [36], but it can be extended to q ∈ (2,∞) by duality arguments, whereas the
extension for q = 2 trivially follows from Plancherel’s theorem.

We are now able to prove the following.

Proposition 4.2. Let 2δ ∈ [0, σ), q ∈ (1,∞), and χ1 as in Notation 3 in Section 1.3, a cut-off function localizing at
high frequencies. The high frequencies part of the solution to (6) satisfies the decay estimate

∥∂k
t |D|

buχ1 (t, ·)∥Lq ≲ e−ct (∥u0∥Wm,q + ∥u1∥W (m−σ)+ ,q ) , ∀t ≥ 0, (62)

for some constants c > 0 independent on t, where m ∈ N satisfies

m ≥ n(σ − 2δ)
∣∣∣∣∣1q − 1

2

∣∣∣∣∣ + kσ + b. (63)
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Proof. For j = 0, 1, let m j(t, ξ) be the multiplier associated to ∂k
t |D|

bχ1K j(t, |x|), respectively. Recalling that |ξ| ≥ 1/4
in supp χ1, for sufficiently small c > 0, we may estimate

||ξ|−m∂
β
ξm1(t, ξ)| ≲ t|β| |ξ|b−m+σ(k−1)+|β|(σ−1) e−ct|ξ|2δ e−ct ≲ |ξ|b−m+σ(k−1)+|β|(σ−2δ−1) e−ct,

where we used the boundedness of (t|ξ|2δ)|β|e−t|ξ|2δ . Applying Theorem 10, with a = σ− 2δ, the thesis follows for m as
in (63). We proceed similarly for m0(t, ξ).

However, at high frequencies, it is also possible to use the smoothing effect produced by the structural damping to
reduce the regularity required on the data, exception given for the special case δ = 0. However, doing this in short
time estimates, produces a singularity at t = 0. In particular, we have the following.

Proposition 4.3. Let 2δ ∈ (0, σ) and χ1 as in Notation 3 in Section 1.3, a cut-off function localizing at high frequen-
cies. The high frequencies part of the solution to (6) satisfies the singular estimate

∥∂k
t |D|

buχ1 (t, ·)∥Lq ≲ e−ct
1∑

j=0

t
−nΞ(q j,q)( σ−2δ

2δ )− 1
2δ

(
n
(

1
q j
− 1

q

)
+b+(k− j)σ

)
∥u j∥Lq j , ∀t ∈ (0,∞), (64)

for 1 < q j ≤ q < ∞, for some c > 0, where

Ξ =


1
2 −

1
q j

if 2 ≤ q j,

0 if q j ≤ 2 ≤ q,
1
q −

1
2 if q ≤ 2.

(65)

In order to prove Proposition 4.3, we first prove it for q1 = q2 = q.

Lemma 4.2. Let 2δ ∈ (0, σ). Then we have the singular estimate

∥∂k
t |D|

buχ1 (t, ·)∥Lq ≲ t−n
∣∣∣∣ 1

q−
1
2

∣∣∣∣( σ−2δ
2δ )− 1

2δ (b+kσ)e−ct (∥u0∥Lq +t
σ
2δ ∥u1∥Lq

)
, ∀t ∈ (0,∞), (66)

for any q ∈ (1,∞), b ≥ 0, k ∈ N, and for some c > 0.

In particular,
∥∂k

t |D|
buχ1 (t, ·)∥L2 ≲ t−

1
2δ (b+kσ)e−ct (∥u0∥L2 +t

σ
2δ ∥u1∥L2

)
, ∀t ∈ (0,∞). (67)

Proof. For j = 0, 1, let m j(t, ξ) be the multipliers associated to ∂k
t |D|

bχ1K j(t, |x|), respectively. We may estimate

|∂
β
ξm j(t, ξ)| ≲ t|β| |ξ|b+σ(k− j)+|β|(σ−1) e−ct |ξ|2δe−ct ,

for sufficiently small c > 0, thanks to |ξ| ≥ 1/4 in suppχ1. Thanks to the smoothing effect, i.e., the term e−ct |ξ|2δ , we
may estimate

t|β| |ξ|b+σ(k− j)+|β|(σ−1) e−ct |ξ|2δ ≲ t−
b+(k− j)σ

2δ (t1− σ
2δ |ξ|−1)|β|.

Therefore, we conclude (66), for t ∈ (0, 1], by applying Theorem 10, with A = t−
σ−2δ

2δ . For t ∈ [1,∞), the proof is
trivial (it is sufficient to set A = 1 in Theorem 10), thanks to the presence of the exponential decay e−ct.

Proof (Proposition 4.3). Since the equation is linear, we may prove our estimate separately with respect to the initial
datum u0 or u1, assuming the other one to be zero. First, let 2 ≤ q j ≤ q < ∞. We write

u = Ir j |D|
r j u, r j = n

(
1
q j
−

1
q

)
.
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By the Riesz potential mapping properties, we have

Ir j : Lq → Lq j , ∥Ir j g∥Lq ≲ ∥g∥Lq j .

Therefore, by applying (66) to |D|r j u, with initial data (u0, 0) or (0, u1), we derive

∥∂k
t |D|

buχ1 (t, ·)∥Lq ≲ ∥∂k
t |D|

b+r j uχ1 (t, ·)∥Lq j ≲ e−ct t
−n

∣∣∣∣∣ 1
q j
− 1

2

∣∣∣∣∣( σ
2δ−1)− 1

2δ (b+r j+(k− j)σ)
∥u j∥Lq j .

Now, let q ≤ 2. We apply (66) to u, with initial data (Ir0 u0, 0) or (0, Ir1 u1). Therefore, setting r j as before,

∥∂k
t |D|

buχ1 (t, ·)∥Lq ≲ e−ct t−n
∣∣∣∣ 1

q−
1
2

∣∣∣∣( σ
2δ−1)− 1

2δ (b+r j+(k− j)σ)
∥Ir j u j∥Lq ≲ e−ct t−n

∣∣∣∣ 1
q−

1
2

∣∣∣∣( σ
2δ−1)− 1

2δ (b+r j+(k− j)σ)
∥u j∥Lq j .

If q j ≤ 2 ≤ q, by setting r j as before,

r = n
(

1
2
−

1
q

)
,

and applying (66) to |D|ru, with initial data (Ir0−ru0, 0) or (0, Ir1−ru1), we obtain

∥∂k
t |D|

buχ1 (t, ·)∥Lq ≲ ∥∂k
t |D|

b+ruχ1 (t, ·)∥L2 ≲ e−ct t−
1
2δ (b+r j+(k− j)σ)∥Ir j u j∥L2 ≲ e−ct t−

1
2δ (b+r j+(k− j)σ)∥u j∥Lq j .

We notice that this latter estimate may also be easily obtained by using the property of Fourier transform:

∥ f ∥Lq ≲ ∥ f̂ ∥Lq′ , ∥ f̂ ∥
L

q′j
≤ ∥ f ∥Lq j , if q j ≤ 2 ≤ q,

and directly estimating the Fourier transform of the fundamental solution.
This concludes the proof of (64).

4.1. Use of singular estimates to deal with the semilinear problem

The restriction on the space dimension and the related choice of the solution space in our results, is related to the
use of high-frequencies linear estimates, which are (possibly) singular at t = 0, as done in [39]. This singularity is
related to the use of the smoothing effect of the structural damping term at short times (Proposition 4.3).

Lemma 4.3. Let 2δ ∈ (0, σ), u0 ≡ 0, and T > 0. Then, for any ε > 0 and p > 1, there exists a sufficiently
large q̄ = q̄(p, ε) ∈ (2p,∞) such that

∥|D|b∂k
t uχ1 (t, ·)∥Lq ≲ t−

1
2δ ( n

2 (σ−2δ)+b+(k−1)σ)−ε∥u1∥Lq̃ , ∀t ∈ (0,T ], q ∈ [2, q̄], (68)

where
q̃ = min{q, q̄/p}.

Moreover, if we fix η ∈ (1, 2), then

∥|D|b∂k
t uχ1 (t, ·)∥Lq ≲ t−

1
2δ

(
n
(

1
η−

1
2

)
(σ−2δ)+b+(k−1)σ

)
∥u1∥Lq , ∀t ∈ (0,T ], q ∈ [η, 2]. (69)

Proof. To prove (68), we apply (64). Setting q1 = q̃ for some q̄ ∈ (2p,∞),

Ξ(q1, q) ≤ Ξ(q̄/p, q̄) =
1
2
−

p
q̄
,

1
q1
−

1
q
≤

p
q̄
−

1
q̄
,

for any q ∈ [2, q̄]. Therefore, for sufficiently large q̄, (68) follows.
To prove (69), it is sufficient to apply (66) for any q ∈ [η, 2].
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In particular, the following corollary will be used to manage the high frequencies part of the solution related to the
nonlinear term, at short times.

Corollary 4.1. Let 2δ ∈ (0, σ), b + kσ < σ + 2δ, and T > 0. If we assume that

n
2

(σ − 2δ) + b + (k − 1)σ < 2δ, (70)

then there exists M ∈ (2p,∞) such that for any q̄ ∈ [M,∞), it holds

∥|D|b∂k
t uχ1 (t, ·)∥Lq ≲ t−γ∥u1∥Lq̃ , ∀t ∈ (0,T ], (71)

for any q ∈ (1, q̄], where q̃ = min{q, q̄/p}, for some power γ < 1.

4.2. The limit case σ = 2δ

In the limit case 2δ = σ, linear estimates may be easily obtained following the ideas in [39, 42]. The obtained
estimates are consistent with the ones derived for 2δ ∈ (0, σ).

Proposition 4.4. Let 2δ = σ. Then the solution to (6) satisfies:

• estimate (58), i.e.

∥∂k
t |D|

buχ0 (t, ·)∥Lq ≲
1∑

j=0

(1 + t)
− 1
σ

(
n
(

1
q j
− 1

q

)
+b

)
+ j−k
∥u j∥Lq j , (72)

for any q0, q1 ≥ 1, q ∈ [max{q0, q1},∞], t ≥ 0, b ≥ 0 and k ∈ N;

• decay estimate (62), in particular,

∥∂k
t |D|

mσuχ1 (t, ·)∥Lq ≲ e−ct (∥u0∥W (m+k)σ,q + ∥u1∥W (m+k−1)+σ,q ) , ∀t ≥ 0,

for m, k ∈ N, for any q ∈ [1,∞];

• the singular estimate (64), i.e.

∥∂k
t |D|

buχ1 (t, ·)∥Lq ≲ e−ct
1∑

j=0

t
− 1
σ

(
n
(

1
q j
− 1

q

)
+b

)
+ j−k
∥u j∥Lq j , ∀t > 0, (73)

for any q0, q1 ≥ 1, q ∈ [max{q0, q1},∞].

Combining together (72) and (73) we derive, in particular,

∥∂k
t |D|

bu(t, ·)∥Lq ≲
1∑

j=0

t
− 1
σ

(
n
(

1
q j
− 1

q

)
+b

)
+ j−k
∥u j∥Lq j . (74)

5. Proof of Theorem 5

To prove Theorem 5, we may follow the ideas in [6].
We may write the (global) solution to the linear Cauchy problem (6) in the form

ulin :=K0(t, x) ∗(x) u0(x) + K1(t, x) ∗(x) u1(x) ,

where K0(t, x),K1(t, x) are the fundamental solutions to (6). By Duhamel’s principle, a function u ∈ X, where X is a
suitable space, is a solution to (1) or (2) if, and only if, it satisfies the equality

u(t, x) = ulin(t, x) +
∫ t

0
K1(t − s, x) ∗(x) f (u(s, x)) ds , in X, (75)
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where, here and in the following, we set f (u(s, x)) = |∂ j
t u|

p, with j = 0 in (1) and j = 1 in (2). Incidentally, we
notice that more general shapes of function f can be considered, since we are dealing with small data solutions, but
we restrict to the ones above, for the sake of simplicity.

The proof of our global existence results is based on the following scheme. We fix p in (1) and (2), and we define
the space

X :=C
(
[0,∞),Wσ,1 ∩Wσ,∞) ∩ C1([0,∞), L1 ∩ L∞

)
, (76)

with norm given by

∥u∥X := sup
t∈[0,∞)

{
(1 + t)−1∥u(t, ·)∥L1 + ∥(|D|σu, ut)(t, ·)∥L1 + (1 + t)

n
σ−1∥u(t, ·)∥L∞ + (1 + t)

n
σ ∥(|D|σu, ut)(t, ·)∥L∞

}
. (77)

In particular, by interpolation, any function u ∈ X satisfies decay estimates with the same powers appearing in (20)
and (21) for any t ∈ [0,∞) and q ∈ [1,∞].

Thanks to Proposition 4.4, ulin ∈ X and it satisfies

∥ulin∥X ≤ C
(
∥u0∥A + ∥u1∥B

)
. (78)

We define the operator F such that, for any u ∈ X,

Fu(t, x) :=
∫ t

0
K1(t − s, x) ∗(x) f (u(s, x)) ds , (79)

then we prove the estimates

∥Fu∥X ≤ C∥u∥pX , (80)

∥Fu − Fv∥X ≤ C∥u − v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
. (81)

By standard arguments, since ulin satisfies (78) and p > 1, from (80) it follows that F + ulin maps balls of X into balls
of X, for small data in A × B, and that estimates (80)-(81) lead to the existence of a unique solution to (75), that is,
u = ulin + Fu, satisfying (78). We simultaneously gain a local and a global existence result.

Our starting point is the use of the linear estimates in Proposition 4.4. We prove (80), setting (u0, u1) = (0, f (u))
and replacing t by t − s, separately for (Fu)χ0 and (Fu)χ1 . We omit the proof of (81), since it is analogous to the proof
of (80).

The information that u belongs to X plays a fundamental role to estimate f (u(s, ·)) in suitable norms. We will
employ the following well-known result.

Lemma 5.1. Let α < 1 < β. Then it holds∫ t

0
(t − s)−α (1 + s)−β ds ≲ (1 + t)−α.

Lemma 5.1 has been proved in many different versions by many authors. One earlier version of this lemma goes back
to [43]. We give a short proof of this result since it is useful to understand the approach employed later to estimate
similar integrals.

Proof. First let t ≥ 1. Splitting the integration interval into [0, t/2] and [t/2, t], we find:∫ t/2

0
(t − s)−α (1 + s)−β ds ≈ t−α

∫ t/2

0
(1 + s)−β ds ≲ t−α,
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∫ t

t/2
(t − s)−α (1 + s)−β ds ≈ (1 + t)−β

∫ t

t/2
(t − s)−α ds ≲ t1−α(1 + t)−β ≤ t−α.

On the other hand, for t ∈ [0, 1],∫ t

0
(t − s)−α (1 + s)−β ds ≤

∫ t

0
(t − s)−α ds ≲ t1−α ≤ 1.

The role played by Lemma 5.1 is motivated by the following immediate consequence of the definition of (77).

Lemma 5.2. Let u ∈ X. Then
∥|u(t, ·)|p∥L1 ≲ (1 + t)−β∥u∥pX , t ∈ [0,∞),

for some β > 1, if p > p0, whereas

∥|ut(t, ·)|p∥L1 ≲ (1 + t)−β∥u∥pX , t ∈ [0,∞),

for some β > 1, if p > p1.

Proof. Due to
∥|∂

j
t u(t, ·)|p∥L1 ≲ ∥∂ j

t u(t, ·)∥pLp ,

it is sufficient to notice that

p
(

n
σ

(
1 −

1
p

)
− 1 + j

)
> 1 ⇐⇒ p > p j,

to conclude the proof.

Lemma 5.3. Let p > p0 in (1) or p > p1 in (2). Then:

∥|D|mσ∂k
t (Fu)(t, ·)∥Lq ≲ (1 + t)1− n

σ

(
1− 1

q

)
−k−m
∥u∥pX , (82)

for m + k = 0, 1 and q ∈ [1,∞].

Proof. It is sufficient to prove (82) for q = 1 and q = ∞, since we can later interpolate. By virtue of (74) with q1 =

q = 1, and Lemma 5.2, we may estimate

∥|D|mσ∂k
t (Fu)(t, ·)∥L1 ≲

∫ t

0
(t − s)1−k−m ∥ f (u(s, ·))∥L1 ds ≲ ∥u∥pX

∫ t

0
(t − s)1−k−m (1 + s)−β ds,

for some β > 1. Noticing that 1 − k − m ≥ 0 for m + k = 0, 1, by Lemma 5.1, estimate (82) follows for q = 1.
To deal with q = ∞ we may proceed as before only if 1 − k − m − n/σ > −1. Otherwise, let t ≥ 2; we use (74)

with q1 = 1 in [0, t/2] and (74) with q1 = ∞ in [t/2, t],

∥|D|mσ∂k
t (Fu)(t, ·)∥L∞ ≲

∫ t/2

0
(t − s)1−k−m− n

σ ∥ f (u(s, ·))∥L1 ds +
∫ t

t/2
(t − s)1−k−m ∥ f (u(s, ·))∥L∞ ds,

then we estimate∫ t/2

0
(t − s)1−k−m− n

σ ∥ f (u(s, ·))∥L1 ds ≲ ∥u∥pX t1−k−m− n
σ

∫ t/2

0
(1 + s)−β ds ≲ ∥u∥pX t1−k−m− n

σ ,∫ t

t/2
(t − s)1−k−m ∥ f (u(s, ·))∥L∞ ds ≲ ∥u∥pX (1 + t)(1− j− n

σ )p
∫ t

t/2
(t − s)1−k−m ds ≲ ∥u∥pX (1 + t)(1− j− n

σ )p+2−k−m.

The proof of (82) follows noticing that(
1 − j −

n
σ

)
p + 2 − k − m = −β + 2 − k − m −

n
σ
,
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for some β > 1, due to p > p j. For t ∈ [0, 2], it is sufficient to use (74) with q1 = q = ∞, to estimate

∥|D|mσ∂k
t (Fu)(t, ·)∥L∞ ≲

∫ t

0
(t − s)1−k−m ∥ f (u(s, ·))∥L∞ ds ≲ ∥u∥pX

∫ t

0
(t − s)1−k−m (1 + s)−β ds ≲ ∥u∥pX ,

where we used Lemma 5.2 once again.

This concludes the proof of Theorem 5.

6. Proof of Theorems 6 and 7

To prove Theorems 6 and 7, we will employ the linear Lq̃ − Lq high frequencies estimates which we prepared in
Section 4 to avoid the use of L1 − L1 and L∞ − L∞ high frequencies estimates. We follow the steps of the proof of
Theorem 5.

If we consider problem (1), then we fix the space

X0 :=C
(
[0,∞), Lη ∩ Hσ ∩ Lq̄) ∩ C1([0,∞), L2)

for a fixed η ∈ (1,min{2, p}] and for sufficiently large q̄, with norm given by

∥u∥X0 := sup
t∈[0,∞)

{
max
q∈[η,q̄]

(1 + t)βq∥u(t, ·)∥Lq +
(
(1 + t)β2+1∥ut(t, ·)∥L2 + (1 + t)γ2∥|D|σu(t, ·)∥L2

)}
.

If we consider problem (2), then we fix the space

X1 :=C
(
[0,∞),Wσ,η ∩Wσ,q̄) ∩ C1([0,∞), Lη ∩ Lq̄),

for a fixed η ∈ (1,min{2, p}] and for sufficiently large q̄, with norm given by

∥u∥X1 := sup
t∈[0,∞)

max
q∈[η,q̄]

{
(1 + t)βq∥u(t, ·)∥Lq + (1 + t)βq+1∥ut(t, ·)∥Lq + (1 + t)γq∥|D|σu(t, ·)∥Lq

}
.

Any function u ∈ X0 satisfies decay estimates with the same powers appearing in (33), (31) and (32). Moreover, any
function u ∈ X1 satisfies decay estimates with the same powers appearing in (35) and (36).

In the following we denote by X both spaces X0 and X1, when there is no need to distinguish among them.
Thanks to Propositions 4.1 and 4.2, ulin ∈ X, and it satisfies (78). Indeed, setting b+ kσ = jσ, in (63), where j = 0

if we consider X0 and j = 1 if we consider X1, then

n
2

(σ − 2δ) + jσ < σ + 2δ,

due to the restriction n ≤ n j, with n j as in (29) and (34), on the space dimension.
Therefore, to conclude the proof of Theorems 6 and 7, we shall only prove (80) and (81). Again, we only prove

the first one, being the proof of the second one analogous. We will separately consider low and high frequencies. We
preliminarily notice that Lemma 5.2 is still valid, i.e.

∥|∂
j
t u(t, ·)|p∥L1 ≲ ∥∂ j

t u(t, ·)∥pLp ≲ (1 + t)−p(βp+ j) ∥u∥pX j
≲ (1 + t)−β∥u∥pX j

, (83)

for some β > 1, since p(βp + j) > 1 if, and only if, p > p j, j = 0, 1 (see Remark 2.2). We are now ready to prove the
following.

Lemma 6.1. Let p > p0 in (1) or p > p1 in (2). Then:

∥(Fu)χ0 (t, ·)∥Lq ≲ (1 + t)−βq∥u∥pX , ∀q ∈ [η, q̄], (84)

for a sufficiently large q̄.
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Proof. Let q̄ be sufficiently large that

n
(

p
q̄
−

1
q̄

)
< σ + 2δ,

so that

n
(

1
q̃
−

1
q

)
− 2δ ≤ n

(
p
q̄
−

1
q̄

)
− 2δ < σ, (85)

for any q ∈ [η, q̄], where

q̃ = min
{

q,
q̄
p

}
.

We may now prove (84). First, let βq < 1. In this case, by (83), we get

∥(Fu)χ0 (t, ·)∥Lq ≲
∫ t

0
(t − s)−βq ∥ f (u(s, ·))∥L1 ds ≲ ∥u∥pX

∫ t

0
(t − s)−βq (1 + s)−β ds,

for some β > 1, and the statement follows by Lemma 5.1. Now let βq ≥ 1, in particular, (22) holds. Due toσ < 2(σ−δ)
(by virtue of 2δ < σ), thanks to (85), we may now fix q♯ ∈ [1, q̃], such that

αq :=
n

2(σ − δ)

(
1
q♯
−

1
q

)
−

2δ
2(σ − δ)

∈ [0, 1).

Then we use L1 − Lq estimates for s ∈ [0, t/2] and Lq♯ − Lq estimates for s ∈ [t/2, t].
Due to αq ≥ 0, we may use linear estimates (58) so that, thanks to (83), we get

∥(Fu)χ0 (t, ·)∥Lq ≲
∫ t/2

0
(t − s)−βq ∥ f (u(s, ·))∥L1 ds +

∫ t

t/2
(t − s)−αq ∥ f (u(s, ·))∥Lq♯ ds

≲ ∥u∥pX (1 + t)−βq

∫ t/2

0
(1 + s)−β ds + t1−αq (1 + t)−pβpq♯− jp

∥u∥pX j
,

for some β > 1. We remark that condition αq < 1 played a fundamental role to estimate the integral in [t/2, t].
First, let j = 0. We now notice that (22) holds with q = pq♯, since it holds for q = p. Therefore, we may compute:

αq + pβpq♯ − 1 = αq +
n

2(σ − δ)

(
1
p
−

1
pq♯

)
p + pβp − 1 > αq +

n
2(σ − δ)

(
1 −

1
q♯

)
= βq,

where we used once again pβp − 1 > 0 for any p > p0.
If j = 1, using pβp + p > 1, we may similarly get

αq + pβpq♯ + p − 1 > βq,

if we prove that

pβpq♯ + p − 1 >
n

2(σ − δ)

(
1
p
−

1
pq♯

)
p. (86)

Indeed, it is sufficient to distinguish three cases. If (22) holds with q = p, then it also holds for q = pq♯, and

pβpq♯ + p − 1 =
n

2(σ − δ)

(
1
p
−

1
pq♯

)
p + pβp + p − 1 >

n
2(σ − δ)

(
1
p
−

1
pq♯

)
p.

If (22) holds with q = pq♯, but not with q = p, then, due to δ < σ − δ, we get:

pβpq♯ + p − 1 =
n

2(σ − δ)

(
1
p
−

1
pq♯

)
p +

p
2(σ − δ)

{
n
(
1 −

1
p

)
− 2δ

}
+ p − 1
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>
n

2(σ − δ)

(
1
p
−

1
pq♯

)
p + pβp + p − 1 >

n
2(σ − δ)

(
1
p
−

1
pq♯

)
p.

If (22) does not hold with q = pq♯, then, due to 2δ < 2(σ − δ), we get:

pβpq♯ + p − 1 =
n
2δ

(
1
p
−

1
pq♯

)
p + pβp + p − 1 >

n
2(σ − δ)

(
1
p
−

1
pq♯

)
p.

Summarizing, we proved (86) in all cases.
This concludes the proof of (84).

Lemma 6.2. Let p > p0 in (1) or p > p1 in (2). Then:

∥|D|σ(Fu)χ0 (t, ·)∥L2 ≲ (1 + t)−γ2∥u∥pX , (87)

∥∂t(Fu)χ0 (t, ·)∥L2 ≲ (1 + t)−β2−1∥u∥pX (88)

Moreover, if u ∈ X1, then:

∥|D|σ(Fu)χ0 (t, ·)∥Lq ≲ (1 + t)−γq∥u∥pX1
, ∀q ∈ [η, q̄], (89)

∥∂t(Fu)χ0 (t, ·)∥Lq ≲ (1 + t)−βq−1∥u∥pX1
, ∀q ∈ [η, q̄], (90)

for a sufficiently large q̄.

Proof. Let q̄ be sufficiently large that

n
(

p
q̄
−

1
q̄

)
< 2δ,

so that

n
(

1
q̃
−

1
q

)
+ σ − 2δ ≤ n

(
p
q̄
−

1
q̄

)
+ σ − 2δ < σ, (91)

for any q ∈ [η, q̄], where

q̃ = min
{

q,
q̄
p

}
.

We may now prove our estimates. For the sake of brevity, we only prove (89) and (90), for u ∈ X1, i.e. when the
nonlinearity is |ut |

p.
We first consider (89). If γq < 1, by (83), we get

∥|D|σ(Fu)χ0 (t, ·)∥Lq ≲
∫ t

0
(t − s)−γq ∥ f (u(s, ·))∥L1 ds ≲ ∥u∥pX

∫ t

0
(t − s)−γq (1 + s)−β ds,

for some β > 1, and the statement follows by Lemma 5.1.
Now let γq ≥ 1. Due to σ < 2(σ − δ) (by virtue of 2δ < σ), thanks to (91), we may now fix q♯ ∈ [1, q̃], such that

αq :=
n

2(σ − δ)

(
1
q♯
−

1
q

)
+

σ − 2δ
2(σ − δ)

∈ [0, 1).

Then we use L1 − Lq estimates for s ∈ [0, t/2] and Lq♯ − Lq estimates for s ∈ [t/2, t].
Due to αq ≥ 0, we may use linear estimates (58) so that, thanks to (83), we get

∥|D|σ(Fu)χ0 (t, ·)∥Lq ≲
∫ t/2

0
(t − s)−γq ∥ f (u(s, ·))∥L1 ds +

∫ t

t/2
(t − s)−αq ∥ f (u(s, ·))∥Lq♯ ds

≲ ∥u∥pX (1 + t)−γq

∫ t/2

0
(1 + s)−β ds + t1−αq (1 + t)−pβpq♯−p

∥u∥pX1
,
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for some β > 1. We remark that condition αq < 1 played a fundamental role to estimate the integral in [t/2, t].
By using (86), we immediately obtain:

t1−αq (1 + t)−pβpq♯−p ≲ (1 + t)−γq ,

and this concludes the proof of (89).

We now prove (90). First, assume that (22) does not hold, so that βq + 1 < 1. Then, by (83), we get

∥∂t(Fu)χ0 (t, ·)∥Lq ≲
∫ t

0
(t − s)−βq−1 ∥ f (u(s, ·))∥L1 ds ≲ ∥u∥pX

∫ t

0
(t − s)−βq−1 (1 + s)−β ds,

for some β > 1, and the statement follows by Lemma 5.1.
Now let us assume that (22) holds. Then, for any ε ∈ (0, 2δ), we may take q♯ ∈ [1, q] such that

αq =
n
2δ

(
1
q♯
−

1
q

)
,

verifies αq = 1 − ε/(2δ) > 0. Then we use L1 − Lq estimates for s ∈ [0, t/2] and Lq♯ − Lq estimates for s ∈ [t/2, t].
Being αq < 1, we now have to use linear estimates (60) (instead of (58)) so that, thanks to (83), we get

∥∂t(Fu)χ0 (t, ·)∥Lq ≲
∫ t/2

0
(t − s)−βq−1 ∥ f (u(s, ·))∥L1 ds +

∫ t

t/2
(t − s)−αq ∥ f (u(s, ·))∥Lq♯ ds

≲ ∥u∥pX (1 + t)−βq−1
∫ t/2

0
(1 + s)−β ds + t1−αq (1 + t)−pβpq♯−p

∥u∥pX1
, (92)

for some β > 1. We remark that condition αq < 1 played a fundamental role to estimate the integral in [t/2, t]. Since
the inequality in (86) is strict, for sufficiently small ε(q̄), we may estimate:

αq + pβpq♯ + p − 1 > αq +
n

2(σ − δ)

(
1 −

1
q♯

)
+ ε

{
1
2δ
−

1
2(σ − δ)

}
= βq + 1,

so that we obtain
t1−αq (1 + t)−pβpq♯−p ≲ (1 + t)−βq−1.

This concludes the proof of (90).

Now we may consider the high frequencies estimate. At high frequencies, Corollary 4.1 plays a fundamental role and
we will also make use of a modified version of Lemma 5.1.

Lemma 6.3. Let c > 0 and α ∈ R. Then it holds∫ t

0
e−c(t−s) (1 + s)−α ds ≲ (1 + t)−α.

Proof. Splitting the integration interval into [0, t/2] and [t/2, t], we find:∫ t/2

0
e−c(t−s) (1 + s)−α ds ≤ e−ct/2

∫ t/2

0
(1 + s)−α ds ≲ e−ct/2 ≲ (1 + t)−α,∫ t

t/2
e−c(t−s) (1 + s)−α ds ≈ (1 + t)−α

∫ t

t/2
e−c(t−s) ds ≲ (1 + t)−α.

We are now ready to prove the following.
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Lemma 6.4. Let us assume n ≤ n0, with n0 as in (29), and p > p0 in (1), or n ≤ n1, with n1 as in (34), and p > p1

in (2). Then:

∥(Fu)χ1 (t, ·)∥Lq ≲ (1 + t)−βq∥u∥pX1
, ∀q ∈ [η, q̄], (93)

for a sufficiently large q̄. Also,

∥|D|σ(Fu)χ1 (t, ·)∥L2 ≲ (1 + t)−γ2∥u∥pX , (94)

∥∂t(Fu)χ1 (t, ·)∥L2 ≲ (1 + t)−β2−1∥u∥pX (95)

Moreover, if u ∈ X1, then:

∥|D|σ(Fu)χ1 (t, ·)∥Lq ≲ (1 + t)−γq∥u∥pX1
, ∀q ∈ [η, q̄], (96)

∥∂t(Fu)χ1 (t, ·)∥Lq ≲ (1 + t)−βq−1∥u∥pX1
, ∀q ∈ [η, q̄], (97)

for a sufficiently large q̄.

We notice that n ≤ n0 if, and only if, (70) holds with b = k = 0 in Corollary 4.1, whereas n ≤ n1 if, and only if, (70)
holds with (b, k) = (σ, 0) or, equivalently, with (b, k) = (0, 1), in Corollary 4.1.

Proof. We only prove (93), for the sake of brevity. First, let t ≥ 2. We employ Lq̃ − Lq high frequencies estimates,
where q̃ = min{q, q̄/p}, splitting the integration interval in [0, t − 1] and [t − 1, t]. Then, thanks to Proposition 4.3 and
Corollary 4.1, we may estimate

∥(Fu)χ1 (t, ·)∥Lq ≲
∫ t−1

0
e−c(t−s) ∥ f (u(s, ·))∥Lq̃ ds +

∫ t

t−1
(t − s)−γ ∥ f (u(s, ·))∥Lq̃ ds,

for some γ < 1. By Lemma 6.3, we derive∫ t−1

0
e−c(t−s) ∥ f (u(s, ·))∥Lq̃ ds ≲ ∥u∥pX j

∫ t−1

0
e−c(t−s) (1 + s)−pβpq̃− jp ds ≲ (1 + t)−pβpq̃− jp ∥u∥pX j

,

for j = 0, 1, whereas we directly obtain:∫ t

t−1
(t − s)−γ ∥ f (u(s, ·))∥Lq̃ ds ≲ (1 + t)−pβpq̃− jp ∥u∥pX j

∫ t

t−1
(t − s)−γ ds ≈ (1 + t)−pβpq̃− jp ∥u∥pX j

,

thanks to γ < 1. Due to pq̃ ≥ q, and p > 1, estimate (93) trivially follows. For t ∈ [0, 2], it sufficient to use

∥|D|b∂k
t (Fu)χ1 (t, ·)∥Lq ≲

∫ t

0
(t − s)−γ ∥ f (u(s, ·))∥Lq̃ ds ≲ ∥u∥pX , k = 0, 1.

This concludes the proof.

Remark 6.1. It is clear that one may prove for the high frequencies part of (Fu)χ1 , better estimates than the ones
described in Lemma 6.4. However, this improvement would not influence the profile of the whole term Fu, since its
asymptotic behavior as t → ∞ is determined by its low frequencies part, as it happens for the solution to the linear
problem.
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7. Sketch of the proof of Theorems 8 and 9

We follow the steps in Sections 5 and 6, but now the solution spaces X0 and X1 are

X0 :=C
(
[0,∞), Lη ∩ Hκ) ∩ C1([0,∞),Hκ−σ) (98)

X1 :=C
(
[0,∞),Wσ,η ∩ Hκ) ∩ C1([0,∞), Lη ∩ Hκ−σ) (99)

where

η = min{2, p}, κ = max
{

n
2

(
1 −

1
p

)
, σ

}
,

with norms given by

∥u∥X0 := sup
t∈[0,∞)

{
max
q∈[η,2]

(1 + t)βq∥u(t, ·)∥Lq + max
b∈[0,κ]

(1 + t)θb∥|D|bu(t, ·)∥L2 + max
b∈[0,κ−σ]

(1 + t)θb+1∥|D|but(t, ·)∥L2

}
,

∥u∥X1 := sup
t∈[0,∞)

{
max
q∈[η,2]

(1 + t)βq
(
∥u(t, ·)∥Lq + (1 + t)∥ut(t, ·)∥Lq

)
+ max

b∈[0,κ]
(1 + t)θb∥|D|bu(t, ·)∥L2 + max

b∈[0,κ−σ]
(1 + t)θb+1∥|D|but(t, ·)∥L2

}
.

We notice that the first term in ∥u∥X0 and the first two terms in ∥u∥X1 may be omitted if p ≥ 2, so that η = 2, since they
are included in the last ones (for b = 0).

Again, we denote by X both spaces X0 and X1, when there is no need to distinguish among them. Thanks to
Propositions 4.1 and 4.2, and noticing that (62) with q = 2, can be easily generalized to

∥∂k
t |D|

buχ1 (t, ·)∥L2 ≲ e−ct (∥u0∥Hkσ+b + ∥u1∥H(kσ+b−σ)+ ) , ∀t ≥ 0, (100)

we get that ulin ∈ X and it satisfies (78).
Therefore, to prove Theorems 8 and 9, we shall only prove (80) and (81). We only sketch the proof of the first

one, being the proof of the second one analogous, and we will separately consider low and high frequencies. We
preliminarily notice that Lemma 5.2 is still valid (since we may use (27) if p > 2). We are now ready to prove the
following.

Lemma 7.1. Let p > p0 in (1) or p > p1 in (2). Then:

∥|D|b∂k
t (Fu)χ0 (t, ·)∥L2 ≲ (1 + t)−θb−k∥u∥X , (101)

for any b ∈ [0, κ] if k = 0 and for any b ∈ [0, κ − σ] if k = 1.

Proof. If θb + k < 1, then, by (83), we may directly estimate

∥|D|b∂k
t (Fu)χ0 (t, ·)∥L2 ≲

∫ t

0
(t − s)−θb−k ∥ f (u(s, ·))∥L1 ds ≲ ∥u∥pX

∫ t

0
(t − s)−θb−k (1 + s)−β ds,

for some β > 1, and the statement follows by Lemma 5.1. If θb + k ≥ 1, we may distinguish different cases, as it
happened in the proof of Lemmas 6.1 and 6.2. For the sake of brevity, we only discuss the easier case k = 0 and b ≥ 2δ
in (101). In this case, it is sufficient to use L1 − L2 estimates for s ∈ [0, t/2] and L2 − L2 estimates for s ∈ [t/2, t]. In
the integral between 0 and t/2, we proceed as before. In the integral between t/2 and t, using (58), we may estimate∫ t

t/2
(t − s)−

b−2δ
2(σ−δ) ∥ f (u(s, ·))∥L2 ds ≲ t1− b−2δ

2(σ−δ) (1 + t)−pβ2p− jp ∥u∥pX .

We notice that we used (b− 2δ)/(2(σ− δ)) < 1, which follows as a consequence of b < σ+ 2δ and 2δ < σ. The proof
follows, thanks again to pβp + jp > 1, by

1 −
b − 2δ

2(σ − δ)
− pβ2p − jp ≤ 1 − θb − pβp − jp < −θb.
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If p < 2, we also use the following.

Lemma 7.2. If p < 2, then (84) holds for any q ∈ [p, 2]. Moreover, if we are considering (2), then (90) holds for
any q ∈ [p, 2].

Proof. The proof is completely analogous to the proof of Lemmas 6.1 and 6.2, with q̃ = q.

At high frequencies, we may easily prove the following.

Lemma 7.3. Let us assume (39) for some p as in (37) in (1), or (46) for some p as in (44) in (2). Then:

∥|D|b∂k
t (Fu)χ1 (t, ·)∥L2 ≲ (1 + t)−θb−k∥u∥X , (102)

for any b ∈ [0, κ] if k = 0 and for any b ∈ [0, κ − σ] if k = 1. Moreover, if p < 2, then (93) holds for any q ∈ [p, 2]
and, if we are considering (2), then (97) holds for any q ∈ [p, 2].

Proof. The proof is analogous to the proof of Lemma 6.4, but the role played by Corollary 4.1 is now replaced by (67),
and, if p < 2, by (66) with b = 0, for any q ∈ [p, 2]. In particular, due to the right-hand side inequality in (37) or
in (44), the singularity t−(b+(k−1)σ)/(2δ) in (67) is integrable, since b + kσ ≤ κ < σ + 2δ, and the singularity

t−n
∣∣∣∣ 1

q−
1
2

∣∣∣∣( σ−2δ
2δ )− 1

2δ (b+(k−1)σ)
,

in (66) is integrable, due to assumption (39) or (46).

This concludes the proof of Theorems 8 and 9.

8. The special case σ = 1

For σ = 1 and 2δ ∈ (0, 1), we may relax the restriction on the space dimension in Theorems 6, 7, 8 and 9, when
the space dimension is odd. Also, we may take η = 1 and q̄ = ∞ in Theorem 6 and 7, thanks to the L1 − L1 estimates
obtained in [39].

With these modifications, Theorems 6 and 8 improve the corresponding result obtained by the authors in Theo-
rem 2 in [8], for the global existence of small data solutions to (1). The modified version of Theorem 6 allows to deal
with all supercritical powers, but the maximum space dimension remains the same as in [8]. On the other hand, the
modified version of Theorem 8 gives global existence up to a maximum space dimension which is larger, in general,
than the one obtained in [8]. We remark that in this case δ is necessarily fractional, being 2δ ∈ (0, 1); in particular, the
nonexistence counterpart of these results is not available.

These improvements are consequence of the following.

Proposition 8.1. Let σ = 1 and 2δ ∈ (0, 1). Then, for k = 0, 1 and b ≥ 0, the solution to (6) satisfies the singular
estimate

∥∂k
t |D|

buχ1 (t, ·)∥Lq ≲ t[
n
2 ]

∣∣∣∣ 2
q−1

∣∣∣∣(1− 1
2δ )− b+k

2δ e−ct (∥u0∥Lq + t
1
2δ ∥u1∥Lq

)
, t ∈ (0,T ], (103)

for any 1 ≤ q ≤ ∞.

Proof. We first prove (103) for q = 1. To prove it, it is sufficient to prove that∥∥∥∥F−1
(
∂k

t |ξ|
bχ1(|ξ|)K̂ j(t, |ξ|)

)∥∥∥∥
L1

≲ e−ct t[
n
2 ](1− 1

2δ )− b+k− j
2δ , (104)

and then use Young inequality. The case k = 0 was already proved in [39], see Corollaries 8 and 9. For k = 1, thanks
to λ+λ− = |ξ|2 we get

∂tK̂0(t, |ξ|) =
|ξ|2

(
eλ+ t − eλ− t

)
λ+ − λ−

.
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We conclude (104), for j = 0, by applying Lemma 9 of [39]. Moreover, by computing

∂tK̂1(t, |ξ|) =
λ+eλ+ t − λ−eλ− t

λ+ − λ−
= eλ+ t + eλ− t − K̂0(t, |ξ|),

we conclude (104), for j = 1, by applying Lemma 10 of [39].
Applying Riesz-Thorin interpolation theorem to (103) with q = 1, and to (67), we obtain (103) for any q ∈ [1, 2].

For q ∈ (2,∞], (103) follows by duality argument (see, for instance, page 95 of [44]).

Estimate (103) coincide with (66) when n is even, but the singularity is weaker when n is odd.
The statements of Lemma 4.3 and Corollary 4.1 are improved accordingly. Also, Proposition 4.2 can be modified

to include the cases q = 1 and q = ∞ in (62).
As a consequence, the statements of Theorems 6 and 7 can be improved in the following way, when σ = 1:

• the maximum space dimensions n0 in (29) and n1 in (34) become:

n0(1, δ) := 1 + 2 max
{

m ∈ N : m <
1 + 2δ
1 − 2δ

}
,

n1(1, δ) := 1 + 2 max
{

m ∈ N : m <
2δ

1 − 2δ

}
;

• it is possible to take η ∈ [1,min{2, p} and q̄ ∈ [M,∞].

Similarly, conditions (39) and (46) in Theorems 8 and 9 may be relaxed to:[n
2

] ( 2
p
− 1

)
+

(1 − 2δ) <

1 + 2δ in Theorem 8,
2δ in Theorem 9.

In particular, condition above holds for any δ ∈ (0, 1/2) and p > p0, if n ≤ 5, consistently with the same bound
obtained in [38] for the classical damped wave equation, i.e. for δ = 0.

9. Local existence in the energy space

Several existence results for local solutions to problems (1) and (2) may be given, by using different approaches.
For the sake of simplicity, we just investigate the local existence of energy solutions with standard tools.

Proposition 9.1. We distinguish three cases.

• If 2δ ≤ σ, let us fix p in (1), such that

1 < p < 1 +
2(σ + 2δ)

(n − 2(σ + 2δ))+
, (105)

or p in (2), such that

1 < p < 1 +
4δ

(n − 4δ)+
. (106)

Then there exists ε ∈ (0, 2δ] and T > 0 such that for any data

(u0, u1) ∈ Hσ+2δ−ε × H2δ−ε (107)

there exists a local solution
u ∈ C([0,T ],Hσ+2δ−ε) ∩ C1([0,T ],H2δ−ε)

to (1) or to (2).
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• If σ ≤ 2δ < 2σ, let us fix p in (1), such that

1 < p < 1 +
4σ

(n − 4σ)+
, (108)

or p in (2), such that (106) holds. Then there exists ε ∈ (0, 2δ] and T > 0 such that for any data

(u0, u1) ∈ H2σ−ε × H2δ−ε (109)

there exists a local solution
u ∈ C([0,T ],H2σ−ε) ∩ C1([0,T ],H2δ−ε)

to (1) or to (2).

• If δ ≥ σ, let us fix p in (1), such that

1 < p ≤ 1 +
4δ

(n − 4δ)+
, (110)

or p in (2), such that (106) holds. Then there exists ε ∈ (0, 2δ] and T > 0 such that for any data

(u0, u1) ∈ H2δ × H2δ−ε (111)

there exists a local solution
u ∈ C([0,T ],H2δ) ∩ C1([0,T ],H2δ−ε)

to (1) or to (2).

It may appear surprising that in the case δ ≥ σ a natural solution space is C([0,T ],H2δ)∩C1([0,T ],H2δ−ε), but several
new effect appears for the regularity of the solution to (6), when δ ≥ σ. In particular, we address the interested reader
to [21], where smoothing effect are investigated in abstract setting, in bounded domains.

Remark 9.1. When 2δ ≤ σ, the solution and data spaces in Proposition 9.1 are the same as in Theorems 8 and 9, but
we do not require the Lp regularity of the local solutions, when p < 2, and we do not take L1 regularity assumptions
on the initial data. Indeed, the L1 assumption is taken to improve the decay rate of the solution as t → ∞, and so
improve the critical exponent of the problem (see Section 2.5), and this aspect is of no interest for local solutions.

It is clear that condition (105) and, respectively, (106) and (108), is related to the continuous embedding of Hσ+2δ−ε

and, respectively, H2δ−ε and H2σ−ε, into L2p, for a sufficiently small ε > 0. Similarly, condition (110) is related to
the continuous embedding of H2δ into L2p. The choice of this regularity and, in particular, the presence of ε > 0, is
related to the smoothing effect created by the structural damping.

For this reason, the proof of the local existence result in the energy space is not completely standard, and we sketch
it.

Proof. Let X be the solution space with its usual norm ∥ · ∥X; for instance, if 2δ ≤ σ then

X :=C([0,T ],Hσ+2δ−ε) ∩ C1([0,T ],H2δ−ε),

∥u∥X := max
t∈[0,T ]

(
∥u(t, ·)∥Hσ+2δ−ε + ∥ut(t, ·)∥H2δ−ε

)
.

Moreover, let Y = C([0,T ], L2), with the usual norm

∥ f ∥Y := max
t∈[0,T ]

∥ f (t, ·)∥L2 .

The local existence of the solution to (1) or (2) follows, by standard arguments (see, for instance, [13]), if one is able
to prove the following:
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(a) given the initial data as in the statement, the solution to the linear problem is in X;

(b) for any u, v ∈ X, it holds
∥|u|p − |v|p∥Y ≤ C(∥u∥X , ∥v∥X) ∥u − v∥X ,

or, respectively,
∥|ut |

p − |vt |
p∥Y ≤ C(∥u∥X , ∥v∥X) ∥u − v∥X;

(c) for any f ∈ Y , it holds: ∥∥∥∥∥∥
∫ t

0
K1(t − s, ·) ∗(x) f (s, ·) ds

∥∥∥∥∥∥
X
≤ C(T ) ∥ f ∥Y

where K1 is the fundamental solution to (1) or, respectively, to (2), as in Section 4.

An estimate from below on the maximal existence time of the solution may depend, in general, on the size of the
initial data, and on the power p, as well as on σ, δ, ε.

Property (b) is an immediate consequence of Hölder inequality and of the Sobolev embedding, for a sufficiently
small ε, with respect to p. To prove property (a) and (c), we use standard energy estimates; in the second case, the
smoothing effect comes into play and singular estimates are also considered.

After performing the Fourier transform, taking into account of the behavior of the roots of λ2 + |ξ|2δλ + |ξ|2σ = 0
as |ξ| → ∞, it is easy to obtain the desired estimates. To prove (a), it is sufficient to notice that, for any t ≥ 0 and for
sufficiently large |ξ|, it holds:

û(t, ξ) ≲ û0(ξ) + |ξ|−max{σ,2δ}û1(ξ),

ût(t, ξ) ≲ |ξ|2σ−max{σ,2δ}û0(ξ) + û1(ξ),

so that (a) follows by a direct application of Plancherel theorem.
It remains to prove (c). First, let 2δ ≤ σ. Then, for any t > 0 and for sufficiently large |ξ|, we have (see Section 4):

K̂1(t, ξ) ≲ e−ct|ξ|2δ |ξ|−σ ≲ t−1+ ε
2δ |ξ|ε−2δ−σ,

∂tK̂1(t, ξ) ≲ e−ct|ξ|2δ ≲ t−1+ ε
2δ |ξ|ε−2δ,

for any ε ∈ (0, 2δ]. This immediately leads to:∥∥∥∥∥∥
∫ t

0
K1(t − s, ·) ∗(x) f (s, ·) ds

∥∥∥∥∥∥
X
≤ max

t∈[0,T ]

∫ t

0

(∥∥∥K1(t − s, ·) ∗(x) f (s, ·)
∥∥∥

Hσ+2δ−ε +
∥∥∥∂tK1(t − s, ·) ∗(x) f (s, ·)

∥∥∥
H2δ−ε

)
ds

≲ max
t∈[0,T ]

∫ t

0
(t − s)−1+ ε

2δ ∥ f (s, ·)∥L2 ds ≤ C(T, ε)∥ f ∥Y .

Now, let 2δ > σ. In this case, the roots of λ2 + |ξ|2δλ + |ξ|2σ = 0 as |ξ| → ∞ verifies

λ+ ∼ −|ξ|
2(σ−δ), λ− ∼ −|ξ|

2δ,

so that

K̂1(t, ξ) ≲ |ξ|−2δ(e−ct|ξ|2(σ−δ)
+ e−ct|ξ|2δ),

∂tK̂1(t, ξ) ≲ e−ct|ξ|2δ + |ξ|−2(2δ−σ) e−ct|ξ|2(σ−δ)
.

In particular, when σ ≤ δ, the root λ+ remains bounded or tends to 0, so that the smoothing effect does not appear in
the related part of the solution. We first consider the case σ ≤ 2δ < 2σ. Then, recalling that δ ≥ σ − δ, we obtain

K̂1(t, ξ) ≲
(
t−1+ ε

2(σ−δ) + t−1+ ε+2(2δ−σ)
2δ

)
|ξ|ε−2σ,
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∂tK̂1(t, ξ) ≲
(
t−1+ ε

2δ + t−1+ ε
2(σ−δ)

)
|ξ|ε−2δ,

for any ε ∈ (0, 2(σ − δ)], and this leads to:∥∥∥∥∥∥
∫ t

0
K1(t − s, ·) ∗(x) f (s, ·) ds

∥∥∥∥∥∥
X
≤ max

t∈[0,T ]

∫ t

0

(∥∥∥K1(t − s, ·) ∗(x) f (s, ·)
∥∥∥

H2σ−ε +
∥∥∥∂tK1(t − s, ·) ∗(x) f (s, ·)

∥∥∥
H2δ−ε

)
ds

≲ max
t∈[0,T ]

∫ t

0
(t − s)−1+ ε

2(σ−δ) ∥ f (s, ·)∥L2 ds ≤ C(T, ε)∥ f ∥Y .

Now, let σ ≤ δ. In this case, we drop the exponential e−ct|ξ|2(σ−δ)
, since it gives no smoothing. We obtain:

K̂1(t, ξ) ≲ |ξ|−2δ(1 + e−ct|ξ|2δ) ≲ |ξ|−2δ,

∂tK̂1(t, ξ) ≲ e−ct|ξ|2δ + |ξ|−2(2δ−σ) ≲ t−1+ ε
2δ |ξ|ε−2δ + |ξ|−2(2δ−σ),

for any ε ∈ (0, 2δ], and, recalling that 2δ − σ ≥ δ, this leads to:∥∥∥∥∥∥
∫ t

0
K1(t − s, ·) ∗(x) f (s, ·) ds

∥∥∥∥∥∥
X
≤ max

t∈[0,T ]

∫ t

0

(∥∥∥K1(t − s, ·) ∗(x) f (s, ·)
∥∥∥

H2δ +
∥∥∥∂tK1(t − s, ·) ∗(x) f (s, ·)

∥∥∥
H2δ−ε

)
ds

≲ max
t∈[0,T ]

∫ t

0
(t − s)−1+ ε

2δ ∥ f (s, ·)∥L2 ds ≤ C(T, ε)∥ f ∥Y .

The proof of (c) is completed, and this concludes the proof.
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de São Paulo, FAPESP), grants 2013/15140-2 and 2014/02713-7, JP - Programa Jovens Pesquisadores em Centros
Emergentes, research project Decay estimates for semilinear hyperbolic equations, during his stay at FFCLRP - USP.
The second author has been partially supported by FAPESP Grant 2015/16038-2.

References

[1] R.C. Charão, C.R. da Luz, Asymptotic properties for a semilinear plate equation in unbounded domains, J. Hyperbolic Differ. Equ. 6 (2009)
269–294.

[2] R.C. Charão, C.R. da Luz, R. Ikehata, Sharp Decay Rates for Wave Equations with a Fractional Damping via New Method in the Fourier
Space, Journal of Math. Anal. and Appl., 408 (2013), 1, 247–255, http://dx.doi.org/10.1016/j.jmaa.2013.06.016.

[3] R.C. Charão, C.R. da Luz, R. Ikehata, New decay rates for a problem of plate dynamics with fractional damping, J. Hyperbolic Differ. Equ.
10, 3 (2013), 563–575, http://dx.doi.org/10.1142/S0219891613500203.

[4] R.C. Charão, C.R. da Luz, R. Ikehata, Asymptotic behavior for abstract evolution differential equations of second order, J. Differential
Equations 259 (2015), 5017–5039.

[5] R.C. Charão, J.L. Horbach, R. Ikehata, Optimal decay rates and asymptotic profile for the plate equation with structural damping, J. Math.
Anal. Appl. 440 (2016), 529–560.

[6] M. D’Abbicco, A benefit from the L1 smallness of initial data for the semilinear wave equation with structural damping, in Current Trends
in Analysis and its Applications, 2015, 209–216. Proceedings of the 9th ISAAC Congress, Krakow. Eds V. Mityushev and M. Ruzhansky,
http://www.springer.com/br/book/9783319125763.

[7] M. D’Abbicco, M.R. Ebert, Diffusion phenomena for the wave equation with structural damping in the Lp − Lq framework, J. Differential
Equations, 256 (2014), 2307–2336, http://dx.doi.org/10.1016/j.jde.2014.01.002.

[8] M. D’Abbicco, M.R. Ebert, An application of Lp−Lq decay estimates to the semilinear wave equation with parabolic-like structural damping,
Nonlinear Analysis 99 (2014), 16–34, http://dx.doi.org/10.1016/j.na.2013.12.021.

[9] M. D’Abbicco, M.R. Ebert, A classification of structural dissipations for evolution operators, Math. Meth. Appl. Sci. 39 (2016), 2558-2582,
http://dx.doi.org/10.1002/mma.3713.

[10] M. D’Abbicco, M.R. Ebert, T. Picon, Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation, J.
Pseudo-differential Operators and Appl., 7, 2 (2016), 261–293, http://dx.doi.org/10.1007/s11868-015-0141-9.

37



[11] M. D’Abbicco, E. Jannelli, A damping term for higher-order hyperbolic equations, Ann. Mat. Pura ed Appl. 195, 2, 2016, 557–570,
http://dx.doi.org/10.1007/s10231-015-0477-z.

[12] M. D’Abbicco, S. Lucente, NLWE with a special scale-invariant damping in odd space dimension, Discr. Cont. Dynamical Systems, AIMS
Proceedings, 2015, 312–319, http://dx.doi.org/10.3934/proc.2015.0312.

[13] M. D’Abbicco, S. Lucente, The beam equation with nonlinear memory, Z. Angew. Math. Phys. (2016) 67:60,
http://dx.doi.org/10.1007/s00033-016-0655-x.

[14] M. D’Abbicco, S. Lucente, M. Reissig, A shift in the critical exponent for semilinear wave equations with a not effective damping, Journal of
Differential Equations 259, 2015, 5040–5073, http://dx.doi.org/10.1016/j.jde.2015.06.018.

[15] M. D’Abbicco, M. Reissig, Semilinear structural damped waves, Math. Methods in Appl. Sc., 37 (2014), 1570–1592,
http://dx.doi.org/10.1002/mma.2913.

[16] L. D’Ambrosio, S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations 123 (2003), 511–541.
[17] Yu.V. Egorov, V.A. Galaktionov, V.A. Kondratiev, and S.I. Pohozaev, On the necessary conditions of existence to a quasilinear inequality in

the half-space, Comptes Rendus Acad. Sci. Paris, Série I 330 (2000), 93–98.
[18] V.A. Galaktionov, E.L. Mitidieri, S.I. Pohozaev, Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations,

Monogr. Res. Notes Math., Chapman and Hall/CRC, 2014, ISBN 9781482251722.
[19] V. Georgiev, Weighted estimate for the wave equation, Nonlinear Waves, Proceedings of the Fourth MSJ International Research Institute, vol.

1, Hokkaido Univ., 1996, pp. 71–80.
[20] V. Georgiev, H. Lindblad, C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math.,

119 (1997), 1291–1319.
[21] M. Ghisi, M. Gobbino, A. Haraux, Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation, Trans.

Amer. Math. Soc. 368, 3 (2016), 2039–2079.
[22] Han Yang, A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves, Bull. Sci. math. 124, 5 (2000) 415–433.
[23] Hsiao L., Liu Tai-ping, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservations with damping, Comm.

Math. Phys. 143 (1992), 599–605.
[24] R. Ikehata, Asymptotic Profiles for Wave Equations with Strong Damping, J. Differential Equations 257 (2014), 2159–2177,

http://dx.doi.org/10.1016/j.jde.2014.05.031
[25] R. Ikehata, Y. Mayaoka, T. Nakatake, Decay estimates of solutions for dissipative wave equations in RN with lower power nonlinearities, J.

Math. Soc. Japan, 56 (2004), 2, 365–373.
[26] R. Ikehata, M. Ohta, Critical exponents for semilinear dissipative wave equations in RN , J. Math. Anal. Appl. 269 (2002), 87–97.
[27] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235–268.
[28] G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Mathematica 143 (2000), 2, 175–197.
[29] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math., 32 (1980), 501–505.
[30] P. Marcati, K. Nishihara, The Lp-Lq estimates of solutions to one-dimensional damped wave equations and their application to the compress-

ible flow through porous media, J. Differential Eq. 191 (2003), 445–469.
[31] E. Mitidieri, S. I. Pohozaev, The absence of Global Positive Solutions to Quasilinear Elliptic Inequalities, Doklady Mathematics 57 (1998),

250–253.
[32] E. Mitidieri, S. I. Pohozaev, Nonexistence of Positive Solutions for a Systems of Quasilinear Elliptic Equations and Inequalities in Rn,

Doklady Mathematics 59 (1999), 1351–1355.
[33] E. Mitidieri, S.I. Pohozaev, Non-existence of weak solutions for some degenerate elliptic and parabolic problems on Rn, J. Evolution Equa-

tions 1 (2001) 189–220.
[34] E. Mitidieri, S.I. Pohozaev, Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on Rn, Proc. Steklov

Institute of Mathematics 232 (2001), 240–259.
[35] E. Mitidieri, S. I. Pokhozhaev Lifespan Estimates for Solutions of Some Evolution Inequalities, Differential Equations 45, 10 (2009), 1473–

1484.
[36] A. Miyachi, On some Fourier multipliers for Hp(Rn), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 157–179.
[37] A. Miyachi, On some estimates for the wave equation in Lp and Hp, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 331–354.
[38] T. Narazaki, Lp − Lq estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan 56 (2004),

586–626.
[39] T. Narazaki, M. Reissig, L1 estimates for oscillating integrals related to structural damped wave models, in Studies in Phase Space Anal-

ysis with Applications to PDEs, Cicognani M, Colombini F, Del Santo D (eds), Progress in Nonlinear Differential Equations and Their
Applications. Birkhäuser, 2013; 215–258.
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