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«THE CURVED LINE BELONGS TO GOD»: THE USE OF RULED SURFACES  

IN THE ARCHITECTURE OF ANTONI GAUDÍ. 

Silvia Benvenuti 
 
 
Abstract:  
 
We introduce the concept of ruled surface and we describe some examples (namely the one-sheeted 
hyperboloid, the hyperbolic paraboloid, the helicoid and the conoid), illustrating their main 
technical features. Then, we explain how, where and why (both from the technical and the symbolic 
point of view) Antoni Gaudí uses such surfaces to get his peculiar architecture, pervaded by curved 
shapes, which on one hand is the heir of the gothic and traditional Catalan architecture and, on the 
other hand, anticipates the flavour of the modern topological one. A quick glimpse at the latter 
concludes the paper.  

Introduction. 

«The straight line belongs to man, the curved line belongs to God», ensures Antoni Plàcid Gaudí i 
Cornet, the Catalan architect whose undying fame is due to his peculiar buildings in Barcelona and 
its environs, the Sagrada Família in primis.  

Since Gaudí is an ardent catholic, the whole of his work aims to God’s glorification. That's maybe 
why, in light of the previously recalled quotation, curved shapes are ubiquitous in his buildings. On 
the other hand, being a man, he is constrained, both for symbolic and for technical reasons, to the 
use of straight lines while constructing its curved shapes. An apparent contradiction, that Gaudí 
brilliantly overcomes thanks to a clever use of the so-called ruled surfaces. By definition, in fact, a 
ruled surface is a surface which can be described as the set of points swept by a straight line (also 
called ruling) moving along a prescribed profile. If, for instance, we move a straight line, parallel to 
itself, along a circle lying in a perpendicular plane, we get a cylinder, which is indeed a ruled 
surface. Similarly, a cone and a plane are ruled surfaces as well. Nevertheless, those three basic 
examples are neglected by Gaudí, which is instead attracted by other ruled surfaces, such as the 
one-sheeted hyperboloid, the hyperbolic paraboloid, the helicoid and the conoid. 

These surfaces deeply characterize Gaudí's work: we find them in the colums of the Sagrada 
Família, in the roof of the adjacent Schools (1908-1909), in the church of the Colònia Güell (1898–
1916), in the windows of Casa Batlló (1905–1907), in the staircases of Casa Milà (1906-1912) and 
the list could be very long. Gaudí 's technical motivations are in fact shared by many other 
architects, contemporaries or not: we find ruled surfaces in the works of Vladimir Shukhov, Euge ̀ne 
Freyssinet, Robert Maillart, EduardoTorroja, Giorgio Baroni, Ícaro de Castro Mello, Le Corbusier, 
Kenzo Tange, Pier Luigi Nervi, Carlo Mollino, Félix Candela, Santiago Calatrava, etc. 

In the following sections we will provide the definition of those ruled surfaces, together with their 
main technical features. Moreover, we will see how they appear in Gaudí's buildings, as well as in 
the works of other architects. We refer the interested reader to [1], [2], [5] and [8] for further 
investigation.  

The one-sheeted hyperboloid. 

Let us consider a cylinder, made of elastic strings, whose ends are locked into two circles, the bases 
of the cylinder itself. If one twists the upper circle, keeping the bottom fixed, the strings outline a 



curved surface, which is in fact a one-sheeted hyperboloid. By further twisting, one gets a number 
(an infinite number, actually) of differently shaped one-sheeted hyperboloids until, by rotating as 
far as possible, one eventually gets a more familiar ruled surface, the cone. 

 

The definition given is a constructive one, which makes it immediately clear that the one-sheeted 
hyperboloid is a ruled surface. Indeed, it is a doubly ruled surface, which means that it contains two 
families of rulings. This is clear when one thinks about rotating the upper circle of the starting 
cylinder in the opposite direction as before: the outer profile one gets is the same, but the family of 
lines that draws it is different, i.e. it is inclined the other way. The figure below shows both the 
families of rulings. 



 

 

An alternative way of defining the same surface, which in fact explains both the name 
"hyperboloid" and the adjective "one-sheeted", is the following. Let us take an hyperbola and let us 
rotate it about the perpendicular bisector to the line between the foci: the resulting surface of 
revolution is the one-sheeted hyperboloid. On the contrary, if one rotates the same hyperbola about 
the line joining the foci, one obtains a surface of revolution made of two connected components, 
which is therefore called a two-sheeted hyperboloid (and it is not interesting for our purposes, as it 
is not a ruled surface at all!).  

When oriented along the z-axis, the one-sheeted circular hyperboloid with skirt radius a has 
Cartesian equation 

, 

while an obvious generalization, the one-sheeted elliptic hyperboloid, has Cartesian equation  

, 

where a and b are the semiaxes of the ellipse. In both cases, therefore, it is a quadratic surface, that 
is an algebraic surface described by an equation of degree 2 in x, y and z.  

In the personal symbolism of Gaudí, the hyperboloid represents the light: for this reason the 
architect uses it systematically in the design of the openings through which, in the Sagrada Família, 
light from the outside illuminates the aisle. One may call them windows if the term, in this specific 
case, were not too reductive (see Figure 1). 



 
Fig. 1 Hyperboloid vault of the Sagrada Família. 

Moreover, being a careful observer of nature, Gaudí notices that the femur, which holds the weight 
of our body, has approximately the shape of an hyperboloid. Then, yearning for glorifying God 
through imitation, the Catalan architect uses the one-sheeted hyperboloid to design the columns of 
its constructions. This explains the peculiar shape of the columns of the Passion façade (Sagrada 
Família, Figure 2), as well as many others columns in Gaudí's buildings. Their originality is also 
due to the fact that they are inclined, in awareness of the fact that «the tired wayfarer, when 
stopping, leans on the inclined stick, as if the stick were vertical, he would not rest at all». 

 
Fig. 2 Inclined hyperbolic columns in the Passion façade of the Sagrada Família. 



Of course, Gaudí is not alone in using the hyperboloid in architecture: in the same times, in the cold 
Russian winters, the engineer and scientist Vladimir Shukhov accomplished his first hyperboloid 
structure, on the occasion of the exhibition in Nizhny Novgorod (Gorky), 1896. It was a tower of 
steel, consisting of straight bars inclined to connect the two circles at the base and top, to a height of 
25 meters. It was a lightweight and rigid structure, perfectly suited to support a water tank capacity 
of 114,000 liters, to be used for the whole exposition. It was the first in a long series: over the next 
twenty years Shukhov built hundreds of variations, to be used as water towers, masts for ships or 
radio antennas, of heights ranging from 20 to 150 meters.  

 

Fig. 3 The Avant-garde radio tower designed by Vladimir Shukhov,1919-21.  

Moreover, the nineteenth century architecture has made us familiar with the one-sheeted 
hyperboloid, as this is the usual form of the cooling towers of nuclear power stations.  

The hyperbolic paraboloid. 

Another ruled surface, also ubiquitous in the works of Gaudí, is the hyperbolic paraboloid, that he 
called «the father of geometry». This is the saddle-shaped area described by a parabola, which runs 
parallel to itself with the vertex along another parabola, whose concavity is directed in the opposite 
direction, as shown in the figure below. 



 

The hyperbolic paraboloid is a quadric as well, given by the Cartesian equation  

  

Moreover, it is as well a doubly ruled surface, as we will easily prove by the following construction. 
Let us take a square-shaped structure, with sides made of a rigid material (iron, wood or any other 
non-elastic one). Let us divide the square into vertical strips through elastic strings, under tension, 
parallel to the heights, fixed on the lower and upper bases. Then, let us divide it in horizontal strips, 
using elastic strings parallel to the base, set on the heights, as in the following figure. 

 

 



Now, take the vertex C and lift it upwards, to the position denoted by C ', leaving the sides AB and 
AD fixed and thus deforming the square. 

 

The sides of the former square, since they are made of rigid material, will stay straight, and opposite 
sides, formerly parallel to each other, will become skew, that is such that their extensions never 
meet, because there is no plane containing both of them. On the other hand, the elastic strings will 
shorten under the effect of the deformation, so that each of them describes the path of minimum 
length (i.e. the segment) between its ends. The surface of the square, then, will be deformed until it 
describes another surface, drawn by two families of straight lines, the horizontal and vertical 
strings. The resulting surface is therefore a doubly ruled surface (since it contains two families of 
lines), which is exactly the hyperbolic paraboloid we wanted to describe.  

  

Fig. 4 The hyperbolic paraboloid as a doubly ruled surface 

Moreover, the above described construction allows us to view the hyperbolic paraboloid as the 
surface described by a generating line that moves on two skew straight lines. This can be done in 
two ways: in the first one, the generating line is the vertical string and the directrices are the sides 



AD and BC', while in the second the generating line is the horizontal string and directrices are the 
sides AB and DC'.  
 
The construction we just described leads Gaudí to interpret the paraboloid as «the perfect symbol of 
the Trinity», since «a never-ending line represents the Father, the other represents the Son and the 
third the Holy Spirit, lovingly relating the other two persons». 
 
However, beyond the mystical interpretation, further considerations may explain the good fortune 
collected by the hyperbolic paraboloid with many other architects, regardless of their religious 
ardour. The paraboloid is first and foremost an easy surface to construct. To build it, in fact, it is 
enough to follow the recipe that we just gave, placing two skew lines in space as guides and placing 
bricks with the help of a rope, supported by those lines. 
 
Gaudi puts the hyperbolic paraboloid everywhere, using it on a small scale to make transitions 
between different ruled surfaces and on a large scale to make roofs, domes and towers. Later on, 
many architects of the twentieth century included the hyperbolic paraboloid in their works: Eugene 
Freyssinet in the hangar for dirigibles at Orly (1916-21), Robert Maillart in a pavilion for the 
National Exhibition in Zurich (1939), Eduardo Torroja in the tribune of La Zarzuela Hippodrome 
(1935), Giorgio Baroni in the theater of the Vanzetti foundry in Milan (1937), Ícaro de Castro 
Mello in the first indoor swimming pool in São Paulo (1953), not to mention Le Corbusier's Philips 
Pavilion at the Brussels exhibition (1958), Kenzo Tange with Saint Mary's Cathedral in Tokyo 
(1963), Pier Luigi Nervi with the homonymous Cathedral in San Francisco (1966-71), Carlo 
Mollino and its coverage of the Teatro Regio in Turin (1965-73), Felix Candela with his hall of 
cosmic rays in Mexico City (1950-51). And the list could be extended at will…  
 
The helicoid. 

The helicoid is the surface described by a straight line which wraps around a vertical axis following 
a helix, as shown in the figure below. 

 

This description makes it clear that it is a ruled surface. As usual, it can also be described in 
Cartesian coordinates by the following parametric equations: 



, 

where α is a constant and ρ and θ are ranging from -∞ to +∞. 

In Gaudí's symbolism, the helicoid represents the upward movement that connects Earth and 
Heaven. Thus, he uses it as a model to build many of his staircases, including those of La Pedrera 
and of the towers of the Sagrada Família. However, examples of helicoidal staircases are very 
common, even in much elder buildings (see also [5]): a very famous one was made by Leonardo da 
Vinci in the castle of Chambord. Other beautiful examples are provided by those of the Palazzo 
Contarini del Bovolo in Venice, and those of the Torrazzo of Cremona. The helicoid is also very 
commonly used for the construction of twisted columns, typical of the Baroque period. Gaudí still 
manages to take a step further, using the helicoid to shape columns with a very peculiar design. 
Namely, he takes two helicoids, one winding clockwise and the other one anticlockwise, and he 
intersects them, getting its peculiar double twisted column. We can admire them in the interior of 
the Sagrada Família, in different sizes which follow a hierarchical order dictated by mechanical and 
structural constraints. 

The conoid. 

Both the paraboloid and the helicoid are in fact particular cases of a surface, called conoid, which is 
obtained when a generating line slides parallel to a plane (the directrix plane), leaning on one side 
on fixed line (axis) and on the other side on a curve (directrix). The directrix of the paraboloid, for 
example, is a straight line, while the directrix of the helicoid is a helix. 

Gaudí introduced another conoid, having a sinusoid as its directrix, and he used it to construct the 
unusual roof of the parish school adjacent to the Sagrada Família (see Figure 4). 

 

 

 

Fig. 5: A sinusoidal conoid. 

The result is amazing: Le Corbusier was so charmed by that building, that he defined Gaudí «the 
best architect in stone of the twentieth century». On the other hand, we'd better skip on Gaudí's 
comment about his famous admirer. After all, love is not always mutual… 

 



A step further.  

The use that Gaudí makes of geometry may well be defined a "creative" one: mathematics for him 
is not only a bare technical tool, but it is also a useful creative support, capable to supply him with 
inspiration and new ideas. This view is actually shared by many other architects that, overcoming 
Gaudí's fairly classical geometry, completely disengage from traditional paradigms, to be inspired 
by a new geometric world, whose principles are those of the non-Euclidean geometries, topology, 
fractal geometry or high dimensional geometry.  

Topology, for instance, takes the lion's share in the projects of the Dutch architects Van Berkel and 
Bos (see [3] for further discussion). Their Möbius House (Het Gooi, 1998) is inspired by the 
Möebius strip, the topological surface obtained by a paper strip when giving it a half-twist, and then 
joining the ends of the strip together to form a loop. 
 

 
One of its main characteristics is that it has an unique face. Emphasizing this property, the Möebius 
house has walls which flow and mingle with each other, concrete structures becoming outdoor 
furniture and windows becoming internal partitions, in a spatial continuity that provides the 
building with its fascinating dynamism. And the same surface fascinates other architects, for 
instance the Danish BIG, who designed a Möebius-like futuristic library in Astana, the capital of 
Kazakhstan (see Figure 6). 
 

 
 
Fig. 6 Astana National Library, BIG. 
 
Van Berkel and Bos go even further, by designing the Arnhem Central station according to a form 



that mimics the Klein bottle (or better that of its immersion in R3 - since the Klein bottle is in fact a 
topological surface living in R4). 
 
The Japanese architect Toyo Ito, instead, explores the expressive potential of a variable curvature 
geometry, that you can admire in the crematorium of Kakamigahara (Tokyo, 2007), better known as 
"Forest of meditation", build in collaboration with the structural engineer Mutsuro Sasaki. And the 
same non-linearity concept leads the Canadian Frank O. Gehry in the making of many of his works, 
one for all the Guggenheim Museum Bilbao (1991 - 1997). And a mention is due to the Spanish 
Santiago Calatrava, with his impressive City of Arts and Sciences (Valencia, 1996 - 2005). 
 
The German architect Peter Eisenman, instead, plays with fractals and, fascinated by the 
catastrophe theory of Rene Thom, realizes one of those singularities, the "butterfly", in its 
Rebstock Park (Frankfurt, 1990). Another elementary catastrophe, the "bend", underlies many 
buildings, including the Educatorium (Utrecht, 1993) and the VPRO building (Hilversum, 1996) by 
the Dutch architects of the group MVRDV (see Figure 7). 
 

 
 
Fig. 7 A "bend" in the VPRO building by MVRDV. 
 



Among others, Foster+Partners show, morover, how a careful mathematical design could lead to the 
construction of buildings that, maximizing energy savings, result economically and ecologically 
sustainable, as well as aesthetically attractive.  
 

 
 
Fig. 8 Foster+Partners, 30 St Mary Axe. 
 
And the list could go on at will, including even more original works, whose realization was 
absolutely unthinkable a few years ago, due to the innovative materials and technologies it requires.  
 
The creative use of mathematics goes beyond architecture, to infiltrate other disciplines, which are 
apparently even more distant. All done in the spirit of Salvador Dalí, one of the most visionary 
artists of his time, whose words are a perfect conclusion for our paper:  
«You have to use geometry as a guide to the symmetry in the composition of your works. I know 
that the romantic painters argue that these mathematical frameworks kill the artist's inspiration, 
giving him too much to think about. Do not hesitate a moment to reply that, on the contrary, it is 
exactly not to have to think and reflect on certain things, that you use them». 
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