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Abstract Ecological inference refers to the study of individuals using aggregate data and

it is used in an impressive number of studies; it is well known, however, that the study of

individuals using group data suffers from an ecological fallacy problem (Robinson in Am

Sociol Rev 15:351–357, 1950). This paper evaluates the accuracy of two recent methods,

the Rosen et al. (Stat Neerl 55:134–156, 2001) and the Greiner and Quinn (J R Stat Soc

Ser A (Statistics in Society) 172:67–81, 2009) and the long-standing Goodman’s (Am

Sociol Rev 18:663–664, 1953; Am J Sociol 64:610–625, 1959) method designed to

estimate all cells of R 9 C tables simultaneously by employing exclusively aggregate

data. To conduct these tests we leverage on extensive electoral data for which the true

quantities of interest are known. In particular, we focus on examining the extent to which

the confidence intervals provided by the three methods contain the true values. The paper

also provides important guidelines regarding the appropriate contexts for employing

these models.
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1 Introduction

Ecological inference can be defined as ‘‘the process of drawing conclusions about indi-

vidual-level behavior from aggregate … data when no individual-level data are available’’

(Schuessler 1999: 10578). Ecological inference methods are relevant for all those appli-

cations where aggregate data are abundant, while individual-level data can be hard to

collect. Given that in these situations aggregate data are readily available and can help

researchers answer a multitude of theoretically interesting questions, the need arises to

ascertain the accuracy and efficacy of the available methods to estimate disaggregated

values starting from aggregate data. Many typical examples are related to voting behaviour,

for which aggregate data are usually easy to collect: typical applications of ecological

inference methods concern racial bloc voting, vote turnover tables, and split-ticket voting.

A typical formulation of an ecological inference problem is in terms of a cross-tabu-

lation of two nominal variables (e.g. race and turnout) where marginals are known, but cell

proportions are unknown (King 1997; Schuessler 1999). In the language of ecological

inference analysis, 2 9 2 contingency tables represent binary data where the data are

arrayed to create a table of two rows and two columns. While larger tables are usually

referred to as R 9 C contingency tables. For all such classes of problems, ecological

inference methods are able to estimate cell proportions at an aggregate (e.g. district) level,

when marginals for analogous cross-tabulations are available for a number of units of

analysis at a lower aggregation level (e.g. polling stations). Historically, the main methods

for ecological inference have been Goodman’s (1953, 1959) ecological regression, King’s

(1997) EI approach—originally developed for 2 9 2 tables, and later extended to the

general R 9 C case (Rosen et al. 2001), and several other more recent techniques.

All such techniques have generated both great interest and a lively discussion, given

their promise to produce reliable estimates based on information that is in principle pla-

gued by the problem of ecological fallacy. While today 2 9 2 methods have been

empirically evaluated (e.g., Wakefield 2004; Hudson et al. 2010), almost no empirical

evaluations have characterized methods that face the issue of estimating larger tables. This

is surprising given that the real world usually tends to present situations where data needs

to be arrayed in tables with more than two columns and rows. Given their potential wide

applicability, a test of their performance and suitability for ecological inference is nec-

essary. In this paper, we contribute to this debate by performing a comparative test of three

R 9 C ecological inference methods on a rather extraordinary dataset: a collection of

electoral data (at the polling station level) for all districts in different countries, where the

true values of cell proportions are known. In particular, we focus on estimation of cross-

tabulations concerning the phenomenon of split-ticket voting (see below), in cases where

true values are identified during the vote counting process, and then published by national

electoral authorities. Our research strategy is straightforward: we assess the reliability of

ecological inference methods by: (1) using them to estimate split-ticket voting matrices; (2)

by comparing each estimated cell coefficient with the known true value. In particular, we

test whether—and to what extent—true values fall within the 95% confidence intervals

estimated by each method, with the expectation that this should happen in approximately

95% of the cases.

The rest of the paper is structured as follows. After this introductory section, we briefly

contextualize the paper and discuss our research design. Then, we present our peculiar

dataset. Section 4 presents the different estimation methods we compare. Section 5 out-

lines the main findings, and it is followed by a concluding section.
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2 The ecological fallacy problem

While not so frequently used in contemporary social science, ecological inference was

understandably one of the fundamental tools of social science between the 19th and 20th

centuries, before the development and diffusion of mass surveys (Achen and Shively

1995). In particular, techniques for ecological inference, such as ecological correlation,

were popular in electoral research, one of the first fields of study where a wealth of

aggregate data became widely available (e.g., Ogburn and Goltra 1919).

The end of this age of widespread use of ecological correlation came in the 1950s, with

the identification by Robinson (1950) of the ecological fallacy problem. In short, Robinson

showed that, at the aggregate level, the relationship between aggregate measures of

individual-level variables—estimated through ecological regression—could even have the

opposite sign as the true, individual-level relationship.1 Even if just a few years later

Goodman identified conditions for avoiding ecological fallacy, developing a new model of

ecological regression (1953, 1959), the importance of Robinson’s contribution, combined

with the maturation of the mass survey as a powerful alternative to study individual-level

attitudes and behaviour, led to a virtual ‘‘collapse of aggregate data analysis’’ (Achen and

Shively 1995: 5). This led scholars ‘‘to avoid using aggregate data to address whole classes

of important research questions’’ (King 1997: 5).

After several decades in which applications of ecological regression remained confined

in few specialized sectors of electoral research—such as the estimation of vote turnover

tables (see e.g., Corbetta et al. 1988), the publication of the book A Solution to the

Ecological Inference Problem by Gary King which introduced a novel EI approach (King

1997) was received by great interest especially by political scientists. From then on, several

other EI techniques and approaches were rediscovered, with the flourishing of numerous

studies applied to different fields (King, Tanner and Rosen 2004). Nowadays, ecological

inference methods are often used in applications related to voting behaviour, ranging from

racial bloc voting, to vote turnover tables, and to split-ticket voting.

Yet, today, while contemporary 2 9 2 methods have been empirically evaluated (e.g.,

Wakefield 2004; Hudson et al. 2010), almost no empirical evaluations have characterized

methods that face the issue of estimating larger tables. We contribute to this debate by

comparing three R 9 C ecological inference methods on a dataset on split-ticket voting

where the true values of cell proportions are known, hence, exploiting the comparison

between aggregate-based estimates with individual-level true data that was the basis for

Robinson’s seminal contribution. We will test, in particular, the reliability of estimation

techniques, in terms of the extent to which estimated confidence intervals include the true

values.

Our test is particularly relevant as, in multi-party systems, widespread, real-world

applications related to split-ticket voting and vote turnover tables almost invariably require

a R 9 C setup, i.e. estimating cell frequencies of contingency tables with multiple rows

1 One of the two key examples provided by Robinson concerned the relationship between foreign birth and
illiteracy. At the individual level (observable in its true values, thanks to census data) the relationship was
positive, i.e., immigrants were more illiterate than native-born, in line with theoretical expectations.
However, at the aggregate level (both when aggregating by state or by larger geographical divisions) the
relationship was negative, i.e. states with more immigrants had lower levels of illiteracy. This paradox—
easily explained by the tendency of immigrants to concentrate in areas with higher economic development
and thus higher literacy—clearly demonstrated the problem of ecological fallacy, i.e. the aggregation bias
(King 1997) that emerges when we infer relationships at the individual level based on aggregate data
(Robinson 1950, 354).
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and columns. We are then extremely interested in model performance under these con-

ditions. Are model estimates close to true values? Do true values lie in the estimated

confidence intervals with the expected probability? Empirical answers to such questions

will allow to assess the actual reliability of such ecological inference techniques when

applied to real-world scenarios in multi-party systems. We present our data next.

3 Data

In countries using mixed-member electoral systems voters usually cast two votes simul-

taneously, one for a national party under proportional rules (PR) and one for a local

candidate under plurality rules, to elect the same legislative body. Voters are said to cast a

straight ticket if they vote for the candidate of the same party for which they cast their PR

vote; otherwise, they are said to cast a split ticket.2

In most cases, the two types of votes are counted and published separately, so that the

percentages of straight and split ticket voting for each party-candidate pair cannot be

directly assessed. However, there are cases where this is not true, and votes for parties and

candidates are counted and published also in joint form. This effectively translates in the

official publication, by electoral commissions, not only of the marginals concerning parties

and candidates, but also of the cell frequencies of the party-candidate cross-tabulation. In

particular, such data are routinely available since 2002—at the aggregate district level—for

general elections in New Zealand, and became exceptionally available also for the 2007

election of the Scottish parliament.3 For our analysis, we collected electoral results from all

polling stations in New Zealand for the elections in 2002, 2005 and 2008 and in Scotland

for the 2007 elections. We then used these data to estimate coefficients of straight and split-

ticket voting for each party at a higher ‘‘district’’ level, to be compared with official reports

of split ticket voting available at the same level (constituency in Scotland, electorate in

New Zealand). This extraordinary opportunity of knowing the true quantities of interest

allows an empirical test where the estimates provided by ecological inference methods can

be directly compared with the true values.

The main political parties in New Zealand that run for all the different elections con-

sidered in this paper and also ran candidates on the plurality tier of the ballot paper include

on the left, the Labour Party and the Greens and on the right, the National Party, New

Zealand First (NZF) and the Association of Consumers and Taxpayers (ACT); additionally

there were many small parties contesting the elections that rarely also ran candidates. The

political parties in 2007 in Scotland include the Labour Party, the Scottish National Party

(SNP), the Liberal Democrats (Lib Dems) and the Conservative Party; beside these about

six small parties stood for elections but almost never ran candidates for district seats.

Since ecological inference is essentially a problem of aggregation, comparing the

performance of ecological inference methods across different types of contexts is highly

important (Park et al. 2014). In this regard, the pooled dataset of the four aforementioned

elections exhibits conspicuous variation (see Table 1). First, the size of the contingency

2 Voting solely for either a party or a candidate is possible. As discussed by Benoit et al. (2004) the
observed totals of valid votes for different ballots always differ slightly, mainly because of different rates of
invalid ballots. As for Benoit et al. (2004) we took the total number of votes to be the midpoint between the
two ballot totals in the rare occasions when this was a problem.
3 Sources: Electoral Commission, New Zealand (www.electionresults.org.nz); last accessed July 2015.
Scotland Electoral Office, Scotland, data available upon request from the authors.

C. Plescia, L. De Sio

123

http://www.electionresults.org.nz


R 9 C tables varies in each election, across districts as well as between countries. In

general, the number of parties (i.e., No. of rows of our contingency tables) is constant

across districts within each country but it varies across years of election. The number of

candidates (i.e., No. of columns) instead varies significantly across districts and across

elections: this provides a variation in contingency tables size, from a minimum of 10 9 4

in some Scottish districts to a maximum of 19 9 14 in some districts in New Zealand. For

all estimation methods we first ran simulations for all parties as separate rows and for all

candidates as separate columns (that we call full forms). We then ran a second set of

simulations by collapsing rows and columns for parties and candidates obtaining less than

5% of the total vote at the district level (that we call reduced forms) and we investigate

whether and how reducing the dimension of tables affects the results (The ‘‘Appendix’’

shows, for each election, which parties have been considered in the full form and which

have been merged to get the reduced form).

Second, the number of subunits (here polling stations) used for the estimation has been

shown to matter for the quality of the higher (district) level estimates: specifically the

literature specifies a criterion of at least 2 subunits per coefficients (Corbetta et al. 1988;

Corbetta and Parisi 1990; Biorcio and Natale 1991; Mannheimer 1993). While this cri-

terion is often met for the estimation of 2 9 2 tables, it may not be satisfied for larger

contingency tables and it is worth assessing whether the number of subunits affects the

overall quality of the estimates. The number of polling stations in each district, in New

Zealand ranges from 25 to 113 with only the seven Maori electorates, characterized by a

much larger number of 645 polling stations in 2002, 691 in 2005 and 681 in 2008 election.

For Scotland, the number of polling stations ranges from 22 to 103.

Another relevant source of variation is the within-district variance which refers to the

fact that parties support varies considerably not only across districts but also across sub-

units within each district. We use a similar criterion as Park et al. (2014) and calculate the

across-unit mean and variance of party support within each district with the expectation

that a larger variance sets unfavourable conditions for the performance of ecological

inference estimators.

In the empirical section we test the effect of all these sources of variation on the

reliability of the estimates. The expectations are as follows:

(a) the smaller the contingency tables, the more reliable the estimates;

(b) larger ratios, calculated as the number of polling stations divided by the number of

estimated coefficients, lead to more reliable estimates;

(c) the larger the across-unit variance, the less reliable the estimates.

Table 1 Summary of country, between-districts and within-district variation

Country Year No. of
districts

No. of
polling
stations
(range)

No. of
parties
(range)

No. of
candidates
(range)

Within-district average party
variance (SDs) (range)

New Zealand 2002 69 25–645 14 (7–8)a 6–11 (3–7)a 10.33 (9.99)–542.81 (306.92)

2005 69 24–691 19 (7–8)a 3–14 (3–8)a 13.55 (13.20)–599.14 (299.91)

2008 70 27–681 19 (7–8)a 2–14 (3–7)a 11.45 (10.34)–417.39 (265.88)

Scotland 2007 73 22–103 16–25 (5–8)a 5–8 (5–8)a 15.48 (14.21)–226.57 (927.52)

a Numbers in parenthesis represent No. of rows or columns in reduced forms
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4 R 3 C methods

As previously anticipated, this paper tests three methods for ecological inference.4

4.1 Ecological regression (Goodman 1953, 1959)

A long-standing method proposed to tackle the ecological fallacy issue is the Goodman’s

method (Goodman 1953, 1959). Goodman formalizes the logic of the ecological inference

in a simple regression model where the relationship to be studied is a linear one. Let Xi be

the proportion of the population in area i that belongs to group 1, 1 - Xi the proportion of

the population in area i that belongs to group 2, and Ti the proportion of the population in

area i with the characteristics or choice at issue. Goodman demonstrates that the

accounting identity Ti ¼ b1iXi þ b2ið1 � XiÞ holds exactly (see De Sio (2003) for an

explanation of how the identity expands to larger tables). The key and most problematic

assumption necessary for unbiasedness is that the parameters and Xi are uncorrelated (King

1997; Tam Cho and Gaines 2004). Where this assumption does not hold the estimates will

be biased, and even outside the deterministic bounds (e.g. that 105% of voters split their

vote). Various remedies have been proposed to force the estimates to take only admissible

values [see for instance Cleave et al. (1995)]. Given that in this paper we are mainly

interested in testing whether or not the true values are inside the confidence intervals, the

actual estimates are of less concern and no adjustment is being performed in the analysis

below.

4.1.1 Applicability of assumptions

With reference to the specific problem at hand, the assumption of uncorrelation translates

into a substantive assumption that, at the polling station level, the tendency to cast a split

ticket vote among voters of one party (the cell coefficient) should not be correlated with the

size of the party in the precinct. We see no reason in our data (and political context) why

such assumption should be violated since the existing literature on split-ticket voting

documents no relationship between split-ticket voting and the local strength of a political

party at the polling station level (Karp et al. 2002; Burden 2009; Gschwend et al. 2003). In

terms of the areal variations of cell probabilities, the presence of contextual variables may

produce aggregation bias (Salway and Wakefield 2004). This is a particular problem for

voting studies, as many potentially unmeasured variables, such as religion, age, can

4 Several other methods have been proposed for the estimation of R 9 C tables [see for instance King et al.
(2004), Park et al. (2014), Elff et al. (2008), Forcina et al. (2012), Colombi and Forcina (2016)]. Our
exclusive focus on the Goodman (1953), Rosen et al. (2001) and the Greiner and Quinn (2009) methods is
due to several reasons. First, the three methods we examine in this paper rely exclusively on aggregate-level
data; on the contrary, other methods require also individual-level data that in several instances are not
available. Second, the methods tested here are readily available using R packages. As a result, a test of their
performance will benefit a large number of potential users. Third, all three methods allow a series of
important extensions, e.g. use of covariates, not usually available for other methods. Conditioning values of
interest on covariates to ‘control’ for patterns of systematic variation at the unit of observations may be
particularly important when voting is susceptible to aggregation bias like racial voting (Voss 2004). In our
specific case, we do not use covariates because our unit is the polling station, i.e., subunits of cities or towns,
and finding covariates at this level means finding reasons why values of straight-ticket voting are system-
atically different across streets of the same town which is undoubtedly a challenging task. In addition, split-
ticket voting as discussed among others in Burden (2009) and Plescia (2016) is not as sensitive to the choice
of the covariates as other electoral phenomena.
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influence voting patterns. In our case, we have no specific expectations for the phe-

nomenon of split-ticket voting to vary widely across ecological units; especially when—as

in our case—estimates are obtained at the district level, which is still geographically small

and of sufficient political homogeneity. As a result, we cannot identify any reason for

major and systematic violations of the Goodman assumptions in our dataset.

4.2 EI-MD method in its R 3 C formulation (Rosen et al. 2001)

Rosen and his co-authors propose two approaches for the estimation of R 9 C tables. The

Bayesian approach extends the binomial-beta hierarchical model developed by King et al.

(1999) from the 2 9 2 case to the R 9 C case. This model itself builds upon the seminal

work of King (1997). In the first stage, the Rosen et al. (2001) method assumes that the

stochastic component Ti
c = (Ti

A, Ti
B, Ti

C) follows a Multinomial distribution with systematic

component H ¼
Pr bi

rcXi
r where r = A, B, C and c = A, B, C. On the second level of this

hierarchical model, the stochastic component bi
rc = ðbi

AA; b
i
BA; . . .; b

i
rcÞ follows a Dirichlet

distribution with systematic component ai
rc ¼

dr expðcrcþdrcZiÞ
drð1þ

PC�1

j¼1
expðcrjþdrjZiÞ

¼ expðcrcþdrcZiÞ
1þ
PC�1

j¼1
expðcrjþdrjZiÞ

. In

the third and final stage, the model assumes that the regression parameters (the ci
rc and the

di
rc) are a priori independent with a flat prior. The parameters dr; r ¼ 1; . . .;R; are assumed

to follow exponential distributions with mean 1=k (Rosen et al. 2001: 137–138). The

marginals of the posterior distribution are obtained using the Gibbs sampler (Tanner 1996).

As in the 2 9 2 case, the inferential procedure employs Markov chain Monte Carlo

(MCMC) methods. As explained by Rosen et al. (2001) their approach can be computa-

tionally quite intense and for complex models the assessment of convergence may not be

straightforward. They thus propose a simpler nonlinear least-squares approach (hereafter

referred to as EI-MD) which is a direct approximation of their MCMC method but based

on first moments rather than on the entire likelihood. As such, it provides quicker inference

via nonlinear least-squares. This second approach is available in R software [either through

the Zelig package (Wittenberg et al. 2007) or more recently the eiPack package (Lau et al.

2013)]. It should be noted that given that this strategy implements a frequentist approxi-

mation of the EI-MD Bayesian model, it is not Bayesian by design and does not require

priors or starting values to be specified.

4.2.1 Applicability of assumptions

In general, the greater flexibility and robustness of this method—compared to ecological

regression (King 1997; King et al. 2004; Rosen et al. 2001)—ensures that its assumptions

should be met whenever the assumptions for ecological regression are met. As a result (see

the discussion above) we do not assess in our data the risk of major violations of the

assumptions for this method.

4.3 EI-ML method (Greiner and Quinn 2009)

The third method we explore in this paper has been proposed by Greiner and Quinn (2009)

(hereafter referred to as EI-ML). For each contingency table, the rows are assumed to

follow mutually independent multinomials, conditional on separate probability vectors

which are denoted by Hr for r = 1 to R (R being the number of rows in each contingency

table). Each Hr then undergoes a multidimensional logistic transformation, using the last
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(right-most) column as the reference category.5 This results in R transformed vectors of

length C; these transformed vectors are stacked to form a single x vector corresponding to

that contingency table. The omega vectors are assumed to follow (i.i.d.) a multivariate

normal distribution (Greiner and Quinn 2009: 70–72). This method is structurally similar

to the Rosen et al. (2001), although within-row relationships appear to be less constrained

in the Greiner and Quinn (2009) as this model uses the stacked additive logistic normal

distribution instead of mutually independent Dirichlet distributions.

As discussed by Greiner and Quinn (2009), seemingly innocuous differences to the prior

distribution assumed for the model parameters can have large effects on the resulting

posterior distribution and this on inference. Wakefield (2004) has demonstrated similar

results for the 2 9 2 case. In this context, for the estimation of quantities of interest we use

the default priors in the R 9 CEcolInf R package (Greiner et al. 2013) (that is a normal

hyperprior distribution for the diagonal of the covariance matrix and Inverse-Wishart

hyperprior for the diagonal of the matrix parameters) given that these seem to provide the

closest possible values to the observed ones.

4.3.1 Applicability of assumptions

Here we offer similar considerations as those applicable to the Rosen et al. (2001) method

above. Given that also this method offers a degree of flexibility and robustness that is

superior to ecological regression (see Greiner and Quinn 2009), a result, even for this last

method we do not identify reasons for major violations of the method’s assumptions.

5 Findings

Each method reports the estimated means, standard deviation and the 95% confidence

interval around the mean estimate. In our assessment below we focus in particular on how

reliable the confidence intervals are. We then model the effect of all the aforementioned

sources of variation on the reliability of the estimates. The idea is to assess whether the true

levels of straight ticket voting is included in the 95% confidence interval provided by the

three methods.

5.1 The reliability of the confidence intervals

We start our foray into the results with an overall evaluations of the three methods.6

Table 2 reports the percentage of estimates inside the 95% CI by election and by party size.

The confidence intervals of the EI-MD in its full form cover the true value only in about

30–40% of the cases; this percentage is generally higher in the reduced form. For the EI-

ML this percentage is instead usually lower. Moving to the Goodman’s method, the

5 In their article Greiner and Quinn (2009: 70) choose the ‘abstain’ column as reference category. In the
results presented below we use as reference a residual category representing the sum of party vote cast for
parties receiving less than 2% of the vote but it is important to stress that changing this reference category
did not alter the results significantly.
6 The EI-ML method results without collapsing columns are not shown in Table 2 as it was not feasible to
estimate quantities of interest for all districts in a specific year of election. In other words, the EI-ML usually
fails to reach convergence when the estimation tables have a number of rows and/or columns that exceeds
10. Nevertheless, the quantities in those few cases where the estimates were obtained did not show major
variations before and after collapsing columns, as it is the case for the EI-MD model.
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confidence intervals covers the true value in about 30% of the case in the full form and

slightly lower in its reduced form. While these values are consistent across election-year,

Table 2 shows differences across party size. In particular we see that for the EI-MD

method, the confidence intervals contain the true values more often for the smaller parties

(Greens, NZF and to some extent ACT) than for the larger parties (Labour, National); and

this seems to be true in both countries. This seems to be true also for the EI-ML and the

Goodman methods where the difference between smaller and bigger parties is even more

pronounced than for the EI-MD method. Moving to more specific sources of errors,

Table 2 shows that the criteria of at least two polling stations per coefficient finds support

in our data: the larger this ratio the more reliable the estimates except for the EI-ML

method.

Table 2 also presents values of root mean square error (RMSE) which ranges from 0 to

1 with ‘0’ meaning that the estimated values are identical to the true values7; conversely,

larger values of RMSE indicate less precise estimates. Generally speaking, Table 2 indi-

cates that the models work best in estimating values for bigger parties when compared to

smaller parties. Overall there is a striking result: on the one hand, the results for large

parties are more precise in terms of RMSE evaluation. On the other hand however, the

confidence intervals for the large parties are so narrow that they fail to include the true

value in most of the cases.

In the most optimistic scenario, i.e., where the polling-station-per-estimated-coefficient

ratio is above 2, the best performing method, i.e., EI-MD full, yields reliable estimates in

Table 2 Percentage observations inside 95% confidence intervals and RMSE, summary

EI-MD full EI-MD reduced EI-ML reduced Goodman full Goodman red

% CI RMSE % CI RMSE % CI RMSE % CI RMSE % CI RMSE

By election

NZ 2002 39.8 0.157 40.9 0.157 29.9 0.238 28.8 0.227 25.9 0.226

NZ 2005 29.7 0.168 29.7 0.159 31.5 0.277 27.3 0.331 21.0 0.289

NZ 2008 32.3 0.147 35.5 0.137 26.4 0.263 29.8 0.285 23.6 0.286

STD 2007 34.5 0.143 49.1 0.131 11.7 0.163 23.4 0.222 26.1 0.243

By party size

Large 30.9 0.126 40.6 0.121 17.2 0.171 17.9 0.187 13.5 0.195

Small 44.7 0.162 42.6 0.157 44.1 0.317 31.7 0.337 24.6 0.305

Ratio

\1 32.8 0.156 28.9 0.167 31.8 0.289 17.7 0.313 11.5 0.277

1\R\ 2 42.6 0.184 41.5 0.139 25.3 0.226 12.8 0.232 19.0 0.249

[2 52.9 0.082 46.9 0.132 18.1 0.180 25.9 0.229 26.6 0.133

Recall that larger values of RMSE indicate less precise estimates. NZ stands for New Zealand. STD stands
for Scotland. For the definition of large and small parties refer to footnote 3. R refers to the ratio calculated
as the number of polling stations divided by the coefficients to be estimated. For the results of the EI-ML full
refer to footnote 6

7 RMSE measures the differences between the estimated and the true observed values and it enables us to
assess both the accuracy of the point estimates (i.e. how biased the estimator is) and the efficiency of point

estimators. It is based on the formula R � MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanðbestimated � btrueÞ2

q
(see also Liu 2007 foe a

similar approach).
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only about 53% of the cases. Given that, on the grounds of model assumptions—and with

no apparent major violation of model assumptions in our data, we should instead expect the

estimated confidence interval to include true values roughly in 95% of the cases, these

results cast serious doubts on the ability of such techniques to live up to their promises of

accuracy. It must be said of course that our conditions are far from ideal. Most of the

turnover tables we estimated are pretty large in size, leading to the necessity of estimating a

large number of coefficients despite the limited number of polling stations; also, the lower

variance for smaller parties reduces the amount of information that can be successfully

exploited for the estimations. As a result, we deem worth investigating in more depth the

predictors of unreliability. What are the conditions that increase the likelihood of obtaining

reliable estimates?

5.2 Predictors of unreliable confidence intervals

In this section we examine the conditions under which the estimated value lies outside the

predicted bounds by focusing on the three main sources of variation discussed above: the

size of the contingency table, the ratios and the across-unit variance. Specifically, we run

logit models in which the dependent variable takes a value of 0 every time the true value

lies outside the confidence interval and 1 otherwise.

The results in Table 3 indicate that the estimated 95% confidence interval is less likely

to contain the true values in the case of larger contingency tables both in terms of number

of columns and rows, however, the results are only statistically significant for the reduced

forms of the models and in the case of rows but not for columns. On the opposite the

number of polling stations is positively correlated with precise confidence intervals. The

variance across polling stations within each district is negatively associated with precise

confidence intervals despite the fact that the coefficient for this variable is statistically

significant only in the case of the EI-MD method. The second set of models takes into

account the ratios obtained using three of the independent variables in the first set of

models: the number of polling stations divided by the number of coefficients to be esti-

mated (number of columns multiplied by the number of rows). The results in Table 3

indicates that the ratio is overall positively related to the reliability of the estimates for all

methods except the EI-ML. There are also two important differences across models worth

to be discussed. First, while the variance is much more important to explain the error for

the EI-MD model compared to the others models, the ratio criterion is way more important

for the Goodman method. Also, using the robustness statistics at the bottom of Table 3, it is

clear that the features we take into account explain much more of the variability of the

Goodman method when compared to the other two methods.

6 Discussion and conclusion

Electoral behavior research is not unique in that researchers often need to use aggregate

data to infer individual-level relationships. This is either because surveys are not available

or because the main interest lies in the geographical variation of specific patterns for which

surveys are of no avail. Because aggregate data are readily available and can help

researchers answer a multitude of theoretically interesting questions, the need arises to

ascertain the accuracy and efficacy of the available methods to estimate disaggregated

values starting from aggregate data.
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As of today, there has been little research on the accuracy of methods which extend

ecological inference to situations where data need to be arrayed in tables with more than

two rows and columns. Benefitting from the rich data available for New Zealand and

Scotland, this paper has empirically evaluated the performance and suitability of the Rosen

et al. (2001) and the Greiner and Quinn (2009) models for ecological inference and R 9 C

tables and additionally compare these with the long-standing Goodman’s method.

From the analysis conducted in this paper, a number of observations are noteworthy.

First, using RMSE we find that the EI-MD model perform relatively better than the other

two methods when comparing estimates of the quantities of interest with the true values.

Yet, values of RMSE are in most other cases quite large considering that they relate to

quantities that are in the 0–1 range. It has been noted, in this regard, that the lower the

amount of information available during the estimation process, the less precise the esti-

mations will be: estimates for small parties are thus consistently less precise than those for

bigger parties. For this reason, a linear error parameterization or conditioning the estimates

on the EI standard errors may prove a useful strategy. These adjustments are particularly

relevant in the context of second-stage regression analysis, when the researcher’s aim is to

use the point estimates as dependent variable in regression models to investigate for

instance the variation of straight-ticket voting across districts (Herron and Shotts 2003;

Adolph et al. 2003).

Second, in most of the cases, the confidence intervals as provided by the three methods

fail to include the true values. More specifically, with regard to the sources of error we

analysed we found that: (a) the smaller contingency tables, the more reliable the estimates;

(b) larger ratios, calculated as the number of polling stations divided by the number of

estimated coefficients, lead to more reliable estimates; and (c) the larger the variance, the

less reliable the estimates. Albeit differences exist across the three methods in the extent to

which these sources of error effect the results. Hence, one fruitful extension of this study

concerns the possibility of correcting the reliability of the confidence intervals and this is

true for all methods investigated in this paper. Another extension is to attempt reducing the

amount of estimation time needed to obtain values of interest, a problematic issue when

applying the Rosen et al. (2001) and the Greiner and Quinn (2009) method. Attempts to

parallelize sequential loops by debugging the R code in the provided packages have not

produced reassuring results so far.

To sum up, our findings indicate that caution is warranted when using ecological

inference methods. This is especially true in those cases where the estimations involve

large contingency tables, and/or the polling station-coefficient ratio is small and very small

parties are present because our study shows that in these cases especially estimates will be

biased and the estimated confidence intervals not reliable as declared.
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Appendix

Below we present the list of parties considered in the full forms. The parties in italics are

those merged to obtain the reduced forms. In the reduced forms we exclude the parties that

have obtained less than 5% of the total vote at the district level. Given that the decision to

exclude the parties below the 5% threshold is done at the district level, some of the parties

in italics may have been included in one or two districts per year of election.

New Zealand 2002

Labour Party (Lab), National Party (Nat), New Zealand First Party (NZF), ACT New

Zealand (ACT), Green Party (GP), United Future (UF), Jim Anderton’s Progressive

Coalition Progressive), Christian Heritage Party (ChrHeritage), Outdoor Recreation NZ

(Outdoor), Alliance, Aotearoa Legalise Cannabis Party (Legalise), Mana Maori Movement

(Mana), OneNZ Party, NMP.

New Zealand 2005

Lab, Nat, NZF, GP, Maori, UF, ACT, Progressive, Destiny New Zealand, Legalise,

ChHeritage, Alliance, New Zealand Family Rights Protection Party (Family), Democrats

for Social Credit (Social), Libertarianz, Direct Democracy Party, 99 MP Party, OneNZ

Party, The Republic of New Zealand.

New Zealand 2008

Nat, Lab, GP, ACT, Maori, Progressive, UF, NZF, The Bill and Ben Party, Kiwi, Legalise,

New Zealand Pacific Party (Pacific), Family Party, Alliance, Social, Libertarianz, Workers

Party, RAM, The Republic of New Zealand Party.

Scotland 2007

Scottish National Party (SNP), Labour, Conservative, Liberal Democrats (Lib Dems),

Scottish Green, Scottish Senior Citizens, Solidarity, Scottish Christian, BNP, Christian

People, Socialist Labour, Scottish Labour, Scottish Socialist, UKIP, Publican Party,

Scottish Unionist, Scottish Voice, Save Our NHS Group, Free Scotland, Had Enough

Party, Scottish Enterprise, Scottish Jacobite Party, SACL, Communist, Independent Green

Voice, Socialist Party.
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Mannheimer, R.: Quale mobilitá elettorale? Tendenze e modelli. La discussione metodologica die flussi

elettorali. Franco Angeli, Milano (1993)
Ogburn, W., Goltra, I.: How women vote: a study of an election in Portland, Oregon. Polit. Sci. Q. 34,

413–433 (1919)
Park, W., Hanmer, M.J., Biggers, D.R.: Ecological inference under unfavorable conditions: straight and

split-ticket voting in diverse settings and small samples. Elect. Stud. 36, 192–203 (2014)
Plescia, C.: Split-ticket voting in mixed-member electoral systems: a theoretical and methodological

investigation. ECPR Press (2016)
Robinson, W.S.: Ecological correlation and the behavior of individuals. Am. Sociol. Rev. 15, 351–357

(1950)
Rosen, O., Jiang, W., King, G., Tanner, M.A.: Bayesian and frequentist inference for ecological inference:

the R 9 C case. Stat. Neerl. 55, 134–156 (2001)
Salway, R., Wakefield, J.: A common framework for ecological inference in epidemiology, political science

and sociology. In: King, G., Tanner, M.A., Rosen, O. (eds.) Ecological Inference: New Methodological
Strategies, pp. 303–332. Cambridge University Press, Cambridge (2004)

Schuessler, A.A.: Ecological inference. Proc. Natl. Acad. Sci. 96, 10578–10581 (1999)
Tam Cho, W.K., Gaines, B.J.: The limits of ecological inference: the case of split-ticket voting. Am. J. Polit.

Sci. 48, 152–171 (2004)
Tanner, M.A.: Tools for Statistical Inference, vol. 3. Springer, New York (1996)

C. Plescia, L. De Sio

123

https://www.academia.edu/906738/A_Proposal_for_Extending_King_s_EI_Method_to_m_n_Tables
https://www.academia.edu/906738/A_Proposal_for_Extending_King_s_EI_Method_to_m_n_Tables
https://cran.r-project.org/web/packages/RxCEcolInf/index.html
https://cran.r-project.org/web/packages/eiPack/eiPack.pdf


Voss, D.S.: Using ecological inference for contextual research: when aggregation bias is the solution as well
as the problem. In: King, G., Tanner, M.A., Rosen, O. (eds.) Ecological Inference: New Method-
ological Strategies, pp. 69–96. Cambridge University Press, Cambridge (2004)

Wakefield, J.: Ecological inference for 2 9 2 tables (with discussion). J. R. Stat. Soc. Ser. A (Statistics in
Society) 167, 385–445 (2004)

Wittenberg, J., Alimadhi, F., Bhaskar, B.N., Lau, O.: ei. R 9 C: hierarchical multinomial-Dirichlet eco-
logical inference model for R 9 C tables. In: Imai, K., King, G., Lau, O. (eds.) Zelig: Everyone’s
Statistical Software. http://gking.harvard.edu/zelig (2007)

An evaluation of the performance and suitability of R 9 C…

123

http://gking.harvard.edu/zelig

	An evaluation of the performance and suitability of R x C methods for ecological inference with known true values
	Abstract
	Introduction
	The ecological fallacy problem
	Data
	R x C methods
	Ecological regression (Goodman 1953, 1959)
	Applicability of assumptions

	EI-MD method in its R x C formulation (Rosen et al. 2001)
	Applicability of assumptions

	EI-ML method (Greiner and Quinn 2009)
	Applicability of assumptions


	Findings
	The reliability of the confidence intervals
	Predictors of unreliable confidence intervals

	Discussion and conclusion
	Acknowledgements
	Appendix
	New Zealand 2002
	New Zealand 2005
	New Zealand 2008
	Scotland 2007

	References




