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Abstract

We consider a classical finite horizon optimal control problem for continuous-time pure
jump Markov processes described by means of a rate transition measure depending on a
control parameter and controlled by a feedback law. For this class of problems the value
function can often be described as the unique solution to the corresponding Hamilton-Jacobi-
Bellman equation. We prove a probabilistic representation for the value function, known as
nonlinear Feynman-Kac formula. It relates the value function with a backward stochastic
differential equation (BSDE) driven by a random measure and with a sign constraint on its
martingale part. We also prove existence and uniqueness results for this class of constrained
BSDEs. The connection of the control problem with the constrained BSDE uses a control
randomization method recently developed by several authors. This approach also allows to
prove that the value function of the original non-dominated control problem coincides with
the value function of an auxiliary dominated control problem, expressed in terms of equivalent
changes of probability measures.
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1 Introduction

The main aim of this paper is to prove that the value function in a classical optimal control
problem for pure jump Markov processes can be represented by means of an appropriate Backward
Stochastic Differential Equation (BSDE) that we introduce and for which we prove an existence
and uniqueness result. Optimal control of pure jump processes has a long tradition, dating back
at least to [31] (see also the references therein and the monograph [7]) and the reader may find in
[21] an updated exposition. A renewed interest arose in the context of Mathematical Finance, as
many financial market models are described by processes in this class: see for instance [24] where
an extensive list of references can be found, or [20] for a related optimization problem.

We start by describing our setting in an informal way. A pure jump Markov process X in a
general measurable state space (E, E) can be described by means of a rate transition measure, or
intensity measure, ν(t, x,B) defined for t ≥ 0, x ∈ E, B ∈ E . The process starts at time t ≥ 0
from some initial point x ∈ E and stays there up to a random time T1 such that

P(T1 > s) = exp

(
−
∫ s

t
ν(r, x,E) dr

)
, s ≥ t.
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At time T1, the process jumps to a new point XT1 chosen with probability ν(T1, x, ·)/ν(T1, x, E)
(conditionally to T1) and then it stays again at XT1 up to another random time T2 such that

P(T2 > s | T1, XT1) = exp

(
−
∫ s

T1

ν(r,XT1 , E) dr

)
, s ≥ T1,

and so on.
A controlled pure jump Markov process is obtained starting from a rate measure λ(x, a,B)

defined for x ∈ E, a ∈ A, B ∈ E , i.e., depending on a control parameter a taking values in
a measurable space of control actions (A,A). The control strategies we consider consist in the
choice of a feedback control law, which is a measurable function α : [0,∞)×E → A. α(t, x) ∈ A is
the control action selected at time t if the system is in state x. The controlled Markov process X
is simply the one corresponding to the rate transition measure λ(x, α(t, x), B), and we denote by
Pt,xα the corresponding law, where t, x are the initial time and starting point. This is the natural
way to control a pure jump Markov process, see for instance [21] and Remark 2.3.

We note that an alternative construction of (controlled or uncontrolled) Markov processes
consists in defining them as solutions to stochastic equations driven by some noise (for instance,
by a Poisson process) and with appropriate coefficients depending on a control process. In the
context of pure jump processes, our approach based on the introduction of the controlled rate
measure λ(x, a,B) often leads to more general results and it is more natural in several contexts.

In the classical finite horizon control problem one seeks to maximize over all control laws α a
functional of the form

J(t, x, α) = Et,xα
[∫ T

t
f(s, Xs, α(s,Xs)) ds+ g(XT )

]
, (1.1)

where a deterministic finite horizon T > 0 is given and f, g are given real functions, defined on
[0, T ]×E×A and E, representing the running cost and the terminal cost, respectively. The value
function of the control problem is defined in the usual way:

V (t, x) = sup
α
J(t, x, α), t ∈ [0, T ], x ∈ E. (1.2)

We will only consider the case when the controlled rate measure λ and the costs f, g are
bounded. Then, under some technical assumptions, V is known to be the unique solution on
[0, T ]× E to the Hamilton-Jacobi-Bellman (HJB) equation −

∂v

∂t
(t, x) = sup

a∈A

(∫
E

(v(t, y)− v(t, x))λ(x, a, dy) + f(t, x, a)

)
,

v(T, x) = g(x),
(1.3)

and if the supremum is attained at some α(t, x) ∈ A depending measurably on (t, x) then α is an
optimal feedback law. Note that the right-hand side of (1.3) is an integral operator: this allows
for easy notions of solutions to the HJB equation, that do not in particular need the use of the
theory of viscosity solutions.

Our purpose is to relate the value function V (t, x) to an appropriate BSDE. We wish to
extend to our framework the theory developed in the context of classical optimal control for
diffusion processes, constructed as solutions to stochastic differential equations of Itô type driven
by Brownian motion, where representation formulae for the solution to the HJB equation exist
and are often called nonlinear Feynman-Kac formulae. The majority of those results requires that
only the drift coefficient of the stochastic equation depends on the control parameter, so that
in this case the HJB equation is a second-order semi-linear partial differential equation and the
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nonlinear Feyman-Kac formula is well known, see e.g. [17]. Generally, in this case the laws of
the corresponding controlled processes are all absolutely continuous with respect to the law of a
given, uncontrolled process, so that they form a dominated model.

A natural extension to our framework could be obtained imposing conditions implying that
the set of probability laws {Pt,xα }α, when α varies over all feedback laws, is a dominated model.
This is the point of view taken in [11], where an appropriate BSDE is introduced and solved and
a Feyman-Kac formula for the value function is proved in a restricted framework. Extensions are
given in [1] to controlled semi-Markov processes and in [10] to more general non-Markovian cases.

In the present paper we want to consider the general case when {Pt,xα }α is not a dominated
model. Even for finite state space E, by a proper choice of the measure λ(x, a,B) it is easy to
formulate quite natural control problems for which this is the case.

In the context of controlled diffusions, probabilistic formulae for the value function for non-
dominated models have been discovered only in recent years. We note that in this case the HJB
equation is a fully nonlinear partial differential equation. To our knowledge, there are only a few
available techniques. One possibility is to use the theory of second-order BSDEs, see for instance
[9], [33]. Another possibility relies on the use of the theory of G-expectations, see e.g. [30]. Both
theories have been largely developed by several authors. In this paper we rather follow another
approach which was introduced in [5], and then followed by [14], [15], [16], [25] in various contexts
of stochastic optimization problems. Here we mainly follow the systematic exposition contained
in [26]. Related extensions and applications can be found in [19], [12], [13]. It consists in a
control randomization method (not to be confused with the use of relaxed controls) which can be
described informally as follows, in our framework of controlled pure jump Markov processes.

We note that for any choice of a feedback law α the pair of stochastic processes (Xs, α(s,Xs))
represents the state trajectory and the associated control process. In a first step, for any initial
time t ≥ 0 and starting points x ∈ E, a ∈ A, we replace it by an (uncontrolled) Markovian pair
of pure jump stochastic processes (Xs, Is), possibly constructed on a different probability space
(Ω,F ,Pt,x,a), in such a way that the process I is a Poisson process with values in the space of
control actions A with an intensity measure λ0(db) which is arbitrary but finite and with full
support, and Xt = x, It = a (see Remark 3.3 for further details). Next we formulate an auxiliary
optimal control problem where we control the intensity of the process I: for any predictable,
bounded and positive random field νt(b) on (0,∞)×A, by means of a theorem of Girsanov type
we construct a probability measure Pν under which the compensator of I is the random measure
νt(b)λ0(db) dt (under Pν the law of X also changes: see Remark 3.3 for further details) and then
we maximize the functional

Eν
[
g(XT ) +

∫ T

t
f(s, Xs, Is) ds

]
,

over all possible choices of the process ν. Following the terminology of [26], this will be called the
dual control problem. Its value function, denoted V ∗(t, x, a), also depends a priori on the starting
point a ∈ A of the process I (in fact we should write Pt,x,aν instead of Pν , but in this discussion
we drop this dependence for simplicity) and the family {Pν}ν is a dominated model. As in [26]
we are able to show that the value functions for the original problem and the dual one are the
same: V (t, x) = V ∗(t, x, a), so that the latter does not in fact depend on a. In particular we
have replaced the original control problem by a dual one that corresponds to a dominated model
and has the same value function. Moreover, we can introduce a well-posed BSDE that represents
V ∗(t, x, a) (and hence V (t, x)). It is an equation on the time interval [t, T ] of the form

Ys = g(XT ) +

∫ T

s
f(r,Xr, Ir) dr +KT −Ks
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−
∫ T

s

∫
E×A

Zr(y, b) q(dr dy db)−
∫ T

s

∫
A
Zr(Xr, b)λ0(db) dr, (1.4)

with unknown triple (Y, Z,K) (depending also on (t, x, a)), where q is the compensated random
measure associated to (X, I), Z is a predictable random field and K a predictable increasing
càdlàg process, where we additionally add the sign constraint

Zs(Xs−, b) 6 0, ds⊗ dPt,x,a ⊗ λ0(db)-a.e. (1.5)

It turns out that this equation has a unique minimal solution, in an appropriate sense, and that
the value of the process Y at the initial time represents both the original and the dual value
function:

Yt = V (t, x) = V ∗(t, x, a). (1.6)

This is the desired BSDE representation of the value function for the original control problem
and a Feyman-Kac formula for the general HJB equation (1.3).

We note that, in analogy with the classical diffusive case, a BSDE representation of the
value function should be possible even in the more general context of controlled pure jump non-
Markovian processes. Clearly, in this case the formulation of the control problem should be
appropriately redefined, and in particular it should include more general control strategies than
feedback laws, see for instance [4]. This will be the object of future work.

The paper is organized as follows. Section 2 is essentially devoted to lay down a setting where
the classical optimal control problem (1.2) is solved by means of the corresponding HJB equation
(1.3). We first recall the general construction of a Markov process given its rate transition measure.
Having in mind to apply techniques based on BSDEs driven by random measures we need to work
in a canonical setting and use a specific filtration, see Remark 2.2. Therefore the construction we
present is based on the well-posedness of the martingale problem for multivariate (marked) point
processes studied in [22] and it is exposed in detail. This general construction is then used to
formulate in a precise way the optimal control problem for the jump Markov process and it is used
again in the subsequent section when we define the pair (X, I) mentioned above. Still in section
2, we present classical results on existence and uniqueness of the solution to the HJB equation
(1.3) and its identification with the value function V . These results are similar to those in [31],
a place where we could find a clear and complete exposition of all the basic theory and to which
we refer for further references and related results. We note that the compactness of the space of
control actions A, together with suitable upper-semicontinuity conditions of the coefficients of the
control problem, is one of the standard assumptions needed to ensure the existence of an optimal
control, which is usually constructed by means of an appropriate measurable selection theorem.
Since our main aim was only to find a representation formula for the value function we wished
to avoid the compactness condition. This was made possible by the use of a different measurable
selection result, that however requires lower-semicontinuity conditions. Although this is not usual
in the context of maximization problems, this turned out to be the right condition that allows
to dispense with compactness assumptions and to prove well-posedness of the HJB equation and
a verification theorem. A small variation of the proofs recovers the classical results in [31], and
even with slightly weaker assumptions: see Remark 2.11 for a more detailed comparison.

In section 3 we start to develop the control randomization method: we introduce the auxiliary
process (X, I) and formulate the dual control problem under appropriate conditions. Finding
the correct formulation required some efforts; in particular we could not mimic the approach of
previous works on control randomization mentioned above, since we are not dealing with processes
defined as solutions to stochastic equations.

In section 4 we introduce the constrained BSDE (1.4)-(1.5) and we prove, under suitable con-
ditions, that it has a unique minimal solution (Y, Z,K) in a certain class of processes. Moreover,
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the value of Y at the initial time coincides with the value function of the dual optimal control
problem. This is the content of the first of our main results, Theorem 4.2. The proof relies on a
penalization approach and a monotonic passage to the limit, and combines BSDE techniques with
control-theoretic arguments: for instance, a “penalized” dual control problem is also introduced
in order to obtain certain uniform upper bounds. In [26], in the context of diffusion processes, a
more general result is proved, in the sense that the generator f may also depend on (Y, Z); similar
generalizations are possible in our context as well, but they seem less motivated and in any case
they are not needed for the applications to optimal control.

Finally, in section 5 we prove the second of our main results, Theorem 5.1. It states that
the initial value of the process Y in (1.4)-(1.5) coincides with the value function V (t, x). As a
consequence, the value function is the same for the original optimal control problem and for the
dual one and we have the nonlinear Feynman-Kac formula (1.6).

The assumptions in Theorem 5.1 are fairly general: the state space E and the control action
space A are Borel spaces, the controlled kernel λ is bounded and has the Feller property, and the
cost functions f, g are continuous and bounded. No compactness assumption is required. When
E is finite or countable we have the special case of (continuous-time) controlled Markov chains.
A large class of optimization problems for controlled Markovian queues falls under the scope of
our result.

In recent years there has been much interest in numerical approximation of the value function
in optimal control of Markov processes, see for instance the book [21] in the discrete state case. The
Feynman-Kac formula (1.6) can be used to design algorithms based on numerical approximation
of the solution to the constrained BSDE (1.4)-(1.5). Numerical schemes for this kind of equations
have been proposed and analyzed in the context of diffusion processes, see [27], [28]. We hope
that our results may be used as a foundation for similar methods in the context of pure jump
processes as well.

2 Pure jump controlled Markov processes

2.1 The construction of a jump Markov process given the rate transition mea-
sure

Let E be a Borel space, i.e., a topological space homeomorphic to a Borel subset of a compact
metric space (some authors call it a Lusin space); in particular, E could be a Polish space. Let E
denote the corresponding Borel σ-algebra.

We will often need to construct a Markov process in E with a given (time dependent) rate
transition measure, or intensity measure, denoted by ν. With this terminology we mean that B 7→
ν(t, x,B) is a nonnegative measure on (E, E) for every (t, x) ∈ [0,∞)× E and (t, x) 7→ ν(t, x,B)
is a Borel measurable function on [0,∞)× E for every B ∈ E . We assume that

sup
t≥0, x∈E

ν(t, x, E) <∞. (2.1)

We recall the main steps in the construction of the corresponding Markov process. We note
that (2.1) allows to construct a non-explosive process. Since ν depends on time the process will
not be time-homogeneous in general. Although the existence of such a process is a well known
fact, we need special care in the choice of the corresponding filtration, since this will be crucial
when we solve associated BSDEs and implicitly apply a version of the martingale representation
theorem in the sections that follow: see also Remark 2.2 below. So in the following we will use
an explicit construction that we are going to describe. Many of the techniques we are going to
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use are borrowed from the theory of multivariate (marked) point processes. We will often follow
[22], but we also refer the reader to the treatise [6] for a more systematic exposition.

We start by constructing a suitable sample space to describe the jumping mechanism of the
Markov process. Let Ω′ denote the set of sequences ω′ = (tn, en)n≥1 in ((0,∞)× E) ∪ {(∞,∆)},
where ∆ /∈ E is adjoined to E as an isolated point, satisfying in addition

tn ≤ tn+1; tn <∞ =⇒ tn < tn+1. (2.2)

To describe the initial condition we will use the measurable space (E, E). Finally, the sample
space for the Markov process will be Ω = E ×Ω′. We define canonical functions Tn : Ω→ (0,∞],
En : Ω → E ∪ {∆} as follows: writing ω = (e, ω′) in the form ω = (e, t1, e1, t2, e2, . . .) we set for
t ≥ 0 and for n ≥ 1

Tn(ω) = tn, En(ω) = en, T∞(ω) = lim
n→∞

tn, T0(ω) = 0, E0(ω) = e.

We also define X : Ω × [0,∞) → E ∪ {∆} setting Xt = 1[0,T1](t)E0 +
∑

n≥1 1(Tn,Tn+1](t)En for
t < T∞, Xt = ∆ for t ≥ T∞.

In Ω we introduce for all t ≥ 0 the σ-algebras Gt = σ(N(s,A) : s ∈ (0, t], A ∈ E), i.e. generated
by the counting processes defined as N(s,A) =

∑
n≥1 1Tn≤s1En∈A. To take into account the initial

condition we also introduce the filtration F = (Ft)t≥0, where F0 = E ⊗ {∅,Ω′}, and for all t ≥ 0
Ft is the σ-algebra generated by F0 and Gt. F is right-continuous and will be called the natural
filtration. In the following all concepts of measurability for stochastic processes (adaptedness,
predictability etc.) refer to F. We denote by F∞ the σ-algebra generated by all the σ-algebras
Ft. The symbol P denotes the σ-algebra of F-predictable subsets of [0,∞) × Ω. The initial
distribution of the process X will be described by a probability measure µ on (E, E). Since
F0 = {A×Ω′ : A ∈ E} is isomorphic to E , µ will be identified with a probability measure on F0,
denoted by the same symbol (by abuse of notation) and such that µ(A× Ω′) = µ(A).

On the filtered sample space (Ω,F) we have so far introduced the canonical marked point
process (Tn, En)n≥1. The corresponding random measure p is, for any ω ∈ Ω, a σ-finite measure
on ((0,∞)× E,B(0,∞)⊗ E) defined as

p(ω, ds dy) =
∑
n≥1

1Tn(ω)<∞ δ(Tn(ω),En(ω))(ds dy),

where δk denotes the Dirac measure at point k ∈ (0,∞)× E.
Now let ν denote a time-dependent rate transition measure as before, satisfying (2.1). We

need to introduce the corresponding generator and transition semigroup as follows. We denote
by Bb(E) the space of E-measurable bounded real functions on E and for φ ∈ Bb(E) we set

Ltφ(x) =

∫
E

(φ(y)− φ(x)) ν(t, x, dy), t ≥ 0, x ∈ E.

For any T ∈ (0,∞) and g ∈ Bb(E) we consider the Kolmogorov equation on [0, T ]× E:{
∂v

∂s
(s, x) + Lsv(s, x) = 0,

v(T, x) = g(x).
(2.3)

It is easily proved that there exists a unique measurable bounded function v : [0, T ]×E such that
v(T, ·) = g on E and, for all x ∈ E, s 7→ v(s, x) is an absolutely continuous map on [0, T ] and the
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first equation in (2.3) holds for almost all s ∈ [0, T ] with respect to the Lebesgue measure. To
verify this we first write (2.3) in the equivalent integral form

v(s, x) = g(x) +

∫ T

s
Lrv(r, x) dr, s ∈ [0, T ], x ∈ E.

Then, noting the inequality |Ltφ(x)| ≤ 2 supy∈E |φ(y)| supt∈[0,T ],y∈E ν(t, y, E), a solution to the
latter equation can be obtained by a standard fixed point argument in the space of bounded
measurable real functions on [0, T ]× E endowed with the supremum norm.

This allows to define the transition operator PsT : Bb(E) → Bb(E), for 0 ≤ s ≤ T , letting
PsT [g](x) = v(s, x), where v is the solution to (2.3) with terminal condition g ∈ Bb(E).

Proposition 2.1. Let (2.1) hold and let us fix t ∈ [0,∞) and a probability measure µ on (E, E).

1. There exists a unique probability measure on (Ω,F∞), denoted by Pt,µ, such that its re-
striction to F0 is µ and the F-compensator (or dual predictable projection) of the mea-
sure p under Pt,µ is the random measure p̃(ds dy) := 1[t,T∞)(s)ν(s,Xs−, dy) ds. Moreover,
Pt,µ(T∞ =∞) = 1.

2. In the probability space {Ω,F∞,Pt,µ} the process X has distribution µ at time t and it is
Markov on the time interval [t,∞) with respect to F with transition operator PsT : explicitly,
for every t ≤ s ≤ T and for every g ∈ Bb(E),

Et,µ [g(XT ) | Fs] = PsT [g](Xs), Pt,µ − a.s.

Proof. Point 1 follows from a direct application of [22], Theorem 3.6. The non-explosion condition
Pt,µ(T∞ =∞) = 1 follows from the fact that λ is bounded.

To prove point 2 we denote v(s, x) = PsT [g](x) the solution to the Kolmogorov equation (2.3)
and note that

v(T,XT )− v(s,Xs) =

∫ T

s

∂v

∂r
(r,Xr) dr +

∫
(s,T ]

∫
E

(v(r, y)− v(r,Xr−)) p(dr dy).

This identity is easily proved taking into account that X is constant among jump times and using
the definition of the random measure p. Recalling the form of the F-compensator p̃ of p under
Pt,µ we have, Pt,µ-a.s.,

Et,µ
[ ∫

(s,T ]

∫
E

(v(r, y)− v(r,Xr−)) p(dr dy) | Fs
]

= Et,µ
[ ∫

(s,T ]

∫
E

(v(r, y)− v(r,Xr−)) p̃(dr dy) | Fs
]

= Et,µ
[ ∫

(s,T ]

∫
E

(v(r, y)− v(r,Xr)) ν(r,Xr, dy) dr | Fs
]

= Et,µ
[ ∫

(s,T ]
Lrv(r,Xr) dr | Fs

]
and we finally obtain

Et,µ [g(XT ) | Fs]− PsT [g](Xs) = Et,µ[v(T,XT ) | Fs]− v(s,Xs)

= Et,µ
[ ∫ T

s

(∂v
∂r

(r,Xr) + Lrv(r,Xr)
)
dr | Fs

]
= 0.
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In the following we will mainly consider initial distributions µ concentrated at some point
x ∈ E, i.e. µ = δx. In this case we use the notation Pt,x rather than Pt,δx . Note that, Pt,x-a.s.,
we have T1 > t and therefore Xs = x for all s ∈ [0, t].

Remark 2.2. Since the process X is F-adapted, its natural filtration FX = (FXt )t≥0 defined by
FXt = σ(Xs : s ∈ [0, t]) is smaller than F. The inclusion may be strict, and may remain such
if we consider the corresponding completed filtrations. The reason is that the random variables
En and En+1 introduced above may coincide on a set of positive probability, for some n, and
therefore knowledge of a trajectory of X does not allow to reconstruct the trajectory (Tn, En).

In order to have Fs = FXs up to Pt,µ-null sets one could require that ν(t, x, {x}) = 0, i.e. that
Tn are in fact jump times of X, but this would impose unnecessary restrictions in some constructs
that follow.

Clearly, the Markov property with respect to F implies the Markov property with respect to
FX as well.

2.2 Optimal control of pure jump Markov processes

In this section we formulate and solve an optimal control problem for a Markov process with a
state space E, which is still assumed to be a Borel space with its Borel σ-algebra E . The other
data of the problem will be another Borel space A, endowed with its Borel σ-algebra A and called
the space of control actions; a finite time horizon, i.e. a (deterministic) element T ∈ (0,∞); two
real valued functions f and g, defined on [0, T ]× E × A and E and called running and terminal
cost functions respectively; and finally a measure transition kernel λ from (E × A, E ⊗ A) to
(E, E): namely B 7→ λ(x, a,B) is a nonnegative measure on (E, E) for every (x, a) ∈ E × A and
(x, a) 7→ λ(x, a,B) is a Borel measurable function for every B ∈ E . We assume that λ satisfies
the following condition:

sup
x∈E,a∈A

λ(x, a,E) <∞. (2.4)

The requirement that λ(x, a, {x}) = 0 for all x ∈ E and a ∈ A is natural in many applications,
but it is not needed. The kernel λ depending on the control parameter a ∈ A plays the role of a
controlled intensity measure for a controlled Markov process. Roughly speaking, we may control
the dynamics of the process by changing its jump intensity dynamically. For a more precise
definition, we first construct Ω, F = (Ft)t≥0, F∞ as in the previous paragraph. Then we introduce
the class of admissible control laws Aad as the set of all Borel-measurable maps α : [0, T ]×E → A.
To any such α we associate the rate transition measure να(t, x, dy) := λ(x, α(t, x), dy).

For every starting time t ∈ [0, T ] and starting point x ∈ E, and for each α ∈ Aad, we
construct as in the previous paragraph the probability measure on (Ω,F∞), that will be denoted
Pt,xα , corresponding to t, to the initial distribution concentrated at x and to the the rate transition
measure να. According to Proposition 2.1, under Pt,xα the process X is Markov with respect to F
and satisfies Xs = x for every s ∈ [0, T ]; moreover, the restriction of the measure p to (t,∞)×E
admits the compensator λ(Xs−, α(s,Xs−), dy) ds. Denoting by Et,xα the expectation under Pt,xα
we finally define, for t ∈ [0, T ], x ∈ E and α ∈ Aad, the gain functional

J(t, x, α) = Et,xα
[∫ T

t
f(s, Xs, α(s,Xs)) ds+ g(XT )

]
, (2.5)

and the value function of the control problem

V (t, x) = sup
α∈Aad

J(t, x, α). (2.6)

Since we will assume below that f and g are at least Borel-measurable and bounded, both J and
V are well defined and bounded.
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Remark 2.3. In this formulation the only control strategies that we consider are control laws of
feedback type, i.e., the control action α(t, x) at time t only depends on t and on the state x for
the controlled system at the same time. This is a natural and frequently adopted formulation.
Different formulations are possible, but usually the corresponding value function is the same and,
if an optimal control exists, it is of feedback type.

Remark 2.4. All the results that follows admit natural extensions to slightly more general cases.
For instance, λ might depend on time, or the set of admissible control actions may depend on
the present state (so admissible control laws should satisfy α(t, x) ∈ A(x), where A(x) is a given
subset of A) provided appropriate measurability conditions are satisfied. We limit ourselves to
the previous setting in order to simplify the notation.

Let us consider the Hamilton-Jacobi-Bellman equation (for short, HJB equation) related to the
optimal control problem: this is the following nonlinear integro-differential equation on [0, T ]×E:

−∂v
∂t

(t, x) = sup
a∈A

(LaEv(t, x) + f(t, x, a)) , (2.7)

v(T, x) = g(x), (2.8)

where the operator LaE is defined by

LaEφ(x) =

∫
E

(φ(y)− φ(x))λ(x, a, dy) (2.9)

for all (t, x, a) ∈ [0, T ]× E ×A and every φ ∈ Bb(E).

Definition 2.1. We say that a Borel-measurable bounded function v : [0, T ]×E → R is a solution
to the HJB equation if the right-hand side of (2.7) is Borel-measurable and, for every x ∈ E, (2.8)
holds, the map t 7→ v(t, x) is absolutely continuous in [0, T ] and (2.7) holds almost everywhere on
[0, T ] (the null set of points where it possibly fails may depend on x).

In the analysis of the HJB equation and the control problem we will use the following function
spaces, defined for any metric space S:

1. Cb(S) = {φ : S → R continuous and bounded},

2. LSCb(S) = {φ : S → R lower semi-continuous and bounded}.

3. USCb(S) = {φ : S → R upper semi-continuous and bounded}.

Cb(S), equipped with the supremum norm ‖φ‖∞, is a Banach space. LSCb(S) and USCb(S) are
closed subsets of Cb(S), hence complete metric spaces with the induced distance.

In the sequel we need the following classical selection theorem. For a proof we refer for instance
to [3], Propositions 7.33 and 7.34, where a more general statement can also be found.

Proposition 2.5. Let U be a metric space, V a metric separable space. For F : U × V → R set

F ∗(u) = sup
v∈V

F (u, v), u ∈ U.

1. If F ∈ USCb(U × V ) and V is compact then F ∗ ∈ USCb(U) and there exists a Borel-
measurable φ : U → V such that

F (u, φ(u)) = F ∗(u), u ∈ U.
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2. If F ∈ LSCb(U×V ) then F ∗ ∈ LSCb(U) and for every ε > 0 there exists a Borel-measurable
φε : U → V such that

F (u, φε(u)) ≥ F ∗(u)− ε, u ∈ U.

Next we present a well-posedness result and a verification theorem for the HJB equation in
the space LSCb([0, T ] × E), Theorems 2.6 and 2.9 below. The use of lower semi-continuous
bounded functions was already commented in the introduction and will be useful for the results
in section 5. A small variation of our arguments also yields corresponding results in the class
of upper semi-continuous functions, which are more natural when dealing with a maximization
problem, see Theorems 2.7 and 2.10 that slightly generalize classical results. We first formulate
the assumptions we need.

λ is a Feller transition kernel. (2.10)

We recall that this means that for every φ ∈ Cb(E) the function (x, a) →
∫
E φ(y)λ(x, a, dy) is

continuous (hence it belongs to Cb(E ×A) by (2.4)).
Next we will assume either that

f ∈ LSCb([0, T ]× E ×A), g ∈ LSCb(E), (2.11)

or
f ∈ USCb([0, T ]× E ×A), g ∈ USCb(E) and A is a compact metric space. (2.12)

Theorem 2.6. Under the assumptions (2.4), (2.10), (2.11) there exists a unique solution v ∈
LSCb([0, T ]× E) to the HJB equation (in the sense of Definition 2.1).

Proof. We first make a change of unknown function setting ṽ(t, x) = e−Λtv(t, x), where Λ :=
supx∈E,a∈A λ(x, a,E) is finite by (2.4). It is immediate to check that v is a solution to (2.7)-(2.8)
if and only if ṽ is a solution to

−∂ṽ
∂t

(t, x) = sup
a∈A

(
LaE ṽ(t, x) + e−Λtf(t, x, a) + Λṽ(t, x)

)
= sup

a∈A

(∫
E
ṽ(t, y)λ(x, a, dy) + (Λ− λ(x, a,E))ṽ(t, x) + e−Λtf(t, x, a)

)
, (2.13)

ṽ(T, x) = e−ΛT g(x). (2.14)

The notion of solution we adopt for (2.13)-(2.14) is completely analogous to Definition 2.1 and

need not to be repeated. We set Γṽ(t, x) :=
∫ T
t supa∈A γṽ(s, x, a) ds where

γṽ(t, x, a) :=

∫
E
ṽ(t, y)λ(x, a, dy) + (Λ− λ(x, a,E))ṽ(t, x) + e−Λtf(t, x, a) (2.15)

and note that solving (2.13)-(2.14) is equivalent to finding ṽ ∈ LSCb([0, T ]× E) satisfying

ṽ(t, x) = g(x) + Γṽ(t, x), t ∈ [0, T ], x ∈ E.

We will prove that ṽ 7→ g + Γṽ is a well defined map of LSCb([0, T ] × E) into itself and it has a
unique fixed point, which is therefore the required solution.

Fix ṽ ∈ LSCb([0, T ]×E). It follows easily from (2.4) that γṽ is bounded and, if supa∈A γṽ(·, ·, a)
is Borel-measurable, Γṽ is bounded as well. Next we prove that γṽ and Γṽ are lower semi-
continuous. Note that (x, a) 7→ Λ−λ(x, a,E) continuous and nonnegative (this is the reason why
we introduced the equation for ṽ), so

(t, x, a) 7→ (Λ− λ(x, a,E))ṽ(t, x) + e−Λtf(t, x, a)
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is in LSCb([0, T ]× E ×A). Since λ is Feller, it is known that the map

(t, x, a) 7→
∫
E
ṽ(t, y)λ(x, a, dy) (2.16)

is continuous when ṽ ∈ Cb([0, T ]×E) (see [3], Proposition 7.30). For general ṽ ∈ LSCb([0, T ]×E),
there exists a uniformly bounded and increasing sequence ṽn ∈ Cb([0, T ] × E) such that ṽn → ṽ
pointwise (see [3], Lemma 7.14). From the Fatou Lemma we deduce that the map (2.16) is
in LSCb([0, T ] × E × A) and we conclude that γṽ ∈ LSCb([0, T ] × E × A) as well. Therefore
supa∈A γṽ(·, ·, a), which equals the right-hand side of (2.13), is lower semi-continuous and hence
Borel-measurable. To prove lower semi-continuity of Γṽ suppose (tn, xn)→ (t, x); then

Γṽ(tn, xn)− Γṽ(t, x) =

∫ t

tn

sup
a∈A

γṽ(s, xn, a) ds+

∫ T

t
(sup
a∈A

γṽ(s, xn, a)− sup
a∈A

γṽ(s, x, a)) ds

≥ −|t− tn| ‖γṽ‖∞ +

∫ T

t
(sup
a∈A

γṽ(s, xn, a)− sup
a∈A

γṽ(s, x, a)) ds.

By the Fatou Lemma

lim inf
n→∞

Γṽ(tn, xn)− Γṽ(t, x) ≥
∫ T

t
lim inf
n→∞

(sup
a∈A

γṽ(s, xn, a)− sup
a∈A

γṽ(s, x, a)) ds ≥ 0,

where in the last inequality we have used the lower semi-continuity of supa∈A γṽ(·, ·, a).
Since we assume that g ∈ LSCb(E) we have thus checked that ṽ 7→ g+Γṽ maps LSCb([0, T ]×E)

into itself. To prove that it has a unique fixed point we note the easy estimate based on (2.4),
valid for every ṽ′, ṽ′′ ∈ LSCb([0, T ]× E):∣∣∣∣sup

a∈A
γṽ′(t, x, a)− sup

a∈A
γṽ′′(t, x, a)

∣∣∣∣ ≤ sup
a∈A
|γṽ′(t, x, a)− γṽ′′(t, x, a)|

≤ sup
a∈A

(∫
E
|ṽ′(t, y)− ṽ′′(t, y)|λ(x, a, dy) + |ṽ′(t, x)− ṽ′′(t, x)|λ(x, a,E)

)
≤ 2Λ ‖ṽ′ − ṽ′′‖∞.

By a standard technique one proves that a suitable iteration of the map ṽ 7→ g+Γṽ is a contraction
with respect to the distance induced by the supremum norm, and hence that map has a unique
fixed point.

Theorem 2.7. Under the assumptions (2.4), (2.10), (2.12) there exists a unique solution v ∈
USCb([0, T ]× E) to the HJB equation.

Proof. The proof is almost the same as in the previous Theorem, replacing LSCb with USCb
with obvious changes. We introduce ṽ, γṽ and Γṽ as before and we prove in particular that
γṽ ∈ USCb([0, T ] × E × A). The only difference is that we can not immediately conclude that
supa∈A γṽ(·, ·, a) is upper semi-continuous as well. However, at this point we can apply point 1
of Proposition 2.5 choosing U = [0, T ] × E, V = A and F = γṽ and we deduce that in fact
supa∈A γṽ(·, ·, a) ∈ USCb([0, T ]× E). The rest of the proof is the same.

Corollary 2.8. Under the assumptions (2.4), (2.10), if f ∈ Cb([0, T ] × E × A), g ∈ Cb(E) and
A is a compact metric space then the solution v to the HJB equation belongs to Cb([0, T ]× E).

The Corollary follows immediately from the two previous results. We proceed to a verification
theorem for the HJB equation.
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Theorem 2.9. Under the assumptions (2.4), (2.10), (2.11) the unique solution v ∈ LSCb([0, T ]×
E) to the HJB equation coincides with the value function V .

Proof. Let us fix (t, x) ∈ [0, T ]× E. As in the proof of Proposition 2.1 we have the identity

g(XT )− v(t,Xt) =

∫ T

t

∂v

∂r
(r,Xr) dr +

∫
(t,T ]

∫
E

(v(r, y)− v(r,Xr−)) p(dr dy),

which follows from the absolute continuity of t 7→ v(t, x), taking into account that X is constant
among jump times and using the definition of the random measure p. Given an arbitrary admis-
sible control α ∈ Aad we take the expectation with respect to the corresponding probability Pt,xα .
Recalling that the compensator under Pt,x is 1[t,∞)(s)λ(Xs−, α(s,Xs−), dy) ds we obtain

Et,xα [g(XT )]− v(t,Xt) =

∫ T

t

∂v

∂r
(r,Xr) dr

+

∫
(t,T ]

∫
E

(v(r, y)− v(r,Xr−))λ(Xr−, α(r,Xr−), dy) dr

=

∫ T

t

(
∂v

∂r
(r,Xr) + Lα(r,Xr)

E v(r,Xr)

)
dr.

Adding Et,xα
∫ T
t f(r, Xr, α(r,Xr)) dr to both sides and rearranging terms we obtain

v(t, x) = J(t, x, α)− Et,xα
∫ T

t

{
∂v

∂r
(r,Xr) + Lα(r,Xr)

E v(r,Xr) + f(r, Xr, α(r,Xr))

}
dr. (2.17)

Recalling the HJB equation and taking into account that X has piecewise constant trajectories
we conclude that the term in curly brackets {. . .} is nonpositive and therefore we have v(t, x) ≥
J(t, x, α) for every admissible control.

Now we recall that in the proof of Theorem 2.6 we showed that the function γṽ defined in
(2.15) belongs to LSCb([0, T ]× E ×A). Therefore the function

F (t, x, a) := eΛtγṽ(t, x, a) = LaEv(t, x) + f(t, x, a) + Λv(t, x)

is also lower semi-continuous and bounded. Applying point 2 of Proposition 2.5 with U = [0, T ]×E
and V = A we see that for every ε > 0 there exists a Borel-measurable αε : [0, T ]× E → A such
that F (t, x, αε(t, x)) ≥ infa∈A F (t, x, a)− ε for all t ∈ [0, T ], x ∈ E. Taking into account the HJB
equation we conclude that for every x ∈ E we have

Lαε(t,x)
E v(t, x) + f(t, x, αε(t, x)) ≥ −∂v

∂t
(t, x)− ε

for almost all t ∈ [0, T ]. Noting that αε is an admissible control and choosing α = αε in (2.17) we
obtain v(t, x) ≤ J(t, x, αε) + ε (T − t). Since we know that v(t, x) ≥ J(t, x, α) for every α ∈ Aad
we conclude that v coincides with the value function V .

Theorem 2.10. Under assumptions (2.4), (2.10), (2.12) the unique solution v ∈ USCb([0, T ]×E)
to the HJB equation coincides with the value function V . Moreover there exists an optimal control
α, which is given by any function satisfying

Lα(t,x)
E v(t, x) + f(t, x, α(t, x)) = sup

a∈A
(LaEv(t, x) + f(t, x, a)) . (2.18)
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Proof. We proceed as in the previous proof, but we can now apply point 2 of Proposition 2.5 to
the function F and deduce that there exists a Borel-measurable α : [0, T ] × E → A such that
(2.18) holds. Any such control α is optimal: in fact we obtain for every x ∈ E,

Lα(t,x)
E v(t, x) + f(t, x, α(t, x)) = −∂v

∂t
(t, x)

for almost all t ∈ [0, T ] and so v(t, x) = J(t, x, α).

Remark 2.11. As already mentioned, Theorems 2.7 and 2.10 are similar to classical results: com-
pare for instance [31], Theorems 10, 12, 13, 14. In that paper the author solves the HJB equations
by means of a general result on nonlinear semigroups of operators, and for this he requires some
more functional-analytic structure, for instance he embeds the set of decision rules into a properly
chosen topological vector space. He also has more stringent conditions of the kernel λ, for instance
λ(x, a,B) should be strictly positive and continuous in (x, a) for each fixed B ∈ E .

3 Control randomization and dual optimal control problem

In this section we start to implement the control randomization method. In the first step, for
any initial time t ≥ 0 and starting point x ∈ E, we construct an (uncontrolled) Markovian pair
of pure jump stochastic processes (X, I) with values in E × A, by specifying its rate transition
measure Λ as in (3.3) below. Next we formulate an auxiliary optimal control problem where,
roughly speaking, we optimize a cost functional by modifying the intensity of the process (X, I)
over a suitable family. This “dual” control problem will be studied in section 4 by an approach
based on BSDEs. In section 5 we will prove that the dual value function coincides with the one
introduced in the previous section.

3.1 A randomized control system

Let E, A be Borel spaces with corresponding Borel σ-algebras E , A and let λ be a measure
transition kernel from (E × A, E ⊗ A) to (E, E) as before. As another basic datum we suppose
we are given a finite measure λ0 on (A,A) with full topological support, i.e., it is strictly positive
on any non-empty open subset of A. Note that since A is metric separable such a measure can
always be constructed, for instance supported on a dense discrete subset of A. We still assume
(2.4), so we formulate the following assumption:

(Hλ) λ0 is a finite measure on (A,A) with full topological support and λ satisfies

sup
x∈E,a∈A

λ(x, a,E) <∞. (3.1)

On the contrary, the Feller property (2.10) earlier imposed on λ is not needed in this Section
nor in Section 4; it will be required again for the results of Section 5.

We wish to construct a Markov process as in section 2.1, but with state space E × A. Ac-
cordingly, let Ω′ denote the set of sequences ω′ = (tn, en, an)n≥1 contained in ((0,∞)× E ×A) ∪
{(∞,∆,∆′)}, where ∆ /∈ E (respectively, ∆′ /∈ A) is adjoined to E (respectively, to A) as an iso-
lated point, satisfying (2.2) In the sample space Ω = E × A × Ω′ we define Tn : Ω → (0,∞],
En : Ω → E ∪ {∆}, An : Ω → A ∪ {∆′}, as follows: writing ω = (e, a, ω′) in the form
ω = (e, a, t1, e1, t2, e2, . . .) we set for t ≥ 0 and for n ≥ 1

Tn(ω) = tn, T∞(ω) = lim
n→∞

tn, T0(ω) = 0,

En(ω) = en, An(ω) = an, E0(ω) = e, A0(ω) = a.
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We also define processes X : Ω× [0,∞)→ E ∪ {∆}, I : Ω× [0,∞)→ A ∪ {∆′} setting

Xt = 1[0,T1](t)E0 +
∑
n≥1

1(Tn,Tn+1](t)En, It = 1[0,T1](t)A0 +
∑
n≥1

1(Tn,Tn+1](t)An,

for t < T∞, Xt = ∆ and It = ∆′ for t ≥ T∞.
In Ω we introduce for all t ≥ 0 the σ-algebras Gt = σ(N(s,B) : s ∈ (0, t], B ∈ E⊗A) generated

by the counting processes N(s,B) =
∑

n≥1 1Tn≤s1(En,An)∈B and the σ-algebra Ft generated by
F0 and Gt, where F0 := E ⊗ A ⊗ {∅,Ω′}. We still denote F = (Ft)t≥0 and P the corresponding
filtration and predictable σ-algebra. By abuse of notation we also denote by the same symbol the
trace of P on subsets of the form [0, T ]×Ω or [t, T ]×Ω, for deterministic times 0 ≤ t ≤ T <∞.

The random measure p is now defined on (0,∞)× E ×A as

p(ds dy db) =
∑
n∈N

1{Tn<∞} δ{Tn,En,An}(ds dy db). (3.2)

By means of λ and λ0 satisfying assumption (Hλ) we define a (time-independent) rate tran-
sition measure on E ×A given by

Λ(x, a; dy db) = λ(x, a, dy) δa(db) + λ0(db) δx(dy). (3.3)

and the corresponding generator L:

Lϕ(x, a) :=

∫
E×A

(ϕ(y, b)− ϕ(x, a)) Λ(x, a; dy db)

=

∫
E

(ϕ(y, a)− ϕ(x, a))λ(x, a, dy) +

∫
A

(ϕ(x, b)− ϕ(x, a))λ0(db),

for all (x, a) ∈ E ×A and every function ϕ ∈ Bb(E ×A).
Given any starting time t ≥ 0 and starting point (x, a) ∈ E×A, an application of Proposition

2.1 provides a probability measure on (Ω,F∞), denoted by Pt,x,a, such that (X, I) is a Markov
process on the time interval [t,∞) with respect to F with transition probabilities associated to L.
Moreover, Pt,x,a-a.s., Xs = x and Is = a for all s ∈ [0, t]. Finally, the restriction of the measure p
to (t,∞)× E ×A admits as F-compensator under Pt,x,a the random measure

p̃(ds dy db) := λ0(db) δ{Xs−}(dy) ds+ λ(Xs−, Is−, dy) δ{Is−}(db) ds.

We denote q := p− p̃ the compensated martingale measure associated to p.

Remark 3.1. Note that Λ(x, a; {x, a}) = λ0({a}) + λ(x, a, {x}). So even if we assumed that
λ(x, a, {x}) = 0, in general the rate measure Λ would not satisfy the corresponding condition
Λ(x, a; {x, a}) = 0. We remark that imposing the additional requirement that λ0({a}) = 0 is too
restrictive since, due to the assumption that λ0 has full support, it would rule out the important
case when the space of control actions A is finite or countable.

3.2 The dual optimal control problem

We introduce a dual control problem associated to the process (X, I) and formulated in a weak
form. For fixed (t, x, a), it consists in defining a family of probability measures {Pt,x,aν , ν ∈ V} in
the space (Ω,F∞), all absolutely continuous with respect to Pt,x,a, whose effect is to change the
stochastic intensity of the process (X, I) (more precisely, under each Pt,x,aν the compensator of
the associated point process takes a desired form), with the aim of maximizing a cost depending
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on f, g. We note that {Pt,x,aν , ν ∈ V} is a dominated family of probability measures. We proceed
with precise definitions.

We still assume that (Hλ) holds. Let us define

V = {ν : Ω× [0,∞)×A→ (0,∞), P ⊗A-measurable and bounded}.

For every ν ∈ V, we consider the predictable random measure

p̃ν(ds dy db) := νs(b)λ0(db) δ{Xs−}(dy) ds+ λ(Xs−, Is−, dy) δ{Is−}(db) ds. (3.4)

Now we fix t ∈ [0, T ], x ∈ E, a ∈ A and, with the help of a theorem of Girsanov type, we will
show how to construct a probability measure on (Ω,F∞), equivalent to Pt,x,a, under which p̃ν is
the compensator of the measure p on (0, T ] × E × A. By the Radon-Nikodym theorem one can
find two nonnegative functions d1, d2 defined on Ω× [0, ∞)×E ×A, measurable with respect to
P ⊗ E ⊗A such that

λ0(db) δ{Xt−}(dy) dt = d1(t, y, b) p̃(dt dy db)

λ(Xt−, It−, dy) δ{It−}(db) dt = d2(t, y, b) p̃(dt dy db),

d1(t, y, b) + d2(t, y, b) = 1, p̃(dt dy db)-a.e.

and we have dp̃ν = (ν d1 + d2) dp̃. For any ν ∈ V, consider then the Doléans-Dade exponential
local martingale Lν defined setting Lνs = 1 for s ∈ [0, t] and

Lνs = exp

(∫ s

t

∫
E×A

log(νr(b) d1(r, y, b) + d2(r, y, b)) p(dr dy db)−
∫ s

t

∫
A

(νr(b)− 1)λ0(db) dr

)
= e

∫ s
t

∫
A(1−νr(b))λ0(db) dr

∏
n>1:Tn6s

(νTn(An) d1(Tn, En, An) + d2(Tn, En, An))

for s ∈ [t, T ], where q = p − p̃. When Lν is a true martingale, i.e., Et,x,a [LνT ] = 1, we can define
a probability measure Pt,x,aν equivalent to Pt,x,a on (Ω, F∞) setting Pt,x,aν (dω) = LνT (ω)Pt,x,a(dω).
By the Girsanov theorem for point processes ([22], Theorem 4.5) the restriction of the random
measure p to (0, T ] × E × A admits p̃ν = (ν d1 + d2) p̃ as compensator under Pt,x,aν . We denote
by Et,x,aν the expectation operator under Pt,x,aν and by qν := p − p̃ν the compensated martingale
measure of p under Pt,x,aν . The validity of the condition Et,x,a [LνT ] = 1 under our assumptions, as
well as other useful properties, are proved in the following proposition.

Lemma 3.2. Let assumption (Hλ) hold. Then, for every t ∈ [0, T ], x ∈ E and ν ∈ V, under the
probability Pt,x,a the process Lν is a martingale on [0, T ] and LνT is square integrable.

In addition, for every P ⊗ E ⊗ A-measurable function H : Ω × [t, T ] × E × A → R such that

Et,x,a
[∫ T
t

∫
E×A |Hs(y, b)|2 p̃(ds dy db)

]
< ∞, the process

∫ ·
t

∫
E×AHs(y, b) q

ν(ds dy db) is a Pt,x,aν -

martingale on [t, T ].

Proof. The first part of the proof is inspired by Lemma 4.1 in [26]. In particular, since ν is
bounded and λ0(A) <∞, we see that

SνT = exp

(∫ T

t

∫
A
|νs(b)− 1|2λ0(db) ds

)
is bounded. Therefore, from Theorem 8, see also Theorem 9, in [32], follows the martingale
property of Lν together with its uniform integrability. Concerning the square integrability of LνT ,
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set `(x, λ) := 2 ln(xλ+ 1− λ)− ln(x2λ+ 1− λ), for any x ≥ 0 and λ ∈ [0, 1]. From the definition
of Lν we have (recalling that d2(s, y, b) = 1− d1(s, y, b))

|LνT |2 = Lν
2

T S
ν
T exp

(∫ T

t

∫
E×A

`(νs(b), d1(s, y, b)) p(ds dy db)

)
≤ Lν2T SνT ,

where the last inequality follows from the fact that ` is nonpositive. This entails that LνT is square
integrable.

Let us finally fix a predictable function H such that Et,x,a
[∫ T
t

∫
E×A |Hs(y, b)|2 p̃(ds dy db)

]
<

∞. The process
∫ ·
t

∫
E×AHs(y, b) q

ν(ds dy db) is a Pt,x,aν -local martingale, and the uniform integra-
bility follows from the Burkholder-Davis-Gundy and Cauchy Schwarz inequalities, together with
the square integrability of LνT .

To complete the formulation of the dual optimal control problem we specify the conditions
that we will assume for the cost functions f , g (given a general Borel space S, we denote by Bb(S)
the space of Borel-measurable bounded real functions on S):

(Hfg) f ∈ Bb([0, T ]× E ×A) and g ∈ Bb(E).

For every t ∈ [0, T ], x ∈ E, a ∈ A and ν ∈ V we finally introduce the dual gain functional

J(t, x, a, ν) = Et,x,aν

[
g(XT ) +

∫ T

t
f(s, Xs, Is)ds

]
,

and the dual value function
V ∗(t, x, a) = sup

ν∈V
J(t, x, a, ν). (3.5)

Remark 3.3. An interpretation of the dual optimal control problem can be given as follows.
Suppose that λ(x, a, {x})) = 0 for all x ∈ E and a ∈ A, let {Rn} ⊂ {Tn} denote the sequence
of jump times of X and let {Sn} denote (a renumbering of) the remaining elements of {Tn}.
It can be proved that, under Pt,x,aν , the compensators of the corresponding random measures
µI(ds db) =

∑
n δ(Sn,ISn ) (ds db) on (0,∞)×A and µX(ds dy) =

∑
n δ(Rn,XRn ) (ds dy) on (0,∞)×E

are
µ̃I(ds db) = νs(b)λ0(db) 1(t,∞)(s) ds, µ̃X(ds dy) = λ(Xs−, Is−, dy) 1(t,∞)(s) ds.

Thus, the effect of choosing ν is to change the intensity of the I-component. We leave the proofs
of these facts to the reader since they will not be used in the sequel.

4 Constrained BSDE and representation of the dual value func-
tion

In this section we introduce a BSDE, with a sign constrain on its martingale part, and prove
existence and uniqueness of a minimal solution, in an appropriate sense. The BSDE is then used
to give a representation formula for the dual value function introduced above.

Throughout this section we assume that the assumptions (Hλ) and (Hfg) are satisfied and
we use the randomized control setting introduced above: Ω,F, X,Pt,x,a as well as the random
measures p, p̃, q are the same as in subsection 3.1. For any (t, x, a) ∈ [0, T ]×E×A, we introduce
the following notation.

• L2(λ0), the set of A-measurable maps ψ : A→ R such that

|ψ|2
L2(λ0)

:=

∫
A
|ψ(b)|2 λ0(db) <∞.
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• L2
t,x,a(Fτ ), the set of Fτ -measurable random variable X such that Et,x,a

[
|X|2

]
< ∞; here

τ is an F-stopping time with values in [t, T ].

• S2
t,x,a the set of real valued càdlàg adapted processes Y = (Ys)t6s6T such that

||Y ||2
S2
t,x,a

:= Et,x,a
[

sup
t6s6T

|Ys|2
]
<∞.

• L2
t,x,a(q), the set of P ⊗ E ⊗A-measurable maps Z : Ω× [t, T ]× E ×A→ R such that

||Z||2
L2
t,x,a(q)

:= Et,x,a
[∫ T

t

∫
E×A

|Zs(y, b)|2 p̃(ds dy db)
]

= Et,x,a
[∫ T

t

∫
E
|Zs(Is, y)|2 λ(Xs, Is, dy) ds+

∫ T

t

∫
A
|Zs(Xs, b)|2 λ0(db) ds

]
<∞.

• K2
t,x,a the set of nondecreasing predictable processes K = (Ks)t6s6T ∈ S2

t,x,a with Kt = 0,
with the induced norm

||K||2
K2

t,x,a
= Et,x,a

[
|KT |2

]
.

We are interested in studying the following family of BSDEs parametrized by (t, x, a): Pt,x,a-a.s.,

Y t,x,a
s = g(XT ) +

∫ T

s
f(r,Xr, Ir) dr +Kt,x,a

T −Kt,x,a
s (4.1)

−
∫ T

s

∫
E×A

Zt,x,ar (y, b) q(dr dy db)−
∫ T

s

∫
A
Zt,x,ar (Xr, b)λ0(db) dr, s ∈ [t, T ],

with the sign constraint

Zt,x,as (Xs−, b) 6 0, ds⊗ dPt,x,a ⊗ λ0(db)-a.e. on [t, T ]× Ω×A. (4.2)

This constraint can be seen as a sign condition imposed on the jumps of the corresponding
stochastic integral.

Definition 4.1. A solution to the equation (4.1)-(4.2) is a triple (Y,Z,K) ∈ S2
t,x,a ×L2

t,x,a(q)×
K2

t,x,a that satisfies (4.1)-(4.2).

A solution (Y,Z,K) is called minimal if for any other solution (Ỹ , Z̃, K̃) we have, Pt,x,a-a.s.,

Ys 6 Ỹs, s ∈ [t, T ].

Proposition 4.1. Under assumptions (Hλ) and (Hfg), for any (t, x, a) ∈ [0, T ] × E × A, if
there exists a minimal solution on (Ω,F ,F,Pt,x,a) to the BSDE (4.1)-(4.2), then it is unique.

Proof. Let (Y, Z,K) and (Y ′, Z ′,K ′) be two minimal solutions of (4.1)-(4.2). The component Y
is unique by definition, and the difference between the two backward equations gives: Pt,x,a-a.s.∫ s

t

∫
E×A

(Zr(y, b)− Z ′r(y, b)) p(dr dy db)

= Ks −K ′s +

∫ s

t

∫
E

(Zr(y, Ir−)− Z ′r(y, Ir−))λ(Xr−, Ir−dy) dr, ∀ t 6 s 6 T.

The right hand is a predictable process, in particular it has no totally inaccessible jumps (see,
e.g., Proposition 2.24, Chapter I, in [23]), while the left side is a pure jump process with totally
inaccessible jumps, unless Z = Z ′. This implies the uniqueness of the component Z, and as a
consequence the component K is unique as well.
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We now state the main result of the section.

Theorem 4.2. Under the assumptions (Hλ) and (Hfg), for all (t, x, a) ∈ [0, T ]× E × A there
exists a unique minimal solution Y t,x,a to (4.1)-(4.2). Moreover, for all s ∈ [t, T ], Y t,x,a

s has the
explicit representation:

Y t,x,a
s = esssup

ν∈V
Et,x,aν

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

∣∣∣∣Fs] , s ∈ [t, T ]. (4.3)

In particular, setting s = t, we have the following representation formula for the value function
of the dual control problem:

v∗(t, x, a) = Y t,x,a
t , (t, x, a) ∈ [0, T ]× E ×A. (4.4)

The rest of this section is devoted to prove Theorem 4.2. To this end we will use a penalization
approach presented in the following subsections. Here we only note that for the solvability of the
BSDE the use of the filtration F introduced above is essential, since it involves application of
martingale representation theorems for multivariate point processes (see e.g. Theorem 5.4 in
[22]).

4.1 Penalized BSDE and associated dual control problem

Let us consider the family of penalized BSDEs associated to (4.1)-(4.2), parametrized by the
integer n > 1: Pt,x,a-a.s.,

Y n,t,x,a
s = g(XT ) +

∫ T

s
f(r,Xr, Ir) dr +Kn,t,x,a

T −Kn,t,x,a
s (4.5)

−
∫ T

s

∫
E×A

Zn,t,x,ar (y, b) q(dr dy db)−
∫ T

s

∫
A
Zn,t,x,ar (Xr, b)λ0(db) dr, s ∈ [t, T ],

where Kn is the nondecreasing process in K2
t,x,a defined by

Kn
s = n

∫ s

t

∫
A

[Znr (Xr, b)]
+ λ0(db) dr.

Here we denote by [u]+ the positive part of u. The penalized BSDE (4.5) can be rewritten in the
equivalent form: Pt,x,a-a.s.,

Y n,t,x,a
s = g(XT ) +

∫ T

s
fn(r, Xr, Ir, Z

n,t,x,a
r (Xr, ·)) ds

−
∫ T

s

∫
E×A

Zn,t,x,ar (y, b) q(dr dy db), s ∈ [t, T ].

where the generator fn is defined by

fn(t, x, a, ψ) := f(t, x, a) +

∫
A

{
n [ψ(b)]+ − ψ(b)

}
λ0(db), (4.6)

for all (t, x, a) in [0, T ] × E × A, and ψ ∈ L2(λ0). We note that under (Hλ) and (Hfg) fn is
Lipschitz continuous in ψ with respect to the norm of L2(λ0), uniformly in (t, x, a), i.e., for every
n ∈ N there exists a constant Ln depending only on n such that for every (t, x, a) ∈ [0, T ]×E×A
and ψ, ψ′ ∈ L2(λ0),

|fn(t, x, a, ψ′)− fn(t, x, a, ψ)| 6 Ln |ψ − ψ′|L2(λ0).
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The use of the natural filtration F allows to use well known integral representation results for F-
martingales (see, e.g., Theorem 5.4 in [22]) and we have the following proposition, whose proof is
standard and is therefore omitted (similar proofs can be found in [34] Theorem 3.2, [2] Proposition
3.2, [11] Theorem 3.4).

Proposition 4.3. Let assumptions (Hλ) and (Hfg) hold. For every initial condition (t, x, a) ∈
[0, T ] × E × A, and for every n ∈ N, there exists a unique solution (Y n,t,x,a

s , Zn,t,x,as )s∈[t,T ] ∈
S2
t,x,a × L2

t,x,a(q) satisfying the penalized BSDE (4.5).

Next we show that the solution to the penalized BSDE (4.5) provides an explicit representation
of the value function of a corresponding dual control problem depending on n. This is the content
of Lemma 4.4 which will allow to deduce some estimates uniform with respect to n.

For every n > 1, let Vn denote the subset of elements ν ∈ V that take values in (0, n].

Lemma 4.4. Let assumptions (Hλ) and (Hfg) hold. For all n ≥ 1 and s ∈ [t, T ],

Y n,t,x,a
s = esssup

ν∈Vn
Et,x,aν

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

∣∣∣∣Fs] , Pt,x,a − a.s. (4.7)

Proof. We fix n ≥ 1 and for any ν ∈ Vn we introduce the compensated martingale measure
qν(ds dy db) = q(ds dy db)− (νs(b)− 1) d1(s, y, b) p̃(ds dy db) under Pt,x,aν . We see that the solution
(Y n, Zn) to the BSDE (4.5) satisfies: Pt,x,a-a.s.,

Y n
s = g(XT ) +

∫ T

s
f(r,Xr, Ir) dr +

∫ T

s

∫
A
{n[Znr (Xr, b)]

+ − νr(b)Znr (Xr, b)}λ0(db) dr

−
∫ T

s

∫
E×A

Znr (y, b) qν(dr dy db), s ∈ [t, T ]. (4.8)

By taking conditional expectation in (4.8) under Pt,x,aν and applying Lemma 3.2 we get, for any
s ∈ [t, T ],

Y n,t,x,a
s = Et,x,aν

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

∣∣∣∣Fs] (4.9)

+Et,x,aν

[∫ T

s

∫
A
{n[Zn,t,x,ar (Xr, b)]

+ − νr(b)Zn,t,x,ar (Xr, b)}λ0(db) dr

∣∣∣∣Fs] ,
Pt,x,aν -a.s. From the elementary numerical inequality: n[u]+ − νu > 0 for all u ∈ R, ν ∈ (0, n], we
deduce by (4.9) that

Y n,t,x,a
s > esssup

ν∈Vn
Et,x,aν

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

∣∣∣∣Fs] . (4.10)

On the other hand, for ε ∈ (0, 1), let us consider the process νε ∈ Vn defined by

νεs(b) = n 1{Zn,t,x,as (Xs−,b)>0} + ε1{−1<Zn,t,x,as (Xs−,b)<0} − ε Z
n,t,x,a
s (Xs−, b)

−1 1{Zn,t,x,as (Xs−,b)6−1}.

By construction, we have

n[Zn,t,x,as (Xs−, b)]
+ − νεs(b)Zn,t,x,as (Xs−, b) 6 ε, s ∈ [t, T ], b ∈ A,

and thus for the choice of ν = νε in (4.9):

Y n,t,x,a
s 6 Et,x,aνε

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

∣∣∣∣Fs]+ εT λ0(A)
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6 esssup
ν∈Vn

Et,x,aν

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

∣∣∣∣Fs]+ εT λ0(A).

Together with (4.10), this is enough to prove the required representation of Y n. Note that we
could not take νs(b) = n1{Zns (Xs−,b)>0}, since this process does not belong to Vn because of the
requirement of strict positivity.

4.2 Limit behavior of the penalized BSDEs and conclusion of the proof of
Theorem 4.2

As a consequence of the representation (4.7) we immediately obtain the following estimates:

Lemma 4.5. Let assumptions (Hλ) and (Hfg) hold. There exists a constant C, depending only
on T, f, g, such that for any (t, x, a) ∈ [0, T ]× E ×A and n ≥ 1, Pt,x,a-a.s.,

Y n,t,x,a
s 6 Y n+1,t,x,a

s , |Y n,t,x,a
s | 6 C, s ∈ [t, T ].

Proof. For fixed s ∈ [t, T ], the almost sure monotonicity of Y n,t,x,a follows from the representation
formula (4.7), since by definition Vn ⊂ Vn+1; moreover, the same formula shows that we can take
C = ||g||∞ + T ||f ||∞. Finally, these inequalities hold for every s ∈ [t, T ] outside a null set, since
the processes Y n,t,x,a are càdlàg.

Moreover, the following a priori uniform estimate on the sequence (Y n,t,x,a, Zn,t,x,a,Kn,t,x,a)
holds:

Lemma 4.6. Let assumptions (Hλ) and (Hfg) hold. For all (t, x, a) ∈ [0, T ]×E×A and n ∈ N,
there exists a positive constant C ′ depending only on T, f, g such that

||Y n,t,x,a||2
S2
t,x,a

+ ||Zn,t,x,a||2
L2
t,x,a(q)

+ ||Kn,t,x,a||2
K2

t,x,a
6 C ′. (4.11)

Proof. In the following we omit for simplicity of notation the dependence on (t, x, a) for the triple
(Y n,t,x,a, Zn,t,x,a,Kn,t,x,a). The estimate on Y n follows immediately from the previous lemma:

||Y n||2
S2
t,x,a

= Et,x,a
[

sup
s∈[t,T ]

|Y n
s |2
]
6 C2. (4.12)

Next we notice that, since Kn is continuous, the jumps of Y n are given by the formula

∆Y n
s =

∫
E×A

Zns (y, b) p({s}, dy db).

The Itô formula applied to |Y n
t |2 gives:

d|Y n
r |2 = 2Y n

r− dY
n
r + |∆Y n

r |2

= −2Y n
r− f(Xr−, Ir−) dr − 2Y n

r− dK
n
r

+2Y n
r−

∫
E×A

Znr (y, b) q(dr dy db) + 2Y n
r−

∫
A
Znr (Xr−, b)λ0(db) dr

+

∫
E×A

|Znr (y, b)|2 p({r} dy db). (4.13)
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Integrating (4.13) on [s, T ], for every s ∈ [t, T ], and recalling the elementary inequality 2ab 6
1
δa

2 + δb2 for any constant δ > 0, and that

Et,x,a
[∫ T

s

∫
A
|Znr (Xr−, b)|2 λ0(db) dr

]
6 Et,x,a

[∫ T

s

∫
E×A

|Znr (y, b)|2 p̃(dr dy db)
]
, (4.14)

we have:

Et,x,a
[
|Ys|2

]
+ Et,x,a

[∫ T

s

∫
E×A

|Znr (y, b)|2 p̃(dr dy db)
]

6 Et,x,a
[
|g(XT )|2

]
+

1

β
Et,x,a

[∫ T

s
|f(r,Xr, Ir)|2 dr

]
+ βEt,x,a

[∫ T

s
|Y n
r |2 dr

]
+
T λ0(A)

γ
Et,x,a

[∫ T

s

∫
E×A

|Znr (y, b)|2 p̃(dr dy db)
]

+ γEt,x,a
[∫ T

s
|Y n
r |2 dr

]
+

1

α
Et,x,a

[
sup
s∈[t,T ]

|Y n
s |2
]

+ αEt,x,a
[
|Kn

T −Kn
s |2
]
, s ∈ [t, T ], (4.15)

for some α, β, γ > 0, Now, from the equation (4.5) we obtain:

Kn
T −Kn

s = Y n
s − g(XT )−

∫ T

s
f(r,Xr, Ir)dr

+

∫ T

s

∫
A
Znr (Xr, b)λ0(db) dr

+

∫ T

s

∫
E×A

Znr (y, b) q(dr dy db), s ∈ [t, T ].

Next we note the equality

Et,x,a
[∣∣∣∣ ∫ T

s

∫
E×A

Znr (y, b) q(dr dy db)

∣∣∣∣2
]

= Et,x,a
[∫ T

s

∫
E×A

|Znr (y, b)|2 p(dr dy db)
]

= Et,x,a
[∫ T

s

∫
E×A

|Znr (y, b)|2 p̃(dr dy db)
]

that can be proved applying the Itô formula as before to the square of the martingale u 7→∫ u
s

∫
E×A Z

n
r (y, b) q(dr dy db), u ∈ [s, T ] (or by considering its quadratic variation). Recalling

again (4.14) we see that there exists some positive constant B such that

Et,x,a
[
|Kn

T −Kn
s |2
]

6 B

(
Et,x,a

[
|Y n
s |2
]

+ Et,x,a
[
|g(XT )|2

]
+ Et,x,a

[∫ T

s
|f(r,Xr, Ir)|2 dr

]
+Et,x,a

[∫ T

s

∫
E×A

|Znr (y, b)|2 p̃(dr dy db)
])

, s ∈ [t, T ]. (4.16)

Plugging (4.16) into (4.15), and recalling the uniform estimation (4.12) on Y n, we get

(1− αB)Et,x,a
[
|Ys|2

]
+

(
1−

[
αB +

T λ0(A)

γ

])
Et,x,a

[∫ T

s

∫
E×A

|Znr (y, b)|2 p̃(dr dy db)
]

6 (1 + αB)Et,x,a
[
|g(XT )|2

]
+

(
αB +

1

β

)
Et,x,a

[∫ T

s
|f(r,Xr, Ir)|2 dr

]
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+
C2

α
+ (γ + β)Et,x,a

[∫ T

s
|Y n
r |2 dr

]
, s ∈ [t, T ].

Hence, by choosing α ∈
(
0, 1

B

)
, γ > T λ0(A)

1−αB , β > 0, and applying Gromwall’s lemma to s →
Et,x,a

[
|Y n
s |2
]
, we obtain:

sup
s∈[t, T ]

Et,x,a
[
|Ys|2

]
+ Et,x,a

[∫ T

t

∫
E×A

|Zns (y, b)|2 p̃(ds dy db)
]

6 C ′
(
Et,x,a

[
|g(XT )|2

]
+ Et,x,a

[∫ T

t
|f(s,Xs, Is)|2 ds

]
+ C2

)
, (4.17)

for some C ′ > 0 depending only on T , which gives the required uniform estimate for (Zn) and
also (Kn) by (4.16).

We can finally present the conclusion of the proof of Theorem 4.2:

Proof. Let (t, x, a) ∈ [0, T ]×E×A. We first show that (Y n, Zn,Kn) (we omit the dependence on
(t, x, a) for simplicity of notation) solution to (4.5) converges in a suitable way to some process
(Y,Z,K) solution to the constrained BSDE (4.1)-(4.2). By Lemma 4.5, (Y n)n converges increas-

ingly to some adapted process Y , which moreover satisfies Et,x,a
[
sups∈[t,T ] |Ys|2

]
< ∞ by the

uniform estimate for (Y n)n in Lemma 4.6 and Fatou’s lemma. Furthermore, by the dominated

convergence theorem, we also have E
∫ T

0 |Y
n
t − Yt|2dt → 0. Next, we prove that there exists

(Z, K) ∈ L2
t,x,a(q)×K2

t,x,a with K predictable, such that

(i) Z is the weak limit of (Zn)n in L2
t,x,a(q);

(ii) Kτ is the weak limit of (Kn
τ )n in L2

t,x,a(Fτ ), for any stopping time τ valued in [t T ];

(iii) Pt,x,a-a.s.,

Ys = g(XT ) +

∫ T

s
f(r,Xr, Ir) dr +KT −Ks

−
∫ T

s

∫
E×A

Zr(y, b) q(dr dy db)−
∫ T

s

∫
A
Zr(Xr, b)λ0(db) dr, s ∈ [t, T ],

with
Zs(Xs−, b) 6 0, ds⊗ dPt,x,a ⊗ λ0(db)− a.e.

Let define the following mappings from L2
t,x,a(q) to L2

t,x,a(Fτ ):

I1
τ : Z 7→

∫ τ

t

∫
E×A

Zs(y, b) q(ds dy db),

I2
τ : Z 7→

∫ τ

t

∫
A
Zs(Xs, b)λ0(db) ds,

for each F-stopping time τ with values in [t, T ]. We wish to prove that I1
τZ

n and I2
τZ

n converge
weakly in L2

t,x,a(Fτ ) to I1
τZ and I2

τZ respectively. Indeed, by the uniform estimates for (Zn)n
in Lemma 4.6, there exists a subsequence, denoted (Znk)k, which converges weakly in L2

t,x,a(q).
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Since I1 and I2 are linear continuous operators they are also weakly continuous so that we have
I1
τZ

nk → I1
τZ and I2

τZ
nk → I2

τZ weakly in L2
t,x,a(Fτ ) as k →∞. Since we have from (4.5)

Knk
τ = −Y nk

τ + Y nk
t −

∫ τ

t
f(r,Xr, Ir) dr

+

∫ τ

t

∫
A
Znkr (Xr, b)λ0(db) dr +

∫ τ

t

∫
E×A

Znkr (y, b) q(dr dy db),

we also obtain the weak convergence in L2
t,x,a(Fτ ) as k →∞

Knk
τ ⇀ Kτ := −Yτ + Yt −

∫ τ

t
f(r,Xr, Ir) dr

+

∫ τ

t

∫
A
Zr(Xr, b)λ0(db) dr +

∫ τ

t

∫
E×A

Zr(y, b) q(dr dy db). (4.18)

Arguing as in [29] proof of Theorem 2.1, or [25] Lemma 3.5, [18] Theorem 3.1 we see that K
inherits from Knk the properties of having nondecreasing paths and of being square integrable
and predictable. Finally, from Lemma 2.2 in [29] it follows that K and Y are càdlàg, so that
Kt,x,a ∈ K2

t,x,a and Y t,x,a ∈ S2
t,x,a.

Notice that the processes Z and K in (4.18) are uniquely determined. Indeed, if (Z,K) and
(Z ′,K ′) satisfy (4.18), then the predictable processes Z and Z ′ coincide at the jump times and
can be identified almost surely with respect to p̃(ω, ds dy db)Pt,x,a(dω) (a similar argument can be
found in the proof of Proposition 4.1 to which we refer for more details). Finally, recalling that
the jumps of p are totally inaccessible, we also obtain the uniqueness of the component K. The
uniqueness of Z and K entails that all the sequences (Zn)n and (Kn)n respectively converge (in
the sense of points (i) and (ii) above) to Z and K.

It remains to show that the jump constraint (4.2) is satisfied. To this end, we consider the
functional on L2

t,x,a(q) given by

G : Z 7→ Et,x,a
[∫ T

t

∫
A

[Zs(Xs−, b)]
+ λ0(db) ds

]
.

From uniform estimate (4.11), we see that G(Zn) → 0 as n → ∞. Since G is convex and
strongly continuous in the strong topology of L2

t,x,a(q), then G is lower semicontinuous in the

weak topology of L2
t,x,a(q), see, e.g., Corollary 3.9 in [8]. Therefore, we find

G(Z) 6 lim inf
n→∞

G(Zn) = 0,

from which follows the validity of the jump constraint (4.2) on [t, T ]. We have then showed that
(Y, Z,K) is a solution to the constrained BSDE (4.1)-(4.2). It remains to prove that this is the
minimal solution. To this end, fix n ∈ N and consider a triple (Ȳ , Z̄, K̄) ∈ S2

t,x,a×L2
t,x,a(q)×K2

t,x,a

satisfying (4.1)-(4.2). For any ν ∈ Vn, by introducing the compensated martingale measure qν ,
we see that the solution (Ȳ , Z̄, K̄) satisfies: Pt,x,a-a.s.,

Ȳs = g(XT ) +

∫ T

s
f(r,Xr, Ir) dr + K̄T − K̄s (4.19)

−
∫ T

s

∫
E×A

Z̄r(y, b) q
ν(dr dy db)−

∫ T

s

∫
A
νr(b) Z̄r(Xr, b)λ0(db) dr s ∈ [t, T ].

By taking the expectation under Pt,x,aν in (4.19), recalling Lemma 3.2, and that K̄ is nondecreasing,
we have

Ȳs > Et,x,aν

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

]
− Et,x,aν

[∫ T

s

∫
A
νr(b) Z̄r(Xr, b)λ0(db) dr

]
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> Et,x,aν

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

]
s ∈ [t, T ], (4.20)

since ν is valued in (0, n] and Z satisfies constraint (4.2). As ν is arbitrary in Vn, we get from the
representation formula (4.7) that Ȳs > Y n

s , ∀ s ∈ [t, T ], ∀n ∈ N. In particular, Ys = limn→∞ Y
n
s 6

Ȳs, i.e., the minimality property holds. The uniqueness of the minimal solution straightly follows
from Proposition 4.1.

To conclude the proof, we argue on the limiting behavior of the dual representation for Y n

when n goes to infinity. Since Vn ⊂ V, it is clear from the representation (4.7) that, for all n

and s ∈ [t, T ], Y n
s 6 esssupν∈V E

t,x,a
ν

[
g(XT ) +

∫ T
s f(r,Xr, Ir) dr

∣∣∣∣Fs]. Moreover, being Y the

pointwise limit of Y n, we deduce that

Ys = lim
n→∞

Y n
s 6 esssup

ν∈V
Et,x,aν

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

∣∣∣∣Fs] . (4.21)

On the other hand, for any ν ∈ V, introducing the compensated martingale measure qν under Pν
as usual, we see that (Y, Z, K) satisfies

Ys = g(XT ) +

∫ T

s
f(r,Xr, Ir) dr +KT −Ks (4.22)

−
∫ T

s

∫
E×A

Zr(y, b) q
ν(dr dy db)−

∫ T

s

∫
A
Zr(Xr, b) νr(b)λ0(db) dr, s ∈ [t, T ].

Arguing in the same way as in (4.20), we obtain

Ys > Et,x,aν

[
g(XT ) +

∫ T

s
f(r,Xr, Ir) dr

∣∣∣∣Fs] ,
so that Ys > esssupν∈V E

t,x,a
ν

[
g(XT ) +

∫ T
s f(r,Xr, Ir) dr

∣∣∣Fs] by the arbitrariness of ν ∈ V. To-

gether with (4.21) this gives the required equality.

5 A BSDE representation for the value function

In this section we conclude the last step in the method of control randomization and we show that
the minimal solution to the constrained BSDE (4.1)-(4.2) actually provides a nonlinear Feynman-
Kac representation of the solution to the Hamilton-Jacobi-Bellman (HJB) equation (2.7)-(2.8),
that we re-write here:

−∂v
∂t

(t, x) = sup
a∈A

(LaEv(t, x) + f(t, x, a)) , v(T, x) = g(x).

As a consequence of the dual representation in Theorem 4.2 it follows that the value function of
the original optimal control problem can be identified with the dual one, which in particular turns
out to be independent on the variable a.

For our result we need the following conditions:

sup
x∈E,a∈A

λ(x, a,E) <∞, (5.1)

λ is a Feller transition kernel, (5.2)
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f ∈ Cb([0, T ]× E ×A), g ∈ Cb(E). (5.3)

We note that these assumptions are stronger that those required in Theorem 2.6 and therefore
they imply that there exists a unique solution v ∈ LSCb([0, T ] × E) to the HJB equation in the
sense of Definition 2.1. If, in addition, A is a compact metric space then v ∈ Cb([0, T ] × E) by
Corollary 2.8.

Let us consider again the Markov process (X, I) in E × A constructed in section 3.1, with
corresponding family of probability measures Pt,x,a and generator L introduced in (3.4). Since
(5.1)-(5.3) are also stronger than (Hλ) and (Hfg), by Theorem 4.2 there exists a unique solution
to the BSDE (4.1)-(4.2).

Our main result is as follows:

Theorem 5.1. Assume (5.1), (5.2), (5.3). Let v be the unique solution to the Hamilton-Jacobi-
Bellman equation provided by Theorem 2.6. Then for every (t, x, a) ∈ [0, T ]× E ×A,

v(t, x) = Y t,x,a
t ,

where Y t,x,a is the first component of the minimal solution to the constrained BSDE with nonpo-
sitive jumps (4.1)-(4.2).

More generally, we have Pt,x,a-a.s.,

v(s,Xs) = Y t,x,a
s , s ∈ [t, T ].

Finally, for the value function V of the optimal control problem defined in (2.6) and the dual value
function V ∗ defined in (3.5) we have the equalities

V (t, x) = v(t, x) = Y t,x,a
t = V ∗(t, x, a).

In particular, the latter functions do not depend on a.

Remark 5.2. By similar arguments our result admits possible extensions to cases where condition
(5.1) and the boundedness requirements on the gain functions f and g are relaxed. We stick to
the previous setting in order to avoid too many technicalities.

The rest of this section is devoted to prove Theorem 5.1.

5.1 A penalized HJB equation

Let us recall the penalized BSDE associated to (4.1)-(4.2): Pt,x,a-a.s.,

Y n,t,x,a
s = g(XT ) +

∫ T

s
f(r,Xr, Ir) ds−

∫ T

s

∫
E×A

Zn,t,x,ar (y, b) q(dr dy db) (5.4)

+

∫ T

s

∫
A

{
n [Zn,t,x,ar (Xr, b)]

+ − Zn,t,x,ar (Xr, b)
}
λ0(db) dr, s ∈ [t, T ].

Let us now consider the parabolic semi-linear penalized integro-differential equation, of HJB type:
for any n ≥ 1,

∂vn

∂t
(t, x, a) + Lvn(t, x, a) + f(t, x, a) (5.5)

+

∫
A
{n [vn(t, x, b)− vn(t, x, a)]+ − (vn(t, x, b)− vn(t, x, a))}λ0(db) = 0 on [0, T )× E ×A,

vn(T, x, a) = g(x) on E ×A, (5.6)

The following lemma states that the solution of (5.5)-(5.6) can be represented probabilistically
by means of the solution to the penalized BSDE (5.4):
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Lemma 5.3. Assume (5.1), (5.2), (5.3). Then there exists a unique function vn ∈ Cb([0, T ] ×
E × A) such that t 7→ vn(t, x, a) is continuously differentiable on [0, T ] and (5.5)-(5.6) hold for
every (t, x, a) ∈ [0, T )× E ×A.

Moreover, for every (t, x, a) ∈ [0, T ]× E ×A and for every n ∈ N,

Y n,t,x,a
s = vn(s,Xs, Is) (5.7)

Zn,t,x,as (y, b) = vn(s, y, b)− vn(s,Xs−, Is−), (5.8)

(to be understood as an equality between elements of the space S2
t,x,a × L2

t,x,a(q)) so that in

particular vn(t, x, a) = Y n,t,x,a
t .

Proof. We first note that vn ∈ Cb([0, T ]× E ×A) is the required solution if and only if

vn(t, x, a) = g(x) +

∫ T

t
Lvn(s, x, a) ds+

∫ T

t
fn(s, x, a, vn(s, x, ·)− vn(s, x, a)) (5.9)

for t ∈ [0, , T ), x ∈ E, a ∈ A, where fn(t, x, a, ψ) is the map defined in (4.6). We use a fixed point
argument, introducing a map Γ from Cb([0, T ]× E ×A) to itself setting v = Γ(w) where

v(t, x, a) = g(x) +

∫ T

t
Lw(s, x, a) ds+

∫ T

t
fn(s, x, a, w(s, x, ·)− w(s, x, a)) ds.

Using the boundedness assumptions on λ and λ0 it can be shown by standard arguments that
some iteration of the above map is a contraction in the space of bounded measurable real functions
on [0, T ]×E ×A endowed with the supremum norm and therefore the map Γ has a unique fixed
point, which is the required solution vn.

We finally prove the identifications (5.7)-(5.8). Since vn ∈ Cb([0, T ] × E × A) we can apply
the Itô formula to the process v(s,Xs, Is), s ∈ [t, T ], obtaining, Pt,x,a-a.s.,

vn(s,Xs, Is) = vn(t, x, a) +

∫ s

t

(
∂vn

∂r
(r,Xr, Ir) + LIrvn(r,Xr, Ir)

)
dr

+

∫ s

t

∫
E×A

(vn(r, y, b)− vn(r,Xr−, Ir−)) q(dr dy db), s ∈ [t, T ].

Taking into account that vn satisfies (5.5)-(5.6) and that (X, I) has piecewise constant trajectories,
we obtain Pt,x,a-a.s.,

∂vn

∂r
(r,Xr, Ir) + Lvn(r,Xr, Ir) + fn(r,Xr, Ir, v

n(r,Xr, ·)− vn(r,Xr, Ir)) = 0,

for almost all r ∈ [t, T ]. It follows that, Pt,x,a-a.s.,

vn(s,Xs, Is) = vn(t, x, a)−
∫ s

t
fn(r,Xr, Ir, v

n(r,Xr, ·)− vn(r,Xr, Ir)) dr

+

∫ s

t

∫
E×A

(vn(r, y, b)− v(r,Xr−, Ir−)) q(dr dy db), s ∈ [t, T ].

Since vn(T, x, a) = g(x) for all (x, a) ∈ E ×A, simple passages show that

vn(s,Xs, Is) = g(XT ) +

∫ s

t
fn(r,Xr, Ir, v

n(r,Xr, ·)− vn(r,Xr, Ir)) dr

−
∫ s

t

∫
E×A

(vn(r, y, b)− v(r,Xr−, Ir−)) q(dr dy db), s ∈ [t, T ].
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Therefore the pairs (Y n,t,x,a
s , Zn,t,x,as (y, b)) and (vn(s,Xs, Is), v

n(s, y, b)−vn(s,Xs−, Is−)) are both
solutions to the same BSDE under Pt,x,a, and thus they coincide as members of the space S2

t,x,a×
L2
t,x,a(q). The required equalities (5.7)-(5.8) follow. In particular we have that vn(t, x, a) =

Y n,t,x,a
t .

5.2 Convergence of the penalized solutions and conclusion of the proof

We study the behavior of the functions vn as n → ∞. To this end we first show that they
are bounded above by the solution to the HJB equation. Similar bounds may be obtained even
without the requirement that the cost functions f, g should be bounded, but we limit ourselves
to the previous setting.

Lemma 5.4. Assume (5.1), (5.2), (5.3). Let v denote the solution to the HJB equation as
provided by Theorem 2.6 and vn the solution to (5.5)-(5.6) as provided in Lemma 5.3. Then, for
all (t, x, a) ∈ [0, T ]× E ×A and n ≥ 1,

v(t, x) ≥ vn(t, x, a).

Proof. Let v : [0, T ]× E → R be a solution to the HJB equation. As in the proof of Proposition
2.1 we have the identity

g(XT )− v(t,Xt) =

∫ T

t

∂v

∂r
(r,Xr) dr +

∫
(t,T ]

∫
E×A

(v(r, y)− v(r,Xr−)) p(dr dy db),

which follows from the absolute continuity of t 7→ v(t, x), taking into account that X is constant
among jump times and using the definition of the random measure p defined in (3.2) and the fact
that v depends on t, x only. Since v is a solution to the HJB equation we have, for all x ∈ E
a ∈ A,

−∂v
∂t

(t, x) ≥ LaEv(t, x) + f(t, x, a) =

∫
E

(v(t, y)− v(t, x))λ(x, a, dy) + f(t, x, a),

almost surely on [0, T ]. Taking into account that (X, I) has piecewise constant trajectories we
obtain

g(XT )− v(t,Xt) ≤
∫

(t,T ]

∫
E×A

(v(r, y)− v(r,Xr−)) p(dr dy db) (5.10)

−
∫ T

t

∫
E

(v(r, y)− v(r,Xr))λ(Xr, Ir, dy) dr −
∫ T

t
f(r,Xr, Ir) dr.

Then, for any n ≥ 1 and ν ∈ Vn let us consider the probability Pt,x,aν introduced above and
recall that under Pt,x,aν the compensator of the random measure p(dr dy db) is p̃ν(dr dy db) =
νr(b)λ0(db) δ{Xr−}(dy) dr + λ(Xr−, Ir−, dy) δ{Ir−}(db) dr. Noting that v(r, y) − v(r,Xr−) is pre-
dictable, taking the expectation in (5.10) we obtain

Et,x,aν [g(XT )]− v(t, x) ≤ −Et,x,aν

∫ T

t
f(r,Xr, Ir) dr.

Since ν ∈ Vn was arbitrary, and recalling (4.7), we conclude that

v(t, x) ≥ sup
ν∈Vn

Et,x,aν

[
g(XT ) +

∫ T

t
f(r,Xr, Ir) dr

]
= vn(t, x, a).
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From Lemma 5.3 we know that vn(t, x, a) = Y n,t,x,a
t , and from Lemma 4.5 we know that

vn(t, x, a) is monotonically increasing and uniformly bounded. Therefore we can define

v̄(t, x, a) := lim
n→∞

vn(t, x, a), t ∈ [0, T ], x ∈ E, a ∈ A.

v̄ is bounded, and from Lemma 5.4 we deduce that v̄ ≤ v. As an increasing limit of continuous
functions, v̄ is lower semi-continuous. Further properties of v̄ are proved in the following lemma.
In particular, (5.11) (or (5.12)) means that v̄ is a supersolution to the HJB equation.

Lemma 5.5. Assume (5.1), (5.2), (5.3) and let v̄ be the increasing limit of vn. Then v̄ does not
depend on a, i.e. v̄(t, x, a) = v̄(t, x, b) for every t ∈ [0, T ], x ∈ E and a, b ∈ A. Moreover, setting
v̄(t, x) = v̄(t, x, a) we have

v̄(t, x)− v̄(t′, x) ≥
∫ t′

t
(LaE v̄(s, x) + f(s, x, a)) ds, 0 ≤ t ≤ t′ ≤ T, x ∈ E, a ∈ A. (5.11)

More generally, for arbitrary Borel-measurable α : [0, T ]→ A we have

v̄(t, x)− v̄(t′, x) ≥
∫ t′

t
(Lα(s)

E v̄(s, x) + f(s, x, α(s))) ds, 0 ≤ t ≤ t′ ≤ T, x ∈ E, a ∈ A. (5.12)

Proof. vn satisfies the integral equation (5.9), namely

vn(t, x, a) = g(x) +

∫ T

t

∫
E

(vn(s, y, a)− vn(s, x, a))λ(x, a, dy) ds

+

∫ T

t
f(s, x, a) ds+ n

∫ T

t

∫
A

[vn(s, x, b)− vn(s, x, a)]+ λ0(db) ds.

Since vn is a bounded sequence in Cb([0, T ] × E × A) converging pointwise to v̄, setting t = 0,
dividing by n and letting n→∞ we obtain∫ T

0

∫
A

[v̄(s, x, b)− v̄(s, x, a)]+ λ0(db) ds = 0. (5.13)

Next we claim that v̄ is right-continuous in t on [0, T ), for fixed x ∈ E, a ∈ A. To prove this we
first note that, neglecting the term with the positive part [. . .]+ we have

vn(t′, x, a)− vn(t, x, a) ≤ −
∫ t′

t

∫
E

(vn(s, y, a)− vn(s, x, a))λ(x, a, dy) ds−
∫ t′

t
f(s, x, a) ds

≤ C0(t′ − t), (5.14)

for some constant C0 > 0 and for all 0 ≤ t ≤ t′ ≤ T and n ≥ 1, where we have used again
the fact that vn is uniformly bounded. Now fix t ∈ [0, T ). Since, as already noticed, v̄ is lower
semi-continuous we have v̄(t, x, a) ≤ lim infs↓t v̄(s, x, a). The required right continuity follows if
we can show that v̄(t, x, a) ≥ lim sups↓t v̄(s, x, a). Suppose not. Then there exists sk ↓ t such that
v̄(sk, x, a) tends to some limit l > v̄(t). It follows that v̄(sk, x, a)− v̄(t, x, a) > C0(sk− t) for some
k sufficiently large, and therefore also vn(sk, x, a)− vn(t, x, a) > C0(sk − t) for some n sufficiently
large, contradicting (5.14). This contradiction shows that v̄ is right-continuous in t on [0, T ).

Then it follows from (5.13) that
∫
A[v̄(t, x, b) − v̄(t, x, a)]+ λ0(db) = 0 for every x ∈ E, a ∈ A,

t ∈ [0, T ]. Therefore there exists B ⊂ A (dependent on t, x, a) such that B is a Borel set with
λ0(B) = 0, and

v̄(t, x, a) ≥ v̄(t, x, b′), b′ /∈ B. (5.15)
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Since λ0 has full support, B cannot contain any open ball. So given an arbitrary b ∈ A we
can find a sequence bn → b, bn /∈ B. Writing (5.15) with bn instead of b′ and using the lower
semi-continuity of v̄ we deduce that v̄(t, x, a) ≥ lim infn v̄(t, x, bn) ≥ v̄(t, x, b). Since a and b were
arbitrary we finally conclude that v̄(t, x, a) = v̄(t, x, b) for every t ∈ [0, T ], x ∈ E and a, b ∈ A, so
that v̄(t, x, a) does not depend on a and we can define v̄(t, x) = v̄(t, x, a).

Passing to the limit as n→∞ in the first inequality of (5.14) we immediately obtain (5.11),
so it remains to prove (5.12). Let A(v̄) denote the set of all Borel-measurable α : [0, T ]→ A such
that (5.12) holds, namely for every 0 ≤ t ≤ t′ ≤ T , x ∈ E, a ∈ A,

v̄(t, x)− v̄(t′, x) ≥
∫ t′

t

∫
E
v̄(s, y)λ(x, α(s), dy) ds (5.16)

−
∫ t′

t
v̄(s, x)λ(x, α(s), E) ds+

∫ t′

t
f(s, x, α(s)) ds. (5.17)

Suppose that αn ∈ A(v̄), α : [0, T ] → A is Borel-measurable and αn(t) → αn(t) for almost all
t ∈ [0, T ]. Note that ∫

E
v̄(t, y)λ(x, a, dy) = lim

n→∞

∫
E
v̄n(t, y, a)λ(x, a, dy) (5.18)

and the latter is an increasing limit. Since vn ∈ Cb([0, T ]×E ×A) and λ is Feller, for any n ≥ 1
the functions in the right-hand side of (5.18) are continuous in (t, x, a) (see e.g. [3], Proposition
7.30) and therefore the left-hand side is a lower semicontinuous function of (t, x, a). It follows
from this and the Fatou Lemma that∫ t′

t

∫
E
v̄(s, y)λ(x, α(s), dy) ds ≤

∫ t′

t
lim inf
n→∞

[∫
E
v̄(s, y)λ(x, αn(s), dy)

]
ds

≤ lim inf
n→∞

∫ t′

t

∫
E
v̄(s, y)λ(x, αn(s), dy) ds.

Using this inequality and the continuity and boundedness of the maps a 7→ λ(x, a,E), a 7→
f(t, x, a) we see that assuming the validity of inequality (5.16) for αn implies that it also holds
for α, hence α ∈ A(v̄).

Next we note that A(v̄) contains all piecewise constant functions of the form α(t) =
∑k

i=1

ai1[ti,ti+1)(t) with k ≥ 1, 0 = t1 < t2 < . . . < tk+1 = T , ai ∈ A: indeed, it is enough to write
down (5.11) with [t, t′) = [ti, ti+1) and sum up over i to get (5.12) for α(·) and therefore conclude
that α(·) ∈ A(v̄). Since we have already proved that the class A(v̄) is stable under almost sure
pointwise limits it follows that A(v̄) contains all Borel-measurable functions α : [0, T ] → A as
required.

We are now ready to conclude the proof of our main result.
Proof of Theorem 5.1. We will prove the inequality

v̄(t, x) ≥ V (t, x), t ∈ [0, T ], x ∈ E, (5.19)

where v̄ = limn→∞ v
n was introduced before Lemma 5.5. Since we know that v̄ ≤ v and, by

Theorem 2.9, v = V it follows from (5.19) that v̄ = v = V . Passing to the limit as n → ∞ in
(5.7) and recalling (4.4) all the other equalities follow immediately.

To prove (5.19) we fix t ∈ [0, T ], x ∈ E and a Borel-measurable map α : [0, T ] × E → A, i.e.
an element of Aad, the set of admissible control laws for the primal control problem, and denote
by Pt,xα the associated probability measure on (Ω,F∞), for the controlled system started at time t
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from point x, as in section 2.2. We will prove that v̄(t, x) ≥ J(t, x, α), the gain functional defined
in (2.5). Recall that in Ω we had defined a canonical marked point process (Tn, En)n≥1 and the
associated random measure p. Fix ω ∈ Ω and consider the points Tn(ω) lying in (t, T ], which
we rename Si; thus, t < S1 < . . . Sk ≤ T , for some k (also depending on ω). Recalling that
v̄(T, x) = g(x) we have

g(XT )− v̄(t, x) = g(XT )− v̄(Sk, XSk) +

k∑
i=1

[v̄(Si, XSi)− v̄(Si, XSi−)]

+

k∑
i=2

[v̄(Si, XSi−)− v̄(Si−1, XSi−1)] + v̄(S1, XS1−)− v̄(t, x).

Pt,xα -a.s we have XSi− = XSi−1 (2 ≤ i ≤ k) and XS1− = x, so we obtain

g(XT )− v̄(t, x) = g(XT )− v̄(Sk, XSk) +
k∑
i=1

[v̄(Si, XSi)− v̄(Si, XSi−)]

+
k∑
i=2

[v̄(Si, XSi−1)− v̄(Si−1, XSi−1)] + v̄(S1, x)− v̄(t, x).

The first sum can be written as

k∑
i=1

[v̄(Si, XSi)− v̄(Si, XSi−)] =

∫ T

t

∫
E

[v̄(s, y)− v̄(s,Xs−)] p(ds dy),

while the other can be estimated from above by repeated applications of (5.12), taking into
account that X is constant in the intervals (t, S1], (Si−1, Si] (2 ≤ i ≤ k) and (Sk, T ]:

v̄(Si, XSi−1)− v̄(Si−1, XSi−1) ≤ −
∫ Si

Si−1

(
L
α(s,XSi−1

)

E v̄(s,XSi−1) + f(s,XSi−1 , α(s,XSi−1))
)
ds

= −
∫ Si

Si−1

(
Lα(s,Xs)
E v̄(s,Xs) + f(s,Xs, α(s,Xs))

)
ds

for 2 ≤ i ≤ k and similar formulae for the intervals (t, S1], and (Sk, T ]. We end up with

g(XT )− v̄(t, x) ≤
∫ T

t

∫
E

[v̄(s, y)− v̄(s,Xs−)] p(ds dy)

−
∫ T

t

(
Lα(s,Xs)
E v̄(s,Xs) + f(s,Xs, α(s,Xs))

)
ds.

Recalling that the compensator of the measure p under Pt,xα is 1[t,∞)(s)λ(Xs−, α(s,Xs−), dy) ds
we have, taking expectation,

Et,xα
∫ T

t

∫
E

[v̄(s, y)− v̄(s,Xs−)] p(ds dy) = Et,xα
∫ T

t
Lα(s,Xs)
E v̄(s,Xs) ds,

which implies, by the previous inequality, Et,xα [g(XT )] − v̄(t, x) ≤ −Et,xα
∫ T
t f(s,Xs, α(s,Xs)) ds

and so v̄(t, x) ≥ J(t, x, α). Since α ∈ Aad was arbitrary we conclude that v̄(t, x) ≥ V (t, x).
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