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42122 Reggio Emilia, Italy

Received 13 September 2015, Accepted 20 March 2016

Abstract – Using the relationships of the ISO 281 standard, this paper optimizes the internal dimensions
of tapered roller bearings for maximum rating life. The bearing system addressed contains two identical
bearings subjected to an arbitrary combination of centred radial and axial forces. It is shown that the
basic rating life increases more than quadratically with the roller infill and the aspect ratio of the rollers,
increases with the sixth power of the pitch diameter of the roller set and decreases with the third power
of the applied radial force. Further, for any given ratio of axial to radial force, an optimal contact angle
exists which maximizes the rating life of the bearing pair, irrespective of the actual bearing size and ratio
of roller diameter to pitch diameter. The optimization procedure can either be used to design custom-
made bearings or to select from manufacturers’ catalogues the bearing with the best contact angle for any
assigned loading condition.
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1 Introduction

Ordinarily, rolling bearings are not designed and built
in-house but are chosen by the designer from the cat-
alogue of specialized manufactures. The high degree of
specialization has fostered the development of standard-
ized high-quality products, readily available off-the-shelf
in a wide range of shape and dimensions at affordable
prices. Under particular design circumstances, like very
large bearings or tight mounting spaces, the need can arise
for non-standard bearings which the regular market can
satisfy only at a considerable cost of time and money. In
such instances, rolling bearings of simple geometry (as
with cylindrical or tapered rollers) can be manufactured
by the end user itself to meet the specific requirements at
a fraction of the costs and delivery time requested by the
specialized suppliers.

When tackling the construction of custom bearings
the designer has the control of all the variables and the
design is conveniently conducted according to optimiza-
tion methods. Unlike conventional machine elements, for
which a wealth of optimization criteria have been devel-
oped since long [1, 2], the category of rolling bearings
has received so far relatively little attention. May be due
to the aforementioned passive design approach (selection
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from a catalogue) towards these components, until the
turn of the century the technical literature has been lim-
ited to optimal bearing selectors [3] and simulators of
bearing kinematics [4]. Papers dealing with the optimiza-
tion of bearing features have appeared only lately, aimed
at maximizing one or several performance properties of
ball bearings [5–11], cylindrical roller bearings [12,13] and
tapered roller bearings [14–19]. For a detailed review of
the literature on ball and cylindrical roller bearing opti-
mization see [20, 21].

A pioneering instance of tapered roller bearing op-
timization can be traced back to the paper by Parker
et al. [14], in which the performance of several large-bore
(about 120 mm), tapered roller bearings were simulated
and tested at shaft speeds up to 20 000 rpm under com-
bined thrust and radial load. The computer-optimized
bearing design proved superior to equal-sized standard
bearings tested for comparison. Chaturbhuj et al. [15] op-
timized tapered roller bearings using genetic algorithms
and demonstrated that the fatigue life of the bearing
improved marginally compared with respect to standard
bearings. However, some authors [12,13] have pointed out
that some optimization constraints introduced in this pa-
per were unrealistic. A method for optimizing the geom-
etry of tapered roller bearings at high speeds was devel-
oped by Walker [16] with the main aim of determining the
cup and cone angles which minimize the contact stresses
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Nomenclature

b Width of outer ring of bearing

C Dynamic radial load rating of the bearing

d Roller diameter (measured at midlength of roller)

di Inside diameter of bearing

do Outside diameter of bearing

d∗
δ Optimum value of d for δ ≤ δlim

D Pitch diameter of the roller set

D∗
δ Optimum value of D for δ ≤ δlim

fc Factor given as a function of the product δ · cos α

Fa Axial load acting on the most loaded bearing of the pair

Fr External radial load applied to the bearing pair

Frs Radial load acting on the single bearing of the pair (=0.5Fr)

k Ratio of radial to axial external loads (=Ka/Fr)

Ka External axial load applied to the bearing pair

L Roller length

L 10 Basic rating life of the bearing (in million revolutions)

L∗
δ Optimum value of L for δ ≤ δlim

P Dynamic equivalent radial load acting on the most loaded bearing of the pair

X, Y Load coefficients of the bearing

Z Number of rollers

Z∗
δ Optimum value of Z for δ ≤ δlim

α Contact angle of bearing

α∗ Global optimum of α

α∗
δ Optimum value of α for δ ≤ δlim

δ Pitch ratio of bearing (=d/D)

δlim Maximum allowable value for δ

δ∗ Global optimum of δ

ζ Filling ratio of the roller set (=Z d/π D)

λ Aspect ratio of the rollers (=L /D)

ξ Auxiliary variable (=δ cos α)

φ Component of the basic rating life of the bearing

ω 10 Intrinsic rating life of the bearing

ω∗
10 Optimum value of ω10 for δ ≤ δlim

under a specific ratio of axial to radial load. Walker found
that at low speeds the optimum cup angle is 40◦, whereas
the optimum value decreases to 10◦ for the highest speeds.
Wang et al. [17] presented a mathematical model for op-
timizing the design of four-column bearings with tapered
rollers subject to several geometric constraints. By acting
on a rearrangement of the classical variables (roller diame-
ter and length, pitch diameter, number of rollers and cup
angle), they improved the dynamic load rating by 22%
and the life expectancy by 85% over a commercial com-
petitor of like dimensions. Though interesting for the po-
tential of improvements it shows, Wang et al.’s paper [17]
does not provide details on the optimization method be-
hind the model and little can be taken away from the pub-
lished results apart from the specific example presented.
Two comprehensive contributions to the optimal design
of tapered roller bearings have recently been published by
Tiwari et al. [18,19]. These two papers contain also excel-
lent reviews of the technical literature on rolling bearings
and the various optimization methods applied so far to
bearing design.

In general, the above papers are focused on the
methodological approach to the optimization problem
and pay much less attention to the engineering merit
of the optimization results. Most of the numerical algo-
rithms referenced above can surely be beneficial to the
specialist’s work, but they are of little use for the general-
purpose mechanical designer confronted with the task of
designing simple custom bearings or selecting the opti-
mal bearing from a manufacture’s catalogue. As outcome
of an applied research for a small Italian manufacturer
of planetary gear drives, the present author has recently
published an optimization procedure for radial cylindri-
cal roller bearings [20], which overcomes these limitations.
Relying on easy step-by-step calculations and with no
need for specific optimization backgrounds, that proce-
dure gives the macro-geometry of the bearing (roller di-
ameter, roller length, pitch diameter of roller set, number
of rollers) which maximizes the static and the dynamic
load ratings under realistic size constraints. A later pa-
per by the author [21] has extended the research to radial
bearings with tapered rollers under radial and axial static
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”X“”O“ “X”

Fig. 1. Longitudinal section of a two-stage bevel/spur gearbox with “O” and “X” arranged tapered roller bearings susceptible
of customization and/or optimization.

loads, showing that for any given ratio of axial to radial
forces an optimal contact angle exists which maximizes
the static capacity of the bearing system.

In the wake of that fruitful research, this paper tack-
les the optimization of tapered roller bearings for maxi-
mum dynamic capacity under an arbitrary combination
of radial and axial loads. The optimization involves twin
bearing pairs mounted according to either “O” or “X”
arrangements as shown in Figure 1 for a typical applica-
tion. Following the equations provided by the standard
ISO 281 [22], the intrinsic rating life of the bearing sys-
tem is expressed in terms of three parameters: the ratio
between roller diameter and pitch diameter, the cup angle
and the ratio of axial to radial force. This simple expres-
sion gives engineering insight into the problem and shows
that for any given load ratio the rating life of the bearing
is maximized by an optimal contact angle, nearly inde-
pendent from the bearing size and proportions. Tables of
optimal contact angles are provided for quick reference.

The optimization method presented here gives its best
results for custom-made bearings, for which the design pa-
rameters can be varied with the greatest freedom. How-
ever, the results disclosed are useful also for identify-
ing the best commercial bearings that can be selected
from the manufacturers’ catalogues to fit a particular
application.

2 Problem statement

Figure 2 shows the baseline configuration of the bear-
ing system examined in this paper. The two bearings B1

and B2 are assumed to be equal and subjected to the ra-
dial force Fr , which is applied at the centre point of the
pair. In addition to Fr, an axial thrust Ka, also acts on
the system through a rigid centre shaft.

Geometrically, each bearing is defined by the follow-
ing parameters: roller length, L; mean roller diameter, d

(measured at midlength of L); number of rollers, Z;
pitch diameter of the roller set, D; contact angle, α. The
ISO 281 standard [22] specifies that this angle should mea-
sure the slope of the raceway without retaining ribs, which
is normally the outer one (cup) as shown in Figure 2.
Should the retaining rib be provided by the cup, the con-
tact angle α should refer to the inner raceway (cone).

With reference to Figure 2, the paper seeks the set
of bearing parameters {d, D, L, Z, α} which maximizes
the rating life of the system for given forces Ka and Fr.
The search for the optimum will be based on the equations
provided by the ISO 281 standard [22]. Although obtained
explicitly for the particular bearing combination depicted
in Figure 2 (O arrangement with bearings removed from
each other), the optimal solution presented will be appli-
cable also to other combinations such as those shown in
Figure 3 (O and X arrangements with removed or paired
bearings).

3 Theory

3.1 Basic dynamic radial load rating

Subject to the conditions clarified below, the standard
ISO 281 [22] gives the following field-tested expression
for the dynamic radial load rating, C (expressed in N) of
tapered roller bearings with a single row of rollers

C = 1.1fc (L cosα)7/9 Z 3/4d 29/27 (1)

where the lengths are expressed in mm and fc is a coeffi-
cient given in tabular form by ISO 281 and available an-
alytically from the technical literature (see below). Equa-
tion (1) holds true if the bearing is built and installed
under the following assumptions: (a) use of bearing steels
with hardness HRC ≥ 58; (b) manufacture according to
regular tolerances [23,24] to enhance pressure uniformity
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Fig. 2. Reference configuration of the bearing system with applied loads (Fr and Ka) and characteristic dimensions of the
bearings.
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Fig. 3. Examples of bearing combinations to which
the present theory is applicable: X-arrangement (top);
O-arrangement (bottom); not paired bearings (left); paired
bearings (right).

over the roller length; (c) accurate guide of rollers with
rounded ends to avoid pressure spikes at the edges [25];
(d) mounting onto stiff shafts and within rigid housings;
(e) working temperature not higher than 150 ◦C; (f) an
angular load zone (i.e. the circumferential extent of the
set of rollers that are in contact with both inner and outer
raceways) of 180◦. Significant deviations from these refer-
ence conditions can be accommodated either by applying

correction factors available in reference [26] or by resort-
ing to second-order methods [26, 27] and specialized nu-
merical tools [28] available to bearing manufacturers. The
extent of the load zone (f) is particularly sensitive to the
end play (i.e. axial clearance) with which the bearing pair
is mounted and to axial displacements produced by the
load (see further comments in Sect. 3.2).

Table 1 compares the dynamic load ratings predicted
by Equation (1) with the actual load ratings of a selection
of tapered roller bearings retrieved from the catalogue of
a leading manufacturer (INA). The internal geometry of
the bearings in Table 1 (properties from α to Z) were
calculated starting from the catalogue properties (from
di to Y ) using the method described in the Appendix.

By defining the filling ratio of the bearing, ζ, the as-
pect ratio of the rollers, λ, and the pitch ratio, δ, as follows

ζ =
Zd

πD
(2)

λ =
L

d
(3)

δ =
d

D
(4)

Equation (1) becomes

C =1.1π3/4ζ3/4λ7/9D50/27fc (δ cosα)119/108 cosα−35/108

(5)
Although the theoretical limits for the positive parame-
ters ζ, λ and δ are ζ ≤ 1, λ ≥ 0 and δ < 1, in practice
the following ranges are generally observed: 0.5 ≤ ζ ≤ 1,
0.5 ≤ λ ≤ 2 and δ ≤ 0.2.

From [26], the coefficient fc can be expressed in terms
of α and δ as

fc = 172.5

⎧⎨
⎩ 1 +

[
1.04

(
1 − δ cosα

1 + δ cosα

)143/108
] 9/2

⎫⎬
⎭

− 2/9

× (δ cosα)2/9 (1 − δ cosα)29/27

(1 + δ cosα) 1/4
(6)
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Table 1. Comparison of predicted and catalogue dynamic load ratings for a selection of commercial tapered roller bearings
(INA [32]).

Properties from INA catalogue Derived properties (see Appendix) C (kN)
di do b Y α d D L Z

Bearing (mm) (mm) (mm) (−) (◦) r (mm) (mm) (mm) r (−) INA Equation (1)
30210-A 50 90 17 1.43 15.6 10 70 14.1 20 79 82
30220-A 100 180 29 1.43 15.6 20 140 24.1 20 250 263
30230-A 150 270 38 1.38 16.2 30 210 31.6 20 465 501
30310-A 50 110 23 1.74 12.9 15 80 18.9 15 130 131
30320-A 100 215 39 1.74 12.9 28.75 157.5 32 16 410 419
30330-A 150 320 55 1.74 12.9 42.5 235 45.1 16 800 832
31310-A 50 110 19 0.73 28.7 15 80 17.3 15 111 113
31320-X 100 215 35 0.73 28.7 28.75 157.5 32 16 385 385
31330-X 150 320 50 0.73 28.7 42.5 235 45.7 16 790 790
T7FC050 50 105 22 0.69 30.1 13.75 77.5 20.3 16 127 127
T7FC070 70 140 27 0.69 30.1 17.5 105 25 17 208 208
T7FC095 95 180 33 0.69 30.1 21.25 137.5 30.5 19 325 325

Letting
ξ = δ cosα (7)

combination of (5) and (6) gives

C = 447.76
(
ζ3/4λ7/9D50/27

)

× δ35/108ξ (1 − ξ)29/27

(1 + ξ) 1/4

{
1 +

[
1.04

(
1−ξ
1+ξ

)143/108
] 9/2

}2/9
(8)

3.2 Dynamic equivalent radial load

Let Frs = 0.5Fr be the radial load on the single bear-
ing of the system in Figure 2 (remember that Fr is as-
sumed centred between B1 and B2) and Fa the actual
axial load on the most loaded of the two bearings (bear-
ing B1 in Fig. 2). Following ISO 281 [22], the dynamic
equivalent radial load, P , acting on the most loaded roller
bearing of the pair is

P = X Frs + Y Fa = X (0.5Fr) + Y Fa (9)

where

X = 1 Y = 0
(

Fa

Frs
� 1.5

sin α

cosα

)

X = 0.4 Y = 0.4
cosα

sinα

(
Fa

Frs
> 1.5

sin α

cosα

)
(10)

Equation (9) does not account for narrow load zones (see
Sect. 3.1) and uses a lower limit corresponding to a load
zone of 180 degrees (P = Frs). Another implicit assump-
tion behind Equation (9) is the absence of end moments
acting on the shaft at the sections coupled with the bear-
ings, which is consistent with the assumption of rigid
shaft. For a flexible shaft, the radial loads on the two
bearings would not necessarily be the same due to interde-
pendence between radial displacements, tilt rotations and

unequal load zones. Handling of these situations would
necessarily call for the use of in-house tools developed
by bearing manufacturers (e.g. [28]). Based on experience
data from manufacturers catalogues, Harris [26] sets to
10−3 rad the maximum acceptable misalignment between
shaft and roller bearings. This means that if the flexural
rotation of the shaft relative to the housing is less than
this limit, the bearing life is not shortened with respect
to the standard equations used in this paper. Though the
relative tilt of the shaft should take the stiffness of the
bearings into account, conservatively it is more easily cal-
culated by likening the shaft to and elastic beam sup-
ported by perfect hinges.

For a rigid shaft under the centre radial loading in
Figure 2 and assuming neither end play nor axial preload
on the system, the maximum axial force Fa is given by
the following universally accepted equation [29]

Fa = Ka+0.5
(

Frs

Y

)
= Ka+0.5

(
0.5Fr

Y

)
= Ka+0.25

Fr

Y
(11)

in which [29]

Y = 0.4
cosα

sinα
(12)

Using professional tools, it can be shown that an axial
assembly preload equal to Fa/Frs ≈ 1.55 would slightly
improve the load carrying capacity of the bearing sys-
tem with respect to the assumption of no end play. By
contrast, a positive end play (clearance) or the axial dis-
placement induced by the load itself would dramatically
decrease the load zone of the secondary bearing (i.e. the
bearing which does not support directly the external ax-
ial load, B2 in Fig. 2), so that it could become the el-
ement of the pair which experiences the highest contact
stresses. For this reason the end play should always be
strictly controlled and positive values should be avoided
whenever possible.

By virtue of (12) Equation (11) becomes

Fa = Ka + 0.625 Fr
sin α

cosα
(13)

112-page 5



E. Dragoni: Mechanics & Industry 18, 112 (2017)

L10 =

(
ζ5/2λ70/27D500/81

F
10/3
r

)
·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

447.76 δ35/108ξ (1 − ξ)29/27

(1 + ξ) 1/4

⎧⎨
⎩1 +

[
1.04

(
1 − ξ

1 + ξ

)143/108
] 9/2

⎫⎬
⎭

2/9

MAX
(
0.5 ; 0.45 + 0.4

cos α

sin α
k
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

10

3

(19)

ω 10 =

447.76 δ143/108 cos α (1 − δ cos α)29/27

(1 + δ cos α) 1/4

⎧⎨
⎩ 1 +

[
1.04

(
1 − δ cos α

1 + δ cos α

)143/108
] 9/2

⎫⎬
⎭

2/9

MAX
(
0.5 ; 0.45 + 0.4

cos α

sin α
k
) (22)

from which, letting

k =
Ka

Fr
(14)

the following relationship obtains
Fa

Frs
= 2k + 1.25

sin α

cosα
(15)

By means of (10), (13) and (15) Equation (9) becomes

P =

⎧⎪⎪⎨
⎪⎪⎩

0.5Fr

(
k ≤ 0.125

sin α

cosα

)
(
0.45 + 0.4

cosα

sinα
k
)

Fr

(
k > 0.125

sin α

cosα

)
(16)

Since the second relationship in (16) equals 0.5Fr for k =
0.125 sinα/ cosα, the equivalent radial load, P , can finally
be cast as

P = Fr · MAX

⎧⎨
⎩

0.5

0.45 + 0.4
cosα

sinα
k

(17)

3.3 Basic rating life

From ISO 281 [22] the basic rating life of the bearing
in million revolutions, L10, reads

L 10 =
(

C

P

)10/3

(18)

By means of (8) and (17), Equation (18) becomes
see equation (19) above

which can be written as

L 10 = φ (ω 10)
10
3 (20)

with

φ =
ζ5/2λ70/27D500/81

F
10/3
r

(21)

and
see equation (22) above

4 Optimization

4.1 Free optimization

Equation (19) shows that the basic rating life, L10, is
proportional to the functions φ and ω10. From (21) we see
that, for given radial load Fr, function φ increases more
than quadratically with the filling ratio, ζ, and the aspect
ratio, λ, and goes up with the sixth power of the pitch
diameter, D. Function φ can be regarded as a control fac-
tor through which the basic rating life, L10, can easily be
made large at will by increasing the pitch diameter. Sim-
ilarly, function ω10 in Equation (19) can be interpreted
as the intrinsic rating life of the bearing system obtained
when the filling ratio, the aspect ratio, the pitch diameter
and the radial load assume unit value. From (22) we see
that ω10 depends non-linearly on α, δ and k as shown by
the three-dimensional charts in Figure 4.

Using ω10 as objective function, the free optimization
problem can be stated as follows: Maximize ω10 (X), sub-
ject to k = constant, with X = (δ, α). From Figure 4 it
is seen that the maximum value of ω10 is always achieved
for δ = δ∗ = 1. Entering δ = 1 in Equation (22) the
optimal contact angles α∗ can be obtained numerically
for any load ratio k. Table 2 lists the optimal angles for
load ratios in the range 0–1. Figure 5 depicts the shape
assumed by the optimal bearing for k = 1.0.

4.2 Constrained optimization

The proportions of the optimal bearings implied by
Table 2 and displayed in Figure 5 are too cumbersome
to be of practical use. A more useful result is obtained
by stating the optimization problem with a constraint on
the pitch ratio as follows: Maximize ω10 (X), subject to
δ ≤ δlim and k = constant, with X = (α, δ). This prob-
lem is plotted for several k in Figure 6, with the contour
lines of ω10 drawn as a function of the contact angle, α,
and the pitch ratio, δ. For any chosen load ratio k, the

112-page 6



E. Dragoni: Mechanics & Industry 18, 112 (2017)

k = 0  = k 0.2 

k = 0.4  = k 0.6 

k = 0.8  = k 1.0 

α 
δ 

ω10

0 0°

90° 

0

200

1

α 
δ 

ω10

0 0° 

90°
0

200

1 

α 
δ 

ω10

0

0

200

1

90° 
 

 

α 
δ 

 0° 

90°
0

200

1 

ω
10

α 
δ 

ω10

0 0°

90° 

0

200

1

α 
δ 

ω10

0 0° 

90°
0

200

1 

Fig. 4. Charts of the intrinsic rating life ω10 for a selection of load ratios k.
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Table 2. Global optimum contact angles (α∗) and pitch ratio
(δ∗) for a range of load ratios (k).

k δ∗ α∗ (◦) ω∗
10

0 1 62.5 193.21
0.1 1 62.5 193.21
0.2 1 62.5 193.21
0.3 1 65.0 189.61
0.4 1 65.5 182.91
0.5 1 66.0 176.79
0.6 1 66.5 171.18
0.7 1 67.0 166.01
0.8 1 67.5 161.22
0.9 1 68.0 156.76
1.0 1 68.0 152.62

D = d

d

d

α = 68°

α = 68°

Fig. 5. Optimal bearing load ratio k = 1 when no limits are
put to the pitch ratio δ = d /D.

coordinates of point X∗ in Figure 6 provide the global op-
timal values α∗ and δ∗ listed in Table 2. Figure 6 shows
that, for reasonable values of the limit pitch ratio (i.e.
δlim ≤ 0.5), an optimal contact angle, α∗

δ , always exists,
which depends on the limit pitch ratio itself. Take, for
example the chart in Figure 6 for k = 0.8 and assume
δ ≤ δlim = 0.3 meaning that only designs below line ab
are feasible. The greatest value of ω10 that can be achieved
in that region is obtained by moving on line ab and sweep-
ing the contact angle from a to b until the optimum point
M∗ is reached. Point M∗ is defined as the tangent point

between ab itself and whichever contour line occurs to be
touching the line ab. The abscissa of point M∗ gives the
optimal value α∗

δ for the contact angle (α∗
δ ≈ 47.5◦ in this

example). The contour line of ω10 passing through M∗
gives the corresponding intrinsic rating life (ω∗

10δ ≈ 60 in
the example).

This constrained optimization can be performed sys-
tematically once and for all using Equation (22) for any
combination of load ratios k and pitch ratios δ. For given
k and δ, the intrinsic rating life ω10 in Equation (22) de-
pends only on α and the optimum value α∗

δ is easily found
numerically. Optimal values of α∗

δ and ω∗
10δ obtained in

this way are reported in Table 3 for load ratios in the
range 0 ≤ k ≤ 1.0 and pitch ratios 0.05 ≤ δ ≤ 0.25 (the
most likely to occur in practice). Optimal bearings for
δlim = 0.2 are shown in Figure 7 for k = 0 (α∗

δ = 0◦),
k = 0.2 (α∗

δ = 31.5◦) and k = 0.4(α∗
δ = 38◦). In marked

contrast with the bearing proportions in Figure 5, awk-
ward and hardly feasible, the designs in Figure 7 are sleek
and technically viable.

The use of Table 3 for the optimal design of ta-
pered roller bearings is easily performed as clarified by
the following example. Assume that the bearing sys-
tem in Figure 2 has to be designed for the loads Fr =
600 000 N and Ka = 180 000 N with a rating life fac-
tor L10 = 50 million revolutions. Calculating from (14)
k = Ka/Fr = 600 000/180 000 = 0.3 and assuming a
limit pitch ratio δlim = 0.15, Table 3 gives the opti-
mal contact angle α∗

δ = 34◦ and the optimal intrinsic
rating life ω∗

10δ = 38.3. From Equation (20) the value
φ∗

δ = L10/(ω∗
10δ)

10/3 = 50/(38.3)10/3 ≈ 2.64 × 10−4

is calculated, which, adopting a filling ratio ζ = 0.8
(Eq. (2)) and an aspect ratio λ = 1.5 (Eq. (3)) and

using (21), gives D∗
δ =

(
φ∗

δF
10/3
r

/
ζ5/2λ70/27

)81/500

=

(0.00264×600 00010/3/0.85/2×1.570/27)81/500 ≈ 320 mm.
From (4), (3) and (2), the optimal mean roller diameter,
optimal roller length and optimal number of rollers are fi-
nally obtained as d∗δ = δlimD∗

δ = 0.15 × 320 ≈ 48 mm,
L∗

δ = λd∗δ = 1.5 × 48 ≈ 72 mm, Z∗
δ = πζD∗

δ/d∗δ =
π × 0.8 × 320/48 ≈ 17.

5 Discussion

5.1 Review of the results

Table 1 shows that, despite its simplicity, Equation (1)
predicts quite accurately the dynamic load ratings of com-
mercial tapered roller bearings. Within the wide range of
dimensions and contact angles considered, the maximum
error in Table 1 (see Appendix) is about 8% (bearings
301230-A and T7FC095) while the average absolute error
is just 4%. Errors of the same order of magnitude were
calculated by Dragoni [21] for the static load rating of the
same bearings listed in Table 1.

For the case of purely radial load (k = 0), Table 2 gives
a global optimum solution with contact angle α∗ = 62.5◦
and pitch ratio δ∗ = 1, while the angle α∗ = 0 would
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Fig. 6. Contour lines of the intrinsic rating life ω10 for a selection of load ratios k.
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Fig. 7. Optimal bearings for different load ratios k and limit pitch ratio δlim = 0.2.

Table 3. Optimum values of contact angle (α∗
δ) and corresponding intrinsic rating life (ω∗

10δ) for given load ratios (k) and limit
pitch ratios (δlim).

δlim

0.05 0.1 0.15 0.2 0.25

k α∗
δ (◦) ω∗

10δ α∗
δ (◦) ω∗

10δ α∗
δ (◦) ω∗

10δ α∗
δ (◦) ω∗

10δ α∗
δ (◦) ω∗

10δ

0 0 14.17 0 34.58 0 56.60 0 78.15 0 97.98
0.1 24.0 12.01 24.5 29.43 25.5 48.55 26.0 67.69 27.5 85.88
0.2 29.5 10.448 30.0 25.66 30.5 42.48 31.5 59.49 33.0 75.86
0.3 33.0 9.38 33.5 23.08 34.0 38.30 35.5 53.80 36.5 68.86
0.4 35.5 8.58 36.0 21.12 37.0 35.11 38.0 49.45 39.5 63.47
0.5 37.5 7.93 38.0 19.56 39.0 32.56 40.0 45.94 41.5 59.11
0.6 39.0 7.40 39.5 18.26 40.5 30.44 41.5 43.02 43.0 55.46
0.7 40.5 6.95 41.0 17.16 42.0 28.63 43.0 40.53 44.5 52,34
0.8 42.0 6.56 42.5 16.21 43.5 27.07 44.5 38.374 46.0 49.63
0.9 43.0 6.22 43.5 15.38 44.5 25.71 45.5 36.48 47.0 47.24
1.0 44.0 5.92 44.5 14.64 45.5 24.49 46.5 34.80 48.0 45.12

have been expected. For k = 0 and α = 0, Figure 4
shows that the intrinsic rating life achieves a maximum
for δ = 1, which means cylindrical rollers of diameter, d,
equal to one half of the pitch diameter, D. This result
coincides with the global optimal proportions reported
by Dragoni [20] for the specific category of radial cylin-
drical roller bearings. For increasing axial loads (k > 0),
the global optima for the pitch ratio listed in Table 2
become more and more unlikely for real-life applications
(see Fig. 5 for k = 1). The reason why the theoretical
optimization tends to these quite odd shapes is perhaps
imputable to the fact that the empirical expression (1)
was developed to fit the experimental behaviour of bear-
ings with pitch ratios much lower than 0.5 as commonly
encountered in practice (for example, the pitch ratios of
the twelve commercial bearings in Tab. 1 range from 0.14
to 0.19).

Table 3, developed to take into account realistic ge-
ometric constraint on δ (δ ≤ δlim = 0.05 . . .0.25), shows
that the optimum contact angle, α∗

δ , depends both on
the load ratio, k, and the limit pitch ratio, δlim. However,
while the effect of the load ratio is strong (with α∗

δ increas-
ing monotonically with k), the dependence on the pitch
ratio is weak (on passing from δlim = 0.05 to δlim = 0.25,

the average increase of the optimal contact angle is about
11%, with a peak value of 15% for k = 0.6). For k = 0.2,
the optimal contact angle in Table 3 is around 30◦, which
is the highest contact angle prescribed by the ISO 355
standard [30] and offered by most bearing manufacturers
(see Tab. 1). For load ratios greater than 0.2, the optimal
contact angle exceeds 30 ◦and reaches the optimum value
of about 45◦ for k = 1. In this range of operation, spe-
cial supplies [31, 32] or custom constructions are needed
to achieve the maximum load capacity.

Figure 8 compares the optimal angles from Table 3
(optimization for dynamic loading) with the correspond-
ing optima (Table 3 of [21]) for the static loading of taper
roller bearings. Figure 8 shows that the optimal dynamic
contact angles are generally higher than their static coun-
terparts for equal δlim. This is especially true for low load
ratios k (for example, for k = 0.1 the optimal dynamic
contact angle in Table 3 ranges from 24◦ to 27.5◦, con-
trasted with an optimal static angle of 11◦ from [21])
while the difference is much reduced for k equal to or
higher than 0.3 (for k = 0.3, the dynamic optimal angles
in Table 3 range from 33◦ to 36◦, compared with optimal
static angles ranging from 29.5◦ to 30.0◦. For k = 1 and
δlim = 0.25, the optimal dynamic angle of 48◦ compares

112-page 10



E. Dragoni: Mechanics & Industry 18, 112 (2017)

( )δα∗ Deg

k

δ lim  

Dynamic op�miza�on

Sta�c op�miza�on 

Fig. 8. Comparison of optimal contact angles for the static
case (Table 3 of [21]) and the present dynamic case.

with the optimal static angle of 43.5◦). This means that,
when the axial load is significant, the optimization is ro-
bust and applies to the bearing in itself, regardless of the
nature of the loading (static or dynamic) involved.

Walker [16] argues that for low-speed roller bearings
loaded under prevailing axial thrusts, the optimal cone
angle is about 40◦ as predicted by Table 3 for k ≥ 0.6.
Conversely, for k = 0, purely radial load, Table 3 correctly
predicts α∗ = 0◦, implying the adoption of bearings with
cylindrical rollers.

Table 3 also shows that the optimal intrinsic rating
life, ω∗

10δ, rapidly increases with the limit pitch ratio, δlim,
and decreases with the load ratio, k. The increase of ω∗

10δ
with δlim is a consequence of the marked gradient of the
surfaces of ω10 in Figure 4 (confirmed by the density of
the contour lines in Fig. 6) for pitch ratios in the range
0 ≤ δ ≤ 0.5. The decrease of ω∗

10δ with k is due to
the fact that, given the radial force Fr in Figure 2, an
increase of the load ratio k implies a greater total force
on the bearing system with respect to the condition of
pure radial loading.

With reference to the numerical example at the end
of the Section Constrained optimization, it is easily ver-
ified that substituting the design data Fr = 600 kN and
k = 0.3, together with the optimal results α∗

δ = 34◦,
d∗δ = 48 mm, L∗

δ = 72 mm, Z∗
δ = 17 for Fr , k, α, d, L

and Z, in Equations (17) and (1), gives P = 376.7 kN
and C = 1228 kN, respectively. These values imply a rat-
ing life L10 = (C/P )10/3 = (1228/376.7)10/3 ≈ 51.4 mil-
lion revolutions, slightly greater than the design value of
50 million. This small difference is due to roundoff of the
variables involved in the calculations, especially as regards
to the optimum number of rollers Z∗

δ (the exact value
16.76 was rounded to 17 in the example).

5.2 Limitations of the model

The present optimization is built on the assumption
that the critical bearing of the pair is the one that di-
rectly supports the axial load (B1 in Fig. 2). This is the
natural consequence of using Equation (9) for calculating
the maximum equivalent load on the system. Though this
approach is coherent with the design formulae present in
the manufacturers’ catalogues, it has limitations when the
bearing pair is mounted with end play (axial clearance)
or undergoes large axial deformations under load. A large
axial load induces a large axial displacement which causes
a very narrow load zone in the second bearing (B2 in
Fig. 2, not considered here), hence generating risk of large
roller-race load and pressure. Under these unfavourable
working conditions, the second bearing may thus become
the critical element, which is not optimized here. In this
case, the full answer to the problem cannot be obtained
with the present analytical model and requires numerical
tools considering equilibrium and compatibility (deforma-
tions) of bearings, shaft and housing as a whole.

In practical terms, the optimal design described in
this paper strictly holds true when the bearing system
is assembled with a light preload that would compensate
the axial displacement induced in the secondary bearing
by the externally applied load. This is certainly a limita-
tion, but not a prohibitive one since preloading of tapered
roller bearings is a common procedure for the many ad-
vantages it brings about such as (a) increase of the stiff-
ness, (b) noise reduction, (c) improved rotational preci-
sion, (d) wear compensation, and (e) longer life.

6 Conclusions

Using the empirical relationships provided by the
ISO 281 standard, the internal dimensions of tapered
roller bearings are optimized for maximum dynamic ca-
pacity. The bearing system investigated comprises two
identical bearings undergoing whatever combination of
radial and axial forces. Assuming that the radial force
is applied at equal distance from the bearings of the pair
and that neither end play (axial clearance) nor abnormal
preloading affect the assembly, the optimization process
leads to the following general results:
– the rating life decreases approximately with the third

power of the applied radial force;
– the rating life increases more than quadratically with

the filling ratio (number of rollers divided by the max-
imum number which can fill the bearing) and with the
aspect ratio (ratio of roller length to mean roller di-
ameter) and goes up with the sixth power of the pitch
diameter of the roller set;

– given the ratio of axial to radial force, global optima
exist for the contact angle and the pitch ratio (ratio
of roller diameter to pitch diameter) which maximize
the rating life;

– the bearing proportions at the global optima are too
cumbersome (contact angles greater than 60◦, pitch
ratios equal to 1.0) to be used in practice;
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Table A.1. Relations between catalogue data (Y , di, do, b) and internal bearing properties (α, d, D, L, Z).

Internal property Relationship Numerical values Source

α = arctan

(
0.4

Y

)
− Equation (12)

d = q1 (do − di) q1 = 0.25 Textbook [33]
D = q2 (do + di) q2 = 0.5 Assumption

L = q3
b

cos α
q3 = 0.8 Assumption

Z = q4
(do + di)

d
q4 = 1.45 Textbook [33]

– if the pitch ratio is constrained below reasonable limits
(≤0.25), an optimal contact angle exists which maxi-
mizes the rating life, regardless of the actual size and
proportions of the bearing;

– the results of the optimization are conveniently sum-
marized by a general table and a few simple equations
that can be followed step-by-step to design the opti-
mal bearing that suits any given application;

– the optimization procedure can either be used to de-
sign custom-made bearings (thus exploiting the geo-
metrical freedom to the full) or to pick from the manu-
facturers’ catalogues the bearing with the best contact
angle for any assigned loading.
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Appendix (Internal dimensions of tapered
roller bearings)

The internal dimensions of rolling bearings are pro-
prietary data which the manufacturers do not provide in
their catalogues. However, starting from the external di-
mensions of the bearings (di, do, b in Fig. 2) and the
dynamic coefficient, Y , available from the catalogues, the
internal properties (α, d, D, L, Z in Fig. 2) can be calcu-
lated within 10−15% of the true value. Table A.1 shows
how the internal properties displayed in Table 1 were ob-
tained step-by-step from the catalogue data using elemen-
tary geometrical considerations and characteristic propor-
tions available from technical textbooks [33].
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