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Recognizing and Presenting the Storytelling Video
Structure with Deep Multimodal Networks

Lorenzo Baraldi, Costantino Grana, Member, IEEE, and Rita Cucchiara, Member, IEEE

Abstract—In this paper, we propose a novel scene detection
algorithm which employs semantic, visual, textual and audio
cues. We also show how the hierarchical decomposition of the
storytelling video structure can improve retrieval results presen-
tation with semantically and aesthetically effective thumbnails.
Our method is built upon two advancements of the state of the
art: 1) semantic feature extraction which builds video specific
concept detectors; 2) multimodal feature embedding learning,
that maps the feature vector of a shot to a space in which the
Euclidean distance has task specific semantic properties. The
proposed method is able to decompose the video in annotated
temporal segments which allow for a query specific thumbnail
extraction. Extensive experiments are performed on different
data sets to demonstrate the effectiveness of our algorithm. An
in-depth discussion on how to deal with the subjectivity of the
task is conducted and a strategy to overcome the problem is
suggested.

Index Terms—Temporal Video Segmentation, Scene Detection,
Deep Networks, Performance Evaluation

I. INTRODUCTION

REAL-TIME Entertainment is currently the dominant traf-
fic category on the web, and video accounts for most

of it. In the first half of 2016, 71% of downstream bytes
during peak period were due to this category, and the top 3
applications were Netflix (35%), YouTube (18%) and Amazon
Video (4%) [1]. While User Generated Videos are popular, in a
recent survey, people of ages 13-34 indicated that the primary
type of video content they viewed was TV shows, full-length
movies, music videos, sports, and clips of TV shows for a total
of 78% of the respondents, while another 8% was “Videos of
people playing video games”, and the rest was “Other user-
generated content” [2].

Browsing video content is not as easy as searching other
media, e.g. images. The returned result page in most search
engines presents videos through their thumbnails, so assessing
if the content is indeed pertinent to our query requires further
playing, possibly with fast forward and backward operations.
Professionally edited videos have a well-defined storytelling
structure that we could leverage for improving the user ex-
perience. This structure may be described by a hierarchical
decomposition (see Figure 1): at the lowest level we have
frames, which are in turn grouped in shots, sequences of
consecutive frames taken by a single camera act [3]. Temporal
video segments on the level above shots are usually defined
as scenes. The term borrows from stage production, focuses
on the location of the action, and is mainly used in fictional
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Fig. 1. We propose a scene detection algorithm which exploits multi-
modal features and a deeply-learned embedding space. By means of a novel
thumbnail selection strategy, we also show that the decomposition of a video
into scenes can enhance retrieval.

narrative-driven videos. Given the broader sense that the term
scene has in many contexts, the usual assumption that a scene
is a set of shots with visually similar content [4], is clearly
unsatisfactory. If we want to describe not only the location
but also the topic of the video sequence, audio, speech and
semantics also share an important role in the definition of a
scene.

In this paper, we address the problem of automatically
extracting the storytelling structure of an edited video, by
grouping shots in scenes with a multimodal deep network
approach, which employs semantic, visual, textual and au-
dio cues. We show how the hierarchical decomposition can
improve retrieval results in the form of semantically and
aesthetically effective thumbnails.
The main novelties of our work are:
• We propose a strategy for extracting semantic features

from the video transcript which are incorporated with
perceptual cues into a multimodal embedding space,
thanks to a Triplet Deep Network. Using these features,
we are able to provide a state-of-the-art scene detection
algorithm.

• We leverage the extracted storytelling structure to pro-
vide improved query dependent thumbnails, combining
semantic and aesthetic information.

• We discuss the problem of evaluating scene detection and
provide a dynamic programming algorithm for managing
the subjectivity in presence of different contradicting
annotations.

Both the source code of the algorithm and the datasets used
are available at http://imagelab.ing.unimore.it/imagelab/page.
asp?IdPage=12.

http://imagelab.ing.unimore.it/imagelab/page.asp?IdPage=12
http://imagelab.ing.unimore.it/imagelab/page.asp?IdPage=12
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II. RELATED WORK

In this section, we review the literature related to scene
detection, video retrieval, and thumbnail selection techniques.

A. Scene detection and video decomposition

Existing works in the field of automatic scene detection
can be roughly categorized into three groups [5]: rule-based
methods, that consider the way a video is structured in
professional movie production, graph-based methods, where
shots are arranged in a graph representation, and clustering-
based methods.

The drawback of rule-based methods is that they tend to fail
in videos where film-editing rules are not followed strictly, or
when two adjacent scenes are similar and follow the same
rules. The method proposed by Liu et al. in [6] falls into this
category: they propose a visual based probabilistic framework
that imitates the authoring process. In [7], shots are represented
by means of key-frames, clustered using spectral clustering
and low-level color features, and then labeled according to the
clusters they belong to. Since video editing tends to follow
repetitive patterns, boundaries are detected from the align-
ment score of the symbolic sequences, using the Needleman-
Wunsch algorithm.

In graph-based methods, instead, shots are arranged in a
graph representation and then clustered by partitioning the
graph. The Shot Transition Graph (STG) [8] is one of the
most used models in this category: here each node represents
a shot and the edges between the shots are weighted by
shot similarity. In [9], color and motion features are used to
represent shot similarity, and the STG is then split into sub-
graphs by applying the normalized cuts for graph partitioning.
Sidiropoulos et al. [10] introduced an STG approximation that
exploits features from the visual and the auditory channel.

Clustering-based solutions assume that similarity of shots
can be used to group them into meaningful clusters, thus
directly providing the final temporal boundaries. In [11], for
instance, a Siamese Network is used together with features
extracted from a CNN and time features to learn distances
between shots. Spectral clustering is then applied to detect
coherent sequences.

Our work belongs to this latter class, but overcomes the
limitations of the previous approaches incorporating audio
and video in two flavors: they are used to extract perceptual
features (e.g. CNN activations and MFCC) and semantic
features (e.g. concepts and transcript words). We employ a
temporal aware clustering algorithm which, by construction,
generates contiguous segments: temporal coherence is not an
additional requirement forced later, but is optimized during the
clustering itself.

While the aim of our work is that of recovering the
storytelling structure of a professionally edited video, a related
research direction is that of generating a storytelling video
from photos or video clips. For example, the method proposed
in [12] generates stories from personal photo collections, by
mimicking cinematic knowledge with a set of predesigned
editing styles. After a summarization step, in which the best
photos are selected, each photo is converted to a video clip by

applying a virtual camera with appropriate motions and a set
of video effects.

Our research is also related to the task of video summa-
rization, which often has video decomposition as one of its
fundamental elements. Indeed, the goal of video summariza-
tion is to produce a compact visual summary that encapsulates
the most informative parts of a video, and which can be
represented by key-frames [13], image montages [14], or video
synopses [15]. Usually a shot detection step is followed by
an interestingness prediction method, which can rely on low-
level, high-level, or spatiotemporal features [16]. In [17] a deep
ranking model was proposed to identify important segments
in life logging first-person videos. In contrast, we focus on
edited videos and, instead of ranking video segment according
to their importance, we learn a model to identify homogeneous
segments inside the video.

B. Video Retrieval

A lot of work has also been proposed for video retrieval:
with the explosive growth of online videos, this has become a
hot topic in computer vision. In their seminal work, Sivic et
al. proposed Video Google [18], a system that retrieves videos
from a database via bag-of-words matching. Lew et al. [19]
reviewed earlier efforts in video retrieval, which mostly relied
on feature-based relevance feedback or similar methods.

More recently, concept-based methods have emerged as a
popular approach to video retrieval. Snoek et al. [20] proposed
a method based on a set of concept detectors, with the aim to
bridge the semantic gap between visual features and high level-
concepts. In [21], authors proposed a video retrieval approach
based on tag propagation: given an input video with user-
defined tags, Flickr, Google Images and Bing are mined to
collect images with similar tags: these are used to label each
temporal segment of the video, so that the method increases
the number of tags originally proposed by the users, and
localizes them temporally. In [22], the problem of retrieving
videos using complex natural language queries is tackled,
by first parsing the sentential descriptions into a semantic
graph, which is then matched to visual concepts using a
generalized bipartite matching algorithm. This also allows to
retrieve the relevant video segment given a text query. Our
method, in contrast to [21], does not need any kind of initial
manual annotation, and, thanks to the availability of the video
structure, is able to return specific scenes related to the user
query. This provides the retrieved result with a context that
allows to better understand the video content.

Retrieved results need eventually to be presented to the
user, but previewing many videos playing simultaneously is
not something feasible. The usual approach is to present a set
of video thumbnails. Thumbnails are basically surrogates for
videos [23], as they take the place of a video in search results.
Therefore, they may not accurately represent the content of
the video, and create an intention gap, i.e. a discrepancy
between the information sought by the user and the actual
content of the video. Most conventional methods aim at
selecting the “best” thumbnail and have focused on learning
visual representativeness purely from visual content [24], [25].
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Fig. 2. Overview of the proposed approach. A semantic embedding is learned through a triplet deep network, which combines perceptual and semantic
features.

However, more recent researches have focused on choosing
query-dependent thumbnails to supply specific thumbnails for
different queries. To reduce the intention gap, [23] proposes
a new kind of animated preview, constructed of frames taken
from a full video, and a crowdsourced tagging process which
enables the matching between query terms and videos. Their
system, while going in the right direction, suffers from the
need of manual annotations, which are often expensive and
difficult to obtain.

In [26], instead, authors proposed a method to enforce the
representativeness of a selected thumbnail given a user query,
by using a reinforcement algorithm to rank frames in each
video and a relevance model to calculate the similarity between
the video frames and the query keywords. Recently, Liu et
al. [27] trained a deep visual-semantic embedding to retrieve
query-dependent video thumbnails. Their method employs
a deeply-learned model to directly compute the similarity
between a query and video thumbnails, by mapping them into
a common latent semantic space.

Our work can push things further, because we already
retrieved a video scene for which the query is relevant, thus
we just need to pick a keyframe within a very limited set of
candidates. All possible thumbnails are thus ranked according
to their relevance to the query and to their aesthetic value,
providing the best presentation of the result for the specific
user request.

III. PERCEPTUAL-SEMANTIC FEATURE EMBEDDING AND
CLUSTERING FOR SCENE DETECTION

We tackle the task of detecting scenes in edited videos as
a supervised temporally constrained clustering problem. We
firstly extract a rich set of perceptual and semantic features
from each shot. In order to obtain a significant measure of
similarity between shots features, we learn an embedding of
these features in a Euclidean space. Finally, we detect the
optimal scene boundaries by minimizing the sum of squared
distances inside temporal segments (candidate scenes), using
a penalty term to automatically select the number of scenes.
A summary of our approach is depicted in Fig. 2.

In the following, we present a set of perceptual features
based on visual appearance, audio, speech and time. Then, we

propose two semantic features which rely on a joint conceptual
analysis of the visual content and of the transcript, and which
account for scene changes which are not recognizable using
purely perceptual cues. Eventually, we present the embedding
and clustering strategies.

A. Perceptual features

Visual appearance: A shot in an edited video is usually
uniform from the visual content point of view, and it is,
therefore, reasonable to rely on keyframes to describe visual
appearance. At the same time, using a single keyframe could
result in a poor description of both short and long shots, since
the visual quality could be unsatisfactory, or its content may
be insufficient to describe the temporal evolution of a shot. For
this reason, we propose a solution which preserves the ability
of Convolutional Neural Networks (CNNs) to extract high-
level features, while accounting for the temporal evolution of
a shot.

Specifically, we build a Temporal Pooling Fully Convolu-
tional Neural Network, which can encode the visual appear-
ance of a variable number of keyframes into a descriptor with
fixed size. The proposed network is Fully Convolutional in that
it contains only convolutional and pooling stages, and does not
include fully connected layers. Moreover, the last stage of the
network performs a temporal pooling operation, thus reducing
a variable number of keyframes to a fixed dimension.

The architecture of the network follows that of the 16
layers model from VGG [28]. To keep a fully convolutional
architecture, the last fully connected layers are removed, and a
temporal pooling layer is added at the end. Parameters of the
network are initialized with those pre-trained on the ILSVRC-
12 dataset [29].

Given a set of keyframes {I1, ..., It} with size l × l,
each of them is independently processed by the convolutional
and spatial pooling layers of the network, thus obtaining a
three-dimensional tensor CNN (Ii) for each keyframe Ii with
shape

⌊
l
f

⌋
×
⌊
l
f

⌋
× k, where f is the factor by which the

input image is resized by the spatial pooling layers of the
network, and k is the number of convolutional filters of the
last layer. Each of these k activation maps intuitively contains
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the spatial response of a specific high-level feature detector
over the input image. The temporal pooling layer performs
a max-pooling operation over time: the output of this layer,
therefore, has the same shape of CNN (Ii), and contains,
at each position (x, y, j), the element-wise maximum along
the time dimension, maxi∈{1,...,t} CNN (Ii)(x, y, j). For the
VGG-16 model, the input shape is 224×224, the resize factor
f is 32, and k is 512.

Based on a preliminary evaluation, we chose to extract three
keyframes per shot, with uniform sampling. More sophisti-
cated sampling techniques were also tested: we encoded all the
frames in a shot using color histogram and selected the t most
different keyframes. However, no significant improvement
with respect to uniform sampling was observed. Average-
pooling in the temporal layer was also tested, but it led to
worse performance than max-pooling.

Audio features: The audio of an edited video is another
meaningful cue for detecting scene boundaries, since audio
effects and soundtracks are often used in professional video
production to underline the development of a scene, and a
change in soundtrack usually highlights a change of content.
For this reason, a standard audio descriptor based on short-
term power spectrum is employed.

Following recent works in the field [30], we extract MFCCs
descriptors [31] over a 10ms window. The MFCC descriptors
are aggregated by Fisher vectors using a Gaussian Mixture
Model with 256 components, where we retrain only compo-
nents with weight greater than 1/256.

Quantity of speech: Sometimes a pause in the speaker
discourse can be enough to identify a change of scene: for this
reason, we turn to the video transcript and build a quantity of
speech feature, which computes the amount of words being
said inside a shot. Notice that, when the video transcript is
not directly provided by the video producer, it can be obtained
with standard speech-to-text techniques.

For each shot, the quantity of speech is defined as the
number of words which appear in that shot, normalized with
respect to the maximum number of words found in a shot for
the full video.

Time features: We also include the timestamp and length
of each shot. The rationale behind this choice is that since
scenes need to be temporally consecutive, shots having similar
semantic content which are temporally distant should be
distinguishable. Moreover, the average length of scenes can
be a useful prior to be learned.

Notice that a shot-based representation has been kept in all
the proposed features. For each shot, indeed, the concatenation
of its feature vectors will be the input of the Triplet Deep
Network, which will learn the embedding.

B. Semantic features

Perceptual features can be sufficient to perform scene de-
tection on videos which have a simple storyline; however, it
is often the case that scene boundaries correspond to changes
in the topic which can not be detected by simply looking at
appearance and sound. In the following we extract concepts
from the video transcript, and project them into a semantic

space; each concept is then validated by looking at the visual
content of a shot.

To collect candidate concepts, sentences in the transcript
are firstly parsed and unigrams which are annotated as noun,
proper noun, and foreign word are collected with the Stan-
ford CoreNLP [32] part-of-speech tagger. Selected unigrams
contain terms which may be present in the video, and may be
helpful to visually detect a change in topic. On the contrary,
there are also terms which do not have concrete visual patterns,
but that can still be important to infer a change in topic from
the transcript. We will describe two features to account for
both these situations.

Concept clustering: The resulting set of terms can be quite
redundant and contain lots of synonyms, therefore we cluster
it according to the pairwise similarities of terms, in order to
obtain a set of semantically non-related clusters. In particular,
we train a Word2Vec model [33] on the dump of the English
Wikipedia. The basic idea of this model is to fit a word
embedding such that the words in the corpus can predict their
context with high probability. Semantically similar words lie
close to each other in the embedded space.

In our case, each word is mapped to a 1000-dimensional
feature vector, and the semantic similarity of two terms is
defined as the cosine similarity between their embeddings. The
resulting similarity matrix is then used together with spectral
clustering to cluster the mined terms into K concept groups.
K was set to 50 in all our experiments.

Due to the huge variety of concepts which can be found
in the video collection, the video corpus itself may not be
sufficient to train detectors for the visual concepts. Therefore,
we mine images from the Imagenet database [34], which
contains images from more than 40.000 categories from the
WordNet [35] hierarchy. Our method, in principle, is applica-
ble to any visual corpus, provided that it contains a sufficiently
large number of categories.

Each concept in Imagenet is described by a set of words
or word phrases (called synset). We match each unigram
extracted from the text with the most similar synset in the
aforementioned semantic space, and call M(u) the synset
resulting from this matching process for a unigram u. For
synsets containing more than one word, we take the average
of the vectors from each word and L2-normalize the resulting
vector.

Visual semantic features: Having mapped each concept
from the video transcript to an external corpus, a classifier
can be built to detect the presence of a visual concept in
a shot. Since the number of terms mined from text data is
large, the classifier needs to be efficient. Images from the
external corpus are represented using feature activations from
pre-trained deep convolutional neural networks. Then, a linear
probabilistic SVM is trained for each concept, using randomly
sampled negative training data; the probability output of each
classifier is then used as an indicator of the presence of a
concept in a shot. Again the 16-layers model from VGG [28]
is employed, pretrained on the ILSVRC-2012 [29] dataset. We
use the activations from layer fc6.

We build a feature vector which encodes the influence of
each concept group on the considered shot. Given the temporal
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coherency of a video, it is unlikely for a visual concept to
appear in a shot which is far from the point in which the
concept was found in the transcript. At the same time, concepts
expressed in the transcript are not only related to the single
shot they appear in, but also to its neighborhood. For this
reason, we apply a normalized Gaussian weight to each term
based on the temporal distance. Formally, the probability that
a term u is present in a shot s is defined as:

P (s, u) = fM(u)(s) e
− (tu−ts)2

2σ2a (1)

where M is the mapping function to the external corpus,
and fM(u)(s) is the probability given by the SVM classifier
trained on concept M(u) and tested on shot s. tu and ts
are the timestamps of term u and shot s (expressed as frame
indexes). Parameter σa was set as 20 times the frame rate in
all experiments, so to have a full width at half maximum of
the Gaussian equal to 2

√
2 ln(2) · 20 ≈ 47 seconds.

Given the definition of P (s, u) the visual concept feature
of a shot is a K-dimensional vector, defined as

v(s) =

[∑
u∈T

δu,iP (s, u)

]
i=1,...,K

(2)

where T is the set of all terms inside a video, δu,i ∈ {0, 1}
indicates whether term u belongs to the i-th concept group.

Textual semantic features: Textual concepts are as important
as visual concepts to detect scene changes, and detected con-
cept groups provide an ideal mean to describe topic changes
in the text. Therefore, a textual concept feature vector, t(s),
is built as the textual counterpart of v(s)

t(s) =

[∑
u∈T

δu,ie
− (tu−ts)2

2σ2a

]
i=1,...,K

(3)

We thus get a representation of how much each concept group
is present in the transcript of a shot and in its neighborhood.

The overall feature vector x of a shot s is the concatenation
of all the perceptual and conceptual features.

C. Embedding network

Given an input video, we would like to partition it into a
set of sequences with the goal of maximizing the semantic
coherence of the resulting segments. To this end, we would
need a distance between shots feature vectors x, which reflects
the semantic similarity. Instead of explicitly defining this
hypothetical distance, we learn an embedding function φ(x)
that maps the feature vector of a shot to a space in which the
Euclidean distance has the required semantic properties.

The ideal pairwise distance matrix would be [‖φ(xi) −
φ(xj)‖2]i,j=1,...,n = [1− δi,j ]i,j=1,...,n, where δi,j is a binary
function that indicates whether shot i and shot j belong to the
same scene. For this reason, φ(·) is learned such that a shot
xi of a specific scene should be closer to all the shots x+

i of
the same scene than to any shot x−i of any other scene, thus
enforcing ‖φ(xi)− φ(x+

i )‖2 < ‖φ(xi)− φ(x
−
i )‖2.

To this end, a Triplet Deep Network is designed. It consists
of three base networks which share the same parameters, each
taking the descriptor of a shot as input, and computing the

Algorithm 1: Embedding space learning through Gradient
Descent

Input : Number of iterations T ; mini-batch size N ;
regularization strength λ; learning rate η;
momentum γ; training triplets (xi,x

+
i ,x

−
i )i

Output: Optimized parameters w and θ
Initialize w according to [36] and θ to ~0.
for 1 ≤ t ≤ T do

Randomly select N training triplets
for 1 ≤ i ≤ N do

if
‖φ(xi)− φ(x+

i )‖2 +
(
1− ‖ φ(xi)− φ(x−i

)
‖2
)
>

0 then
vw ← γvw + η

(
λw + 1

N

∑N
i=1

∂Li
∂w

)
w← w − vw
vθ ← γvθ + η

(
1
N

∑N
i=1

∂Li
∂θ

)
θ ← θ − vθ

end
end

end

desired embedding function φ(·). The loss of the network for
a training triplet (xi,x+

i ,x
−
i ) is defined by the Hinge loss as

Li(w, θ) = max
(
0, ‖φ(xi)− φ(x+

i )‖
2+

+
(
1− ‖ φ(xi)− φ(x−i

)
‖2
))

(4)

where w are the network weights, and θ are biases. The overall
loss for a batch of N triplets is given by the average of
the losses for each triplet, plus a L2 regularization term on
network weights to reduce over-fitting

L(w, θ) =
λ

2
‖w‖2 + 1

N

N∑
i=1

Li(w, θ). (5)

During learning, we perform mini-batch Stochastic Gradient
Descent (SGD). At each iteration, we randomly sample N
training triplets. For every triplet, we calculate the gradients
over its components and perform back propagation according
to Eq. 5. Details of the learning procedure are given in
Algorithm 1.

The embedding network computes the projection φ(x) of
a shot in the embedding space by means of three fully con-
nected layers having, respectively, 500, 125 and 30 neurons,
with ReLU activation. These are interleaved with Dropout
layers [37], with retain probability 0.5, to reduce over-fitting.
Since the embedding network is replicated three times to
compute the final Triplet loss, Dropout is synchronized among
the three branches, so that the same neurons are deactivated
when computing φ(xi), φ(x+

i ) and φ(x−i ).
The overall network is trained with momentum γ = 0.9

and regularization strength λ = 0.0005. The learning rate η is
initially set to 0.01 and then scaled to 0.001 after 50 iterations.
Training is performed in mini-batches containing N = 500
triplets. The amount of regularization and number of neurons
were selected with a grid search on the BBC Planet Earth
dataset, the most challenging we used.
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D. Temporal Aware Clustering

To obtain a temporal segmentation of the video we require
segments to be as semantically homogeneous as possible.
Inspired by k-means, a cluster homogeneity may be described
by the sum of squared distances between cluster elements
and its centroid, called within-group sum of squares (WSS).
A reasonable objective is thus minimizing the total within-
group sum of squares (TWSS), i.e. the sum of the WSS for
all clusters. Differently from k-means, we would also like to
find the number of clusters, with the additional constraint of
them being temporally continuous intervals. Minimizing the
TWSS alone would lead to the trivial solution of having a
single shot in each sequence, so a penalty term needs to be
added to avoid over-segmentation.

The problem we need to solve is thus

min
m,t1,...,tm

m∑
i=0

WSS ti,ti+1 + Cg(m,n) (6)

where m is the number of change points by which the input
video is segmented, ti is the position of i-th change point
(t0 and tm+1 are the beginning and the end of the video
respectively), and WSS ti,ti+1

is the within-group sum of
squares of the i-th segment in the embedding space. The term
g(m,n) = m(log(n/m) + 1) is a Bayesian information crite-
rion penalty [38] parametrized with the number of segments
m and the number of shots in the video n, which aims to
reduce the over-segmentation effect. Parameter C tunes the
relative importance of the penalty: higher values of C penalize
segmentations with too many segments.

The sum of squared distances between a set of points and
their mean can be expressed as a function of the pairwise
squared distances between the points alone. Therefore, the
within-group sum of squares can be written as

WSS ti,ti+1
,
ti+1−1∑
t=ti

‖φ(xt)− µi‖2

=
1

2(ti+1 − ti)

ti+1−1∑
i,j=ti

‖φ(xi)− φ(xj)‖2 (7)

where µi is the mean of each scene, defined as:

µi =
1

ti+1 − ti

ti+1−1∑
t=ti

φ(xt) (8)

The temporal clustering objective (Eq. 6) can, in this way,
be minimized using a Dynamic Programming approach. First,
WSSk,k+d is computed for each possible starting point k
and segment duration d. Then, the objective is minimized
by iteratively computing the best objective value for the first
j ∈ [1, n] shots and m ∈ [0, n− 1] change points

Dm,j = min
k=m,...,j−1

(Dm−1,k +WSSk,j) (9)

having set D0,j = WSS 0,j .
The optimal number of change points is then selected as

m∗ = argminmDm,n+Cg(m,n), and the best segmentation
into scenes is reconstructed by backtracking.

IV. SCENE PRESENTATION WITH AESTHETICALLY
PLEASING THUMBNAILS

The availability of the video structure, i.e. its layered
decomposition in scenes, shots, and keyframes, is not just an
indexing tool for easier navigation or section selection but may
be employed as an extremely effective presentation aid. Given
a set of videos relevant to a query term q, we can leverage
the scene structure to point to the most relevant part of the
video and use the two lower layers (shots and keyframes)
to cheaply select an aesthetically pleasing and semantically
significant presentation.

For each relevant video, we build a ranking function which
returns an ordered set of (video, scene, thumbnail) triplets. In
each triplet, the retrieved scene must belong to the retrieved
video and should be as consistent as possible with the given
query. Moreover, the returned thumbnail must belong to the
given scene and should be representative of the query as well
as aesthetically remarkable.

Given a query q, we first match q with the most similar
detected concept u, using the Word2Vec embedding. If the
query q is composed of more than one word, the mean of the
embedded vectors is used. The probability function P (s, u),
defined in Eq. 1, accounts for the presence of a particular
unigram in one shot and is, therefore, useful to rank scenes
given a user query. Each scene a inside the relevant set is then
assigned a score according to the following function:

Ra(q) = max
s

(
αP (s, u) + (1− α)max

d∈s
A(d)

)
(10)

where s is a shot inside the given scene, and d represents a
keyframe extracted from a given shot. Parameter α tunes the
relative importance of semantic representativeness with respect
to function A(d), which is a measure of the aesthetic beauty.
The final retrieval results is a collection of scenes, ranked
according to Ra(q), each one represented with the keyframe
that maximizes the second term of the score.

A. Thumbnail selection

In order to evaluate how much aesthetically pleasing a
thumbnail is, we should account for low-level characteristics,
like color, edges, and sharpness, as well as high-level features,
such as the presence of a clearly visible and easily recogniz-
able object. We claim that the need for low and high-level
features is an excellent match with the hierarchical nature of
CNNs: convolutional filters, indeed, are known to capture low
level as well as high-level characteristics of the input image.
This has also been proved by visualization and inversion
techniques, like [39] and [40].

Being activations from convolutional filters discriminative
for visual representativeness, a ranking strategy could be set up
to learn their relative importance given a dataset of user prefer-
ences. However, medium sized CNNs, like the VGG-16 model,
contain more than 4000 convolutional filters: this makes the
use of raw activations infeasible with small datasets. Moreover,
maps from different layers have different sizes, due to the
presence of pooling layers. To overcome this issue, we resize
each activation map to fixed size with bilinear interpolation,
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(a) Input image (b) conv1* (c) conv2* (d) conv3* (e) conv4* (f) conv5*

(g) Input image (h) conv1* (i) conv2* (j) conv3* (k) conv4* (l) conv5*

Fig. 3. Hypercolumn features extracted from two sample images. Each map represents the mean activation map over a set of layers: (b) and (h) are built
using layers conv1_1 and conv1_2, (c) and (i) with layers conv2_1 and conv2_2; (d) and (j) with conv3_1, conv3_2 and conv3_3; (e) and (k)
with conv4_1, conv4_2, and conv4_3. Finally, (f) and (i) are built using layers conv5_1, conv5_2 and conv5_3. Best viewed in color.

and average feature maps coming from the different layers,
inspired by the Hypercolumn approach presented in [41]. Since
the user usually focuses on the center of the thumbnail rather
than its exterior, each map is multiplied by a normalized
gaussian density map, centered on the center of the image
and with horizontal and vertical standard deviations equal to
σb · l, where l× l is the size of the CNN input. Parameter σb
was set to 0.3 in all our experiments.

Following the VGG-16 architecture [28], we build five
hypercolumn maps, each one summarizing convolutional lay-
ers before each pooling layer: the first one is computed
with activation maps from layers conv1_1 and conv1_2;
the second one with conv2_1 and conv2_2; the third
with conv3_1, conv3_2 and conv3_3; the fourth with
conv4_1, conv4_2 and conv4_3; the last with conv5_1,
conv5_2 and conv5_3. An example of the resulting acti-
vation maps is presented in Fig. 3: as it can be seen, both low
level and high level layers are useful to distinguish between a
significant and non significant thumbnail.

To learn the relative contribution of each hypercolumn map,
we rank thumbnails from each scene according to their visual
representativeness and learn a linear ranking model. Given a
dataset of scenes {ai}mi=0, each with a ranking r∗i , expressed
as a set of pairs (di, dj), where thumbnail di is annotated
as more relevant than thumbnail dj , we solve the following
problem:

min
wr,ε

1

2
‖wr‖2 + Cr

∑
i,j,k

εi,j,k (11)

subject to

∀(di, dj) ∈ r∗1 : wrτ(di) ≥ wrτ(dj) + 1− εi,j,1
. . .
∀(di, dj) ∈ r∗m : wrτ(di) ≥ wrτ(dj) + 1− εi,j,m
∀i, j, k : εi,j,k ≥ 0

(12)

where τ(di) is the feature vector of thumbnail di, which
is composed by the mean and standard deviation of each
hypercolumn map extracted from the thumbnail itself. Cr
allows trading-off the margin size with respect to the training
error. The objective stated in Eq. 11 is convex and equiva-
lent to that of a linear SVM on pairwise difference vectors

τ(di) − τ(dj) [42]. The final aestethic score for keyframe d
is given by A(d) = wrτ(d).

V. DEALING WITH SUBJECTIVITY

A. Evaluation protocol

Measuring scene detection performance is significantly dif-
ferent from measuring shot detection performance. Indeed,
classical boundary detection scores, such as Precision and
Recall, fail to convey the true perception of an error, which
is different for an off-by-one shot or for a completely missed
scene boundary.

Better fitting measures were proposed in [43]: Coverage
measures the quantity of shots belonging to the same scene
correctly grouped together, while Overflow evaluates to what
extent shots not belonging to the same scene are erroneously
grouped together. An F-Score measure, Fco, can be defined
to combine Coverage and Overflow in a single measure, by
taking the harmonic mean of Coverage and 1-Overflow. These
measures are nevertheless known to have some drawbacks,
which may affect the evaluation. As also noted in [44], Fco
is not symmetric, leading to unusual phenomena in which
an early or late positioning of the scene boundary, of the
same amount of shots, may lead to strongly different results.
Moreover, the relation of Overflow with the previous and next
scenes creates unreasonable dependencies between an error
and the length of a scene observed many shots before it.

An alternative symmetric measure, based on intersection
over union, was proposed in [11] and was proved to be more
effective. Here, a scene in a video is represented as a closed
interval, where the left bound of the interval is the starting
frame of the scene, and the right bound is the ending frame
of the sequence. The intersection over union of two scenes a
and b, IoU(a, b), can therefore be written as

IoU(a, b) =
a ∩ b
a ∪ b

(13)

A segmentation of a video into scenes can be seen as a set of
non-overlapping scenes, whose union is the set of frames of the
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video. By exploiting this relation, [11] defines the intersection
over union of two segmentations A and B as

IoU(A,B) = 1

2

(
1

#A
∑
a∈A

max
b∈B

IoU(a, b)+

+
1

#B
∑
b∈B

max
a∈A

IoU(a, b)

)
(14)

It is easy to see that, considering the particular case of A
being the ground-truth annotation and B being the segmen-
tation produced by an algorithm, Eq. 14 computes, for each
ground-truth scene, the maximum intersection over union with
the detected scenes. Then, the same is done for detected scenes
against ground-truth ones, and the two quantities are averaged.

B. Finding an agreement between annotations

Being scene detection a considerably subjective task, it is
often the case that the same video is annotated differently by
more than one annotator. This results in a set of annotations for
each video, while an automatic model should produce a single
segmentation, as consistent as possible with all given human
annotations. Therefore, the prediction of a model should
not be compared with each given annotation, but with the
segmentation which is most similar to all given annotations.

In this paragraph, we investigate the problem of finding the
segmentation which maximizes the agreement with respect to
a set of annotations. Formally, given a set of m annotations
S, we aim at finding the segmentation A∗ which maximizes
the average intersection over union with respect to S

A∗ = argmax
A

1

m

∑
S∈S

IoU(A,S) (15)

Algebraic manipulation reveals that given Eq. 14, this
maximization is equivalent to find A to maximize

J(A) = 1

#A
∑
ai∈A

∑
S∈S

max
sj∈S

(IoU(ai, sj))︸ ︷︷ ︸
J1(A)

+

+
∑
S∈S

1

#S
∑
sj∈S

max
ai∈A

(IoU(ai, sj))︸ ︷︷ ︸
J2(A)

(16)

Given a video with n shots, a brute force resolution of
Eq. 15 would require testing every possible annotation compat-
ible with the shots, thus leading to a time complexity O(2n).

We approximate the maximization of Eq. 16 as a longest-
path problem in a graph. Let G(V,E) be a weighted directed
acyclic graph with vertices representing shots of the video,
V = {1, 2, ..., n}, and edges connecting each vertex to all the
other nodes with greater values, E = {(i, j) : i, j ∈ V, i < j}.
A valid segmentation of the video can be seen as a path P in G
having source node 1 and target node n. In this configuration,
each edge (i, j) in the path corresponds to a scene in the
segmentation.

If the number of scenes in the segmentation (i.e. its cardi-
nality) is known in advance, then J1(A) can be decomposed
into a sum of edge weights, as follows:

J1(A) =
∑

(i,j)∈P

w1(i, j) (17)

where the weight of an edge (i, j) is

w1(i, j) =
1

l

∑
S∈S

max
sk∈S

(IoU([i, j] , sk)) (18)

[i, j] is the scene corresponding to edge (i, j), and l is the
length of the segmentation (indicated as #A in Eq. 16).

Unfortunately, J2(A) cannot be factored in the same way.
However, we notice that it can be rewritten as follows:

J2(A) =
#P∑
t=1

w2(P, t) (19)

where

w2(P, t) =

∑
S∈S

1

#S
∑
sj∈S

max
ai∈At

(IoU(ai, sj))+

−
∑
S∈S

1

#S
∑
sj∈S

max
ai∈At−1

(IoU(ai, sj))

 (20)

where At, at each step t of the path, is the set of scenes
corresponding to already visited nodes.

The maximization of J1 + J2 can be addressed as the
problem of finding the longest path of length l in G, and
approximately solved through a Dynamic Programming strat-
egy, by pretending that J2(A) is a sum of edge weights (even
though w2(P, t) actually depend on the specific path).

Having chosen a path length l, For each 1 ≤ i ≤ l, and every
vertex v, we compute D[i, v] where D[i, v] is the weight of
the longest walk of length exactly i starting at vertex 1 and
ending at vertex v. To compute D[l, n], we use the following
relation:

D[i+1, v] = max
x∈Pred(v)

(D[i, x] + w1(P, t) + w2(x, v)) (21)

where Pred(v) is the predecessor set of vertex v, and w1(P, t)
is computed by considering the path used in D[i, x], plus node
v. The best path from vertex 1 to vertex n with length l is then
reconstructed by backpropagation, and the same procedure is
repeated for 1 ≤ l ≤ n. A∗ is then selected as the path of
maximum cost.

Since for each l the Dynamic Programming algorithm has
time complexity O(l · n), the overall complexity is O(n3),
being n the number of shots in the video.

It is worth mentioning that to assess the quality of the
proposed approximation, we tested it on 11.000 randomly
generated sequences for which A∗ has been computed with
brute-force, with length n = 100, a number of scenes varying
from 2 and 7, and with a number of annotations m ranging
from 2 to 10. 98.4% of the generated segmentations were
correct, while the mean absolute error, in terms of IoU, was
1.16 · 10−5.
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Fig. 4. Parameter C influence. Variation of IoU with respect to C for different
videos of BBC Planet Earth.

VI. EXPERIMENTAL EVALUATION

We compare our scene detection approach against state-
of-the-art algorithms from the literature which are applicable
and perform experiments to assess the role of the proposed
features and embedding. In addition, we address the subjective
nature of scene detection by using our embedding to learn the
style of different annotators, and the segmentation provided by
the algorithm described in Section V-B. Finally, we evaluate
the effectiveness of the proposed video retrieval strategy, both
quantitatively and qualitatively.

To perform shot detection, we use an off-the-shelf shot
detector [45] which relies on SURF descriptors and HSV color
histograms. Abrupt transitions are detected by thresholding
a distance measure between frames, while longer gradual
transitions are detected by means of the derivative of the
moving average of the aforesaid distance.

A. Datasets

To test the temporal segmentation capabilities of our model,
we run a series of experimental tests on the Ally McBeal
dataset released in [46], which contains the temporal seg-
mentation into scenes of four episodes of the first season of
Ally McBeal. The dataset contains 2660 shots and 160 scenes,
which correspond to, on average, 61 million training triplets
and 6.7 million test triplets. Closed captions were used as a
transcript.

We also employ the BBC Planet Earth dataset [11], which
contains the segmentation into scenes of eleven episodes from
the BBC documentary series Planet Earth [47]. Each episode
is approximately 50 minutes long, and the whole dataset
contains around 4900 shots and 670 scenes. This corresponds,
on average, to roughly 125 million training triplets and 1.2
million test triplets for each video. Each video is also provided
with the corresponding transcript. To augment the dataset,
and test the proposed way to deal with different annotations,
we asked four more annotators to segment each video in the
dataset.

It is worth to mention that the aforementioned datasets are
considerably different, both because of the nature of the videos
they contain, and because of the kind of annotation. Indeed,
the annotation in Ally McBeal reproduces the partitioning of a
TV series into scenes, which is mainly based on the dialogues

TABLE I
PRIOR METHODS VS. OUR APPROACH FOR SCENE DETECTION ON THE

ALLY MCBEAL DATASET.

Episode STG [10] NW [7] SDN [11] Ours
Ep. 1 0.65 0.38 0.37 0.98
Ep. 2 0.70 0.36 0.34 0.86
Ep. 3 0.72 0.40 0.36 0.94
Ep. 4 0.63 0.36 0.30 0.96

Average 0.68 0.38 0.34 0.94

TABLE II
PRIOR METHODS VS. OUR APPROACH FOR SCENE DETECTION ON THE

BBC PLANET EARTH DATASET.

Episode STG [10] NW [7] SDN [11] Ours
From Pole to Pole 0.42 0.35 0.50 0.72

Mountains 0.40 0.31 0.53 0.75
Fresh Water 0.39 0.34 0.52 0.67

Caves 0.37 0.33 0.55 0.62
Deserts 0.36 0.33 0.36 0.62

Ice Worlds 0.39 0.37 0.51 0.73
Great Plains 0.46 0.37 0.47 0.63

Jungles 0.45 0.38 0.51 0.62
Shallow Seas 0.46 0.32 0.51 0.74

Seasonal Forests 0.42 0.20 0.38 0.65
Ocean Deep 0.34 0.36 0.48 0.65

Average 0.41 0.33 0.48 0.67

and the location of the scenes, while the annotation of the
BBC Planet Earth episodes is far more difficult to reproduce,
since it relies on the semantics of the video and of the speaker
transcript.

B. Comparison with the State of the art

The performance of our method depends on the selection
of hyperparameter C in the temporal clustering objective
(Eq. 6), which yields a trade-off between over- and under-
segmentation. Figure 4 reports an example of the variation of
intersection over union with respect to C for different videos
of the BBC Planet Earth dataset. Clearly, each chart presents a
global maximum, but the optimal C value changes from video
to video. This would lead to a sub-optimal choice of C if
selected with cross-validation. The temporal clustering selects
a scene for each shot for low values of C and as soon as the
parameter goes over a certain value, the clustering begins to
provide very significant groupings. For this reason, our choice
of C is video dependent and, using a step of 0.001, we increase
the C value until the number of clusters is lower than the
number of shots in the video. This may be sub-optimal, but
the results are totally independent of the training phase and
do not require assumptions on the specific video.

Our model is compared against three recent proposals for
video decomposition: [10], which uses a variety of visual and
audio features merged in a Shot Transition Graph (STG); [7],
that combines low-level color features with the Needleman-
Wunsch (NW) algorithm, and [11], which exploits visual
features extracted with a CNN and Bag-of-Words histograms
extracted from the transcript, which are merged in a Siamese
Deep Network (SDN).
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TABLE III
EVALUATION ON THE ALLY MCBEAL DATASET, WHEN TRAINING ON BBC

PLANET EARTH AND ON ALLY MCBEAL.

Episode Train on BBC PE Train on AMB
Ep. 1 0.87 0.98
Ep. 2 0.81 0.86
Ep. 3 0.93 0.94
Ep. 4 0.91 0.96
Average 0.88 0.94

TABLE IV
SCENE DETECTION PERFORMANCE WITH VARIOUS FEATURES.

Features/Embedding Ally McBeal BBC Planet Earth
VA 0.898 0.638

VA+A 0.915 0.654
VA+A+QoS 0.914 0.656

VA+A+QoS+T 0.921 0.657
VA+A+QoS+T+VS 0.925 0.660

VA+A+QoS+T+VS+TS 0.935 0.672

We use a web service made by the authors of [10] and the
source code of [11] provided by its authors, and re-implement
the method in [7]. Parameters of all methods were selected
to maximize the performance on the training set. The shot
detector we use is the same as [10], so performance results
are not affected by differences in the shot detection phase.

In Tables I and II we compare the performance of our
method with the aforementioned methods, on Ally McBeal
and BBC Planet Earth, using annotations provided in [11].
All experiments were conducted in a leave-one-out setup,
using one video for testing and all other videos from the
same dataset as training. Reported results suggest that our
embedding strategy is able to deal effectively with different
kinds of videos and of annotations, learning the specific
annotation style of each dataset. On all datasets, indeed, our
method outperforms all the approaches it has been compared
to.

To test the generality of the learned embedding, we also
perform a second experiment, in which we train a model on
the entire BBC Planet Earth dataset, and test it on the Ally
McBeal series. The objective of the experiment is, therefore,
to investigate how a model learned on a particular kind of
videos can generalize to another category. Results are shown
in Table III: even if the embedding has been learned on
documentaries, and even if in this case visual semantic features
are less effective, the model is still able to generalize to unseen
kinds of videos.

C. Feature and embedding comparisons

To test the role of the proposed features and embedding, we
conducted two additional tests. In the first one, whose results
are reported in Table IV the triplet embedding is trained using
an increasing set of features: visual appearance (VA), Audio
(A), Quantity of Speech (QoS), Time (T), Visual and Textual
semantic (VS, TS). Results are reported in terms of mean
IoU. Each feature, when added, resulted in a performance
improvement.

TABLE V
SCENE DETECTION PERFORMANCE WITH DIFFERENT EMBEDDINGS.

Embedding Ally McBeal BBC Planet Earth
LSTM 0.82 0.58

Siamese 0.87 0.49
Triplet 0.94 0.67
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(b) BBC Planet Earth [11]

Fig. 5. Feature importance analysis. For each dataset, the relative importance
of each feature is reported. See Section VI-D for details.

In the second experiment, we use all features and test dif-
ferent embeddings. We test a Siamese network with the same
architecture and the same number of neurons of the Triplet
network. We also train an LSTM network: the descriptor of
each shot is fed to a fully connected network with the same
structure of the embedding network, and then to an LSTM
layer with memory size 10 and output size 1. The network is
trained to predict, at each time step, the presence of a scene
boundary, with a binary cross entropy loss. Results, reported
in Table V show that the proposed Triplet strategy is superior
both to the Siamese and the LSTM approach. In conclusion, all
features are important but the embedding architecture boosts
performances.

D. Feature importance analysis

We evaluate the relative importance and effectiveness of
each of the proposed features in the final embedding. In
the following, we will define the importance of a feature as
the extent to which a variation of the feature can affect the
embedding. Consider, for example, a linear embedding model,
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in which each dimension of the embedding, φi, is given by
the following equation

φi(x) = wTi x+ θi (22)

where wi and θi are respectively the weight vector and the
bias for the i-th dimension of the embedding, while x is
the concatenation of the proposed features. In this case, it
is easy to see that the magnitude of elements in wi defines
the importance of the corresponding features. Each feature is
indeed multiplied by a subset of the wi vector, and the absolute
values in wi encode the importance of each of those features.
In the extreme case of a feature which is always multiplied
by 0, it is straightforward to see that that feature is ignored
by the i-th dimension of the embedding and has, therefore,
no importance, while a feature with high absolute values in w
will have a considerable effect.

In our case, φi(·) is a highly non-linear function of the
input, thus the above reasoning is not directly applicable.
Instead, given an shot xj , we can approximate φi(xj) in the
neighborhood of xj as follows

φi(xj) ≈ ∇φi(xj)Tx+ θi (23)

An intuitive explanation of this approximation is that the
magnitude of the partial derivatives indicates which features
need to be changed to affect the embedding. Also notice that
Eq. 23 is equivalent to a first-order Taylor expansion.

To get an estimation of the importance of each feature re-
gardless of the choice of xj , we can average the element-wise
absolute values of the gradient computed in the neighborhood
of each test sample

wi =
1

N

N∑
j=1

[∣∣∣∣ ∂φi∂x1
(xj)

∣∣∣∣ , ∣∣∣∣ ∂φi∂x2
(xj)

∣∣∣∣ , · · · , ∣∣∣∣ ∂φi∂xd
(xj)

∣∣∣∣] (24)

where d is the dimensionality of xj . Then, to get the relative
importance of each proposed feature, we average the values
of wi corresponding to that feature. The same is done for
each of the dimensions of the embedding, and results are
then averaged. The resulting importances for each features are
finally L1 normalized.

Figure 5 reports the relative importance of our features on
Ally Mc Beal and BBC Planet Earth. It is easy to notice that
all features give a valuable contribution to the final result. In
TV-series and documentaries visual appearance and semantic
features are the most relevant cues. The quantity of speech
plays an important role in documentaries, confirming that in
this kind of videos a pause in the speaker discourse is often
related to a scene boundary, while in TV series appearance
and conceptual features are often enough to perform scene
detection. It is also worth to notice that when the annotation
to be learned is challenging, like in the BBC Planet Earth
dataset, every feature becomes relevant, thus confirming the
effectiveness of the proposed features.

E. Qualitative results

To give a qualitative indication of the results, in Figure 6
we report the temporal segmentation provided by our method

and all the methods we compare to, as well as the ground
truth annotation, on a part of the first episode of BBC Planet
Earth. Each thumbnail represents the middle frame of a shot,
and the first row is the ground truth segmentation. A change
in color underlines a change of scene.

Compared to the human annotation, our method identifies
the exact change point in four cases, and merges together
adjacent ground truth scenes in one case. On the other hand,
the STG method in [10] is able to identify some scene changes
correctly but creates short scenes with just one shot. The NW
method in [7] does not show this over segmentation phe-
nomena, but creates unreasonable scene changes. Finally, the
Siamese approach of [11] can actually identify correct scene
boundaries in some cases, still the segmentation provided by
our method looks more consistent with the human annotation.

Finally, we also investigate the execution times of the com-
pared methods. Given a one hour video, our implementations
of NW and SDN require, respectively, 8 and 33 minutes to
compute the final scene boundaries. For the STG approach,
instead, we consider the running time of a sample run on their
web-service, which was roughly half the duration of the video.
Our method, instead, is definitely the most time-consuming,
as it requires more than two times the video duration, due
to the complex feature extraction pipeline which requires the
creation, on the fly, of a set of visual classifiers. The time
required to download Imagenet images has not been taken
into account.

F. Evaluation with multiple annotators

As stated at the beginning of this section, we extended the
BBC Planet Earth dataset by collecting four more annotations.
This, along with that provided in [11], results in a set of
five different annotations, which are used to investigate both
the role of subjectivity in scene detection and the capabilities
of our embedding to learn a particular annotation style. The
choice of this particular dataset is motivated by the fact that
in documentaries scene boundaries are less objective than in
movies and TV-shows, and are also related to changes in topic.
Collected annotations differ in terms of granularity (with some
annotators putting scene boundaries for minor topic or place
changes, and others building longer scenes) and also in terms
of localization (given that sometimes the exact change point
is not easy to identify).

We first run the algorithm described in Section V-B to
get the the segmentation which maximally agrees with all
the given annotations. The resulting segmentation presents a
mean IoU with the five annotators of 0.762. This represents
an upper-bound for scene detection algorithms trained on this
set of annotations, given that no segmentation could achieve
a better result (ignoring the approximation introduced by our
algorithm, which is negligible).

The proposed embedding is then trained and tested on all
annotations, as well as on the agreement given by the Dynamic
Programming algorithm, always keeping a leave-one-out setup
among the eleven videos. Results are reported in Table VI:
clearly, higher IoU values are obtained when training and
testing on the same annotator, and this suggests that our model
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Fig. 6. Qualitative results on the first episode of BBC Planet Earth. Each row represents the segmentation generated by a method, and a change in color
represents a change of scene. First row (blue) is the ground truth, second row (green) is our method, remaining (red) are, respectively, [10], [7] and [11] (best
viewed in color).

TABLE VI
SCENE DETECTION PERFORMANCE ON THE BBC PLANET EARTH DATASET, TRAINING AND TESTING ON DIFFERENT ANNOTATORS AND THE MAXIMUM

AGREEMENT SEGMENTATION.

Test on
Annotator 1 Annotator 2 Annotator 3 Annotator 4 Annotator 5 Agreement

Tr
ai

n
on

Annotator 1 0.669 0.528 0.428 0.474 0.416 0.475
Annotator 2 0.474 0.654 0.437 0.505 0.418 0.541
Annotator 3 0.455 0.546 0.572 0.481 0.404 0.420
Annotator 4 0.481 0.536 0.436 0.606 0.436 0.433
Annotator 5 0.468 0.538 0.432 0.492 0.545 0.411
Agreement 0.605 0.585 0.547 0.580 0.454 0.556

was indeed able to capture some features of the segmentation
style of an annotator, such as the level of granularity. At the
same time, training on the maximum agreement annotation
leads, on average, to better IoU scores when testing on the
five human annotators.

G. Thumbnail selection evaluation

On a different note, we conducted a series of experiments
regarding the proposed retrieval strategy. Since aesthetic qual-
ity is subjective, three different users were asked to mark all
keyframes either as aesthetically relevant or nonrelevant for
the scene they belong to. For each shot, the middle frame
was selected as the keyframe. Annotators were instructed to
consider the relevance of the visual content as well as the
quality of the keyframe in terms of color, sharpness, and
blurriness. Each keyframe was then labeled with the number
of times it was selected, and a set of (di, dj) training pairs
was built according to the given ranking, to train our aesthetic
ranking model.

For comparison, an end-to-end deep learning approach
(Ranking CNN) was also tested. In this case, the last layer
of a pre-trained VGG-16 network was replaced with just one
neuron, and the network was trained to predict the score of
each shot, with a Mean Square Error loss. Both the Ranking

TABLE VII
AESTHETIC RANKING: AVERAGE PERCENT OF SWAPPED PAIRS ON THE

BBC PLANET EARTH DATASET (LOWER IS BETTER).

Episode Ranking CNN Hypercolumns
Ranking

From Pole to Pole 8.23 4.10
Mountains 12.08 7.94

Fresh Water 12.36 8.11
Caves 9.98 8.76

Deserts 13.90 9.35
Ice Worlds 6.62 4.33

Great Plains 10.92 9.63
Jungles 12.28 7.43

Shallow Seas 10.91 6.22
Seasonal Forests 9.47 4.82

Ocean Deep 10.73 5.75
Average 10.68 6.95

CNN model and the proposed Hypercolumn-based ranking
were trained in a leave-one-out setup, using ten videos for
training and one for test from the BBC Planet Earth collection.

Table VII reports the average percent of swapped pairs: as
it can be seen, our ranking strategy is able to overcome the
Ranking CNN baseline and features a considerably reduced
error percentage. This confirms that low and high-level fea-
tures can be successfully combined together and that high
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Fig. 7. Ranking of four sample shot sequences. First and third row report all shots in temporal order, while second and fourth row show the produced
aesthetic ranking in descending order (with leftmost thumbnails predicted to be more aesthetically pleasing than rightmost ones). Thumbnails with a centered
and clearly visible object are preferred against blurred and low-quality frames (best viewed in color).

features alone, such as the ones the Ranking CNN is able
to extract from its final layers, are not sufficient. Figure 7
shows the ranking results of four shot sequences: as requested
in the annotation, the SVM model preferred thumbnails with
good quality and a clearly visible object in the middle.
Qualitative results are also available in the demo interface
hosted at http://imagelab.ing.unimore.it/neuralstory, where the
reader can test the proposed retrieval system on textual queries.

VII. CONCLUSION

This paper presented a new approach for scene detection
in broadcast videos. Our proposal builds a set of domain
specific concept classifiers and learns an embedding space
via a Triplet Deep Network, which considers visual as well
as textual concepts extracted from the video corpus. We
showed the effectiveness of our approach compared to differ-
ent techniques via quantitative experiments and demonstrated
the effectiveness of the proposed features. The subjectivity of
the task was also taken into account, by demonstrating that
the proposed embedding can adapt to different annotators,
and by providing an algorithm to maximize the agreement
between a set of annotators. As a potential application of
scene detection, we also introduced its use in retrieval results
presentation, allowing the simultaneous use of semantic and
aesthetic criteria.
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