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ABSTRACT 14 

A significant interest exists in measuring the thermal emissivity of building surfaces since 15 

high values combined with high solar reflectance allow rejecting solar energy absorbed by 16 

irradiated surfaces, whereas intermediate or low values permit to limit condensation of humidity, 17 

heat loss to the sky, or heat transfer through airspaces. The most used measurement method is 18 

probably that described by the ASTM C1371 Standard, which correlates the thermal emissivity 19 

to the radiative heat flux exchanged in the infrared between the sample surface, kept at ambient 20 

temperature, and the bottom surface of a hot emissometer head. With samples showing a low 21 
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thermal conductivity, the „slide method‟ modification is generally used: the hot head is allowed 22 

to slide above the sample in order to prevent this from warming up. The slide movement, 23 

however, is carried out by hand and time is needed to achieve a stabilized output, therefore the 24 

measurement may be time-consuming and also affected by the operator. In order to solve both 25 

problems, an automated approach is proposed here, in which the head is moved by the arm of a 26 

robot. This manages either the slide movement or the calibration with reference samples, 27 

interacting with a computerized data acquisition system that monitors the emissometer output. 28 

Introduction 29 

Thermal emissivity, or thermal emittance, or infrared emittance, is a surface property that 30 

represents the ratio of radiant energy emitted in the infrared by a surface and the maximum 31 

theoretical emission at the same temperature. It ranges from 0 to 1 or 100%. Measuring the 32 

thermal emissivity raises significant interest in the construction sector since a proper choice of its 33 

value permits to control the temperature of building surfaces, or heat transfer through such 34 

surfaces. It is well known that high values of thermal emissivity allow rejecting solar energy 35 

absorbed by irradiated opaque surfaces [1] since in low wind conditions heat transfer to the 36 

external environment by infrared radiation is higher than heat transfer with the air by convection. 37 

In fact, the performance of opaque building elements in terms of control of solar gains is often 38 

expressed through the Solar Reflectance Index (SRI), a parameter defined by the ASTM E1980 39 

Standard [2] that combines thermal emissivity with solar reflectance, i.e. the surface property 40 

representing the fraction of incident solar radiation that is reflected. High values of the SRI, 41 

resulting from high values of both solar reflectance and thermal emissivity, are required for solar 42 
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reflective cool roofing materials, aimed at limiting solar gains through opaque building elements 43 

and, consequently, overheating or both single buildings and entire urban areas. In this regard, 44 

solar reflectance is the key parameter, but a low thermal emissivity may affect strongly re-45 

emission of the absorbed solar energy and, therefore, the SRI. This is the case of metal surfaces, 46 

which can overheat as much as black roofing materials [3-6]. On the other hand, thermal 47 

emissivity values lower than those of common non-metallic materials may limit heat loss toward 48 

the sky during nighttime or affect the time of humidity condensation [7-8], and they can be 49 

desired in case one aims at effects such as limiting excessive cooling and condensation on 50 

building surfaces during nighttime. Very low values of thermal emissivity are also exploited to 51 

build radiant barriers, including advanced insulation systems such as the so-called multi-52 

reflective radiant barriers [9], aimed at limiting heat transfer by infrared radiation through roofs, 53 

air spaces or wall air gaps. 54 

In order to assess the energy performance of buildings, thermal emissivity of building 55 

surfaces is a parameter that must be known. For an accurate performance assessment, it must be 56 

known by measurement. In this regard, several measurement methods are available (see [109] for 57 

a review focused on the construction sector, and also [11]), but most methods can be used only in 58 

the laboratory, often on small specimens of pure material, therefore they are of low practical 59 

usefulness in the construction industry. Only two methods seem available for emissivity 60 

measurement on actual building elements, usable either in the laboratory or on field. These are 61 

described in the ASTM C1371 Standard Test Method [12] and the EN 15976 Standard [13]. 62 

ASTM C1371 is probably the most used one, endorsed for performance assessment of solar 63 

reflective materials by both the Cool Roof Rating Council of the U.S.A. [14] and the European 64 



Page 4 of 22

Acc
ep

te
d 

M
an

us
cr

ip
t

 

4 

Cool Roof Council [15] (the latter however allows also EN 15976 after having tested it in an 65 

interlaboratory comparison [16]).  66 

In the authors‟ knowledge, only one instrument compliant with ASTM C1371 is 67 

commercially available, the Devices & Services AE/RD1 Emissometer. This measures the total 68 

hemispherical emissivity of the sample through the following relationship [17]): 69 

 
 

 



f

TT
kV 






111

44

0

d

d  (1) 70 

In the above formula, the voltage signal V [V] returned by a thermopile sensor embedded 71 

in the instrument head is proportional by a calibration constant k to the radiative heat flux 72 

exchanged between the sample surface and the bottom surface of the head. The first surface has 73 

thermal emissivity  unknown and absolute thermodynamic temperature stabilized at a value T 74 

[K] as close as possible to the ambient one, Ta [K]; the second surface has known thermal 75 

emissivity d and absolute thermodynamic temperature stabilized at an assigned value Td [K], 76 

significantly higher than that of the analyzed surface or the ambient (Td>TTa). The calibration 77 

constant k multiplies the heat flux exchanged by thermal radiation between the two surfaces, 78 

which are assumed to be flat, parallel, virtually infinite and facing each other, as well as gray and 79 

diffusive. The emissometer is calibrated before each test by measuring two reference samples 80 

with known emissivity, respectively equal to 0.05 and 0.88 in the experiments described here. 81 

The samples were provided by the producer of the emissometer, which ensures linearity of the 82 

instrument, that is of the correlation between V and  in the last equality of Eq. (1), and 83 

uncertainty 0.01 in the range 0.030.93. The instrument measures something between normal 84 

and hemispherical emissivity, nonetheless it was shown to yield the hemispherical emissivity 85 
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when that of the two reference samples is interpolated [18-19]. While it is a quite simple device, 86 

it is largely used in the scientific community and the industry, and studies have been made for its 87 

improvement [20-21]. 88 

If the sample shows a non-negligible resistance to heat transfer, due to a low thermal 89 

conductivity of the support material, the heat input applied by the emissometer head to the 90 

measured surface causes a thermal gradient across the thickness of the sample itself. As a result, 91 

the temperature T of the measured surface rises to a value significantly higher than that of the 92 

ambient air, Ta. In this case, the actual value of thermal emissivity can be recovered by using one 93 

among the modifications of the standard method suggested by the producer of the emissometer. 94 

The most used one is the so-called „slide method‟ [22-24], in which the head of the emissometer 95 

is allowed to slide above the measured surface in order to prevent the sample from warming up. 96 

The sliding operation is carried out by hand and time is needed to achieve a stabilized output of 97 

the instrument, therefore the measurement may be time-consuming, and it may also be affected 98 

by the operator‟s expertise. An approach was recently proposed [21] to solve both problems, 99 

based on automating the sliding operation by means of a robotized arm. In particular, the 100 

emissometer head is moved by the arm of a SCARA robot, which manages either the sliding 101 

movement or the calibration with the reference samples. The voltage output returned by the 102 

emissometer is acquired by a computerized data acquisition system, which allows visualizing in 103 

real time the time-evolution pattern of the measured signal and may also interact with the robot. 104 

The approach has eventually provided the encouraging results presented here, with 105 

measurements in very good agreement with manual operation and also excellent repeatability. 106 
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Experimental Setup and Method 107 

An experimental apparatus has been developed in order to automate the slide method. The 108 

apparatus is based on a robotic arm and a PC based Human Machine Interface (PC-HMI). As 109 

depicted in Fig. 01, the core of the apparatus is a Mitsubishi RH-5AH55 SCARA robot, #1 in the 110 

figure, connected to a MELFA CR2A-572 controller. 111 

The arm of the robot has radius of the working volume 0.55 m and maximum payload 5 kg. 112 

It handles the measurement head of a Devices & Services AE1 emissometer, #3, through a 113 

dedicated holding device, #2. Entering into details, a tailored adapter with vertical compliance 114 

has been designed to attach the emissometer head. The top of the adapter is rigidly connected 115 

with the cylindrical shaft of the robot arm. Conversely, a spring connects the emissometer head 116 

and the compliance adapter to provide continuous contact with the surface of the tested sample. 117 

The adapter allows avoiding accurate robot programming and positioning since the spring self-118 

adapts the head to keep it in contact with the sample surface. 119 

 120 
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 121 
Figure 01. Experimental apparatus. 122 

 123 

The robot workspace is arranged in a calibration area, #7, and two measurement areas, #8 124 

and #9. The calibration area locates the High Emissivity standard (HE standard) as #4, and the 125 

Low Emissivity standard (LE standard) as #5, on a heat sink provided with the emissometer, #6. 126 

A fan placed on the back of the heat sink is employed to improve and keep constant the exchange 127 

of heat between heat sink and surrounding air. The measurement areas #8 and #9 are 128 

symmetrical with respect to the calibration area #7 and locate the Material Samples (MS) to be 129 

tested. The proposed layout reduces the robot movement and allows replacement of a sample 130 

during the performance of measurements on the other one. 131 



Page 8 of 22

Acc
ep

te
d 

M
an

us
cr

ip
t

 

8 

Concerning the PC-HMI, a PC with Windows OS, #11, and a National Instruments Data 132 

Acquisition card (DAQ card) PCI-6034E with SCB-68 board, #10, are employed for data 133 

acquisition, signal conditioning, and control of the robot. 134 

The slide method is implemented by means of a robot control routine and a dedicated 135 

software tool. The control routine is run by the robot controller. A first high speed movement is 136 

employed to place the emissometer head on the HE and LE standards. In sequence, the robot arm 137 

moves the head on the HE standard and keeps it in place for 90 s, thereafter it moves the head on 138 

the LE standard and keeps it in place for 90 s. Such sequence is repeated several times until 139 

constant voltage values are returned by the head sensor for both standards. In the experimental 140 

practice, one warm-up cycle with 5 repetitions was enough. For subsequent measurements only 2 141 

repetitions were required. 142 

Afterwards, the robot performs the emissometer calibration on the HE standard, and thus 143 

starts the movements to execute the slide operation on the tested sample. In particular, the robot 144 

moves the emissometer head on a corner of the tested surface and leaves it in contact with the 145 

sample for 30 s. Subsequently, the head is moved along the surface following a pattern 146 

composed by a sequence of parallel linear movements. Semicircular movements connect the 147 

linear trajectories to reduce the acceleration in direction changes. The speed selected for the 148 

movements is that minimizing voltage fluctuation of the signal returned by the AE1 149 

emissometer, and it is given by an initial stage of sliding on the sample. Figure 02 summarizes 150 

the process operation, while Figure 03 shows the sequence of positions of the emissometer head 151 

imposed by the robot. 152 

 153 
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 154 
Figure 02. Operations of the robotic slide method. 155 

 156 
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 157 
Figure 03. Positions of the emissometer head imposed by the robot. 158 

 159 
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 160 
Figure 04. Voltage signal returned by the emissometer and averaging process (sample B). 161 

 162 

The control PC executes a virtual instrument built in the Labview programming 163 

environment, implementing the PC-HMI. The virtual instrument manages the DAQ card and 164 

performs data acquisition and signal conditioning. Since synchronization between the control PC 165 

and the robot controller is not yet implemented, user interaction is currently required to select the 166 

time interval in which the thermal emissivity is calculated from the output voltage signal 167 

returned by the thermopile sensor of the emissometer head. Figure 04 shows the PC-HMI while 168 

the user manages the time intervals in which the voltage signal is averaged to calculate thermal 169 

emissivity. The time intervals are evidenced by different colors (green for the LE standard, 170 

orange for the HE standard, pale blue for the measure sample). 171 
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Comparing the voltage signal returned by the emissometer head while this is positioned on 172 

the measured sample with the signal returned while the head is on the calibration standards 173 

allows determining the sample emissivity. 174 

With regard to the direct correlation between the voltage signal returned by the instrument 175 

head and the radiative flux exchanged with the sample surface, and assuming the linear behavior 176 

of the instrument mentioned in the Introduction section, Equation (1) can be simplified as 177 

follows. 178 

 
0VKV    (2) 179 

Equation (2) applies if the emissometer and the analyzed surface have constant 180 

temperatures, condition achieved within a short warm-up phase and thanks to the constant speed 181 

movements of the robot. As a result, Equations (3)-(4)-(5) are valid in the robotic slide method.  182 

 
0VKV  LELE   (3) 183 

 
0VKV  HEHE   (4) 184 

 
0VKV  MSMS   (5) 185 

Equation (3) is related to the LE standard, where VLE [V] is the voltage returned by the 186 

instrument head and LE is the emissivity of the standard. Likewise, in Eqs. (4)-(5), VHE [V] and 187 

VMS [V] are the voltages, HE and MS the thermal emissivities of HE standard and the material 188 

sample (MS) under test, respectively. From the equation set (3)-(5) it is eventually possible to 189 

define the correlation formula between the voltages returned by the emissometer head for the HE 190 

standard, the LE standard and a MS sample, and the corresponding emissivities. 191 

 )(

)(
)(

LEHE

LEMS
LEHELEMS

VV

VV




   (6) 192 
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Experimental results 193 

In order to evaluate the effectiveness of the robotic implementation of the slide method, the 194 

developed apparatus has been employed to measure the thermal emissivity of several samples of 195 

commercially available materials. The samples were previously measured through manual 196 

execution of the slide method, therefore their emissivity is assumed to be known. Table 1 197 

collects pictures of the tested samples and their thermal emissivity as returned by the manual 198 

slide measurements performed by experienced operators. 199 

 200 

201 
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Table 1. Tested material samples. 202 

A 
 

B 
 

C 
 

   

Coated Masonite board Coated canvas Aluminum plate 

91.0manual  85.0manual  05.0manual  

D 
 

E 
 

F 
 

   

Veneered chipboard Painted multilayer plate 

(Al/PE/Al) 

Painted multilayer plate 

(Al/PE/Al) 

90.0manual  85.0manual  87.0manual  

 203 

For each sample, six robotic sliding tests have been performed, following an univocal 204 

sequence. The speed adopted for the slide movement was 7 mm/s, with the AE1 emissometer 205 

head slightly pressed on the surface of the sample. For each test, the voltage returned by the AE1 206 

emissometer is collected in a separate file and separately examined by means of the PC-HMI. 207 

As an example of the robotic slide measuring process, Table 2 collects data for the material 208 

sample A. Data related to the employed time intervals required to calculate the emissivity have 209 

also been collected. The rows of Tab. 2 collects information about start time and time interval 210 
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settings employed to calculate the average value of the voltage returned by the emissometer. In 211 

sequence, information about measurement on LE standard, HE standard and tested sample are 212 

collected. The last rows of Tab. 2 report the values of average thermal emissivity, standard 213 

deviation and coefficient of variation calculated with the six measurements. 214 

 215 

Table 2. Thermal emissivity evaluation process for material sample A. 216 

MATERIAL SAMPLE A 
Measures 

#1 #2 #3 #4 #5 #6 

LE Standard 

Start time for average [s] 204 201 201 202 199 205 

Time range for average [s] 8 8 8 8 8 8 

Average voltage [V]x10
-4

 -2.042 -1.952 -2.123 -2.197 -2.113 -2.077 

HE Standard 

Start time for average [s] 293 292 291 292 291 296 

Time range for average [s] 8 8 8 8 8 8 

Average voltage [V]x10
-4

 19.948 19.896 19.781 19.797 20.081 19.812 

Material Sample 

Start time for average [s] 360 360 363 363 359 365 

Time range for average [s] 54 54 54 54 54 54 

Average voltage [V]x10
-4

 20.63 20.633 20.508 20.353 20.702 20.423 

Emissivity (robotic slide) [-] 0.905 0.908 0.907 0.901 0.903 0.903 

 

Average Emissivity [-] 0.90  

Standard deviation [-] 0.003 

Coefficient of variation % 0.31 

 217 

Following the proposed measuring and calculation method, the comparison between 218 

robotic slide and manual slide along the six material samples treated is presented in Tab. 3. The 219 

three upper rows collect average thermal emissivity, standard deviation and the coefficient of 220 

variation given by the robotic slide. The two bottom rows report the value of thermal emissivity 221 
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returned by the manual slide and the difference between the thermal emissivity by the robotic 222 

and manual slide. The agreement is indeed very good, mostly within the uncertainty of the 223 

instrument. Repeatability was also excellent. 224 

 225 

Table 3. Thermal emissivity evaluation for material samples A-F. 226 

 
Material samples 

A B C D E F 

Average emissivity (robotic slide) [-] 0.90 0.84 0.04 0.87 0.85 0.87 

Standard deviation [-] 0.003 0.003 0.004 0.002 0.003 0.003 

Coefficient of variation % 0.31 0.34 9.55 0.19 0.31 0.38 

Average emissivity (manual slide) [-] 0.91 0.85 0.05 0.90 0.85 0.87 

Difference (robotic vs manual) [-] -0.01 -0.01 -0.01 -0.03 0.00 0.00 

 227 

Conclusive remarks 228 

A robotic implementation has been made of the „slide method‟ modification of ASTM 229 

C1371 standard test method, aimed at measuring the thermal emissivity at the surface of low-230 

conductivity materials such as those of typical building elements. The robotic implementation 231 

allows eliminating the man in the loop and improving efficiency and repeatability of 232 

measurements. 233 

The robotized slide method returned the same results of the standard, i.e. manual, slide 234 

method for several different samples with high and low thermal emissivity. Either accuracy or 235 

repeatability where found to be from very good to excellent, generally returning emissivity 236 

values within the uncertainty declared by the emissometer producer. 237 
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Future development will implement the full synchronization between the PC running the 238 

PC-HMI and the robot controller, in order to manage the robot operation in function of the 239 

output signal. Data acquisition with an insulated DAQ card will also be considered to remove 240 

some high frequency components of the measured voltage signal due to the robot drives, which 241 

are currently filtered. Self-adjustment of the robot speed during execution of the slide movement 242 

will also be implemented. Future work will eventually be aimed at simplifying and consolidating 243 

the experimental apparatus, in order to obtain a relatively inexpensive and easy to use tool 244 

complementing the standard instrument and possibly usable on field. 245 

 246 
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HIGHLIGHTS 

 Thermal emissivity, or emittance, is a key property for heat transfer of building surfaces 

 For accurate assessment of building performance, it must be known by measurement. 

 The most used measurement method with low thermal conductivity materials is the „slide 

method‟ modification of ASTM C1371. 

 The slide operation, performed by hand, may be time-consuming and affected by the operator. 

 A robotized version of the slide method has been developed to eliminate the man in the loop. 

Highlights


