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Abstract
In skeletal regeneration approaches using human bone marrow derived mesenchymal stro-

mal cells (hBM-MSC), functional evaluation before implantation has traditionally used bio-

markers identified using fetal bovine serum-based osteogenic induction media and time

courses of at least two weeks. However, emerging pre-clinical evidence indicates donor-

dependent discrepancies between these ex vivo measurements and the ability to form

bone, calling for improved tests. Therefore, we adopted a multiparametric approach aiming

to generate an osteogenic potency assay with improved correlation. hBM-MSC populations

from six donors, each expanded under clinical-grade (cGMP) conditions, showed heteroge-

neity for ex vivo growth response, mineralization and bone-forming ability in a murine xeno-

graft assay. A subset of literature-based biomarker genes was reproducibly upregulated to

a significant extent across all populations as cells responded to two different osteogenic

induction media. These 12 biomarkers were also measurable in a one-week assay, befitting

clinical cell expansion time frames and cGMP growth conditions. They were selected for

further challenge using a combinatorial approach aimed at determining ex vivo and in vivo

consistency. We identified five globally relevant osteogenic signature genes, notably TGF-

ß1 pathway interactors; ALPL, COL1A2, DCN, ELN and RUNX2. Used in agglomerative

cluster analysis, they correctly grouped the bone-forming cell populations as distinct.

Although donor #6 cells were correlation slope outliers, they contrastingly formed bone

without showing ex vivo mineralization. Mathematical expression level normalization of the

most discrepantly upregulated signature gene COL1A2, sufficed to cluster donor #6 with

the bone-forming classification. Moreover, attenuating factors causing genuine COL1A2

gene down-regulation, restored ex vivo mineralization. This suggested that the signature

gene had an osteogenically influential role; nonetheless no single biomarker was fully
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deterministic whereas all five signature genes together led to accurate cluster analysis. We

show proof of principle for an osteogenic potency assay providing early characterization of

primary cGMP-hBM-MSC cultures according to their donor-specific bone-forming potential.

Introduction

Severe bone fractures often heal slowly with clinically challengingmorbidity. Multipotent
human BoneMarrow Mesenchymal Stromal Cells (hBM-MSC), frequently referred to as Mes-
enchymal Stem Cells, can be combined with biomaterial to help improve bone regeneration [1,
2]. A growing number of options are available for this approach, involving mesenchymal stem
cells from different tissue sources [3], but concerns that alternative sources are not necessarily
equivalent support choice of bone marrow derived hBM-MSC for bone therapy [4].

A discrepancy between the limited number of sourced autogenic hMSC to be found in the
bonemarrow and the number required for therapy, is nowadays resolved by expanding the cell
population in culture according to current GoodManufacturing Practice (cGMP) [5]. To mini-
mize risk of xenogenic immune incompatibility and prion infection, replacement of fetal
bovine serum (FBS) with non-animal growth factors, e.g. human serum [6] or human platelet
lysate (PL) [7, 8] is recommended.

Deteriorated cell function from the onset of senescence and concern for phenotypic drift
mean that minimal timelines are recommended for cGMP production of hBM-MSC [9].
Though ex vivo expansion of primary hMSC populations obtained from the bonemarrow is
inherently finite [10–12], advances in culture methods allow cGMP facilities to grow 200 mil-
lion stromal cells from a bonemarrow sample within three weeks; a quantity considered suffi-
cient for autologous therapy [13]. Nevertheless, beyond cell expansion limits, clinical outcomes
can be thwarted by donor-specific heterogeneity in hBM-MSC functional potency [14].

A key prerequisite for hBM-MSC bone healing is retention of the specific potential to differ-
entiate to osteoblasts rather than simply form stromal scar tissue [15]. Differentiating
hBM-MSCmature to osteoblasts via a temporal cascade of selectively expressed regulatory
transcription factors and osteogenic genes governing matrix deposition and mineralization
[16]; such molecules and transition phenotypes may serve as readily detectable time-dependent
osteogenic biomarkers [17]. Ideally, their measurement would provide indication of the status
of a broad set of cellular parameters and bone forming competence. However, correlations
between ex vivo expression of osteogenic biomarkers and bone formation in vivo have not been
straightforward. Beyond early examples where only hBM-MSC strains with high levels of oste-
ogenic markers ex vivo subsequently formed bone [18, 19], most studies over the past decade
reveal surprisingly little direct correlation between bone forming potential and canonical bio-
markers of ex vivo osteogenic differentiation, including mRNA expression levels of pro-colla-
gen type I, alpha 1 (COL1A1), osteopontin (SPP1), alkaline phosphatase (ALPL) or runt related
transcription factor 2 (RUNX2) [20–24].

Despite the above caveats, recent studies have aimed to correlate ex vivomeasurements with
bone formation, seekingmore specifically informative indicators than proliferation [25]. Cell
models that permitted genome-wide comparison of telomerized hMSC-TERT clones with dif-
ferent bone-forming ability, revealed that clone-specific bone-forming potential corresponded
particularly well with the ex vivo gene expression of specific extracellularmatrix proteins [26].
Notably, decorin (DCN), tetranectin (CLEC3B), collagen type-I, alpha 2 (COL1A2) and elastin
(ELN) were bone-predictive genes induced by treatment of hMSC-TERT cells with osteogenic
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medium (OM) [27]. This agreed with prior views that the onset of differentiation was coupled
to proliferation [28] and that the early rate of primarily type I collagenmatrix production gov-
erned fracture healing [29].

However, the applicability of these correlative osteogenic biomarkers identified in telome-
rase-immortalizedcells in FBS-based culture media to primary hBM-MSC grown in cGMP
PL-based culture media has not been determined and prior gene expression assays have not
necessarily conformed to the restricted time frames of preclinical cell expansion. Here, we
developed a multiparametric phenotype-driven strategy to accommodate inter-donor hetero-
geneity whilst determining whether ex vivo osteogenic biomarker expression could indicate the
subsequent bone-forming potential of cGMP-hBM-MSC from individual donors. Among
donor-specific hBM-MSC populations that positively responded to OM with metabolic activa-
tion and matrix mineralization, we first verified expression of osteogenic biomarker genes in
cGMP-hBM-MSC treated with OM containing FBS and then tested whether similar results
were obtainable in OM containing PL (OM-PL). To be consistent with previous osteogenic bio-
marker studies, gene expression was first measured at comparable two-week time points. Then,
to better match cGMP protocol timelines, we measured osteogenic biomarker expression after
only one week of OM treatment.

We reasoned that cluster analysis seeking to correlate ex vivo gene expression with in vivo
bone formation would need to be based on genes whose upregulation was statistically signifi-
cant in all contexts. The bone-forming cGMP-hBM-MSC populations treated with OM-PL for
one week shared seven upregulated osteogenic biomarker genes. Five of these genes were also
consistently up regulated in cells positive for all our ex vivo tests of osteogenic differentiation.
These five “signature genes” represented the varied cellular functions of matrix mineralization
(ALPL), extracellularmatrix synthesis (COL1A2,DCN and ELN) and transcriptional regulation
(RUNX2). We here describe how using comparative cluster analysis the signature genes could
promptly help discriminate heterogeneous donor-specific cGMP-hBM-MSC strains according
to their bone-forming potential.

Materials and Methods

Cell Culture

cGMP facilities; Etablissement Français du Sang, Toulouse (France), Institute of Clinical
Transfusion Medicine and Immunogenetics Ulm (Germany) provided donor-specific strains
(n = 6, labelled #1-#6) of human bonemarrow derivedmesenchymal stem cells (hBM-MSCs)
each population expandable to single clinical doses of at least 100 x106 cGMP-hBM-MSC. The
two-step protocol for unprocessed bonemarrow cells involved seeding at an initial density of
50,000 white blood cells/cm2 in 300 mL complete medium in CellStack™ (Corning, Belgium)
tissue culture vessels using PL based, animal-serum free alphaMEMmedium (Lonza, Gaithers-
burg USA) [30]. Informed written consent from all six donors conformed to the Declaration of
Helsinki and project approval by local ethical committees included testing of BM donors
according to blood product guidelines.

Single passage cGMP-hBM-MSCs were shipped in frozen vials and thawed cells were seeded
at 6 x103 cells/cm2 in T75 flasks (Greiner Bio-one, Germany) incubated at 37°C with 5%
humidifiedCO2 using maintenance medium (MM) consisting of Minimum Essential Medium
(MEM) Alpha without nucleosides (Gibco1 Invitrogen, UK), supplemented with 8% (v/v)
human Platelet lysate (PL), [31] 1% (v/v) L-Glutamine (Gibco1 Invitrogen, Belgium), 1 UI/mL
heparin (Sigma-Aldrich,USA) and 10 μg/mL ciprofloxacin (HIKMA, Portugal). The cGMP-
hBM-MSCs were replenished with fresh MM twice weekly and at 80–85% confluencewere
detached using trypsin 0.05%/EDTA 0.02% (PAA Laboratories, Austria) or TrypLE (Gibco1
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Invitrogen, Belgium). The cGMP-hBM-MSCs were immunophenotypically and functionally
characterized in the cGMP facilities ensuring high viability before shipping (Table 1).

Induction of ex-vivo osteogenic differentiation

Cells were seeded concurrently at a density of 104/cm2 in 24-well multiwell plates (Greiner Bio-
one) for Alizarin Red and Von Kossa staining and in T25 flasks (Greiner Bio-one) for RNA
extraction. All culture vessels were incubated at 37°C with 5% CO2 in a humidified incubator
(Thermo Scientific, Italy). At 85–90% cell confluence (�3 days post seeding), we induced oste-
ogenic differentiation. Two alternative differentiation protocol time courses were compared.
Firstly, a previously established two-week (2W) protocol whereby cells were treated for the first
week using osteogenicmedium (OM) containing the inducing agents 10mM β-Glyceropho-
sphate (ß-GP) (Sigma-Aldrich), 0.1 mM ascorbic acid-2-phosphate (AA) (Sigma-Aldrich), 10
nMDexamethasone (Dex) (Sigma-Aldrich) supplemented with either either 10% (v/v) defined
FBS (OM-FBS) or 8% (v/v) PL (OM-PL). For the second week, the OM-FBS or OM-PL was
additionally supplemented with 100 ng/ml rhBMP-2 (Peprotech, UK). A two-week protocol
facilitated biomarker data comparison with previous literature [26, 27, 32] and provided a
more comprehensive comparison of FBS versus PL basedOM. Secondly, to create an assay pro-
tocol more consistent with preclinical cell expansion timelines, we explored a one-week (1W)
cell treatment protocol, whereby OM-FBS or OM-PL was supplemented with all the above
inducing agents, including rhBMP-2 from the outset.

Matrix mineralization

After OM treatment for one or two weeks, the extent of hBM-MSCmatrix mineralization was
characterised by Alizarin red S (ALZ) and Von Kossa (VK) staining. For the former, cells were
washed at room temperature (RT) in PBS (1X), fixed in ice-coldmethanol (100% v/v), washed
with distilledwater and stained with Alizarin Red S (Sigma) (1.5% v/v, pH 4.2) for 5 minutes to
detect calcium precipitation. Stained monolayers were visualized by brightfield 10X magnifica-
tion with an inverted microscope (Zeiss). For stain quantification, the plates were incubated at
room temperature (RT) in the dark for 15 minutes with 500 μl of CetylpyridiniumChloride
(CPC) added to each well. The eluted dye solution was transferred to a fresh microcentrifuge
tube, diluted ten times with PBS (1X) and dispensed as triplicate aliquots into a transparent
96-well plate (200 μL/well). Each measurement was performed at 562 nm on an ELISA reader
(GDV, Roma).

Von Kossa staining to visualize phosphate and carbonate anions [33] was performed two
weeks after OM treatment. Cell monolayers were washed in PBS (1X) at RT for 5 minutes

Table 1. Characterisation of donor-specific cGMP-hBM-MSC population.

Donor Gender Age CFU-F CD34+ CD45+ CD73+ CD90+ CD105+ HLA-DR, DP, DQ+

#1 M 54 196 0.02 1.94 99.90 96.9 99.72 1.28

#2 F 51 30 ND 0.97 100 100 ND 2.9

#3 F 24 550 0.10 0.14 97.43 99.81 98.5 2.58

#4 M 42 68 0.00 4.4 100 100 99.76 0.4

#5 F 24 92 0.17 0.07 98.82 99.69 99.56 2.85

#6 M 21 98 0.03 0.05 99.9 100 93.14 0.28

*The number of Colony forming Unit-Fibroblast per 106 mononuclear cells scored after the initial plating of the bone marrow sample. The %

immunophenotype positivity was determined at passage 1 before shipment. CD34, Hematopoietic Progenitor Cell Antigen CD34; CD45, leukocyte common

antigen; CD73, Ecto-5’-nucleotidase; CD90, Thymocyte antigen 1; CD105, Endoglin; HLA-DR, DP, DQ, Human leukocyte antigens. ND: not determined.

doi:10.1371/journal.pone.0163629.t001
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and fixed in ice-cold methanol (100% v/v) for 4 minutes. The cells were rinsed twice in dis-
tilled water and incubated with 0.8 μm-filtered 1% silver nitrate (Sigma) for 30 minutes
under a UV lamp. Stained samples were washed twice in distilled water and visualized with
10X magnification using an inverted microscope (Zeiss). Dark positive VK stained areas
were quantified as a percentage of the total area using Image J software (http://rsb.info.nih.
gov/ij/).

Cell cycle activation biomarker MKI67+ expression

A primer set (Table 2) amplifying a 129 bp sequence spanning exons 13 and 14 of the MKI67
gene recognised the short and long isoform splice variants encoding the Ki-67 nuclear protein
associated with cell cycle activation. RNA extraction and quantitative real time reverse-tran-
scriptase polymerase chain reaction (qRT-PCR) analysis was performed as described below.

RNA extraction and quantitative Real-Time PCR (qRT-PCR)

Total cellular RNA was isolated using a single-stepmethod with TRIzol (Invitrogen) according
to the manufacturer's instructions. First-strand complementary cDNA was synthesized from
1 μg of total RNA using a revertAidHminus first-strand cDNA synthesis kit (Fermentas)
according to the manufacturer's instructions. The reaction was terminated by heating at 70°C
for 5 minutes. The single strand cDNA was quantified by spectrophotometer (BeckmanCoul-
ter DU1 730) so as to use 10 ng of cDNA in each Real-Time PCR well.

Quantitative real-time PCR was performed using the Applied Biosystems StepOne™ Real-
Time PCR System and the Fast SYBR1 GreenMaster Mix reagent. The quantification of gene
expression for each target gene and reference gene was performed in separate tubes. Forward
and reverse primers were designed using IDT PrimerQuest1 (http://eu.idtdna.com/
PrimerQuest/Home/Index) ensuring they spanned an intron sequence to be specific for
mRNA rather than genomic DNA. The relative expression level of the target gene was normal-
ized to that of the endogenous reference ß-actin (ACTB) gene and the 2-ΔΔCt cycle threshold
method was used to calculate the relative expression levels of the target genes defined by the
primers (Table 2).

In-vivo Xenograft Bone Formation (BF) in immunodeficient mice

With University of Modena and Reggio Emilia ethical committee approval, the bone forming
potential of the cGMP-hBM-MSC from each donor was tested using four implantation sites
shared between two 8-week old NOD.CB17-Prkdcscid/J mice. Previously describedmethods
were modified to maintain the same cell/scaffold ratio as proposed for a clinical trial. Briefly,
animals were anaesthetizedwith 3.6% isofluorane and the dorsal skin was shaved and cleaned.
Incisions of�1 cm in length were performed on upper and lower dorsal regions on the back of
each mouse. Blunt dissectionwas used to form a 3 cm long pocket and the graft was implanted
therein. A total of 1.6 x106 cells were mixed with 40 mg (�40 granules) of hydroxyapatite β tri-
calcium phosphate (HA-βTCP 20:10, 1-2mm, Biomatlante, Vigneux de Bretagne, France) and
implanted subcutaneously into the upper and lower dorsal flank of each mouse. The control
samples were implanted with 40 mg HA-βTCP scaffold granules alone and the incisions were
closed with sutures of ethicon vicryl rapide 5–0 (Johnson & Johnson). Cell/scaffold xenografts
and control samples recovered from sacrificed animals after six weeks were transferred to 4%
neutral buffered formalin for two days. Two PBS washes were followed by decalcification for
2–3 weeks in buffered 15% EDTA (pH 7.4). The decalcifiedHA-ßTCP implants were embed-
ded in paraffin and 3 μm sections were stained with Hematoxylin and Eosin (H&E) for assess-
ment of bone tissue formation. The percentage of bone tissue formed per total area [34] was
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quantified by two independent observers estimating the percentage of pink stained osteoid tis-
sue relative to the total amount of scaffold and diversely stained surrounding stroma. At least
45 fields of viewwere examined for each donor, quantifying bone within near-equivalent total
areas of scaffold.

Table 2. Primer sequences for polymerase chain reactions.

Gene Primer Sequence Amplified Length

ACTB 5'-ACCTTCTACAATGAGCTGCG-3' (sense) 148 bp

5'-CCTGGATAGCAACGTACATGG-3' (antisense)

ALPL 5'-GATGTGGAGTATGAGAGTGACG-3' (sense) 142 bp

5'-GGTCAAGGGTCAGGAGTTC-3' (antisense)

BGLAP 5'-CAGCGAGGTAGTGAAGAGAC-3' (sense) 144 bp

5'-TGAAAGCCGATGTGGTCAG-3' (antisense)

BGN 5'-TGGAGAACAGTGGCTTTGAAC-3' (sense) 134 bp

5'-GTTGTGGTCTAGGTGGAGTTC-3' (antisense)

CADM-1 5'-CCAGCGGTATCTAGAAGTACAG-3' (sense) 146 bp

5'-TCACCCAAGTTACCATCACAG-3' (antisense)

CLEC3B 5'-TCCTCCTCTGCCTCTTCTC-3' (sense) 136 bp

5'-GTGTCCAGACGGCTCTTG-3' (antisense)

COL1A1 5'-CCCCTGGAAAGAATGGAGATG-3' (sense) 148 bp

5'-TCCAAACCACTGAAACCTCTG-3' (antisense)

COL1A2 5'-AGGACAAGAAACACGTCTGG-3' (sense) 146 bp

5'-GGTGATGTTCTGAGAGGCATAG-3' (antisense)

DCN 5'-AAAATGCCCAAAACTCTTCAGG-3' (sense) 146 bp

5'-GCCCCATTTTCAATTCCTGAG-3' (antisense)

DLX5 5'-CTTATGCCGACTATAGCTACGC-3' (sense) 124 bp

5'-CCATTCACCATTCTCACCTCG-3' (antisense)

ELN 5'-CCTGGCTTCGGATTGTCTC-3' (sense) 148 bp

5'-CAAAGGGTTTACATTCTCCACC-3' (antisense)

MKI67 5'-AAAAGAATTGAACCTGCGGAAG-3' (sense) 129 bp

5'-AGTCTTATTTTGGCGTCTGGAG-3' (antisense)

MSX2 5'-CGGTCAAGTCGGAAAATTCAG-3' (sense) 149 bp

5'-GGATGTGGTAAAGGGCGTG-3' (antisense)

PTH1R 5'-ATGCTCTTCAACTCCTTCCAG-3' (sense) 126 bp

5'-CTTTCGCTTGAAGTCCAGTG-3' (antisense)

RUNX2 5'-TTCACCTTGACCATAACCGTC-3' (sense) 148 bp

5'-GGCGGTCAGAGAACAAACTAG-3' (antisense)

SFRP1 5'-AAGTGTGACAAGTTCCCCG-3' (sense) 127 bp

5'-TGGCCTCAGATTTCAACTCG-3' (antisense)

SPP1 5'-CAGTGATTTGCTTTTGCCTCC-3' (sense) 149 bp

5'-ATTCTGCTTCTGAGATGGGTC-3' (antisense)

SP7 5'-GCCAGAAGCTGTGAAACCTC-3' (sense) 141 bp

5'-GCTGCAAGCTCTCCATAACC-3' (antisense)

TAZ 5'-CGAATTCCTGCGTTTCAAGTG-3' (sense) 147 bp

5'-GTGATTTTCTGTCCAAAGCGG-3' (antisense)

ACTB, Beta-actin; ALPL, alkaline phosphatase; BGLAP, osteocalcin; BGN, biglycan; CADM-1, Cell adhesion molecule 1; CLEC3B, tetranectin; COL1A1,

collagen type I alpha1; COL1A2, collagen type I alpha2; DCN, decorin; DLX5, distal-less homeo box 5; ELN, Elastin; MKI67, antigen identified by

monoclonal antibody Ki-67; MSX2, Msh homeobox 2; PTH1R, Parathyroid hormone 1 receptor; RUNX2, Runt-related transcription factor 2; SFRP1,

Secreted frizzled-related protein 1; SPP1, Osteopontin; SP7, Osterix; TAZ, Tafazzin.

doi:10.1371/journal.pone.0163629.t002

Osteogenic Potency Biomarkers

PLOS ONE | DOI:10.1371/journal.pone.0163629 October 6, 2016 6 / 32



Phenotype driven selection of osteogenic biomarker “signature genes”

Eighteen candidate biomarker genes selected from a literature search were first assayed to
determine time-dependent expression in response to one or two week osteogenic induction
protocols. Genes showing consistent and significant upregulation in response to OM treatment
were then examined in subsets of phenotypically functional cGMP-hBM-MSC populations to
determine the average extent of gene upregulation according to each phenotype; ALZ+, VK+,
MKI67+ and BF+. Genes significantly upregulated in all phenotypic contexts were classified as
globally relevant osteogenic “signature genes”.

Functional interaction networks

The Search Tool for the Retrieval of Interacting Genes (STRING) database (v9.05) explored
possible relationships between the osteogenic signature gene products and whether they might
be collectively associated with a particular regulatory network [35]. To maintain strict rele-
vance, the three most confidently predicted functional partners were chosen to identify associ-
ated signaling pathways.

Agglomerative Cluster Analysis

To determine inter-donor similarity according to signature gene expression patterns in OM
treated cGMP-hBM-MSC, open-source software Cluster 3.0 (C clustering Library 1.50) visual-
ized using Java Treeview v1.1.6r2, was used for agglomerative cluster analysis of the mRNA
expression data. The best-fit cluster algorithm for our continuous variables was determined by
comparing different linkage methods and distance measures. The averaged metric of Pearson
centroid linkage with uncentered correlation distance was compared to more specific Single
linkage with Euclidian distance metrics. Sample means were set to zero since our gene expres-
sion values represented a fold-increase in mRNA expression above a zero reference state deter-
mined by the control samples.

Pearson centroid linkage calculated a vector point from an average of all the items contained
within the cluster, minimizing the effect of outlier values. Uncentered correlation distance pro-
vided a metric for the strength of linear association between two variables calculated from the
sample values and their standard deviations. Euclidian distance, a geometric distance in multi-
dimensional space, was appropriate for continuous variables sharing the same scale and assimi-
lated the gene expression data better by taking the magnitude of changes more into account.
The single linkage nearest-neighbormethodmay have drawbacks if the data has many points
that bridge between clusters, but for our purposes it advantageously emphasized dissimilarity.

To understand the significancewith which cluster analysis could distinguish donor-specific
cGMP-hBM-MSC populations according to their extent of bone formation, the correlation
coefficient indicating the degree of similarity between donors was plotted against the average
amount of bone (mean%) formed by the respectivemembers of the correlation.

Biomarker signature gene verification; a role in outlier phenotypes

Cluster analysis of cells from outlier donor #6 that formed bone despite no apparent ex vivo
mineralization, highlighted unusually high type I collagen gene upregulation.We adopted
methods from evidence that inhibition of TGF-ß1 signaling corrected abnormal COL1A1-to-
COL1A2 gene expression ratios and increased alizarin red staining [36] to explore whether sim-
ilar intervention could influence expression of the signature gene COL1A2 and restore the ex
vivomineralization function to donor#6 cells. Cells were plated at a seeding density of 104/cm2

in 24-well multiwell plates (Greiner Bio-one) for Alizarin Red staining and in T25 flasks
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(Greiner Bio-one) for RNA extraction. All culture vessels were incubated at 37°C with 5% CO2

in a humidified incubator. During the three days needed for cells to reach 85–90% confluence
before OM treatment, MMwas supplemented with either 40 mU/mL interferon-gamma (IFN-
γ), a cytokine antagonistic to TGF-ß1 mediated collagen synthesis [37, 38] or 2 μM SB-431542,
an inhibitor of the TGF-ß1 receptor activin receptor-like kinase (ALK5), [39]. The cells were
then treated with OM-PL to induce matrix mineralization, harvestingmRNA for COL1A2
gene expression analysis after one week and staining for Alizarin red after two weeks in
OM-PL as described above.

Statistical analysis

For the Real Time PCR analysis a two-tailed paired t test was applied to analyse differentially
expressed genes between the control and induced groups in the OM-FBS or OM-PL induc-
tions. Genes with>3-fold upregulation and p values less than 0.05 were considered significant.
Individual gene expression graphs show standard error mean (S.E.M.) bars as a measure of the
uncertainty in estimate of the mean. Graphs showing gene expression averaged from several
donors show the standard deviation (S.D.) as a measure of the variability between donors.

Results

OM-PL promoted prompt induction of cGMP-hBM-MSC matrix

mineralization

Pilot studies tested induction of differentiation in the six donor-specific cGMP-hBM-MSC
populations, detectingmatrix mineralization by ALZ staining after OM-PL or OM-FBS treat-
ment. The low level ALZ staining of the control cells in MM (Fig 1A and 1B left panels) was
increasedwhen using OM-FBS and consistently more so using OM-PL for both 1W-OM and
2W-OM time points (Fig 1A and 1B lower right panels).

OM-PL reproduced osteogenic biomarker gene induction seen with

OM-FBS

Given positive differentiation outcomes from our protocols, we explored whether literature-
mined osteogenic biomarker genes (often obtained with OM-FBS) were applicable to cells cul-
tured with PL. We also needed to learn whether such biomarkers remained relevant for
1W-OM protocols. Of the 18 osteogenic biomarker genes initially selected, 6 genes; msh
homeobox homologue 2 (MSX2), (parathyroid hormone receptor 1 (PTH1R), secreted frizzle-
related protein 1 (SFRP1), osteopontin/secretedphosphoprotein 1 (OPN/SPP1), osterix (SP7)
and tafazzin (TAZ) failed to show an appreciable fold-increase with respect to control samples
in most of the six donor-specific cGMP-hBM-MSC populations (data not shown). In contrast,
the remaining twelve osteogenic biomarker genes were robustly upregulated in cells treated
with 2W-OM-FBS or 2W-OM-PL, in many cases over ten-fold (Fig 1C). Comparing OM-FBS
with OM-PL the average level of gene upregulation was broadly equivalent, though exceptions
includedmore upregulation of BGLAP (�20X) and RUNX2 (�5X) using OM-PL and more
upregulation of ELN (�5X) with OM-FBS. Nonetheless, more significant underlying donor-
specific variation meant that most gene expression differences betweenOM-FBS and OM-PL
were not statistically significant. After OM treatment for just one week, the osteogenic bio-
marker genes remained significantlymeasureable, despite an overall trend for lower levels of
upregulation (Fig 1D), data in S1 Table. There remained a tendency for more upregulation of
BGLAP (�7X) using OM-PL and more upregulation of ELN (�9X) using OM-FBS, but under-
lying donor heterogeneity again meant that these differences were not statistically significant.

Osteogenic Potency Biomarkers
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Fig 1. Osteogenic induction: Alizarin Red S staining and Osteogenic Biomarker expression.

Representative photomicrographs of 24-well plate wells stained with Alizarin Red S after (A) two weeks or (B)

one week of treatment with osteogenic medium (OM) based on Fetal Bovine Serum (FBS) or Platelet Lysate

(PL). Parallel samples cultured in maintenance medium (MM) lacking osteogenic factors served as controls for

spontaneous differentiation. Gene upregulation of 12 osteogenic biomarker genes in cGMP-hBM-MSC

populations derived from six donors was measured after treatment with OM-FBS (hatched columns) or OM-PL

Osteogenic Potency Biomarkers
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These osteogenic biomarker expression patterns confirmed cGMP-hBM-MSC differentiation
in response to the 1W-OM-PL protocol.

Osteogenic biomarker gene expression revealed inter-donor

heterogeneity

Individual cGMP-hBM-MSC populations (donors #1-#6) showed striking donor-specific gene
expression patterns after OM treatment. Nonetheless, the two-week data (Fig 2A) showed close
parity with data from the one-week differentiation protocol (Fig 2B), data in S1 Table. A com-
parison of geometricmeans indicated that most genes were upregulated to a greater extent in
OM-PL than OM-FBS e.g. BGLAP (4.5x),DCN (2.15x), BGN (1.74x), COL1A2 (1.63x),ALPL
(1.62x), CLEC3B (1.37x), RUNX2 (1.1x) and DLX5 (1.05x). The most consistently upregulated
genes (p<0.05) in OM-FBS or OM-PL were ALPL, BGN, CLEC3B,COL1A2,DCN and DLX5
after two weeks and BGN, CADM1,CLEC3B,COL1A2,DCN,DLX5 and ELN after one week of
OM treatment (Table 3). One notable difference between use of FBS or PL was that in OM-PL
RUNX2 expression was more significantly covariant with other biomarker genes, namely BGN,
CADM1,COL1A1 and ELN at two weeks and BGN,COL1A1 and ELN at one week (Table 4).

Inter-donor heterogeneity included individual examples of high gene induction (Fig 2B);
e.g. BGNwas only upregulated markedly in cells from donor #1 (16.7-fold with OM-FBS,
p = 0.00018 and 30.4-fold with OM-PL, p = 0.00014), similarlyDLX5 in cells from donor #2
(64-fold with OM-FBS, p = 0.0004 and 2106-fold with OM-PL, p = 0.0003) and ELN in cells
from donor #5 using OM-FBS (258.3-fold, p = 0.03). In contrast, DCN showed significant
OM-PL mediated gene induction in all donors, ranging from 3.8-fold, p = 0.0001 in cells from
donor #5 to 82-fold, p = 0.0002 in cells from donor #3.

Focusing on the assay most relevant to the clinical protocol, 1W-OM-PL treatment, two-
way analysis of variance indicated that the donor-specific influence on gene upregulation was
significant (p<0.001) accounting for over 70% of the total variance in seven of the twelve osteo-
genic biomarker genes, namely BGN, CADM1,CLEC3B COL1A1,COL1A2,DCN and RUNX2.
Overall, there was considerable variation in the extent of gene upregulation during differentia-
tion and most importantly, osteogenic biomarker gene expression measured after only one
week of OM-PL treatment was suitable for identification of inter-donor differences.

Inter-donor heterogeneity for OM-PL-induced ALZ+, VK+, MKI67+ ex-

vivo phenotypes

There was relatively little ALZ+ staining observed after OM treatment for one week, but after
two weeks, two main donor-specific phenotypes were found. Cells from four donors (#1, #2,
#3, #4) exhibited extensive matrix mineralization and were characterized as ALZ+ with OD val-
ues ranging between 5 and 13, significantly greater than the negative control samples
(p = 0.0003) (Fig 3A). In contrast, cells derived from donors #5 and #6 exhibited weak ALZ+

staining, resembling that of negative control cells and were characterized as ALZ- with a back-
ground level OD less than 0.5 (p<0.015).

Over the same two-week treatment period, only three of the four ALZ+ donors, namely #1,
#2, #3 were also VK+, showing diffuse areas of calcium phosphate stained by black silver ion
particles covering 8 to 16% of the surface area evaluated by Image J software (Fig 3B). In

(plain columns) for (C) two weeks or (D) one week. Measurements from triplicate determinations were all

statistically significant (p < 0.05).

doi:10.1371/journal.pone.0163629.g001
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contrast, cells from donors #4, #5 and #6 had no significant VK staining and resembled the
non-OM treated negative control cells, data in S2 Table.

Given proposals that proliferation plays an important role in the early stages of differentia-
tion, we analyzedMKI67 expression in OM-PL treated cells. The inter-donor heterogeneity for
MKI67 upregulation did not correspond directly with the mineralization phenotypes. After

Fig 2. Inter-donor heterogeneity for osteogenic biomarker expression. The level of named gene upregulation in

response to osteogenic medium treatment for (A) two weeks (2W-OM) or (B) one week (1W-OM) determined from

triplicate measurements was tested to ensure statistical significance (*p < 0.05), error bars indicating standard error of

the mean.

doi:10.1371/journal.pone.0163629.g002
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2W-OM-PL treatment the low MKI67 expression of donors #2, #5, #6 remained low, whereas
donors #1, #3 and #4 showed 4 to 66-fold MKI67 upregulation. After 1W-OM-PL treatment,
the significantMKI67 upregulation for donors #1, #3 and #4 ranged from 8 to 102-fold
(p<0.05) (Fig 3C), data in S1 Table. Thus both time points confirmed inter-donor heterogene-
ity for MKI67+ expression with greater upregulation of the active cell cycle biomarker during
early phases of osteogenic differentiation.

Inter-donor heterogeneity for the extent of bone formation in-vivo

All NOD/SCIDmice subjected to xenograft implants were healthy after the experimental pro-
cedures and the small implant incisions healed within 7 days without infection or complica-
tions. H&E stained sections of hBM-MSCs and HA-βTCP xenografts six weeks post-
implantation revealed donor-specific heterogeneity for the extent of ectopic bone formation
among fields of view capturing equivalent areas of scaffold. cGMP-hBM-MSC derived from
donors #1, #2, #3 and #6 had a good positive bone-forming phenotype (BF+) forming new
bone comprising 15–18% of the total tissue section area (Fig 4A and 4B). In contrast, xeno-
grafts specific to donor #4 showed cells aligned along the scaffold surface and vascularization
of the tissue but no significant bone formation (Fig 4A). Unlike the other bone-forming xeno-
grafts, donor #5 cells failed to show any evidence for hematopoietic territories adjacent to the
newly formed bone and the amount of bone formed by donor #5 cells (5.4%) was significantly
less (p<0.05) than the average bone formation among the other bone-forming donors
(16.91%) (Fig 4B), thus it was defined as poor bone-forming (BF-), data in S3 Table.

Biomarker characterization of ALZ+, VK+, MKI67+, BF+ cell populations

To accommodate inter-donor heterogeneity, we focused on measuring biomarker expression
after OM-PL treatment in phenotypically functional cGMP-hBM-MSC populations. Thus, the
representative average biomarker expression associated with the ALZ+ phenotype represented
donors #1, #2, #3, #4 (Fig 5A); the VK+ phenotype represented donors #1, #2, #3 (Fig 5B); the
proliferation related MKI67+ phenotype represented donors #1, #3, #4 (Fig 5C) and the BF+

phenotype represented donors #1, #2, #3, #6 (Fig 5D). For each phenotype, a specific subset of

Table 3. Correlations for osteogenic biomarker gene upregulation in cGMP-hBM-MSC treated with

OM-FBS or OM-PL for two weeks (2W) or one week (1W).

Gene 2W-OM-FBS versus 2W-OM-PL 1W-OM-FBS versus 1W-OM-PL

(r2) p-value (r2) p-value

ALPL 0.851 0.032 -0.033 ns

BGLAP 0.186 ns -0.084 ns

BGN 0.911 0.0116 1.00 6.81 E-5

CADM1 0.554 ns 0.846 0.034

CLEC3B 1.00 1.518 E-7 0.987 2.67 E-4

COL1A1 -0.185 ns 0.664 ns

COL1A2 0.924 0.008 1.00 3.55 E-7

DCN 0.818 0.047 0.975 0.001

DLX5 0.995 4.28 E-5 0.991 1.32 E-4

ELN 0.560 ns 0.910 0.012

MKI67 0.045 ns 0.244 ns

RUNX2 -0.026 ns 0.776 ns

(r2): coefficient of determination. ns: not significant

doi:10.1371/journal.pone.0163629.t003
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the biomarker genes showed statistically significant upregulation among all the relevant donor-
specific cGMP-hBM-MSC populations. Statistics for pooled expression patterns for
2W-OM-PL showed seven biomarker genes were significantly upregulated in association with
all ex vivo osteogenic phenotypes and in vivo bone formation (Fig 5E, 2W Venn diagram).
However, more relevant to the need for a prompt assay within cGMP cell expansion timelines,
after 1W-OM-PL treatment five biomarkers ALPL, COL1A2,DCN,ELN, RUNX2 represented
the osteogenic “signature genes” significantly upregulated in all phenotypic contexts (Fig 5E,
1W Venn diagram).

The signature gene inductionmeasurements following OM treatment in the non-bone
forming (BF-) cGMP-hBM-MSC from donors #4 and #5 (Fig 5F), data in S1 Table, remained
statistically significant with one exception. Specifically, COL1A2was upregulated�177-fold
in donor #4 cells yet negligibly (1.1-fold) in cells from donor #5. Another difference was that
at two weeks of OM-PL treatment upregulation of MKI67was significant for BF- cells

Table 4. Covariantly upregulated genes in cGMP-hBM-MSC treated with OM-FBS or OM-PL for two weeks (2W) or one week (1W).

Differentiation Covariant Genes Correlation p-value

Protocol (r2)

2W-OM-FBS ALPL-BGN 0.987 2.50E-04

BGLAP-DLX5 0.850 0.032

CLEC3B-COL1A1 1.000 1.60E-07

CLEC3B-COLIA2 0.994 4.90E-05

COL1A1-COL1A2 0.995 3.80E-05

2W-OM-PL BGLAP-MKI67 0.960 0.002

BGN-CADM1 0.946 0.004

BGN-COL1A1 0.995 3.40E-05

BGN-ELN 0.832 0.040

BGN-RUNX2 0.998 3.90E-06

CADM1-COL1A1 0.927 0.008

CADM1-RUNX2 0.932 0.007

CLEC3B-COL1A2 0.878 0.021

COL1A1-ELN 0.822 0.045

COL1A1-RUNX2 0.996 2.60E-05

ELN-RUNX2 0.846 0.034

1W-OM-FBS ALPL-BGN 0.995 3.00E-05

ALPL-COL1A1 0.840 0.037

ALPL-ELN 0.995 4.00E-05

BGN-COL1A1 0.868 0.025

BGN-ELN 0.999 3.20E-06

COL1A1-ELN 0.859 0.029

DCN-MKI67 0.898 0.015

1W-OM-PL ALPL-CLEC3B 0.881 0.020

BGN-COL1A1 0.856 0.029

BGN-ELN 0.902 0.014

BGN-RUNX2 0.993 6.60E-05

CADM1-COL1A1 0.869 0.025

COL1A1-RUNX2 0.820 0.046

ELN-RUNX2 0.936 0.006

(r2): coefficient of determination.

doi:10.1371/journal.pone.0163629.t004
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Fig 3. Inter-donor heterogeneity for OM-PL-induced ALZ+, VK+, MKI67+ ex-vivo phenotypes. After two

weeks of osteogenic induction in OM-PL, the hBM-MSCs were stained for matrix mineralization. (A)

Representative photomicrographs (10X) of donor-specific cGMP-hBM-MSC populations positive for Alizarin

red S stain (ALZ+) and histogram of eluted dye staining intensity measurement at 562 nm (*p < 0.05). (B)

Representative photomicrographs (10X) of donor-specific cGMP-hBM-MSC populations positive for Von

Kossa stain (VK+) and histogram of positively stained area quantified using Image J software (*p < 0.05). (C)

Osteogenic Potency Biomarkers
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(�13 fold) but negligible for the BF+ population, suggesting that cells that did not differentiate
had more persistent cell cycle activity. Notably, the two genes constituting the type I collagen
protein behaved differently, in contrast to COL1A2,COL1A1mRNA was not included as a
signature gene since it was not significantly upregulated in cells with the VK+ phenotype. Of
note, COL1A1 expression at 1W-OM-PL was significantly greater in BF- than in BF+ cells
(p< 0.001).

Histogram showing the extent of gene upregulation of MKI67 determined after induction with OM-PL for two

weeks (dark columns) or one week (light columns). Measurements from triplicate determinations that were

statistically significant are indicated (*p < 0.05).

doi:10.1371/journal.pone.0163629.g003

Fig 4. Inter-donor heterogeneity for bone formation in-vivo. Photomicrographs of H&E stained sections

of decalcified paraffin-embedded Xenografts under bright field illumination. The Xenografts consisted of

hydroxyapatite ß-tricalcium scaffold granules seeded with cGMP-hBM-MSC derived from (A) donors #1 to

donor #6 respectively. Regions adjacent to the scaffold (s) contained newly formed osteoid bone (b) stained

more homogeneously pink relative to the surrounding fibrous tissue (ft) and contained numerous osteocytes

within lacunae (arrows). A representative section of the control implant of hydroxyapatite ß-tricalcium

scaffold granules without cells revealed scaffold (s) and fibrous tissue (ft) only. (B) Histogram of the

histological section area governed by scaffold (grey column), stromal fibrous tissue (purple column) or bone

osteoid matrix (pink column) showing significant bone formation (§p<0.05). Donor heterogeneity with regard

to the relative amount of bone formed showed statistically significant differences (*p < 0.05). Scale

bar = 100 μm.

doi:10.1371/journal.pone.0163629.g004
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Fig 5. Biomarker characterisation of ALZ+, VK+, MKI67+, BF+ and BF- cell populations. Histograms of

the average extent of osteogenic biomarker gene upregulation in cGMP-hBM-MSC derived from (A) donors

#1, #2, #3, #4 with cells positive for Alizarin red S (ALZ+) when treated with OM-PL for two weeks (red

column) or one week (light column). (B) donors #1, #2, #3 with cells positive for Von Kossa staining (VK+)

when treated with OM-PL for two weeks (black column) or one week (light column). (C) donors #1, #3, #4

with significant MKI67+ upregulation when cells were treated with OM-PL for two weeks (grey column) or one
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Bioinformatic analysis of signature gene products implicated TGF-ß1

interactions

The Bioinformatic software STRING was used to explore known and predicted interactions for
the protein products of the osteogenic biomarker genes. Asking whether the five 1W-OM-PL
osteogenic signature genes were preferentially implicated with a particular signaling pathway,
we compared their STRING data independently from that of the seven excluded biomarker
genes; BGN, BGLAP,CADM1,CLEC3B,COL1A1,DLX5,MKI67, whose significant upregula-
tion was only found in a subset of phenotypes.

For non-signature gene products (Fig 6A), STRING software text-mining evidence indi-
cated associations betweenCOL1A1, DLX5 and BGLAP proteins with co-expression and
experimental data also supporting a BGN-COL1A1 interaction, however CADM1, CLEC3B
and MKI67 proteins did not show associations. STRING predicted high score functional part-
ners to be COL1A2 (score 0.999), MKI67IP (score 0.996) and ITGA2 (score 0.987). The protein
products of two genes CADM1 and CLEC3B remained unassociated.

In contrast, signature gene STRING analysis (Fig 6B) revealed a web of multiple interactions
for all five gene-products. Experimental evidence supported interactions betweenCOL1A2,
DCN and ELN, all interacting with ALPL that was in turn associated with RUNX2 by text-min-
ing evidence. This implied an interdependent functional network. The three highest score pre-
dicted functional partners were COL1A1 (score 0.999), Transforming growth factor beta-1
(TGFß1) (score 0.999) and collagen type III alpha 1 (COL3A1) (score 0.993). STRING experi-
mental evidence supportedmolecular interactions between ELN, DCN, TGFß1, COL1A1 and
COL1A2. Like ALPL and DCN, TGFß1 was associated with six other proteins in the network,
highlighting the likelihoodof it having a key role in our signature gene network for osteogenesis.

Osteogenic signature gene expression correlated with bone formation

The results supported our initial strategic assumption that correlating ex vivo gene expression
with in vivo bone formation would require identification of a subset of biomarker genes signifi-
cant for all contexts. Simply using all twelve significantly expressed biomarker genes for
agglomerative cluster analysis at 1W-OM-PL (Fig 7A) led to donor correlations unrelated to
their respective amount of bone formed in vivo, even when using the Pearson centroid linkage
that minimized the effect of outlier values, resulting in a very scattered plot (Fig 7B). In con-
trast, with the five osteogenic signature genes the cluster dendrogram showed more relevant
hBM-MSC donor-specific associations (Fig 7C). Close association between bone-forming
donors #1 and #2 (correlation coefficient 0.99) led the agglomerative hierarchy. Next, bone-
forming hBM-MSC from donor #6 were paradoxically paired with those of non bone-forming
donor #4 (correlation coefficient 0.93). Subsequently, hBM-MSC from donor #3 were grouped
as similar to the other bone-forming hBM-MSC from donors #1 and #2 (correlation coefficient
0.90). Relatively high correlation coefficients between bone-forming hBM-MSC donors #1, #2,
#3 contrasted sharply to the lack of any correlation with donor #5, whose hBM-MSC did not
show ex vivo osteogenic differentiation or bone formation. Providing a potentially important

week (light column). (D) donors #1, #2, #3, #6 with good bone formation (BF+) when cells were treated with

OM-PL for two weeks (pink column) or one week (light column). (E) Venn diagrams show the relation

between osteogenic function and significantly upregulated biomarkers after (left hand side) OM-PL treatment

for two weeks (2W) or (right hand side) OM-PL treatment for one week. (1W). (F) donors #4, #5, incapable of

good bone formation (BF-) when cells were treated with OM-PL for two weeks (purple column) or one week

(light column). Error bars indicate S.D. of means. (*) Constituent mean values were statistically significant

(p<0.05).

doi:10.1371/journal.pone.0163629.g005
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clue, the dendrogram also highlightedCOL1A2 as the most dissimilarly expressed gene among
the six donors. Plotting the dendrogram data (Fig 7D) resulted in slope-aligned donor associa-
tions, with a clear outlier exception reflecting the close correlation between donors #4 and #6.
Uniquely, these two cell populations both had inconsistent ex vivo and in vivo phenotypes; the
donor #4 hBM-MSCs were positive for ex vivomineralization but did not form bone, however
conversely, donor #6 cells had negative mineralization assays yet their xenografts did form
bone.

Removing the outlier donor #6 data before centroid-linkage clustering resulted in a dendro-
gram that prioritised correlations between bone-forming donors (Fig 7E). Plotting the data
highlighting a marked linear regression among the remaining five donors (r2 = 0.996,
p = 0.0022). Thus, bar one exception, the signature gene expression patterns measured in cul-
ture allowed discrimination according to the amount of bone formed, placing bone-forming
and non-bone-forming hBM-MSC populations at opposite ends of a straight slope (Fig 7F).

Regarding the exceptional association between cells that did not and did form bone,
1W-OM-PL treated donor #4 and #6 cells both showed unusually high COL1A2 upregulation
(152-fold and 199-fold, respectively), in contrast to much more modest COL1A2 upregulation
in the remaining bone forming-donors (#1, 2.63-fold; #2, 3.93-fold; #3, 28.18-fold). Hypotheti-
cal mathematical adjustment of donor#6 COL1A2 upregulation to the central tendency geo-
metric mean value of the other bone-forming donors (6.63-fold) resulted in a new Euclidian

Fig 6. Bioinformatic analysis of osteogenic biomarker gene product interactions. STRING (v9.05) software

confidence view, with stronger associations represented by thicker lines, for (A) the osteogenic biomarkers not common to all

osteogenic functional phenotypes, constituted a disconnected network. The software predicted three closest functional

partners (highlighted acronym) and relative scores were: type I collagen alpha 2 (COL1A2; 0.999); MKI67 interacting

nucleolar phosphoprotein (MKI67IP; 0.996) and integrin alpha 2/CD49b; 0.987). (B) the osteogenic signature gene

biomarkers common to all osteogenic functional ex vivo and in vivo phenotypes constituted a closely connected network. The

software predicted three closest functional partners (highlighted) and relative scores were: type I collagen alpha 1 (COL1A1;

0.999); Transforming growth factor, beta 1 (TGFB1; 0.999); and type III collagen alpha 1 (COL3A1; 0.993).

doi:10.1371/journal.pone.0163629.g006
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Fig 7. Ex-vivo osteogenic signature gene expression could cluster donor-specific cGMP-hBM-MSC

populations according to bone forming potential. The gene upregulation profiles of the six donor-specific

populations induced for osteogenic differentiation with 1W-OM-PL were subjected to cluster analysis: (A)

The dendrogram derived using all twelve osteogenic biomarker genes without prior selection for significance

in osteogenic function led to (B) a plot of correlation coefficients between donors and their bone forming

potential which revealed no significant relationship (r2 = 0.104, p = 0.596). (C) Dendrogram from cluster

analysis restricted to the five osteogenic signature genes. Using a Euclidian distance, single linkage

algorithm the dendogram indicated closest similarity between bone-forming donors #1 and #2. (D) The plot of
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distance single linkage cluster dendrogram (Fig 7G). With this mathematical adjustment
according to data, the close relationship between osteogenic signature gene expression and
bone formation was extended to all six donors (r2 = 0.948, p = 0.0051) (Fig 7H), data in S4
Table. Thus, in the context of our signature gene clustering algorithm the elevated ex vivo
COL1A2 expression of BF+ donor #6 sufficed to explain its inconsistent outlier status.

COL1A2 down-regulation via TGF-ß1 antagonists restored ex-vivo

matrix mineralization

According to our mathematical adjustments, reducing COL1A2mRNA levels in donor #6
cGMP-hBM-MSC to 23% of the measured value sufficed to maintain a significant correlation
(p�0.05) between signature gene data and bone formation. We explored whether we could
obtain corroborative experimental evidence by a brief three-day treatment of the cells with the
physiological factor INF-γ, a cytokine known to antagonise TGF-ß1 mediated induction of col-
lagen expression. Donor #6 cGMP-hBM-MSC treated with either MM alone, MM plus IFN-γ,
or MM plus the TGF-beta type I receptor inhibitor SB-431542, grew for three days with similar
rates to near-confluence before osteogenic differentiation was initiated with OM-PL. RT-PCR
analysis (Fig 8A) showed reducedCOL1A2 induction by 1W-OM-PL after pretreatment with
either INF-γ (�63% of control) or SB431542 (�29% of control). Moreover these responses
were persistent with long-term consequences; the relative level of COL1A2 induction in
donor#6 cells after two weeks of OM-PL treatment remained reduced in cells pre-treated with
INF-γ (�21% of control) or SB431542 (�35% of control) (Fig 8A), data in S5 Table. With
regard to Alizarin Red staining after differentiation, control cells from donor #1 or donor #6
kept in MM-PL, reached a high cell density without mineralization. Following 2W-OM-PL
treatment, the positive control donor #1 cells stained strongly with Alizarin Red, but donor #6
cells much less so (Fig 8B). However, donor #6 cells pre-treated with INF-γ or SB431542 for
just three days before 2W-OM-PL treatment achieved strong Alizarin red staining.

Discussion

It is increasingly appreciated that among important rigorous requirements for translation of
science into effective therapies, potency assays giving a priori indication of administered cell
functionality are key for properly conducted ethical trials. Nonetheless, the development of an
accurate osteogenic potency assay is particularly challenging. Diverse isolation and culture
methods, donor-specific characteristics and methods used to characterise the differentiated
phenotype can all contribute to the functional heterogeneity reported for primary cultures of
bonemarrow derivedmesenchymal stem cells. Considering the above we devised a strategy to

correlation coefficients versus bone-forming potential suggested that most associations appeared to

constitute a regression slope (closed circles), but there was an outlier association between donors #4 and #6

(open circle) preventing overall correlation (r2 = 0.225, p = 0.420). The above cluster analysis was repeated

but with modification to accommodate outlying observations. (E) Dendrogram from cluster analysis

excluding data from outlying donor #6, restricted to the five osteogenic signature genes, using a Pearson

centroid linkage and uncentered correlation distance. (F) The resulting plot of donor correlation coefficients

versus bone forming potential confirmed a presumed regression line relationship between bone-forming

potential and gene expression for cells from the five congruent donors (r2 = 0.996, p = 0.0169). (G) The

dendrogram resulting from a Euclidian distance, single linkage algorithm with donor#6 COL1A2 induction

adjusted to 6.63-fold enhanced similarity between bone-forming donors. (H) The corresponding plot of donor

correlation coefficients versus bone-forming potential showed a strong linear relationship between ex vivo

gene expression and in vivo bone-forming potential in cells from all donors (r2 = 0.948, p = 0.0051) with

closely clustered bone-forming donors #1, #2, #3, #6 (red box).

doi:10.1371/journal.pone.0163629.g007
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Fig 8. Downregulation of type I collagen restored ex-vivo matrix mineralization. (A) Histogram of

RT-PCR determined COL1A2 mRNA downregulation following treatment of donor #6 cells with Interferon

gamma (IFN-γ) or TGF-ß1 signaling inhibitor SB431542 for three days before treatment with osteogenic

medium for one or two weeks. *p <0.05, **p <0.005. (B) Representative photomicrographs of Alizarin Red S

staining after two-week treatment of cells with maintenance medium (MM) or osteogenic medium (OM) using

donor #1 cells as a positive control compared to donor #6 cells and donor #6 cells pre-treated with MM

supplemented with 40U/mL INF-γ or 2 μM SB431542 for three days. Bar = 100 μM.

doi:10.1371/journal.pone.0163629.g008
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test whether gene expression of primary cGMP-hBM-MSC ex vivo could predict bone forming
potential.

The isolation, cell characterisation and culture methods adopted for this study are those cur-
rently being employed by the Reborne EU FP7 consortium in phase I clinical trials [40], ensur-
ing that our data should be relevant to clinical contexts. A history of different osteogenic
medium (OM) formulations in the literature complicates selection of candidate osteogenic bio-
marker genes. For example, collagen fibril synthesis and assembly by ascorbic acid-2-phos-
phate, the long-acting vitamin C derivative is concentration dependent [41]. Beta-
glycerophosphate, a substrate for alkaline phosphatase and source of inorganic phosphate is
important for the formation of hydroxyapatite Ca10(PO4)6(OH)2, yet intracellular incorpo-
ration of inorganic phosphate also affects cell function and gene expression [42]. Dexametha-
sone, a synthetic agonist for the glucocorticoid receptor induces osteogenic differentiation
through activation of theWnt/beta-catenin signaling pathway with variable context and con-
centration dependent effects on cell proliferation, metabolism and differentiation [43]. We
used 10 nM as opposed to 100 nMDexamethasone to enhance our potential to see osteogenic
differences since 100 nMDexamethasone treatment could artefactually drive matrix minerali-
zation in skin-derived cells [44], co-stimulate expression of adipogenic genes [45] and obscure
donor-specific variations in osteoblastic differentiation [46].

Although ascorbic acid, beta-glycerophosphate and dexamethasone sufficed to induce oste-
ogenic differentiation of MSC [47], we added the physiologically relevant supplement BMP-2,
that can potentiate differentiation in preosteoblast cells [48, 49]. BMP-2 has a predominant
role in the early phase of hMSC differentiation and preserves cell-type specificity since it did
not enhance osteogenic differentiation of adipose derived stem cells [50] or periodontal liga-
ment cells [51]. Co-administration of BMP-2 with hMSC increased bone formation in immune
deficient mice [52]. It is crucially relevant to graft healing [53] and despite a short half-life [54]
BMP-2 is under consideration for clinical applications [55–57]. Our ex vivo dose of BMP-2
(100 ng/mL) fell within the range of 25 ng/mL to 25 μg/mL shown to yield near-equivalent
amounts of bone in vivo [58]. In comparison to some other BMP family members, BMP-2
showed modest improvement in inducing ex vivo osteogenic differentiation [59]. Thus BMP-2
was well suited for a discriminatory assay, it wouldn’t necessarily undermine the contribution
of a cell’s innate osteogenic potential, as might an alternative excessively dominant inducer of
osteogenic differentiation.

The choice of human PL or FBS, both modulators of osteogenic inducers, was considered a
predominant characteristic distinguishingOM-PL fromOM-FBS. In previous reports, individ-
ual hMSC populations had a marginally improved propensity to form bone when grown in PL
(9/9; 100%) versus FBS (6/9; 67%), whilst ex vivo osteogenic assays were equivalent [60]. Even
without osteogenicmedium supplements, PL helped prime hMSC towards an osteogenic phe-
notype by raising levels of ALPL mRNA, and matrix proteins integrin-binding sialoprotein
IBSP and OPN/SPP1 [61]. The latter secreted protein can bind hydroxyapatite avidly and also
act as a cytokine upregulating expression of IFN-γ [62]. Our results supported the view that
osteogenic biomarker expression must be considered and interpreted within the context of the
specific osteogenic inducers used. For example, serummay be suboptimal for BMP-2 respon-
siveness [63] and under our conditions CADM1 expression was not a predictor of hMSC func-
tion [64]. Previous predictive biomarkers frommodel systems using FBS need not necessarily
remain relevant when hMSC are derived and cultured with PL. For example, although ELN
expression may be governed by dexamethasone acting on several glucocorticoid-responsive
elements in its promoter [65], its expression was significantly higher in OM-FBS versus
OM-PL (p<0–001). This likely reflected complex interactive growth factor networks; e.g. a
possible inhibitory effect of basic FGF [66] a significant component of PL [67].
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Pooling data from all donors, most genes (7/12; 58%) were significantly induced by either
OM-FBS or OM-PL after one week, implying this principally reflected fundamental features of
differentiation rather than particular responses to unique growth factors. We confirmed several
osteogenic biomarker gene expression patterns reported in an immortalisedhMSC-TERT cell
model [68] extending their relevance for osteogenic differentiation to primary hMSC with PL-
basedOM [69]. We also confirmed that early events in the differentiation process were linked
to end-stage phenotypic expression such as mineral deposition [70]. Meeting the first of our
main aims, prompt differentiation with more robust osteogenic biomarker induction in
1W-OM-PL could facilitate performing the osteogenic potency assay within a cGMP cell
expansion time frame.

To categorise heterogeneous donor-specific cultures we focused on significantly expressed
genes in cells that functioned positively in multiple osteogenic assays. Alizarin Red and Von
Kossa staining for matrix mineralization were complementary staining methods, each reacting
with the target calciummolecule differently [32]. Donor #4 cells with their ALZ+ yet VK- phe-
notype highlighted the multifactorial complexity of the matrix deposition and mineralization
process. RT-PCR based analysis of MKI67 expression, a measure for cell cycle activity equiva-
lent to the positive Ki67 index from immunocytochemical staining [71], advantageously pro-
vided a phenotypic end-point that could be measured concurrently with the osteogenic
biomarker genes at both 1W and 2W time points. In contrast to ALZ+ or VK+ cells,MKI67+

cells expressed BGLAP,COL1A1,COL1A2 and RUNX2 at relatively high levels, consistent with
observations that collagen type I can enhance hMSC growth rate [72]. hMSC proliferation may
be associated open chromatin structures broadening the gene expression repertoire [73, 74]
and indicative of multipotency [75] but we could not confirm that proliferation was a reliable
correlate with bone formation [25].

The ectopic bone formation assay cleared showed inter-donor heterogeneity and despite a
small sample size of six donors, our % incidence of donors with good bone formation (4/6;
67%) was very representative of heterogeneity for successful bone formation in studies with
larger sample sizes: (20/34; 59%) [76], (74/120; 62%) [77], (8/14; 57%) [20] and (11/20; 55%)
[25]. Parameters such as age of donor, CFU efficiencyof primary cultures, or any single gene
did not correlate directly with bone formation. Although BGLAPwas associated with ex vivo
matrix mineralization it was not strongly associated with the bone forming phenotype, con-
firming its distinct significance for ex-vivo and in-vivo osteogenic differentiation pathways
[26]. Despite such caveats, seeking promptly expressed osteogenic biomarkers relevant for
both ex vivo and in vivo contexts in 1W-OM-PL data we did identify five genes;ALPL,
COL1A2,DCN,ELN and RUNX2 fitting the “signature” of being significantly expressed in all
contexts. Providing just five signature genes was advantageous for donor discrimination, since
toomany clustering variables might reduce the probability of finding clear dissimilarity. Fortu-
nately, only the RUNX2 and ELN genes were co-induced in a parallel manner among the six
donors, reducing concern for biased overrepresentation from toomany highly correlated
variables.

Previous publications aiming to draw correlations between gene expression and bone form-
ing potency have also been based on relatively small sample sizes, yet there is need for caution
when interpreting the regression coefficient as an indicator of the relative effectiveness of our
signature gene biomarkers. We ensured careful and significantmeasurement for all our signa-
ture genes, because when the variance of individual observations is small, accurate prediction
may still be possible despite a small sample size. Given many potential differences between
immortalizedhMSC-TERT versus primary hMSC expanded and differentiated in different
media, the consistent identification of a predictive quality for COL1A2,DCN and ELN expres-
sion was striking. Correlation need not imply causation, nonetheless, the five signature genes

Osteogenic Potency Biomarkers

PLOS ONE | DOI:10.1371/journal.pone.0163629 October 6, 2016 23 / 32



have well recognised roles in bone formation. Mice null for tissue-nonspecific alkaline phos-
phatase (ALPL) suffer bone abnormalities and its overexpression can increase skeletal minerali-
zation [78]. Mutations in COL1A2 or its partnerCOL1A1 that encode type I collagen can cause
dominant inheritance of osteogenesis imperfecta [79]. A strong correlation between the
steady-state mRNA levels of type I collagen and periostal bone formation highlights the in vivo
relevance of its gene expression level [80]. Decorin (DCN) a major matrix proteoglycan in bone
helps regulate matrix mineralization by influencing collagen assembly [81]. Elastin (ELN) deg-
radation products can synergise with TGF-ß1 to promote osteogenic differentiation in fibro-
blasts [82] and the multifunctional runt related transcription factor 2 (RUNX2) is essential for
osteoblast development and bonemineralization [83]. It has been suggested that ex vivo induc-
tion of ALPL mRNA levels and ALPL activity could predict the bone forming capacity of
human bonemarrow stromal cells [84]. We confirmed that testing the response to osteogenic
induction can be informative and ALPL was one of our five signature genes, however no single
genetic biomarker sufficed to reliably predict osteogenic performance among our six donor
specific hBM-MSC populations. Rather our data indicated that the measurement of induced
levels of expression among a cohort of osteogenic genes was required to reliably correlate ex
vivo and in vivo osteogenesis.

Seeking further clues regarding the role of our five signature genes, a STRING database bio-
informatic search identified the three most highly scored associations from known and pre-
dicted proteins. As might be expected, COL1A1, the collagen type I triple helix partner of
signature gene COL1A2 had the highest interaction score. The STRING database prioritised
interactions with morphogenic cytokine TGF-ß1 over the inducing agent BMP-2, a particularly
compelling result since counterbalanced BMP-2 and TGF-ß1 signalling pathways converge at
the RUNX2 gene to control hMSC differentiation with a coordinated activity that is critical for
skeleton formation [85]. TGF-ß1 can enhance BMP-2 ectopic bone formation [86] but in
excess can be responsible for inhibition of osteogenesis that can in turn be counteracted with
BMP-2 treatment [87]. For the third interactor highlighted by STRING, transgenic mouse
studies have confirmed that COL3A1 regulates osteoblastogenesis and the quantity of trabecu-
lar bone [88]. The high in vivo relevance of these influential signalling pathways [89] may help
explain why expression of our osteogenic potency signature genes ex vivo could overcome con-
textual differences to remain relevant for in vivo bone formation.

Notably, the most highly upregulated gene for all the osteogenic phenotypes we tested, dec-
orin, was less upregulated in cells from our BF- donors and has been reported to be essential
for maintaining mature osteoblasts through an ability to sequester and modulate the activity of
TGF-ß1 [90]. A role for decorin in neutralizing the activity of TGF-ß1 would be consistent
with observations that neutralizing TGF-ß with specific antibodies could induce an 11%
increase in the mineral-to-collagen ratio in murine bone [91] and that excessive TGF-ß1 activ-
ity can underlie bone disease [92]. In summary, bioinformatic analysis highlighted that the sig-
nature genes form part of a network involving TGF-ß1, which was consistent with this
cytokine’s central role in bone remodeling [93].

We also shed light on an apparent anomaly from earlier studies. Despite Collagen type I’s
key role in bone formation [94], its ex vivo expression has been correlated with bone forming
potential [95], but sometimes not [96]. Notably, measurement of baselineCOL1A1 expression
was not related to the bone forming potential of hMSC-TERT clones [26], whereas in a follow-
up study using the same cells, OM-inducedCOL1A2 expression did predict bone formation
[27]. The often used, term “collagen type I gene” is ambiguous since two independently regu-
lated COL1A1 and COL1A2 genes found on different chromosomes contribute to the two α1(I)
chains and one α2(I) chain forming the heterotrimer Type I collagenmolecule. These two col-
lagen genes share common [97] and distinct DNA promoter elements [98]. Our data indicated
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COL1A2 rather than COL1A1 gene induction was more precisely correlated with subsequent
bone formation. True to the iterative nature of hierarchical cluster analysis, discriminating
between the cGMP-hBM-MSC from different donors using the five signature genes required
optimization and compensation for apparent outliers. Exclusion of just one outlier, the donor
#6 cell population, sufficed to reveal a remarkably linear correlation between the ex vivo expres-
sion of osteogenic signature genes and bone formation among the remaining five donors (coef-
ficient of determination, r2 = 0.996).

Rather than be ignored, the outlier donor #6 was a useful source of hypothesis; since cluster
analysis highlightedCOL1A2 as the most disparate signature gene, very highly induced in
donor #6 cells. Given that donor #6 cells ultimately did form bone, we conceptualized substi-
tuting the donor #6 COL1A2 high measured value with the lower geometricmean value of the
other bone-forming donors. This sufficed to assimilate donor #6 cells with the other bone-
forming populations and greatly improve the linear correlation between signature gene
expression and bone formation for all donors. The closest clustering of the bone-forming
donors with greatest separation from non-bone-forming donors was achieved by the more
quantatively discriminatory Euclidian distance and single linkage cluster analysis (r2 = 0.948,
p = 0.0051). Notably, the phenotype of donor #6 cGMP-hBM-MSC resembled the impaired
mineralization and reduced Alizarin red staining in human osteoarthritic (OA) osteoblasts
with abnormally high expression of the type I collagen genes [36]. Couchourel et al., rescued
Alizarin staining by correcting an abnormal COL1A1-to-COL1A2 expression ratio with inhi-
bition of TGF-ß1 signalling in OA osteoblasts. Given the paradox that donor #6 cells had con-
trasting ex vivo and in vivo phenotypes we explored the effects of IFN-γ, a physiologically
relevant inhibitor of COL1A1 and COL1A2 expression. This cytokine can cross-talk antago-
nistically with the TGF-ß1 pathway [99] and is produced locally in the bone microenviron-
ment by inflammatory cells as well as hMSC [100] with an anabolic role in bone formation
[101]. Brief initial treatment of donor #6 cells with either IFN-γ or an inhibitor of the TGF-ß1
pathway receptor ALK5, significantly reduced subsequent OM inducedCOL1A2 gene expres-
sion and evoked strong Alizarin red staining. Thus mathematical simulation was qualitatively
and quantitatively supported by experimental evidence to confirm that correlations drawn
between the levels of signature gene expression and bone formation were consistent with
hypothetical and real outcomes.

Additional complementary early parameters of freshly isolated hBM-MSC have recently
been proposed for predicting cell growth potential from CFU-Fmorphology [102] and osteo-
genic function frommonolayer cell morphology [103, 104] or mitochondrial function [105].
However, a key advantage of our RT-PCR based analysis includes the possibility to provide a
stored cDNA resource that can be subsequently explored further in relation to patient out-
comes and/or as new biomarkers are discovered. Further studies will be needed to help verify
our assay and determine whether it may be further improved to meet specific requirements by
inclusion of further genes.

In summary, we have provided proof of principal that a promptly performed ex vivo
potency assay measuringOM induced gene expression of five biomarker “signature genes”
could discriminate donor-specific cGMP-hBM-MSC populations according to their bone
forming potential in vivo. That such linear correlations could be drawn from relatively few
samples encourages consideration that the osteogenic potency assay is applicable to individual
cases. As cardinal predictive biomarkers, the five signature genes showed very coherent biologi-
cal qualities consistent with a governing influence of TGF-ß1 signaling in early phases of
hMSC osteogenic differentiation. Having demonstrated feasibility, we propose that ex vivo
functional potency assays will be very valuable for the therapeutic application of adult stem
cells.
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