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Abstract: The research of efficacious non-invasive therapies for the treatment of brain diseases represents a huge challenge, as people 
affected by disorders of the Central Nervous System (CNS) will significantly increase. Moreover, Blood-Brain Barrier (BBB) is a key 
factor in hampering a number of effective drugs to reach the CNS. This review is therefore focusing on possible interventions of 
nanomedicine-based approaches in selected diseases affecting the CNS. A wide overview of the most outstanding results on 
preclinical evaluations of the potential of nanomedicine in brain diseases (i.e. Brain Tumor, Alzheimer, Parkinson, Epilepsy and 
others) is given, with highlights on the data with relevant interest and real possibility in translation from bench-to-bed side. Moreover, 
a critical evaluation on the rationale in planning nanosystems to target specific brain pathologies is described, opening the pave to a 
more structured and pathology-tailored design of nanocarriers.   
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1.INTRODUCTION 

The research of efficacious non-invasive therapies for the 
treatment of neurodegenerative diseases is one of the most 
important topics faced in the last years by the pharmaceutical 
technology. The interest for this topic was triggered by the 
prevision that the number of people affected by disorders of 
the Central Nervous System (CNS) at the end of the 20th 
century1 should significantly increase owing to enhance of 
the live expectancy.   

As the Blood-Brain Barrier (BBB) is the barrier designed to 
protect the CNS from microbial contamination and 
exogenous agents, it hampers a number of effective drugs to 
reach the CNS. The BBB consists of walls formed by 
capillaries that isolate the brain compartment from the 
bloodstream. The key features of BBB as the permeability 
change with respect to macromolecules, or even 
nanosystems, if in healthy or diseased state. 

In order to promote a drug delivery and targeting to the CNS, 
nanotechnology and nanomedicine are surely representing 
one of the most efficacious approaches, growing day-by-day 
in terms of published papers and clinical trials. This evidence 
is corroborated by simply indexing “brain” and 
“nanoparticles” in PubMed: from 1996 up to today this 
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research totalizes more than 2600 papers. In particular, 
before 2004, the papers dealing with “nano&brain” were 
quite low (almost 200 units from 1996 to 2004), while only 
in the last 3 years (2012-2014) more than 1200 research 
works were dealing with this topic. What is really surprising 
is that this high number of “nano&brain” papers 
dramatically falls down when the literature research is 
refined by combining “nano&brain” with “vivo”  (down to 
800 papers totally) and again falls down to 100 when 
refining with “efficacy”.  

This evaluation, evidently superficial, could help in better 
understanding the rationale of this review, which deals with 
the evaluation of in vivo outputs from nanotechnology 
application in diseased models mainly.  

Regarding clinical trials, few references are available and 
mainly related to intrathecal injection of nanomedicines, but 
mostly pro-drugs for brain tumors. Thus, no nanomedicine 
(NPs or LPs) are now in clinical evaluation. 

Several reviews dealt with proof-of-concept experiments in 
healthy brains, with interesting evidences of BBB crossing 
and CNS targeting2-5. Most of experiments were conducted 
on “healthy” animals and therefore on “healthy brains”, 
without any pathological hallmarks. This fact inevitably 
means that, in these studies, before administration of any 
kind of nanocarriers, the BBB state is preserved, with 
complete maintaince of its integrity and low permeability 
rates.  

In the following sections, dealing with the application of 
nanomedicines to the treatment of 
neurological/neurodegenerative disorders, the state of BBB 
and the brains are “diseased”, with evidences of remarkable 
changes in BBB permeability and integrity.  

These pathologies could vary from brain tumors, 
neurodegenerative diseases (Parkinson’s and Alzheimer’s), 
epilepsy, infectious brain diseases, strokes and many others; 
the BBB state would be strongly different as shown in table 
1. 

 

Pathology BBB 
integrity 

BBB 
permeability 

BBB influx 
pathways 

Brain Tumor ↓↓↓ * ↑↑↑* ≠ 

AD ≠ ↑↑ ↑* 

PD ≠ ≠ ≠ 

MS ↓↓ ↑ ≠ 

LSDs ≠ ↑ ≠ 

Stroke ↓↓↓↓ ↑↑↑↑ ≠ 

Neuro-
infections 

↓* ↑* ↑* 

 

Table 1: Summary of BBB features in neurological and 
neurodegenerative disorders. AD (Alzheimer’s Disease); PD 
(Parkinson’s Disease); MS (Multiple Sclerosis); LSDs 

(Lysosomal Storage Disorders);* (depending on the grade of 
the pathology). 

1.1 Glioma  

Glioma is unfortunately the most frequent primary CNS 
tumors in humans: the various types of gliomas can be 
identified by histological features reflecting cellular 
differentiation lineages: astrocytomas, oligodendrogliomas 
and mixed oligoastrocytomas6. Glioma is highly infiltrative, 
leading to the complete disruption of normal tissue 
architecture and displays angiogenic features and high 
degree of vascular proliferation along with endothelial cell 
hyperplasia7. Treatment of gliomas includes surgery, 
radiotherapy and chemotherapy, however the prognosis 
remains poor, with a median survival of 12-15 months8. 
Clearly, there is a desperate need for more effective therapies 
for patients with glioma. 

Investigations revealed that BBB and blood-tumor barrier 
(BTB), the endothelium of new vessels, is remarkably 
different from healthy BBB. These new angiogenetic 
microvessels show an increased vascular permeability, 
derived from deregulation of junctional proteins. Besides, 
tight junction opening is functionally the most important 
abnormality, more pronounced with increasing malignancy. 
Thus, compared with normal healthy brain, gliomas fail to 
express or express a non-functional form of occludin. 
Moreover, fenestrations and an increased number and size of 
pinocytic vacuoles were reported9-11. Nonetheless, the altered 
permeability of BBB remains a local event, evident in the 
core of tumor, but totally absent at its growing margins and 
healthy tissue surrounding12.  

In vivo studies are usually performed using xenograft model 
based on the intracerebral implantation of brain tumor cell 
lines (usually 9L, C6, 4C8, U87 or 101/8) into 
immunologically deficient rodents13. This specific kind of 
animal model is wrongly, but unfortunately usually 
considered as model for proof-of-concept of BBB crossing. 
This is a big pitfall as BBB does not maintain its integrity, 
particularly evident at the late-stage of the diseases. On the 
contrary, at the very early stages, the BBB maintains its 
barrier function, but loses its low permeability 
characteristics14.  

This particular situation of BBB, leading to the tumor-
accumulation of several kinds of nanocarriers without a real 
BBB crossing mediated by specific mechanisms or pathways 
state, strongly impacts on the planning and fate of 
nanocarriers aiming to treat brain cancer. Thus, more than 
BBB crossing mechanisms, the majority of studies are taking 
advantages of Enhance Permeability and Retention (EPR) 
effect of those tissues. If the nanocarriers are further targeted 
to the tumor (with specific ligands, proteins or antibodies), 
the possibility to obtain an enlarged accumulation in the 
tumor site strongly increases.  

FIGURE 1 

Non-targeted nanomedicine-based approach was firstly 
utilized aiming to improve chemo-therapeutic index of 
doxorubicin (DOX), one of the most active molecule against 
malignant glioma, unfortunately limited by poor BBB 
penetration. Interestingly, results appeared in disagreement: 
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DOX encapsulated in sterically stabilized LPs lead to a 
significant increase in survival of animals after treatment 
with some differences in the extents15-17, not only due to the 
delivery systems, but mainly to the intrinsic variability in the 
properties of the tumor and to the different sensitivity to the 
same drug. Similarly, a “passive targeting” approach was 
used for paclitaxel18 or gene material stabilization into LPs19-

20, reporting positive results for tumor prognosis.  

Active targeting (whether tumor or BBB aims) was 
investigated with promising results. The surfactant 
polysorbate 80 (PS-80) was intensively exploited to cross 
BBB; notably, even if BBB crossing was not needed in the 
case of brain tumor over III grade, an anticancer drug loaded 
PS-80-coated NPs lead to a significant survival improvement 
in comparison to both free drug and loaded NPs without PS-
8021-25.  

Pegylated-cationic serum albumin NPs, binding to negative 
glycoprotein on endothelial capillary for BBB crossing, were 
used to deliver a plasmid (pORF-hTRAIL), inducing 
apoptosis in tumor cell with regimen-treatment-dependent 
survival improvement and decreased tumor growth26.  

Also liposomes (LPs) were functionalized with tumor-
targeting ligands (IL-13-PEG) and used for DOX delivery: 
as compared to non-target systems, DOX encapsulated into 
IL-13 pegylated LPs produced higher accumulation in brain 
tumor, associated with a survival time improvement27. 
Another ligand (transferrin) was conjugated to LPs, which 
were loaded with the enriched isotope of Boron (B10). These 
LPs were able to achieve a tumor specific boron delivery 
system for boron neutron capture therapy, showing an 
increased and prolonged accumulation in glioma and 
providing for an increased survival of diseased animals28. 

Recent interesting reviews on innovative approaches based 
on nanocarriers29-30 highlighted the role of nanomedicine for 
brain cancer treatment and imaging, opening the pave to the 
most innovative frontiers in nano-oncology, namely nano-
theranostic for brain cancers. In particular, a step forward in 
tumor targeting technology was conducted by introducing a 
second targetor agent, in order to produce double-targeted 
systems in which the surface of LPs is modified to recognize 
both receptors for BBB crossing and receptors for tumor 
cells targeting. In this contest, with confocal microscopy 
analysis31 Trojan-horse LPs were investigated for in vivo 
silencing of EGFR by the shRNA clone 967 encapsulated 
into. Considering that EGFR has a pro-angiogenic function 
in cancer, the suppression of the EGFR in glioma-bearing 
mice with the anti-EGFR shRNA therapy was correlated 
both to a significant reduction in tumor vascular density and 
to an increasing in median survival. Notably, the double 
surface conjugation strategy was also exploited to improve 
the accumulation of cytotoxic drugs to brain tumor32-. As 
another example, LPs conjugated with WGA and Tamoxifen 
and encapsulating Topotecan, lead to an increase in survival 
of glioma-bearing rats 3-4 weeks after i.v. administration32. 
Double targeted LPs (Mannose and Tf) were also used to 
deliver Daunorubicin to glioma-bearing rats, showing a 
significant decrease in tumor growth and a consequent 
increase in animal survival33. 

 

1.2. Alzheimer’s disease 

Alzheimer’s disease (AD), the most common form of 
dementia, is a chronic and progressive neurodegenerative 
disorder that begins with cognitive and memory 
impairments, accompanied with behavioral disturbances 
such as aggression, depression, hallucination, delusion, anger 
and agitation and eventually progresses to dementia, physical 
impairment and death34-36. The definite diagnosis of AD is 
made upon histological verification, established by biopsy or 
autopsy, of two main hallmarks: extracellular amyloid 
plaques and intracellular neurofibrillary tangles, which 
enclose hyperphosphorylated tau protein Furthermore, AD 
neuropathology, based on the amyloid hypothesis 
constituting of extracellular amyloid plaques and 
intracellular neurofibrillary tangles accumulations34,37, is 
characterized by a progressive loss of synapses and neurons 
in a region- and cell-type-specific manner38. Microglia and 
astrocytes are activated by β-amyloid protein and related 
oligopeptides, leading to a cascade of events producing toxic 
molecules, neuronal damage, synaptic dysfunction and 
alteration of the permeability of the BBB14. In vitro and in 
vivo evidences highlighted the hypothesis on the 
involvement of BBB and cerebro-vasculature in AD39-43 
leading to pathophysiological alterations of BBB40-43. Thus, 
leakiness, anatomical modifications in BBB architecture and 
alterations of BBB influx/efflux pathways as well as 
deficient glucose transport and an altered excitatory amino 
acid transporters, with an unbalance of glucose, glutamate 
and other neurotoxic substances regulation in and out the 
brain strongly affecting the onset or progression of the 
pathology44. 

The inflammatory state is another common characteristic of 
the BBB in AD: this condition is featured by: i) 
neuroinflammation and relaps of neurotoxins by brain 
endothelium; ii) oxidative damage; iii) decreased cerebral 
blood flow with consequent hypoxia and inefficacious 
transport of nutrients to the brain45-46. Even if changed in its 
dynamics, BBB integrity in AD could be considered as 
“maintained”, therefore orienting the planning of nanocarrier 
engineering, since a strategy for BBB crossing is required 
along with a targeting moiety for AD hallmarks targets.   

FIGURE 2 

Polymeric NPs made of different materials (PBCA, PLGA 
and chitosan) were employed in in vivo with different loaded 
molecules and different targeting strategies. One of the most 
used approaches is based on surfactant coating of NPs. In 
particular, the role of surfactants (PS-80 as well as 
polaxamers or PEG) as possible trigger-factor for BBB 
permeability increase was deeply debated by several 
authors22-23, hypothesizing the role of apolipoprotein A-I 
(ApoA-I) absorption onto surfactant-coated NPs leading to a 
possible interaction with BBB receptors and triggering 
receptor-mediated transcytosis of NPs. As examples, nerve 
growth factor (NGF) loaded in PBCA NPs covered with PS-
80 (for BBB crossing) was able to reduce amnestic effect, if 
compared to NGF-free solution treatment47. Similarly, 
PBCA NPs were coated with PS-80 and or with PEG5000 
and loaded with tacrine (reversible inhibitor of 
acetylcholinesterase): both kind of surfactant-coated NPs 
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were able to improve cognitive function48, with a greater 
effect obtained with drug loaded PBCA NPs covered with 
PEG5000 (with respect to PS-80 coated NPs and free 
solution) probably due to the alteration of the BBB 
permeability rather than a specific targeting. In fact, the 
presence of PEG onto the NPs surface confers stealth 
properties to the NPs, allowing them to remain over a longer 
time in the systemic circulation, thus improving the chances 
to reach the pathological site.  

Another example of surface modification of NPs for BBB 
crossing and application in AD is constituted by the use of 
ApoE3 and the exploitation of its interaction with LDL 
receptor. In this view, curcuminoids were loaded into NPs 
modified with ApoE3 and their anti-inflammatory and 
antioxidant activities49 along with their potential in 
preventing Ab aggregation and toxicity on neurons50-51 were 
assessed in vitro52-53. 

All the examples cited before are regarding only surface 
modification for BBB crossing: none of them considering the 
amyloid targeting. The unique example of a double targeting 
strategy (BBB crossing plus Ab targeting) is referred to 
chitosan NPs aiming to develop immunotherapy against 
Ab1-42. Chitosan NPs, functionalized with a polyamine 
modified F(ab') portion of IgG4.1, an anti-amyloid antibody 
[pF(ab’)24.1], were able, in in vitro model, to cross the BBB 
and, after administration in animal models, to target the brain 
amyloid plaques54-55.  

Similarly, despite many examples are reported in literature 
regarding LPs use for AD treatments, only few papers 
reported the application of a double targeting technology. In 
particular, antibodies were employed as ligands for LPs 
surface to target both to the BBB receptors and to AD target. 
In fact, LPs modified with Aβ-mAb and OX26 mAb (against 
TfR) highlighted a very high affinity for Aβ peptides56 and 
an increased interaction with human immortalized brain 
capillary cells (hCMEC/D3)57. The preliminary in vitro 
results evidenced serum stability and the ability of cellular 
uptake, suggesting that dd-LIP can be used as AD targeted 
therapeutic systems, even if, as exposed before, the affinity 
of  OX-26 for the receptor could affect their trafficking57 . 

 

1.3. Parkinson’s Disease 

 

Parkinson’s disease (PD) is a multicentric neurodegenerative 
disease, which affects 1% of people over age 6034. Clinical 
features of PD include tremor at rest, bradykinesia, rigidity 
and flexed posture58 (Hughes et al., 1993). Pathologically, 
the key deficit in PD is almost connected to the loss of 
dopaminergic neurons in the substantia nigra, with 
consequent reduction of dopamine level59. Cell loss and 
Lewy body formation (abnormal intraneuronal aggregates of 
protein, predominantly a-synuclein) occur in the locus 
coeruleus, dorsal motor nucleus, and substantia innominata60. 
Consequently, nor-adrenergic, serotonergic and cholinergic 
neurons are also lost and this widespread neurodegeneration 
leads to the emergence of a variety of features known as 
“non-motor” symptoms in PD. These symptoms include 
cognitive decline, apathy, depression, anxiety disorders, 

hallucinations, gait and balance disturbances, sleep 
disorders, sexual dysfunction, bowel problems, drenching 
sweats and pain61.  

 

Dramatically, no permanent rescue and cure for PD is 
actually present in therapy; this situation is dramatically 
getting worse since there is a complete un-knowledge of 
agents able to stop and to reverse the progression of PD. 
Therefore, the current treatments of PD are only aiming to 
decrease the impact of symptoms62-63. Although symptomatic 
therapy of PD is effective (Levo-Dopa), novel therapeutic 
strategies are required. In this view, advanced delivery 
methods could be reasonably considered as primary goals as 
the active substances must enter the CNS to exploit their 
effects. 

Animal PD model is obtained through injection of 
neurotoxins: the most used toxin is 6-hydroxydopamine (6-
OHDA stereotaxical injected)64, but also 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP i.p. injected) is used65: 
both agents destroy neurons by generating active oxygen 
species such as superoxide radicals.  

Remarkably, at present, regarding this pathology no 
significant evidences of BBB permeability alteration in 
patients and in animal models are fully described and 
detailed.   

FIGURE 3 

Thus, nanotechnology-based strategies were mainly based 
nanocarriers, which, independently from the type of drugs 
loaded, need to be modified on their surface to trigger BBB 
crossing. In this view, PS-80 coating was again employed for 
BBB crossing of PBCA NPs loaded with nerve growth factor 
(NGF)47. After administration to MPTP mice, some 
significant improvements in PD symptoms were assessed 
already after 90 minute and maintained for 21 day. 

By using a different animal model (6-OHDA stereotaxical 
injected rats) LPs were loaded with glial-derived 
neurotrophic factor (GDNF) plasmid and targeted to the 
brain with OX-26 (mAb against the mouse TfR). After a 
single administration to 6-OHDA rats, a general 
improvement of PD symptoms, a decrease in rotational 
behavior and a great increase of Tyrosine Hydroxylase (TH) 
activity were achieved66. These remarkable results were 
improved with multiple pulses injection of the LPs67. In 
other works68-69, the same kind of targeted LPs were loaded 
with 877 cDNA (a complementary DNA of TH gene) and 
after administration at different doses, an improvement in 
PD symptoms was allowed until 3 day post injection, over 6-
9 days. The same targeted LPs were loaded with TH 
plasmid, allowing a prolongation of the neuroprotective 
effect limited to 3 days after the injection70.  

Haloperidol and chlorpromazine were also used to induce 
extra pyramidal effects in rat or mice. In particular, LPs 
formulated with two surfactants (span 80 or tween 80) and 
loaded with dopamine were injected in rats treated with 
haloperidol. Both formulations lead to an increase in 
muscular coordination activity, tested with the rotarod test, 
along with in locomotor activity71.  
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1.4 Multiple Sclerosis 

 

Multiple Sclerosis (MS) is a disorder of the CNS with 
inflammatory and neurodegenerative components, featured 
by a variable clinical pattern, ultimately leading to a 
progressive neurological dysfunction72. MS pathological 
hallmarks consist of demyelination and cellular infiltration 
of T cells and macrophages. Up to today, no current 
resolutive therapy exists for MS: immunotherapy and 
repeated injections of high dose glucocorticosteroids (GS) or 
potent anti-inflammatory drugs represent the most common 
treatment protocols. 

In MS, BBB integrity is progressively lost with the increase 
of disease severity due to a partial loss and delocalization of 
brain endothelilal junction proteins (occluding and VE-
cadherin mainly)73-74 . The experimental autoimmune 
encephalomyelitis (EAE) is the most applied in vivo 
experimental model of MS, featured by high tissue 
inflammation and partial disruption of the BBB75-77. 

FIGURE 4 

Thus, in this particular case of CNS-disease, the engineering 
of the surface nanocarriers is not needed, or at least it does 
not represent the first goal. The strategy to be applied for 
innovation in MS therapy could be based on the planning of 
nanosystems able to extravasate and to circulate in the 
bloodstream for a long period of time.  

As examples, long-circulating pegylated LPs loaded with 
prednisolone, without any targeting ligands for BBB 
crossing, were able to efficiently deliver  the 
glucocorticalsteroids78-79 up to a high concentrations in the 
inflamed cerebral area of autoimmune EAE rats model  as 
compared with an equivalent dose given as free drug. This 
approach leads to a reduction of inflammation and to a 
significant improvement in the disease course of EAE. 
Notwithstanding the authors hypothesized a selective 
targeting, it is almost clear that the altered permeability of 
BBB remarkably enhanced the penetration and the 
localization of LPs in inflamed tissue.  

Similar outputs were achieved with long-circulating 
pegylated LPs80 delivering a potent antioxidant (tempamine) 
up to brain concentrations able to significantly attenuate 
clinical symptoms of EAE in the mouse model81. The 
authors hypothesized that the size and the long-circulating 
properties of these LPs could favor their extravasation into 
permeable inflammation sites. 

 

1.5. Epilepsy 

 

Epilepsy is one of the oldest known conditions to mankind 
and still the most common neurological condition affecting 
individuals of all ages; 50 million individuals worldwide 
have a diagnosis of epilepsy82-84. It is defined as a condition 
featured by recurrent (two or more) epileptic seizures, 
unrelated to any immediate identified cause85.  

Considering BBB state, epileptic seizures are known to alter 
BBB properties and to increase its permeability86-88. This 
condition remains overtime and may contribute to the 
progression of epilepsy and development of novel seizures 
due to an increased excitability in the epileptogenic foci88. 
Despite this change in permeability, a clear disruption of 
BBB is not reported for epileptic brains in contrast with what 
reported for gliomas and strokes. Thus, the planning of 
nanocarriers for possible novel approaches in epilepsy 
treatments could vary from “passive” targeting to “active” 
targeting for BBB crossing, depending on the grade of the 
pathology.  

FIGURE 5 

As an example of “passive” targeting, LPs without any 
surface engineering and loaded with valproic acid and g-
butyrolactone-g-carbonyl-L-histidyl-L-propynamide citrate 
produced significant anti-convulsive effects after i.v. 
administration in amygdaloid-kindled rats89-90. Since 
positively charged LPs lead to prolonged anti-convulsive 
effects, a combination of higher protection of the drug from 
the enzymatic degradation and adsorbtive-mediated 
endocytosis for BBB crossing were hypothesized as 
responsible for the anticonvulsivant effect, even if a real 
proof of both mechanisms was not definitely given.  

The same technology was applied for the evaluation of the 
effect of phenyntoin in rat model of epilepsy. Interestingly, 
the suppression of central amygdalic discharges was greatly 
achieved by multiple pulsed administrations of loaded LPs, 
leading to a higher blood concentration of LPs. In fact, in 
epilepsy, the blood flow is reliably increased in the 
epileptogenic focus as well as the permeability of BBB 
increases over the disease progression. Both these conditions 
could lead to locally augmented concentrations of LPs, 
especially in brain area91 .  

Considering the “active” targeting, PS-80 coated PBCA NPs 
were used for BBB crossing and to allow brain delivery of a 
novel non-competitive NMDA receptor antagonist MRZ 
2/576. This drug was potent but rather short-acting 
anticonvulsant, rapidly discharged from the central nervous 
system by transport processes that are sensitive to 
probenecid. After i.v. administration in mouse model of 
convulsion, these NPs reasonably operated as drug delivery 
systems able to protect and to prolong the release of drugs 
leading to an improvement in the length of the 
anticonvulsive effect (up to 210 min)92. Moreover, the 
coating of NPs with PS-80 seems to be necessary to target 
and to achieve an uptake of the particles into the brain, even 
if, remarkably, no evidence of BBB state (healthy or 
diseased) was given with regards to this animal model.   

 

1.6. Lysosomal Storage Disorders 

 

The lysosomal storage diseases (LSDs) consist of 
heterogeneous group of disorders which affect 1/7,000 live-
born infants, the majority of which develop CNS disease. 
Each LSD (more than 40 types) results from a deficiency of 
a single lysosomal enzyme, pivotal for degrading 
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macromolecules that must be turned over in lysosomes93. 
The neurological compromission is generally refractory to 
treatment, usually based on enzyme replacement therapy 
(ERT). The failure of treatments is due to the inability of 
enzymes in crossing the BBB94. Moreover, no clear data are 
present in literature concerning the status of BBB in LSDs. 
The only available evidences are limited to a restricted 
number of LSDs in which BBB state is almost conserved in 
its integrity with few features compromised (i.e. increase in 
macropynocitotic and endocytotic processes)95.  

Thus, if an increased in BBB endocytosis and 
macropynocitosis is confirmed also for the other types of 
LSDs, it appears almost clear that nanotechnological 
interventions could represent the most promising approach, 
since the above described pathways for BBB crossing 
(namely endo- or macropinocytosis) are nicely shared with 
those used by nanocarriers to overcome BBB.  

FIGURE 6 

In this contest, LPs loaded with β-glucuronidase (GUSB) 
expression plasmid (p-CMV GUSB)96 and superficially 
engineered with the rat 8D3 MAb to the mouse transferrin 
receptor (TfR) to achieve BBB crossing were tested in mice 
model for type VII mucopolysaccharidosis (MPS-VII), 
deficient for GUSB lysosomal enzyme. The results 
demonstrated that therapeutic brain levels of GUSB enzyme 
were improved after i.v. administration of the TfR MAb-
targeted LPs encapsulating p-CMV GUSB plasmide. 
Notably, this kind of strategy, even if interesting, will 
required repeat administrations, considering the chronic 
progression of disease and the inability of the plasmid 
delivered by LPs to integrate into the host genome97. 

 

1.7. Stroke  

 

After heart disease and cancer, stroke is the third largest 
killer, second most common cause of neurologic disability 
after AD98, with over five million deaths/year and over nine 
million stroke survivors. The etiology of stroke is brain 
vascular occlusions (thrombotic stroke) or rupture 
(hemorrhagic stroke) and its neuro-pathological hallmarks 
consist of necrotic infarcts of variable size with 
inflammatory gliosis. 

In the case of stroke, BBB integrity is almost lost99-101: the 
hypoxic/ischemic condition leads to a wide disruption of 
tight junctions and increased BBB permeability, probably 
mediated by cytokines, VEGF, and NO. Moreover, elevated 
levels of proinflammatory cytokines, IL-1β, and TNF-α have 
been demonstrated in animal brains after focal and global 
ischemia102 and in cerebrospinal fluid of stroke patients103. 
The same BBB leakiness is shared by animal models of 
stroke (focal cerebral ischemia) produced by the method 
described by Chen and colleagues104 based on an extensive, 
but reproducible infarct.  

As in other previously described neuro-pathologies, since the 
BBB is not functioning as protective barrier, nanocarriers do 
not need any BBB crossing strategy.  

 

FIGURE 7 

Consequently, “passive” targeting is mostly applied 
considering that nanocarrier goal principally lies in 
protecting and modulating the delivery of un-stable drug 
during the ischemic insult or at least to prevent the neuronal 
damages after ischemic attack. The success of this strategy is 
correlated to the facilitated diffusion of nanocarriers through 
the compromised and broken BBB. As one of the first 
application of nanocarriers to manage stroke, superoxide 
dismutase (SOD) loaded into LPs, achieved an ameliorated 
condition105 of model animals of stroke, manifesting the 
reduction of brain superoxide radicals levels. These outputs 
were due to both the protection of SOD exploited by LPs 
along with their ability to operate a prolonged delivery of 
drug. Using the same animal model, LPs were able to 
mediate an increase in SOD activities into the brain, not only 
in the infarct, but also in the non-infarcted subcortical areas. 
To give explanation of this interesting side-result, the 
authors hypothesized that SOD loaded LPs after crossing of 
leaky BBB in the ischemic zone were up-taken by adjacent 
neurons and microglia, thus extending the area of action. 
Otherwise, SOD loaded LPs could exert their action on 
extracellular superoxide on the luminal side of capillaries, 
without penetrating the BBB106 .  

The same active substance (SOD) was encapsulated into 
PLA NPs, able to stabilize SOD from degradation, to 
provide a localized modulated brain delivery and letting to a 
prolonged neuronal protection against the mediators of 
reperfusion injury, namely reactive oxygen species107.  

Above SOD, citicoline was loaded into LPs, letting to 
increased survival rate in ischemic-reperfused rats and a 
reduction of lipid peroxidation, compared to the free drug108. 
Similarly, LPs were used to protect the drug (calpain-
inhibitor), to maintain high drug concentration both in blood 
and in brain and to finally promote rescue form ischemic 
neuronal damage after administration in gerbils stroke 
models109.  

Antioxidant quercitin encapsulated in LPs110-111, 
administered i.v. to rats (pre-treated with arsenic), was able 
to attenuate oxidative damage induced by ischemia 
reperfusion injury. Recently, the same research group 
proposed the use of PLGA NPs as quercitin carriers in 
combating arsenic induced oxidative damage in rat brain. 
After oral administration of quiercitin loaded NPs, arsenic 
cerebral oxidative damage was prevented112. Even if the 
authors hypothesized the ability of these NPs to cross the 
BBB via particle uptake mechanism based on an endocytotic 
pathway by the brain capillary endothelial cells, no data is 
available concerning the maintenance of BBB integrity in 
arsenic-animal model. Therefore, it is impossible to draw an 
absolute conclusion on the real efficacy and BBB crossing 
pathway by these NPs. More realistically, the increased 
efficacy of these formulations correlated to their ability to 
stabilize the drug and to prolong drug brain delivery, since, 
in these pathological conditions, BBB is inactive and broken. 

Another case of use of PLGA NPs as drug protecting carriers 
was recently discovered: the effect of cerebrolysin (CBL) 
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loaded into PLGA NPs on neuroprotection and neurorepair 
after rat model of concussive head injury was assessed in 
comparison with free drug. Changes in blood-brain barrier 
and brain edema formation, measured as parameters of 
neuroprotection in CHI clearly showed that delivery of CBL 
by NPs has superior neuroprotective effects following CHI 
as compared to normal CBL113. 

Finally, after administration in focal cerebral ischemia model 
rats, the novel glycine-b site NMDA (N-methyl-D-aspartate) 
receptor antagonist MRZ 2/576 was formulated in PBCA 
NPs114 providing for neuroprotection and modulation of  the 
delivery of the drug to the CNS.  

 

1.8. Infectious disease 

 

Brain inflammatory diseases such as meningitis and 
encephalitis are among the top ten infection causes of death; 
they are caused by bacteria (such as Bacillus anthrax, 
Staphylococcus aureus), fungi (ex Candida albicans, 
Cryptococcus neoformans) or viruses115-117. Despite the 
general efficacy of antibiotic treatment, high mortality and 
morbidity are frequently recovered due to the difficulty of 
drugs to cross the BBB and access the brain.  

In this category of neuro-pathologies, CNS is often featured 
by a general state of inflammation and the BBB permeability 
changed depending on the period of the infection with 
evidences of some “enhanced” specific pathways exploited 
by pathogens for BBB crossing and to invade the CNS. 
These pathways, used by pathogens to enter the brain, the 
CNS, could also be exploited by nanomedicines to the same 
goal. Thus, nanocarriers aiming to treat neuro-infections 
could be properly designed in order to cross the BBB maybe 
taking advantage of some “enhanced” brain-entry pathways 
and to finally eradicate the pathogens from CNS.  

 

FIGURE 8 

 

The most consolidated approach for brain infection is based 
on the use Ambisome ®, a liposomal formulation of 
amphotericine B in which the drug is strongly associated 
with the bilayer structure of unilamellar and un-targeted LPs.  

Several works, using different animal models, provided 
evidences of AmBisome effectiveness against brain 
infections. Treatment of un-infected and Candida albicans-
infected rabbits118 with AmBisome and the other 
commercially formulation of amphotericine B (Amphotec ®), 
highlighted the superiority of AmBisome treatment able to 
completely clear Candida albicans from the brain of infected 
animals. Similar results in terms of efficiency of AmBisome 
therapy (20-30 mg/Kg) were achieved with a mouse model 
of meningitis caused by Cryptococcus neoformans119, letting 
to disappearance of Cryptococcus in the brain. This dosage 
was reduced (10 mg/Kg), but still maintaining efficacy and 
more importantly directly correlating the brain penetration 
with the progression of cryptococcal meningitis120. 
AmBisome was also tested to treat different brain infections, 

as coccidioidal meningitis (in rabbits)121. More recently, the 
authors studied the efficacy of AmBisome in comparison to 
micafungin (MICA), caspofungin (CAS), amphotericin B, 
voriconazole (VCZ). After administration in immune-
suppressed mice, intracerebrally infected with Aspergillus 
fumigates, the brain infection was significantly reduced by 
Ambisome treatment if compared with fluconazole and 
amphotericine B treatments. Moreover, combination 
regimens were tested, highlighting that only AmBisome and 
VCZ, at suboptimal doses, improved the outcome in CNS 
aspergillosis122. Thus, since AmBisome technology is based 
on LPs without any BBB-crossing ligands, its ability in 
treating brain infections is surely related to alterations of the 
permeability of BBB, which is strongly affected by 
pathogen-driven brain inflammation.  

Recently, polymeric NPs were investigated as an alternative 
treatment in brain infection diseases. A very elegant example 
of this strategy consists of the creation of auto-assembling 
NPs made of  amphiphilic cholesterol conjugated with a 
cationic peptide containing TAT sequence. NPs are 
simultaneously vehicles and drugs, as they possessed a broad 
spectrum of strong antimicrobial activities, much stronger 
than the hydrophilic peptide, incapable of forming NPs. 
These NPs were found to be as efficient as vancomycin in 
treating the meningitis in rabbits123 and against brain 
infections by Cryptococcus neoformans in rabbit model. NPs 
were able to suppress the yeast growth in the brain tissues 
with similar efficiency as amphotericin B did124.  
Interestingly, as NPs are decorated onto their surface by a 
cationic peptide, BBB crossing was supposed to take place 
through adsorptive-endocytosis.  

PLA-b-PEG NPs loaded with amphotericin and coated with 
polysorbate 80 for BBB crossing25, 125 were exploited for the 
treatment of cryptococcal meningitis-in mice model. The 
results confirmed the therapeutic efficacy of these 
formulations in fungal infection in the brain, decreasing the 
speed of colony growth and the count of colony, thus 
increasing the survival time of animals126. 

 

2. CONCLUSION and FUTURE DIRECTION 

 

The planning and the design of nanosystems aiming to be 
tools for the treatment of neurological disorders is a critical 
point which strongly impacts on the effectiveness of the 
application of nanomedicine for brain diseases treatments.  

Beside the aspects of innovation in biopolymers and beside 
some relevant issues connected to pharmaceutical 
nanotechnology (i.e. optimization of formulation protocols 
of selected drugs, coupling strategy for surface modifiers, 
etcc), the most urgent need is connected to the clear 
individuation of those features of nanomedicines which are 
essential for the selected pathology. If in the past, the only 
topic (and the main goal) was only to create nanovectors able 
to cross the BBB, nowadays it is evident how the strategy for 
“targeting” selected pathology must come out from the 
fusion of different inputs by nanotechnology, 
patholophysiology and pharmacology, which obviously 
differing from pathology to pathology.  
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As shown, depending on the pathology, BBB crossing could 
be not essential (stroke or gliomas), in other cases some 
BBB features are changed (i.e. permeability in AD or MS) 
and in other situations some changes in BBB dynamics could 
be exploited by nanomedicinesto increase the chances of 
success (LSDs and Infectious Diseases).  

Thus, in the next future, these evidences inevitably will 
change the rationale of the planning of the most suitable 
nanomedicine, leading inevitably to “pathology-tailored 
personalized nanocures”.  
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Figures and figure captions: 

Figure 1: Glioma. Blood-Brain Barrier features and nanomedicine approaches. For references to existing 

strategies, please see chapter 1.1. 
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Figure 2: Alzheimer Disease:  Blood-Brain Barrier features and nanomedicine approaches. For references 

to existing strategies, please see chapter 1.2. 
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Figure 3: Parkinson’s Disease: Blood-Brain Barrier features  and nanomedicine approaches. For 

references to approaches, please see in the chapter 1.3. 
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Figure 4: Multiple Sclerosis:  Blood-Brain Barrier features and nanomedicine approaches. For references 

to approaches, please see in the chapter 1.4. 
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Figure 5: Epilepsy:  Blood-Brain Barrier features and nanomedicine approaches. For references to 

approaches, please see in the chapter 1.5 
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Figure 6: Lysosomal Storage Disorders:  Blood-Brain Barrier features and nanomedicine approaches. For 

references to approaches, please see in the chapter 1.6 
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Figure 7: Stroke:  Blood-Brain Barrier features and nanomedicine approaches. For references to 

approaches, please see in the chapter 1.7. 
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Figure 8: Infectious Disease:  Blood-Brain Barrier features and nanomedicine approaches. For references 

to approaches, please see in the chapter 1.8. 

 

 

 


