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The histone deacetylase inhibitor romidepsin synergizes with lenalidomide
and enhances tumor cell death in T-cell lymphoma cell lines
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ABSTRACT
We investigated the cytotoxic interactions of romidepsin, a histone deacetylase inhibitor, and
lenalidomide, an immunomodulatory agent, in a T-cell lymphoma preclinical model. Hut-78 and Karpas-
299 cells were treated with romidepsin and lenalidomide alone and in combination. The interaction
between romidepsin and lenalidomide was evaluated by the Chou–Talalay method, and cell viability and
clonogenicity were also evaluated. Apoptosis, reactive oxygen species (ROS) levels, and cell cycle
distribution were determined by flow cytometry. ER stress, caspase activation, and the AKT, MAPK/ERK,
and STAT-3 pathways were analyzed by Western blot. Combination treatment with romidepsin and
lenalidomide had a synergistic effect in Hut-78 cells and an additive effect in Karpas-299 cells at 24 hours
and did not decrease the viability of normal peripheral blood mononuclear cells. This drug combination
induced apoptosis, increased ROS production, and activated caspase-8, ¡9, ¡3 and PARP. Apoptosis was
associated with increased hallmarks of ER stress and activation of UPR sensors and was mediated by
dephosphorylation of the AKT, MAPK/ERK, and STAT3 pathways.The combination of romidepsin and
lenalidomide shows promise as a possible treatment for T-cell lymphoma. This work provides a basis for
further studies.
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Introduction

T-cell lymphomas (TCLs) comprise 10–20% of all non-Hodg-
kin lymphomas (NHLs). TCLs are classified into 22 subtypes
by the 2008 WHO classification based on their clinicopatho-
logic characteristics, and they comprise a various group of
hematologic disease with unfortunate prognosis.1 Ordinary
treatment do not generally provide satisfactory outcomes, and
the majority of patients relapse. Epigenetic processes, which
modify the phenotype without changing the genotype, are often
altered in cancer cells.2 Epigenetic DNA and chromatin modifi-
cations include methylation, acetylation, phosphorylation, and
ubiquitination. Histone acetylation is related to activation of
gene transcription, whereas deacetylation is linked with tran-
scriptional repression.3,4 The 2 processes are catalyzed by spe-
cific enzymes, namely histone acetyltransferases (HATs) and
histone deacetylases (HDACs).4 HDACs enzymatically remove
the acetyl group from histones and control gene expression.4

HDAC inhibitors (HDACis), which are newly emerging cancer
therapeutics,5 modify genes that control cell growth and apo-
ptosis, trigger the generation of reactive oxygen species (ROS),
regulate the MAPK pathway and induce the acetylation of cyto-
plasmic proteins.5,6 Clinical trials have been conducted for

HDACis for the cure of cutaneous TCL (CTCL), peripheral
TCL (PTCL) and Hodgkin disease.7,8 Romidepsin, also called
FK228 and Istodax�, is a potent HDACi with high inhibitory
activity for class I HDACs.9 Romidepsin was the first HDACi
to show anti-tumor activity in patients10 and has broad biologi-
cal effects: it induces apoptosis, cell cycle arrest and it alters
gene expression in a diversity of tumor, including TCL10,11.
HDACis can be used in combination with different cytotoxic
drug or anti-angiogenesis drugs.12

Lenalidomide, also called CC-5013 and Revlimid�, is a sec-
ond-generation immunomodulatory drug (IMiD) and thalido-
mide analog that has antiangiogenic, antitumorigenic, and
immunomodulatory activity.13,14 The use of lenalidomide in pro-
liferative neoplasms has increased recently due to the agent’s suc-
cess in multiple myeloma (MM) and myelodysplasia (MDS). In
these cancers, it alters immune homeostasis and modulates
inflammation within the bone marrow microenvironment. Lena-
lidomide treatment is effective in patients with chronic lympho-
cytic leukemia (CLL),15 non-Hodgkin lymphoma,16 and CTCL.17

The rationale for using drug combinations is to obtain
additive or synergistic effects, thus maximizing the total dose
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intensity, enhancing anticancer activities, and increasing
patient survival.

Here we investigated combination therapy with 2 anti-
cancer compounds that act through different mechanisms.
The present study aimed to define the in vitro effects of
romidepsin alone and in combination with low-dose lena-
lidomide in TCL cell lines and to investigate whether com-
bination treatment could modulate apoptosis and cell
viability.

Results

Romidepsin and lenalidomide as single agents

Romidepsin potently inhibited cell viability in both cell lines
in a time- and dose-dependent manner. The IC50 ranged
from 0.038 to 6.36 nM for Hut-78 cells and from 0.44 to
3.87 for Karpas-299 cells (Table 1). Important inhibition of
cell vitality was evident after 48 h of incubation with romi-
depsin by MTT assay (Fig. 1A). Treatment with lenalido-
mide slightly inhibited cell viability even after 72 h of
treatment but did not reach the IC50 (Fig. 1B).

Drug combination shows synergistic effects in Hut-78 cells
and additive effects in Karpas-299 cells

Cell viability decreased significantly after treatment with both
drugs compared with treatment with each drug alone. Indeed,
treatment with both romidepsin and lenalidomide showed syner-
gistic effects in Hut-78 cells, with a CI <1 after 24 hours (0.14–
0.84) (Table 2 and Fig. 1C, left panel). In Karpas-299 cells, treat-
ment with romidepsin (1 nM, 2.5 nM) plus lenalidomide
(4 mM, 10 mM) showed additive effects, with CI values of 0.95
and 1.05, respectively (Table 2 and Fig. 1C, right panel). No
cytoxicity was observed in normal PBMCs (Fig. 1D). Sequential
treatment with romidepsin (2.5 nM) for 6 hours followed by
washout and the addition of lenalidomide (10 mM) for 24 hours
showed cytotoxic effects but did not reach a CI <1 . This con-
firmed that the cytotoxicity of romidepsin alone was enhanced
by combining it with lenalidomide (Fig. 1E). On the other hand,
sequential treatment with lenalidomide (10 mM) for 6 hours fol-
lowed by washout and the addition of romidepsin (2.5 nM) for
24 hours did not show significant cytotoxic effects (data not
shown). Based on the results of the MTT assay and the isobolo-
gram analysis, we chose to use romidepsin (2.5 nM) and lenali-
domide (10 mM) for the following experiments.

Drug combination affects the clonogenic survival and
overcomes the protective effect of BM-MSCs

Combination treatment with romidepsin and lenalidomide for
24 hours reduced clonogenic survival to approximately 15% in
Hut-78 cells and to 28% in Karpas-299 cells compared to con-
trol cultures. After 48 hours of treatment with the 2 drugs, there
were additional reductions in clonogenic survival to 4% in Hut-
78 cells and to 13% in Karpas-299 cells (Fig. 2A). Sequential
treatment with romidepsin followed by washout and the addi-
tion of lenalidomide for 24 h–48 h reduced clonogenic survival
to between 80% and 89%. Conversely, sequential treatment
with lenalidomide followed by washout and the addition of
romidepsin for 24 h–48 h did not reduce clonogenic survival
(data not shown). These observations support the CI results.
Given that the BM microenvironment promotes proliferation
and drug resistance, we next examined whether combination
treatment with romidepsin and lenalidomide induced cell death
in the presence of BM-MSCs. Combination treatment had min-
imal or no cytotoxic effects on BM-MSCs and decreased the
viability of Hut-78 and Karpas-299 cells co-cultured with BM-
MSCs, indicating that combination treatment overcomes the
anti-apoptotic effects of the bone marrow microenvironment
(Fig. 2B). The synergistic and additive effects of combination
treatment in the presence of BM-MSCs were confirmed in the
Hut-78 and Karpas-299 cell lines.

Apoptosis induced by drug combination is mediated by
caspase activation and by Bcl-2 family

In both TCL cell lines, compared to either drug alone, the combi-
nation treatment induced apoptosis. The fraction of annexin V-
positive cells (early and late apoptosis) after 24 h with romidepsin
or lenalidomide or with both increased to 25%, 18%, and 65%,
respectively, in Hut-78 cells and to 20%, 11%, and 46%, respec-
tively, in Karpas-299 cells (Fig. 3A, B). No caspase-8 activation
was induced in Karpas-299 cells after 24 h of combination treat-
ment, but caspase-8 activation was observed in Hut-78 cells
(Fig. 3C). The activation of caspase-9 in both cell lines indicated
the participation of the mitochondrial apoptotic pathway
(Fig. 3C). Finally, romidepsin/lenalidomide treatment resulted in
increased levels of the caspase-3 (Fig. 3C) and the cleavage of the
PARP enzyme confirms the activation of the apoptotic pathway.
The cleavage of PARP was annulled by Z-VAD, confirming that
the observed apoptosis was caspase-dependent (Fig. 3D).

Combination treatment did not modify Bcl-2 expression (data
not shown), but reduced Bcl-xL and Mcl-1 expression (Fig. 4)
and augmented the expression of Bax, Bim, Noxa, Bad112 and
Bad136 (Fig. 4). Taken together, the results indicate that combina-
tion treatment with romidepsin and lenalidomide triggers the
mitochondria-mediated apoptotic signaling pathway.

Apoptosis induced by drug combination depends on ROS
generation and correlates with ER stress and unfolded
protein response (UPR) signaling

Mitochondria represent the main resource of ROS in cells
undergoing apoptosis.18,19 Accordingly, we evaluated ROS gen-
eration in cells treated with a combination of romidepsin and

Table 1. IC50 values for romidepsin in T-lymphoma cell lines. Hut-78 and
Karpas-299 cells were treated with romidepsin at a range of concentrations from 1
to 25 nM for 24, 48, and 72 hours. The IC50 values were calculated using the MTT
assay. CI95%: 95% confidence interval. The values represent 3 independent
experiments.

Time

T - cell lines 24 h 48 h 72 h
Hut-78
IC50 6.36 1.54 0.038
CI95% (5.39–7.32) (1.45–1.63) (0.002; 0.077)
Karpas-299
IC50 3.87 1.49 0.44
CI95% (3.68–4.06) (1.39–1.59) (0.40–0.49)
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lenalidomide. Combination treatment induced ROS generation
in a higher percentage of cells (61.8% of Hut-78 cells and 53%
of Karpas-299 cells) than either romidepsin alone (23% of Hut-
78 cells and 17% of Karpas-299 cells) or lenalidomide alone
(11% of both Hut-78 and Karpas-299 cells) (Fig. 5A, B). Co-
administration of the antioxidant NAC with the drugs blocked
ROS generation (Fig. 5A, B) and reduced apoptosis from 55%
to 16% in Hut-78 cells and from 46% to 21% in Karpas-299
cells (Fig. 5C) suggesting that apoptosis was at least partly

ROS-mediated. Apoptosis and ROS generation induced by
combination treatment were associated with a decrease in thio-
redoxin-1 (Trx1) expression (Fig. 5D). Endoplasmic reticulum
(ER) stress-induced apoptosis is activated by ROS generation,20

and HDACis induce the unfolded protein response (UPR) and
ER stress.21 In this context, we tested whether induction of ER
stress was associated with the death of TCL cells due to treat-
ment with romidepsin/lenalidomide. The apoptosis induced by
combination treatment correlated with increased expression of
IRE1-a, ATF6, and PERK, which are 3 ER stress sensors, and
with the expression of chaperone proteins such as calnexin and
protein disulfide isomerase (PDI). Hallmarks of UPR as BIP
and CHOP, were also activated (Fig. 5E).

Romidepsin/lenalidomide on the cell cycle and on proteins
involved in cell cycle regulation

Treatment with either romidepsin or lenalidomide alone did
not significantly affect the cell cycle distribution, but combi-
nation treatment had a modest effect on cell cycle phases.
Compared to the effects of treatment with either drug
alone, combination treatment slightly increased the fraction

Figure 1. (A) Romidepsin alone inhibited cell viability in a time- and dose-dependent manner in Hut-78 and Karpas-299 cells (see Table 1 for IC50 values of romidepsin).
(B) Lenalidomide alone slightly inhibited cell viability in TCL cell lines, but did not reach the IC50 even after 72 h of treatment. (C) Isobologram analysis of combination
treatment with both romidepsin (0.5, 1, 2.5 nM) and lenalidomide (2, 4, 10 mM) for 24 hours (see Table 2 for combination index values) and cell viability from cell lines
treated with romidepsin (2.5 nM) and lenalidomide (10 mM) either alone and in combination for 24 hours (�P < 0.003; ��P < 0.001; ���P < 0.02; ����P < 0.002).
(D) Cell viability from PBMCs from 3 healthy subjects treated with romidepsin (2.5 nM) and lenalidomide (10 mM) alone and in combination. (E) Cytotoxicity of TCL cells
after treatment with romidepsin (2.5 nM) for 6 hours followed by washout and the addition of lenalidomide (10 mM) for 24 hours.

Table 2. Isobologram analysis of treatment with romidepsin and lenalidomide.
Hut-78 and Karpas-299 cells were cultured with romidepsin (0.5 nM, 1 nM, and
2.5 nM) and lenalidomide (2 mM, 4 mM, and 10 mM). Synergism, additivity, or
antagonism were quantified by determining the combination index (CI) as
calculated.

T - cell lines Romidepsin(nM) Lenalidomide(mM) CI

Hut-78 0.5 2 0.84
1 4 0.44
2.5 10 0.14

Karpas-299 0.5 2 1.31
1 4 0.95
2.5 10 1.05
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of cells in G0/G1, decreased the S phase and strongly
increased the percentage of cells in sub-G0/G1 phase
(Fig. 6A, B). These findings were confirmed by increased
annexin V staining as measured by flow cytometry and the
inhibition of apoptosis by Z-VAD caused cell cycle arrest at
G0/G1 phase and decreased the percentage of cells in S
phase (Fig. 6B). Combination treatment down-regulated the
expression of cyclins D, E, and B, which are positive regula-
tors of cell cycle progression, and upregulated the CDK
inhibitors p21 and p27 (Fig. 6C).

Drug combination inactivates the AKT, MAPK,
and STAT3 pathways

The PI3K/AKT pathway is implicated in the signaling cascade
that controls the survival of T-lymphocytes.22 Compared with
treatment with each drug alone, combination treatment with
romidepsin and lenalidomide for 24 hours downregulated the
phosphorylation of AKT and the downstream proteins,
GSK3-b, p70S6, mTOR, and 4EBP1 (Fig. 7A). The MAPK/
ERK pathway is part of a signaling cascade that controls the
cellular response to cytokines and stress, and it has been asso-
ciated to the signal transmission induced by ROS.23 Each
drug alone has not reduced the MAPK/ERK pathway while
combination treatment with romidepsin and lenalidomide
downregulated the MAPK/ERK pathway (Fig. 7B). STAT3
transcription factor is associated to tumor cell growth and to
cytokine expression in malignant cells.24 Western blotting
results showed that the expression levels of the p-STAT3 pro-
tein decreased in both TCL cell lines compared with untreated
controls (Fig. 8A). A downstream target of STAT, c-myc, was

downregulated after 24 hours of combination treatment, fur-
ther confirming the inhibition of STAT3 activity (Fig. 8A).
The transcription factor c-myc plays an important role in
hematologic malignancies.25

Combination treatment affects IL-10 secretion

STAT3 is a key regulator of IL-10 in TCL cells.26 IL-10 may be
connected with the development of T-cell NHLs, and it may be
involved in a rescue effect that protects T cells from apoptotic
cell death linked with upregulation of Bcl-2 expression.27 Romi-
depsin alone or in combination with lenalidomide significantly
reduced IL-10 secretion by Hut-78 and Karpas-299 cells
(Fig. 8B).

Romidepsin alone confirmed its state of acetylation, an
effect that is not modified by lenalidomide

The biological effects of HDACis are thought to be associated
with modification of the acetylation state of histones and
a-tubulin. Western blot analysis revealed that romidepsin treat-
ment clearly increased the acetylation of histone H3 and
a-tubulin in TCL cells, but treatment with lenalidomide did
not increase acetylation (Fig. 8C).

Discussion

Tumor cells are influenced by many signaling pathway that
take to the oncogenic process, and most drugs that target a
single signaling pathway have low response rates. Targeting
multiple signaling pathways using more than one drug often

Figure 2. (A) Drug combination for 24–48 hours reduced clonogenic survival in TCL cells compared to control cultures (�P < 0.001 vs. romidepsin and lenalidomide
alone). (B) Drug treatment reduced the viability of TCL cells that were co-cultured with BM-MSCs (�P < 0.001 vs. romidepsin or lenalidomide alone).
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enhances the anti-tumor effects. Romidepsin has antitumor
activity in both in vitro and in vivo in tumor xenograft
models. A number of phase I/II and III clinical trials are

underway with romidepsin to test its effects in patients with
colorectal, renal, and breast neoplasms and sarcomas and in
patients with hematological malignancies.28

Figure 3. (A and B) Flow cytometry showed an increase in apoptosis after 24 h that was induced by combination treatment (�P < 0.005; ��P < 0.001; ���P < 0.02;
����P < 0.002). (C and D) Western blot analysis of caspase¡8, ¡9, ¡3 and PARP in cellular extracts from Hut-78 and Karpas-299 cells cultured with or without
Z-VAD-fmk (D).
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Lenalidomide has pleiotropic properties and is highly effective
for treating a wide range of hematological malignancies. It has a
low toxicity profile, and it directly inhibits the growth of tumor cells
and alters their microenvironment by inducing tumor cell apopto-
sis and by downregulating the survival cytokines IL-6, IL-8, and
IL-10.29 Current studies showed a new mechanism of action of
lenalidomide. The drug binds to a E3 ubiquitin ligase cereblon
complex (CRL4CRBN) and control its substrate specificity resulting
in the proteasomal degradation of target proteins. The E3 ubiquitin
ligase cereblon was identified as a molecular target that may under-
lie the effects of lenalidomide on tumor cells, as well as on cells in
the tumor microenvironment. The drug binding to cereblon, indu-
ces the ubiquitination and subsequent proteasomal degradation of
2 transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) killing
malignant cell. As consequence of IKZF1 and IKZF3 degradation,
IRF4 and MYC transcription decrease resulting in growth inhibi-
tion of multiple myeloma cells and de-repression of IL-2 in T cells.
IKZF1 and IKZF3 are essential proteins for the antiproliferative
effect of lenalidomide.30

Lenalidomide shows efficacy in patients with relapsed/refrac-
tory TCL.31,32 Despite the recent development of new drugs,
TCL remains an incurable disease. Combination treatment with
different classes of drugs that have non-overlapping toxicities
might improve patient outcomes. Combining low doses of romi-
depsin with low doses of lenalidomide might therefore represent
an opportunity to improve patient outcomes by overcoming
drug resistance and improving the drug toxicity profile. We
studied the cytotoxic effects of romidepsin in combination with
lenalidomide in an in vitro TCL preclinical model. We first dem-
onstrated that romidepsin alone decreased the viability of Hut-

78 and Karpas-299 cells in a time- and dose-dependent manner.
Lenalidomide alone slightly inhibited the growth of TCL cells
without reaching the IC50, as described previously. However,
after 24 hours of treatment, simultaneous combination treat-
ment with romidepsin and lenalidomide increased cytotoxicity
in TCL cells. The combination index analysis showed that simul-
taneous treatment with both drugs had a synergistic effect in
Hut-78 cells and an additive effect in Karpas-299 cells in terms
of its pro-apoptotic effects. Conversely, sequential treatment
with the 2 drugs did not show synergistic effects. The concentra-
tions of romidepsin and lenalidomide that showed synergistic
effects did not have a toxic effect on normal mononuclear
peripheral blood cells. These results were confirmed by clono-
genic assays that showed that lenalidomide potentiates the effi-
cacy of romidepsin. The ability of the 2 drugs to act in
combination to enhance drug-induced cytotoxicity was related
to activation of pro-apoptotic pathways. To evaluate whether
the combination of drugs acted primarily via the intrinsic or
extrinsic apoptotic cascade, we performed Western blot analysis
to assess the activation status of caspase-9 and caspase-8. Our
experiment showed that compared to the effects of treatment
with single drugs, combination treatment with romidepsin and
lenalidomide at low doses had pro-apoptotic effects in both TCL
cells. The apoptotic pathway was determined by the cleavage of
the PARP enzyme, and this activation was blocked by Z-VAD.
The combination drug treatment induces caspase-dependent
apoptosis and the induced apoptosis is mediated by activation of
the intrinsic apoptotic pathway in both TCL cell lines and by
activation of the extrinsic pathway in Hut-78 cells. Drug combi-
nation decreased the levels of the anti-apoptotic proteins Bcl-xL

Figure 4. Western blots showing the downregulation of the anti-apoptotic proteins Mcl-1 and Bcl-xL and the phosphorylation of the pro-apoptotic proteins Bax, Bim,
Noxa, and Bad.
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Figure 5. (A) Representative flow cytometry histograms showed ROS generation in Hut-78 cells. (B) Percentage of cells with increased ROS levels in Hut-78 and
Karpas-299; NAC was used as antioxidant and H2O2 as a positive control (�P < 0.002; ��P < 0.012; ���P < 0.003). (C) Percentage of apoptotic cells
pre-treated with NAC and then cultured with romidepsin and lenalidomide either alone and in combination. (D and E) Cellular extracts from Hut-78 and
Karpas-299 cells treated with romidepsin (2.5 nM) and lenalidomide (10 mM) alone and in combination for 24 hours. Whole-cell lysates were subjected to
protein gel blotting using the indicated antibodies.
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and Mcl-1. Upregulation of Bim by treatment with the 2 drugs
along with the downregulation of anti-apoptotic proteins may
shift the balance from pro-survival to pro-apoptosis, leading to
enhanced cell death. Cancer cells, including the cells in hemato-
logical malignancies, have higher levels of ROS compared to
normal cells33 and that HDAC inhibitors, including romidepsin,
can induce the generation of ROS. Romidepsin/lenalidomide
combination induced an additional increase in ROS generation

respect to that seen with either agent alone. The increase of ROS
production can favor to the synergistic activity in Hut-78 cells
and the additive effects in Karpas-299 cells. The co-administra-
tion of NAC, a ROS scavenger, reduced the increased ROS levels
induced by the drug combination and decreased apoptosis. This
means that oxidative damage plays an important role in causing
the cell death. Malignant cells work with a basal level of ROS
mediated signaling and are very sensitive to increased ROS. The

Figure 6. (A) Representative cell cycle of Hut-78 cells. The M1, M2, M3, and M4 bars indicate the sub-G0/G1, G0/G1, S, and G2/M phases, respectively. (B) Cell cycle
distribution (%) of TCL cells after 24 hours of treatment with drug combination. (C) Cellular extracts from Hut-78 and Karpas-299 cells treated with the drugs alone and in
combination for 24 hours. Whole-cell lysates were subjected to western blotting using the indicated antibodies.
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romidepsin/lenalidomide combination could cause intracellular
ROS to accumulate to levels that exceeded the cells metabolic
capabilities, thereby inducing cell death in malignant cells but
not in normal cells. The ROS generation is not the results of
mitochondrial damage because ROS generation can occur before

the loss of outer mitochondrial membrane potential.34 An
increase in ROS beyond a certain threshold would result in irre-
versible DNA damage, and this could explain the activation of
apoptosis pathway.35 Our results showed that the apoptosis and
ROS generation induced by the drug combination were

Figure 7. (A and B), Western blots of cellular extracts from Hut-78 and Karpas-299 treated with the drugs alone or in combination for 24 hours. Whole-cell lysates were
subjected to Western blotting using the indicated antibodies.

Figure 8. (A) Whole-cell lysates were subjected to Western blotting using the indicated antibodies. (B) The effect of drug combination on IL-10 secretion in TCL cell lines.
(C) Cellular extracts from Hut-78 and Karpas-299 cells treated with the drugs alone and in combination for 24 hours. Whole-cell lysates were subjected to Western blotting
using the indicated antibodies.
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associated with a decrease in Trx-1 expression. Trx inhibits both
spontaneous and drug-induced apoptosis, stimulates tumor
growth, and controls the activity of enzymes that counteract oxi-
dative stress within the cell and that have antioxidant properties
due to ROS scavenging.36-38 Trx-1 has been linked with aggres-
sive tumor growth and unfortunate prognosis.39 Decreasing the
levels of Trx in transformed cells increased their sensitivity to
cell death after treatment with the drug combination. In addition
to the above mechanism, apoptosis induced by combination
treatment is associated with ER stress; notably, ER stress acti-
vates the UPR signaling pathway, which is involved in cell death
and survival.40 Romidepsin and lenalidomide induced TCL cell
death via a mechanism that was mediated by ER stress, as evi-
denced by increased levels of IRE1-a, ATF6, and PERK, which
are hallmarks of ER stress. UPR sensors, BIP and CHOP pro-
teins were activated. Studies suggest that, in tumor treatment,
the intrinsic pathways for induction of apoptosis are activated
by ER stress and AKT and MAPK signaling pathways involved
in the cellular response to ER stress.41,42 The ER maintains a bal-
ance between protein synthesis and degradation, and breaking
ER stability leads to the increase of unfolded proteins. The ER
has a pool of molecular chaperone proteins, including calnexin
and PDI. Calnexin is an ERmembrane-associated calcium-bind-
ing protein that preserves synthetized glycoproteins inside the
ER to guarantee correct folding and quality control. BiP is a key
pro-survival pathway in the UPR and has a role in the folding
and assembly. The separation of BiP by PERK, ATF-6 and IRE-
1a, 3 ER transmembrane receptors, activates the UPR.43 PERK
activates downstream CHOP expression, inducing apoptosis43.
CHOP is an important mediator of apoptosis-ER-induced stress
and is regularly produced at low levels in the cytoplasm, but is
produced at high levels in response to stress of ER.44 CHOP is
phosphorylated by MAPK family, which increases its transcrip-
tional activity of many pro-apoptotic genes.44 Recently, Mounir
et al. demonstrated that PERK is a substrate of Akt.45 The inacti-
vation of PERK has profound effects in terms of promoting
tumor death in response to the inhibition of the PI3K/Akt path-
way by drugs.45 Our results confirmed that ER stress was trig-
gered by combination treatment with romidepsin and
lenalidomide. Combination drug treatment had a modest effect
on cell cycle progression in both Hut-78 and Karpas-299 cells.
However the “sub-G0/G1” peak, which corresponds to apoptotic
cells, was induced in both TCL cell lines. Cell cycle arrest was
observed when apoptosis was inhibited with Z-VAD. Drug com-
bination induced a slight decrease in cyclin D and B levels that
was accompanied by increases in p21 and p27 levels that nega-
tively control cell cycle and are therefore relevant to proliferation
inhibition in tumors46. The promoters for p21 and p27 tran-
scription are controlled by their histone acetylation status, and
they are frequently hypoacetylated in cancer disease.47 Our
results showed increased levels of p21 and p27, and this could be
a possible mechanism for tumor growth inhibition by the com-
bination of romidepsin and lenalidomide. The AKT, MAPK and
STAT pathways are the most important and intensively investi-
gated signaling pathways. They play central roles in governing
the cell survival and their dysregulation is related to the develop-
ment of many diseases.24,48 Co-treatment with romidepsin and
lenalidomide inactivated AKT as well as multiple downstream
AKT targets and the MAPK/ERK signaling pathway. The drug

combination also decreased STAT3 tyrosine phosphorylation,
which in turn led to downregulation of c-myc, a STAT3 target.
Activation of STAT3 has been described in CTCL and ALCL,
and it may be directly involved in clinical progression.24 STAT3
overexpression is linked to cancer survival, and reduced cyclin
D and CDK2 levels induce apoptosis in tumor cells.49 Romidep-
sin/lenalidomide decreased STAT3 and cyclin D levels in TCL
cells. STAT3 is a key regulator of IL-10 in TCL cells.50 Accord-
ingly, we examined whether IL-10 expression in TCL cells
depended on STAT3 activity. One study reported that IL-10
may be linked with the evolution of T-cell NHLs,51 while
another study showed that IL-10 plays a role in the rescue activ-
ity on T cells, protecting them from cell death connected upre-
gulated Bcl-2 expression.52 IL-10, is a strong promoter of Bcl-2
expression,53 and could be involved in the apoptosis-related
resistance mechanism of T-cell NHLs through a Bcl-2 mediated
pathway.54 Our experiments showed that romidepsin alone and
in combination with lenalidomide reduced IL-10 secretion.

The present results suggest that romidepsin interacts with
lenalidomide in TCL cells, triggering downregulation of Mcl-1
and Bcl-xL and inactivation of the AKT, MAPK/ERK, and
STAT3 signaling pathways. The drug combination induced
ROS generation, ER stress, and UPR, which in turn led to cell
death. Future studies are needed to determine the efficacy of
combination regimens that include romidepsin.

Materials and methods

Reagents and cell culture

Romidepsin and lenalidomide were provided by the Celgene Cor-
poration (San Diego, CA) and were dissolved in dimethylsulfox-
ide (DMSO, Sigma-Aldrich St.Louis, MO, USA) and stored at
¡20� C until use. The final concentration of DMSO, which was
used as the vehicle control, did not exceed 0.01%. Hut-78, human
CTCL, was purchased from the European Collection of Cell Cul-
tures (ECACC). Karpas-299, human anaplastic large cell lym-
phoma (ALCL), was obtained from the German Collection of
Microorganisms and Cell Cultures (DSMZ). Hut-78 and Karpas-
299 cells were cultured in RPMI-1640 supplemented with 10%
fetal bovine serum (FBS), 2 mML-glutamine, and 100U/mL pen-
icillin and streptomycin at 37�C in a humidified atmosphere con-
taining 5% CO2. Bone marrow mesenchymal stromal cells (BM-
MSCs) were generated as described previously55. Adherent cells
were cultured long-term and expanded in MEMmedium supple-
mented with 20% FBS, 2 mM L-glutamine, and 100 U/mL peni-
cillin and streptomycin at 37�C and 5% CO2. Peripheral blood
mononuclear cells (PBMCs) were obtained from 3 healthy volun-
teers using the Ficoll-Hypaque technique. Healthy volunteer who
took part in the study gave written informed consent and the pro-
tocol was approved by the local Institutional Review Board. All
reagents were purchased from Euroclone.

Viability assay and evaluation of the effect of the
drug combination

Hut-78 cells, Karpas-299 cells, and normal PBMCs were placed
into 96-well plates at a concentration of 5 £ 104¡1 £ 105 cells/
well and incubated in triplicate with increasing concentrations
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of romidepsin (0.5–25 nM) and lenalidomide (1–100 mM) as
single agents for 24–72 h to identify the IC50 values of each drug.
In order to evaluate the synergistic and additive effects of the 2
drugs, serial dilutions of the 2 agents were assessed using con-
centrations lower than the IC50. Hut-78 and Karpas-299 cells
were cultured with fixed doses of romidepsin (0.5 nM, 1 nM,
and 2.5 nM) and lenalidomide (2 mM, 4 mM, and 10 mM). The
combination index (CI), which was calculated by the Chou–
Talalay equation, demonstrates synergistic effects with CI <1 ,
additive effects with CID 1, and antagonism with CI>1.

We analyzed the drug combinations as follows: 1) simulta-
neous (combination) treatment with both drugs; 2) sequential
drug treatment with either (a) treatment with romidepsin for
6 h, followed by 2 washes, followed by treatment with lenalido-
mide for 24 hours or (b) treatment with lenalidomide for
6 hours, followed by 2 washes, followed by treatment with
romidepsin for 24 hours. Cell viability was evaluated by MTT
colorimetric assay (CellTiter non-radioactive cell proliferation
assay, Promega Corporation, Madison, USA) following the
manufacturer’s instructions.

Clonogenic assays

Hut-78 and Karpas-299 cells were cultured with romidepsin
and lenalidomide alone and in combination in liquid culture
for 24–48 hours, then collected and incubated in methylcellu-
lose (StemCell, Vancouver, Canada) and maintained for 10 or
14 d. Growing colonies (>50 cells) were counted under a
microscope.

Co-culture of TCL cell lines with BM-MSCs

BM-MSCs (n D 5000/well) were seeded in triplicate in 96-well
plates and incubated for 48 hours to reach confluence. After
48 h, TCL cell lines were seeded at 2 £ 104 cells/well in the
presence or absence of BM-MSCs. The next day, cells were
treated with romidepsin (2.5 nM) and lenalidomide (10 mM)
either alone or in combination. Non-adherent cells were col-
lected 24 and 48 hours after addition of the drugs, and cell via-
bility was evaluated.

Annexin V/propidium iodide assay

TCL cell lines (1 £ 106 cells/mL) were cultured for 24 hours
with romidepsin (2.5 nM) and lenalidomide (10 mM) either
alone or in combination. Apoptosis was quantified using the
Annexin V-FITC and propidium iodide (PI) binding assay fol-
lowing the manufacturer’s instructions (Miltenyi Biotec, Ger-
many). The cells were then analyzed by fow cytometry (FACS
Calibur, BD San Jose, CA, USA) and CellQuest data analysis
software (BD, Franklin Lake, NJ, USA). Apoptotic cells were
designated Annexin VC/PtdIns¡ or Annexin VC/PIC; these
designations indicate early and late apoptosis, respectively. All
experiments were performed in triplicate.

Analysis of Bcl-2 expression by flow cytometry

TCL cell lines (1 £ 106 cells/mL) were incubated in 6-well
plates for 24–48 h with romidepsin (2.5 nM) and lenalidomide

(10 mM) either alone or in combination. After treatment, the
cells were fixed and permeabilized using the BD Cytofix/Cyto-
perm KitTM (BD Biosciences, San Jose, CA, USA) according to
the manufacturer’s instructions. Cells were incubated with
FITC-conjugated mouse anti-human Bcl-2 monoclonal anti-
body (BD Biosciences, San Jose, CA, USA), or FITC-conjugated
mouse IgG1 monoclonal isotype control antibody (BD Bio-
sciences, San Jose, CA, USA), then analyzed by fow cytometry.
The experiment was performed in triplicate.

Measurement of reactive oxygen species (ROS) production

ROS production was analyzed using 2’,7’-dichloroflourescein
diacetate (DCFH-DA; Sigma-Aldrich St. Louis, MO, USA) and
was evaluated by quantifying the fluorescence. Cells treated for
24 hours, were incubated with 5 mM DCFH-DA in PBS at
37�C for 30 min. We used the free radical scavenger acetyl-L-
cysteine (NAC) (Sigma-Aldrich St. Louis, MO, USA) for assess
the role of ROS generation in apoptosis. Cells were pre-incu-
bated with 12 mM NAC for 3 h followed by incubation with
romidepsin and lenalidomide either alone or in combination.
H2O2 was used as the positive control. The fluorescence inten-
sity was read by flow cytometry on the FL1 channel within
45 min. ROS production was determined in gated live cells by
comparing the intensity of fluorescence in treated vs. untreated
cells. The data were analyzed by Cell Quest data analysis
software.

Cell cycle analysis

TCL cells were cultured at 1 £ 106 cells/well for 24 hours with
romidepsin (2.5 nM) and lenalidomide (10 mM) either alone or
in combination. Cell cycle analysis was determined by flow
cytometry as described previously.18

Western blot analysis

Cell pellets were resuspended in cold lysis buffer (Mammalian
Cell Extraction Kit; Biovision Inc. CA, USA) following the
manufacturer’s instructions. Cell lysates (50–100 mg of protein)
were loaded onto pre-cast 4%–20% (w/v) Miniprotean TGX
Precast Gels (Bio-Rad, USA), subjected to electrophoresis, and
electrotransferred onto nitrocellulose membranes (Bio-Rad,
USA). The antibodies and supplemental western blot method
are provided in the Supplementary Materials.

Measurement of IL-10

After treatment, the cells was centrifuged and the cell culture
supernatants collected for IL-10 analysis. IL-10 expression was
measured using IL-10–enzyme-linked immunosorbent assay
(ELISA; R&D Systems, Minneapolis, USA) according to the
manufacturer’s instructions.

Statistical analysis, isobologram, and CI calculation

The efficacy of the drugs both alone and in combination, was
studied using Calcusyn Software (Biosoft, Cambridge, UK).
The CI and isobologram plot were calculated according to the
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Chou–Talalay method.56 All in vitro experiments were per-
formed in triplicate and repeated at least 3 times, and a repre-
sentative experiment was selected for the figures. Data are
expressed as mean values § standard error. Statistical differen-
ces between controls and drug-treated cells were determined by
one-way analysis of variance (ANOVA), and p values <0 .05
were considered statistically significant. Data were analyzed
using the Stata 8.2/SE package (StataCorp LP).
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