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The Underestimated Role of Gradient Coils in MRI Safety
Luca Zilberti,1* Alessandro Arduino,1,2 Oriano Bottauscio,1 and Mario Chiampi2

MRI scanning of patients carrying implants is becoming a
reality in many hospitals, because of the wide increase of
population with implants, particularly in the orthopedic
ones (1). The responsibility for this practice falls on the
subscribing physicians or radiologists, who rely on guid-
ance establishing safety and compatibility of implants in
the MR environment (eg, (2)), which basically address
issues related to magnetically induced mechanical actions
and radiofrequency (RF) induced heating of tissues. Even
if large-scale MR safety studies on orthopedic implants
have been published that show no evidence of specific
risks for patients’ health (eg, (3)), additional analyses of
the interaction between MR fields and metallic implants
can contribute to support the scan decision on a firm
scientific rationale.

In a recent paper (4), we showed that the tissues sur-
rounding a metallic hip prosthesis exposed to a gradient
field (GF) may undergo a nonnegligible heating (up to
some degree), as a result of the electromagnetic energy
deposited in the implant. Since then, we have realized
that in the MR community these results are generally
received with some skepticism, probably because of the
fact that most of the scientific papers dealing with
thermal problems in MRI focus on RF fields (5–16). Sim-
ilarly, the attention of relevant standardization and regu-
latory bodies is focused solely on RF-induced heating
(2,17). This tendency is absolutely well-grounded when
studying native tissues, where GFs are not able to devel-
op significant thermal effects. However, in the presence
of metallic foreign bodies the situation is different.

Many papers show that a significant heating can be asso-
ciated with the exposure of such bodies to RF fields, espe-
cially with wire-like structures, which may act as antennas
(18–30). In this case, RF typically deposits a relatively low
power inside the metallic parts, but their presence may
cause the enhancement of the specific absorption rate
directly developed in the tissues anyway. What we would
like to highlight here is that, in presence of bulky metallic
prostheses, GFs can produce a nonnegligible heating too,
because of the thermal power generated inside the metal
(Joule effect), which involves the tissues indirectly, by dif-
fusion (“indirect effect” (31)). The GF thermal effect, which
becomes sizable only for prostheses far from the coils’

isocenter, has been considered up until now by a few
articles (4,32–34). To sustain these findings, we exploit an
analytical solution (35) that is not affected by possible arti-
facts of numerical results. The solution provides the current
density J (in complex notation) induced within a nonmag-
netic metallic sphere, with radius R, conductivity s and
permeability m0, immersed in a nonconductive background.
When the sphere is radiated by a homogeneous, time-
harmonic, magnetic flux density B (peak value) at frequency
f, the current density in an internal point is
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where r is the distance from the sphere center, u is the
colatitude measured from the sphere diameter parallel to
the magnetic field, d is the penetration depth, and
j2¼�1. The current density is azimuthal everywhere.

This solution is used to simulate the effect of GFs, con-
sidering that they are approximately homogeneous in cor-
respondence to the quite small volume taken up by the
sphere (which is placed away from the coils’ isocenter).
The total Joule losses (P) are obtained by integration of the
power density jJj2/(2s) over the sphere and therefore scale
as B2; in contrast, for a given B amplitude, it can be proved
that P increases monotonically with frequency.

The same solution turns out to be useful also for simulat-
ing a homogeneous rotating RF field (like that of birdcage
antennas around the system isocenter), decomposable into
two time-harmonic fields, with a 90 � shift both in phase
and geometrical disposition. The total current density is
obtained by superposing the two corresponding contribu-
tions given by (1) (taking into account their direction and
phase). For the rotating field, P is double than that given
by a single oscillating field (with the same frequency and
amplitude).

Table 1 indicates the power developed in spheres of
different radii, considering two conductivity values close
to those of typical alloys adopted for prostheses (eg, 0.58
MS/m for Ti-6Al-4V). The results refer to a GF of 6 mT
(eg, the dominant longitudinal component produced by a
30 mT/m gradient, at 0.2 m from the coils’ isocenter) at
100 Hz or 1 kHz (the most significant harmonic compo-
nents of many real sequences fall within this range) and
a RF rotating field of 10 mT at 64 or 128 MHz.

As can be seen, in some cases GFs give rise to power val-
ues higher than, or at least comparable to, those resulting

1Istituto Nazionale di Ricerca Metrologica, Torino, Italy.
2Politecnico di Torino, Dipartimento Energia, Torino, Italy.

*Correspondance to: Luca Zilberti, PhD, Istituto Nazionale di Ricerca Metro-
logica, Strada delle Cacce 91, I-10135, Torino, Italy. E-mail: l.zilberti@inrim.it

Received 3 August 2016; revised 13 October 2016; accepted 16 October
2016

DOI 10.1002/mrm.26544

Published online 7 November 2016 in Wiley Online Library (wileyonlinelibrary.
com).

Magnetic Resonance in Medicine 77:13–15 (2017)

VC 2016 International Society for Magnetic Resonance in Medicine. 13



from RF (in particular for bulky prostheses). This happens
because B is much lower for RF fields than for GFs. Note
that, at RF, P is higher when the implant is less conductive,
and vice versa for GFs. The case R¼ 20 mm is representative
for the femoral head of a hip prosthesis, whose P at 1 kHz is
similar to that found in previous realistic simulations
(4,36), in which nonnegligible heating was predicted (4).
Because the duty cycle of GFs is typically higher than that
of RF fields, their contribution would appear even more
significant in terms of energy.

In conclusion, these findings may contribute to the

theoretical understanding of induced heating in metallic

implants, demonstrating that GFs can provide a measur-

able effect, particularly when the implant is at some dis-

tance from the coil’s isocenter, also in light of the

tendency of designing higher and higher gradient-

strength systems.
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Table 1
Total Joule Losses P (in watt) Developed within the Sphere

R (mm)

Gradient field (6 mT) RF field (10 mT)

f¼100 Hz f¼1 kHz f¼64 MHz f¼128 MHz

s¼106 S/m

(d¼50.3 mm)

s¼105 S/m

(d¼159 mm)

s¼106 S/m

(d¼15.9 mm)

s¼105 S/m

(d¼50.3 mm)

s¼106 S/m

(d¼62.9 mm)

s¼105 S/m

(d¼199 mm)

s¼106 S/m

(d¼44.5 mm)

s¼105 S/m

(d¼141 mm)

40 3.00�10-1 3.05�10-2 12.8 3.00 3.03�10-2 9.50�10-2 4.30�10-2 1.35�10-1

20 9.52�10-3 9.53�10-4 8.70�10-1 9.52�10-2 7.55�10-3 2.40�10-2 1.07�10-2 3.36�10-2

10 2.98�10-4 2.98�10-5 2.96�10-2 2.98�10-3 1.90�10-3 5.90�10-3 2.67�10-3 8.35�10-3

5 9.30�10-6 9.30�10-7 9.30�10-4 9.30�10-5 4.70�10-4 1.40�10-3 6.63�10-4 2.06�10-3
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