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Imaging to study solid tumour origin and progression:
lessons from research and clinical oncology

Stefania Raimondo and Giovanni Zito

Biomedical imaging in recent decades has clarified our understanding of normal and pathological cellular processes in vivo.
In particular, this approach recently provided insights into processes occurring at a molecular or genetic level rather than

at the anatomical level. The evolution of this discipline by engineering have led to its integration into biomedical research to

(1) increase sensitivity and resolution imaging and to (2) improve tissue and cell specificity. Currently, imaging approaches are

used in three different biomedical areas: (a) identification of cellular processes in physiological and disease state; (b) in vivo
single-cell imaging; and (c) identification of new prognostic and therapeutical strategies. In this review, we will focus on the

state of art of biomedical imaging in cancer. Specifically, we will highlight the most important advances in imaging tools

available for basic and translational cancer research, with a particular emphasis on solid tissue malignancies.
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INTRODUCTION

Cancer is a leading cause of death worldwide, accounting for millions
of deaths every year.1 Although several steps forwards have been made
in recent years to understand the biological processes involved in the
development of this disease, basic and translational research is still far
away from a definitive cure. This is driven by tumour heterogeneity
within patients, thus making it difficult to define a unique type of
treatment for the different type of cancers. Epidemiological studies
recently demonstrated that solid tumours accounted for approximately
80% of cancer deaths.2 In particular, epithelial cancers include breast,
lung, colon, prostate and ovarian cancers. Recently, several studies
changed the way we visualise cancer development from normal tissues;
we learned indeed that tumour initiation and growth is controlled by a
subpopulation of cells that maintain stem cell-like features. These cells,
named cancer stem cells (CSCs) or tumour-initiating cells, represent
the current target of the pharmacological treatments, as their
eradication might be essential for long-lasting remission and cure of
cancer.3

Along with the characterisation of CSCs or tumour-initiating cells,
tremendous steps forward have been made in the identification of the
tumour microenvironment cellular composition and its role in cancer
progression, metastasization and resistance to therapy.4

These progresses would not have been possible without advances in
biomedical imaging, as they provide the necessary tools to label and
follow cell clones over time in physiological and disease states, as well
as define the interactions between tumour cells and their niche.5 In the
first part of this review, we will highlight the imaging techniques
mainly used in cancer research and their contribution to the field, with
particular emphasis on (1) the identification of the cellular origin of

solid tumours and (2) the cellular and molecular characterisation of
tumour cell/microenvironment interaction. We will then visit how
these imaging tools have influenced clinical oncology.

BIOMEDICAL IMAGING, SOLID TUMOURS AND CANCER STEM

CELL (CSCS) IN BASIC RESEARCH

Recent advances in engineering science led to the development of
several types of imaging tools that can be applied in vivo to study
cancer initiation, progression and metastasis.5 In basic research,
imaging approaches are mostly used to define cellular and molecular
aspects of tumour biology that could not be observed otherwise.
However, it is important to mention that every imaging modality
has its value depending on the purpose of the study. For example,
optical imaging is mainly used to study tumour origin, propagation
and tumour/microenvironment interaction, while positron emission
tomography (PET) or magnetic resonance imaging (MRI) are mostly
applied to define therapeutic response and metastatic dissemination
(Figure 1). For the purpose of this review, optical imaging modalities
will be analysed and discussed for basic cancer research studies, while
MRI, PET and others will be discussed later to describe their use in
clinical cancer management.

OPTICAL IMAGING

Fluorescence imaging to trace tumour cell of origin
In order to study CSCs and their behaviours in microenvironments,
researchers have mostly relied on fluorescence imaging. This approach
is crucial as the technique is easily accessible and allows (1) analysis of
CSCs at a single-cell resolution and (2) accurate phenotyping of CSC
within the tumour by simultaneously combining multiple
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fluorophores.6 Fluorescence imaging requires the use of fluorophores
and fluorescent proteins excited by an external light source. For
studies in solid epithelial tumours, fluorescence imaging was initially
used in vivo to detect CSCs, based on monoclonal labelled antibodies
against the well-known CSC marker CD133.7 By combining this
information with additional surface markers, CSC activity can be
traced in vivo in diverse contexts. For instance, Vlashi et al.8 have
developed a proteasome reporter system to track CSCs in mammary
tumours. By engineering a breast cancer cell lines to stably express a
fluorescent fusion protein (ZsGreen-ornithine decarboxylase) that
accumulates in the cells with reduced proteasome activity, they
demonstrated that ZsGreen+ cells were bona fide CSCs, thus providing
new tools that can be used to monitor CSC activity in an in vivo
tumour model.
Our knowledge of CSCs function has been expanded in solid

tumours by incorporating lineage-tracing techniques, thus providing
important information on the cellular origin of epithelial tumours.
One example is the Cre-loxP-based genetic lineage-tracing system
utilised in tandem with conditional expression of a reporter gene (that
is, fluorescent protein or β-galactosidase) in a restricted cell lineage
and in its progeny (Figure 2).9 By these means, all labelled cells can be
traced spatially and temporally, allowing their role during develop-
ment, tissue repair and in a disease state to be accured defined.10,11

By using the lineage-tracing system, in tandem with conditional
expression/inhibition of disease-specific oncogenes/oncosuppressors
several groups have now identified the cell of origin in solid tumours,
including skin, lung and colon (discussed below).12

Using this approach, the cellular origin of basal cell carcinomas,
squamous cell carcinoma and keratoacanthoma have now been
defined. Youssef et al.13 demonstrated that Sonic Hedgehog
constitutive signalling activation in the long-lived stem cells residing
in the interfollicular epidermis gave rise to basal cell carcinomas. In
addition, two groups have showed that p53 deletion, along with
KrasG12D overexpression in the hair follicle stem cells, is responsible
for squamous cell carcinoma formation.14,15 Finally, by using
fluorescent GFP-reporters, we demonstrated that hair follicle stem
cells contributed to keratoacanthoma formation.16

Different studies combining lineage-tracing, reporter genes and
oncogene/oncosuppressor activation/deletion, defined the cell of origin
of lung cancers. In particular, Bern et al.17 demonstrated the
heterogeneous derivation of small cell lung cancer; specifically, by
using different lineage promoters, the authors demonstrated that small
cell lung cancer might derive from cells of both the neuroendocrine
and the alveolar type II lineage.
Finally, Barker and collaborators demonstrated that crypt stem cells

in the intestine gave rise to colon cancer. In particular, by labelling
with GFP the intestinal Lgr5+ stem cells, combined with APC deletion,
they showed that Wnt activation in the slow-cycling stem cells
contributed to adenoma formation.18 The same authors elegantly
expanded this hypothesis, by using a novel multicolour Cre
reporter (Rosa26R-Confetti), and demonstrated that Lgr5+ stem cells
constantly fuelled the growth of such tumours.19

Thus, the literature above illustrated the power of fluorescence
imaging to understand cancer origin and molecular pathways that

Figure 1 Schematic representation of optical imaging applications in basic cancer research. A full colour version of this figure is available at the Immunology
and Cell Biology journal online.
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drive their progression. However, the future of cancer research relies
on pushing these boundaries by integrating different optical imaging
approaches, to better define in vivo tumour structures, activity and
aggressiveness. Few of the possible approaches are described in the
next paragraphs.

Bioluminescence imaging
Bioluminescence imaging (BLI) is a powerful tool that it is accelerating
our knowledge on the mechanisms adopted by cancer cells in situ
to proliferate and disseminate in their native surrounding micro-
environment. This imaging modality relies on luciferase reporter
systems, with some technical advantages compared to fluorescent
imaging. First of all, BLI reduces signal background, as cells do not
emit light; the system and the instrumentation are user-friendly, and
with limited costs; furthermore, luciferase enzymes have a very short
half-life compared to fluorescent proteins, and this is useful to reliably
analyse in vivo transcriptional activation, protein-protein interaction
and other rapid biological processes.20 Therefore, in recent years a
multitude of genetically engineered mouse models carrying luciferase
reporters have been developed to study the molecular events occurring
during cancer development and progression.
Spiotto et al.21 developed a luciferase reporter system to study the

effect of tumour microenvironment on tumour unfolded protein
response (UPR) and endoplasmic reticulum stress. Specifically, they
created a transgenic mouse where the luciferase gene was under the
control of the UPR component XBP-1 (XBP1-Luc transgene). In a
spontaneous model of breast cancer, they were able to demonstrate
that luciferase luminescence was correlated with tumour growth, thus
suggesting that alteration of UPR pathway and endoplasmic reticulum
stress were associated with tumour growth. Thus, UPR is currently
considered as an emerging target for anticancer therapies.22 In
addition, this study opened to the possibility to use BLI to define
new markers and parameters for tumour grading and response to
chemotherapy.
Goldman et al.23 developed a luciferase reporter system to monitor

hypoxia in mammary tumours. Thus luciferase expression, under the
control of Hif-1α (Hypoxic RE4ODD-Luc) - the well-known marker
of the hypoxic state within a tissue, provides a powerful means to
monitor not only tumour growth but also simultaneously tumour
hypoxia in a non-invasive manner.

Similar to fluorescence approaches, BLI can be used also to
characterise the role of specific oncogenes in solid tumours. For
instance, combining mouse models with luciferase expression driven
by β-actin promoter in tandem with Kras2v12 (constitutive activation
of oncogenic Kras), provides a means to activate spontaneous lung
tumours by adeno-Cre inhalation. Importantly, the spontaneous lung
tumours developed in these mice can be monitored for up to 100 days
after formation in a non-invasive manner,24 thus providing a wealth
information on the temporal and spatial interaction of primary and
secondary oncogenes. The exent of this temporal resolution is
highlighted by prostate cancer models that can be traced for up to
400 days.25 The literature described above represents only few
examples of the use of BLI to study tumour progression in vivo,
as this imaging modality has been successfully established also in other
tumour models, including pancreas and cervical cancer.26,27

Finally, BLI modality has been recently combined with fluorescent
reporters to monitor in vivo and ex vivo breast cancer initiation and
spontaneous dissemination. In particular, the authors created a dual
Luc2-eGFP reporter to assess CD44+ breast CSCs cellular behaviours
in orthotopic mouse models. The sensitivity of this approach is
highlighted by the observation that the authors could detect as low as
10 injected CD44+ CSCs, and trace their involvement in spontaneous
lung metastasis. Thus, the authors provided for the first time a tumour
model system—combined with non-invasive imaging modality—that
could be used to study the molecular events involved in the
dissemination of CSCs.28

This approach is very straightforward, and allows a thorough
analysis of tumour dissemination. Although still in infancy, combining
BLI and fluorescence imaging stands as a powerful tool for
understanding CSC, metastasis and the involvement of the micro-
environment in tumorigenesis.

Intravital microscopy to study cancer initiation and tumour
cell/microenvironment interaction
Live cell in vivo imaging, or intravital microscopy, is a technique that
was recently developed to follow in real-time cellular behaviours in an
unperturbed tissue, in either physiological or disease states. The
advancement of intravital imaging has recently progressed thanks to
the employment of the multiphoton laser scanner microscopy. This
approach allows deep penetration within living tissues (up to 1mm),

Figure 2 Schematic description of the lineage-tracing system. In the genetic lineage-tracing Cre-loxP systems, the Cre recombinase expression is under the
control of a tissue-/cell-specific promoter in one mouse line. This line is then crossed with a second one where the reporter gene is flanked by loxP-STOP-
loxP sequences. If the progeny contains both the alleles, Cre recombinase will determine the expression of the reporter gene by excision of one of the
loxP site. A full colour version of this figure is available at the Immunology and Cell Biology journal online.
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without side effects such as phototoxicity. In addition, it avoids
or in some cases reduces the autofluorescence signal, thus enabling
real-time imaging without interferences that can mislead the inter-
pretation of the results. Intravital imaging is a powerful tool that can
be used to address questions that would be impossible to answer by
static analysis. For instance, Valentina Greco’s group has extensively
applied live imaging to define stem cell behaviour during skin
regeneration. In particular, by combining elegant mouse reporter
systems, they provided new insights on how skin stem cells regulated
tissue regeneration in physiological conditions.29

In the past years, intravital imaging was used to study mechanisms
of tumorigenesis. For example, it defined (1) the early events
occurring during tumour development and (2) the mechanisms of
tumour cell/microenvironment interaction, leading to cancer cell
metastasis.
Recently, by combining intravital imaging with zebrafish models of

melanoma (in the context of p53 and BRAF mutations), Kauffman
et al.30 have demonstrated that the initial step leading to tumour
formation was the transformation of melanocytes cells into embryonic
progenitor-like cells. Interestingly, these findings supported previous
results obtained by Blanpain’s group in a murine model of basal cell
carcinomas.31

Intravital imaging has also contributed in determining how a small
number of mutated cells can generate a heterogeneous tumour.
By using a genetic mouse model system where few skin epithelial
stem cells constitutively activate Wnt signalling, Deschene et al.32

demonstrated that these cells recruited wild-type neighbouring cells
into the developing tumour. Although this finding was critical in
understanding the biological processes of cancer initiation, therapeutic
approaches targeting the wild-type cells of the tumours are more
complex in design; thus, important efforts are needed to define
treatments that can arrest cell recruitment in the tumour mass.
Next-generation intravital imaging required simultaneous analysis of
the microenvironment itself. These type of studies required additional
tools labelling the tumour niche as well. For instance, endothelial cells

or macrophages can be labelled with fluorescein isothiocyanate
(FITC)-dextran or quantum dots.33 The extracellular matrix, and in
particular the collagen, can be visualised by multiphoton laser scanner
microscopy with the second harmonic signal.34 By using these
approaches, several groups were able to elucidate the cellular
mechanisms by which cancer cells invade the surrounding stroma,
and colonise other organs (reviewed in depth by Ellenbroek and
Rheenen35).
Overall, intravital imaging is rapidly contributing to increase our

understanding of how cells can form a tumour, and how they escape
to colonise new organs. The next frontier is translating these imaging
approaches for therapeutic purposes. In particular, it will be important
to set up appropriate tools to follow molecules in real time as well as
therapeutic compounds and their specific targets within the tissues.
This approach has been successfully established in ex vivo cancer
explants,36 thus setting the scene for troubleshooting the next
generation of live imaging in clinical setting.

CLINICAL IMAGING

Imaging represents a critical part in the diagnosis, prognosis and
follow-up of patients with cancer. Recent advances in clinical oncology
have led to the development of new imaging methods able to (1) detect
initial molecular and cellular events that determine the onset and
progression of the oncological disease in the individual, (2) display the
expression of molecular targets to design individualised therapies,
(3) follow in real time the natural evolution of the disease and
(4) monitor the efficacy of the therapy.
Up to now, diagnostic imaging procedures in cancer are largely

applied in the management of symptomatic individuals; efforts are
being made to improve these techniques for early detection in
asymptomatic patients. Traditional diagnostic imaging procedures
consist of MRI; X-ray computed tomography (CT) and ultrasound.
Through these approaches, it is possible to obtain anatomical pictures,
and therefore consider only tumour volume and tissue density as
measure of the disease.

Figure 3 Schematic representation of imaging approaches in clinical oncology. A full colour version of this figure is available at the Immunology and Cell
Biology journal online.
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However, since the physiological or functional changes often
precede anatomical modifications, these techniques fail to characterise
the tumour; therefore the analysis of the function becomes a key
component in the identification of the pathological process in play.
A more recent advantage of imaging procedures consists of the
introduction of molecular imaging that provides specific information
on tissue metabolic states, by combining morphological information
of CT with metabolic data.37,38 Amongst the high-resolution
functional imaging techniques are PET and PET coupled with
CT (PET/CT) and magnetic resonance spectroscopy (MRSI). By
measuring chemical and biological processes for the detection of the
cellular changes that occur early in the course of disease, molecular
imaging techniques give information before the structural changes
occur. And it is for these reasons that these approaches represent
essential future tools in clinical oncology (Figure 3).
Each technology has some compromise on sensitivity, temporal

resolution, spatial resolution, depth of signal, signal source and the
availability of biocompatible probes.
In this section, we will briefly describe imaging approaches focusing

on their clinical application in oncological patients.

Positron emission tomography (PET) and combined diagnostic
techniques: PET/CT, SPECT/CT
PET and combination PET/CT are routinely used approaches in
cancer diagnosis and treatment monitoring. PET is a diagnostic
imaging technique that allows to measure chemical and biological
processes that occur in the body. PET uses radioactive tracers obtained
by marking molecules normally present in biological tissues (such as
sugars, amino acids, water and so on) with positron emitting
radionuclides β+ (particles with the same mass of electrons, but with
a positive electrical charge).
PET analysis evaluates physiological and biochemical features in

addition to morphological ones. For these reasons, it provides a
biological characterisation for early and accurate detection. General
indication for applying PET in oncology are (1) the differential
diagnosis between benign and malignant lesions, (2) staging and
diagnosis of relapse in order to adopt the best treatment and
(3) monitoring the response to therapy.
The advantage of PET in oncology is the possibility of total-body

evaluation and the biological characterisation of the tumour. Indeed
this approach provides information on tumour perfusion, hypoxia,

receptor expression, tumour metabolism and on the occurrence of
other biological processes. PET involves the use of a radiotracer
injected into the patient bloodstream. Since neoplastic transformation
is associated to an increased glucose uptake and glycolysis,
proportional to tumour growth and aggressiveness, one of the most
used PET radiotracer is the 2-deoxy-2-[18F]-fluoro-D-glucose
(18F-FDG),39 an analogue of glucose. Images obtained after injection
of FDG show the areas of increased glucose metabolism thus detecting
the localisation of primary tumour and of any metastases. The
application of 18F-FDG PET is more sensitive and specific in some
cancers, for example, non-small cell lung cancer,40 melanoma,41

colorectal carcinoma,42 breast cancer,43 head and neck tumours44

while poor 18F-FDG uptake has been observed in prostate cancer,
hepatocellular carcinoma, in small and non-invasive tumours.
In brain oncology, PET with 18F-FDG is able to differentiate

between low and high degree of malignancy and is useful in the
differential diagnosis between tumour recurrence and fibrosis
observed after treatment.45 Lung cancer can be recognised with
conventional diagnostic imaging techniques, which, however, have
limited diagnostic accuracy. It has been shown that PET studies
identify malignant lesions in 96% of cases.46

Among other radiotracers used in oncological application of PET
there are [18F]L-2-Fluorothyrosine and 11C-Metionin, indicators of
protein metabolism, and molecules as [18F]FAZA,47 [18F]MISO,48

[62Cu]ATSM, used to evaluate tissue hypoxia.
The different imaging techniques often provide diverse

morphological or functional information. They differ in the level of
invasiveness, cost, quality of the acquired images and spatial
or temporal resolution. Each method presents peculiarities and
limitations; therefore, a combined use of biomedical imaging methods
represents an effective approach.
The PET/CT is one of the most innovative diagnostic tools.

It allows the detection of disease extension and localisation to arrange
appropriate treatment plans optimised to selectively irradiate the
metabolically active tumour tissues. The PET/CT combination
provides better results than PET or CT alone, as it offers a more
precise localisation of radiotracer, and distinguishes the physical
uptake from the pathological one. Therefore, the significant
advantages of PET/CT imaging is the accuracy of diagnosis.49

The single-photon emission computed tomography (SPECT)
consists of the injection of a radiotracer in the patient and in the

Figure 4 Schematic illustration of theranostic application for targeted therapy. A full colour version of this figure is available at the Immunology and Cell
Biology journal online.
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subsequent detection of gamma photons released from affected
tissues.50 An advantage of SPECT is the improvement of the contrast
in the region of interest compared to the background. The use of
hybrid SPECT/CT is a more accurate method to combine the
functional information provided by SPECT with the anatomical
images provided by CT images.51

Despite the tremendous advantages in the diagnosis and follow-up
of oncological patients, nuclear radiation used in PET, and in the
combined techniques, precludes its repetitive use.

Magnetic resonance imaging (MRI) and magnetic resonance
spectroscopy imaging (MRSI)
MRI is a modern diagnostic technique that provides detailed
anatomical images of the human body; in particular, taking advantage
of the magnetic and electric capacity of the electron, MRI allows the
analysis of biological tissues through the evaluation of electron energy
absorption.
With this technique, many diseases or alterations relative to internal

organs can be displayed and diagnosed. MRI can be used for the
diagnosis of a wide variety of pathological conditions and is
particularly useful in the diagnosis of diseases of the brain and spine,
abdomen and pelvis, of the great vessels and of the musculoskeletal
system. The main advantages of MRI are high contrast resolution and
the absence of ionising radiation. Indeed the key feature of MRI is to
employ radiation with low electromagnetic energy content that does
not modify or destroy biological molecules.
MRI generates anatomic data, without considering organ

functionality. MRSI is an imaging technique that provides metabolic
information of normal or pathological tissues; in oncological
application, MRSI shows not only biochemical changes in response
to tumour growth but also delineates different metabolic tumour
phenotypes, without the use of radiotracer.52

Among the active nuclei used to monitor the metabolic changes
that occur in cancer tissue there are proton MRSI (1H MRS),
31P (phosphorus), 13C (carbon) and 19F (fluorine). To date, proton
MRSI is the method most commonly used for clinical purposes53

because it allows to obtain high-resolution spectra from small volumes
of interest and to identify numerous metabolites with different
biochemical meaning.
In clinical practice, MRSI is particularly useful in the diagnosis of

brain tumours.54 Choline ratios with other metabolites are routinely
used to classify cancer aggressiveness;55 indeed, by monitoring the
ratio cholin/creatin, is possible to obtain a spectroscopic map that
identify the neoplastic activity in each site. Proton MRI allows the
non-invasive diagnosis of prostate cancer.56 The molecular markers of
this tumour are citrate, creatin and choline; therefore, changes of
metabolites predict with accuracy the presence of tumour. In addition,
1H MRS allows the diagnosis of breast cancer in relation to the
presence of choline and the ratio of the choline/creatin.57 Proton
MRSI also provides early information on treatment responses,
discriminating responders to not-responders.

31P MRS detects metabolites such as phosphocreatine, nucleotide
triphosphate, phosphomonoesters (phosphocholine, phosphoethano-
lamine and phosphoserine), phosphodiesters (glycerylphosphocholine,
glycerophosphoethanolamine and glycerylphosphoserine) and inor-
ganic phosphate (Pi). Through this approach, it is possible to
determine intracellular pH, glycolysis and oxidative phosphorylation.
Compared to the proton spectroscopy, the phosphor is characterised
by a low sensitivity and by a lower spatial resolution, but is able to
provide a complete representation of energy flows in biological
systems. Phosphorus MRI has been mainly applied in the diagnosis

and follow-up of breast cancer,58 where phosphomonoesters levels is
increased.

Imaging for targeted therapy
Progresses in imaging techniques have been fundamental in
biomedical sciences; nowadays, imaging not only represents a crucial
tool for monitoring treatment efficacy but also it is considered an
important approach for several types of cancer treatment. Novel
treatments combine the role of imaging probes with therapeutic
applications. The primary goal is to deliver the therapy directly to the
tumour site with minimal systemic toxicity.
Recent advantages in cell biology as well as molecular imaging

highlight the possibility to develop a new class of compounds, called
theranostic compounds, that combine molecular imaging approaches
to therapeutic ones (Figure 4).
It is well established that cancer tissues overexpress specific proteins

that serve as target for designed therapy. For example, targeted
radionuclide therapy is based on the use of molecules, with high-
specificity for target cells, as carriers of radionuclides directly to
tumour and is now emerging as an effective therapeutic option for
several cancer types.59

One of the most suitable tumour types for radionuclide therapy is
prostate cancer where prostate-specific membrane antigen is highly
overexpressed. Some clinical trials have showed promising data on the
application of the monoclonal antibody J591, to prostate-specific
membrane antigen, radiolabelled with 90Y or 177Lu in castration-
resistant prostate cancer patients.59 In addition to prostate cancer, also
melanoma can be targeted with radionuclide therapy.60 Although very
promising, some challenges need to be overcome for the routine
application of theranostics in clinical oncology; a main problem is
indeed associated with the high doses of ionising radiation needed for
tumour tissue destruction.

CONCLUDING REMARKS

Recent years have seen tremendous advances in cancer research and
management as a result of (1) a better understanding of the biological
processes adopted by cancer cells to initiate tumours and colonise
secondary metastatic sites, (2) innovative approaches for cancer early
detection and (3) defining new and personalised therapeutical
strategies aiming at the eradication of the disease. Next generation
of biomedical imaging modalities, and in particular of molecular
imaging, have provided key biological information that would have
been impossible to obtain by standard approaches. While many
questions still need to be addressed, the discovery of new and accurate
biocompatible tracers as well as the development of new higher
imaging resolution and contrast, have the potential to revolutionise
our understanding of basic cancer cell biology and its treatment.
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