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Abstract

The aim of this study was to investigate whether nandrolone decanoate (ND) use affects testosterone production and testicular morphology in a
model of trained and sedentary mice. A group of mice underwent endurance training while another set led a sedentary lifestyle and were freely
mobile within cages. All experimental groups were treated with either ND or peanut oil at different doses for 6 weeks. Testosterone serum levels
were measured via liquid chromatography–mass spectrometry. Western blot analysis and quantitative real-time PCR were utilized to determine gene
and protein expression levels of the primary enzymes implicated in testosterone biosynthesis and gene expression levels of the blood–testis barrier
(BTB) components. Immunohistochemistry and immunofluorescence were conducted for testicular morphological evaluation. The study demon-
strated that moderate to high doses of ND induced a diminished serum testosterone level and altered the expression level of the key steroidogenic
enzymes involved in testosterone biosynthesis. At the morphological level, ND induced degradation of the BTB by targeting the tight junction pro-
tein-1 (TJP1). ND stimulation deregulated metalloproteinase-9, metalloproteinase-2 (MMP-2) and the tissue inhibitor of MMP-2. Moreover, ND
administration resulted in a mislocalization of mucin-1. In conclusion, ND abuse induces a decline in testosterone production that is unable to regu-
late the internalization and redistribution of TJP1 and may induce the deregulation of other BTB constituents via the inhibition of MMP-2. ND may
well be considered as both a potential inducer of male infertility and a potential risk factor to a low endogenous bioavailable testosterone.
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Introduction

Nandrolone decanoate is a synthetic testosterone analogue consid-
ered one of the most commonly abused anabolic androgenic steroids

(AAS) by adolescents and athletes. ND is alleged to promote an
increase in muscle mass and improves both physical appearance and
sporting performance [1]. Nowadays, ND abuse is often associated
with serious adverse effects, interfering with the musculoskeletal sys-
tem, the endocrine system and the reproductive system [2]. More-
over, ND may suppress the hypothalamic–pituitary–gonadal axis
resulting in a decreased production of endogenous testosterone [3].
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Testosterone is usually produced by testicular Leydig cells and its
production is regulated by a neuroendocrine feedback mechanism
which regulates the pulsatile release of luteinizing hormone (LH). The
result is therefore activation or repression of the steroidogenic sig-
nalling cascade as well as gene transcription of key enzymes [4, 5].
The steroidogenic enzymes involved in testosterone biosynthesis
include steroidogenic acute regulatory protein (StAR), cholesterol
side-chain cleavage enzyme (CYP11A1), 3ß-hydroxysteroid dehydro-
genase (HSD3B1), 17a-hydroxylase/17,20-lyase (CYP17A1) and 17ß-
hydroxysteroid dehydrogenase [6]. The role of these steroidogenic
enzymes is further described in Table 1.

Although ND is frequently abused in sports, there are limited ani-
mal studies which compare the relationship between physical activity/
exercise with and without ND use. Shokri et al. [7] demonstrated that
exercise associated with supraphysiological doses of ND in rats
increased apoptosis in spermatogenic cells. In testes, germ cell devel-
opment is supported by Sertoli cells that reside within the basal
epithelial lining within the seminiferous epithelium [8]. These cells
create a specialized microenvironment through the formation of the
BTB, preventing free passage of solutes, ions and water that might
affect the development of germ cells [9]. The BTB is formed by tight
junctions (TJs), basal ectoplasmic specializations (ES) and desmo-
some–gap junctions (D-GJs) that compartmentalize the seminiferous
tubule into the basal and adluminal compartments [9].

The aim of this study was to investigate the effects of ND adminis-
tration on testosterone biosynthesis in a mouse exercise model.
Moreover, testis morphological alterations associated with the dys-
regulation of factors that confer BTB integrity will also be determined.

Materials and methods

Animals and animal care

This experiment was carried out on forty-eight 3-month-old healthy

male CD1 mice (46.1 � 3.2 g body weight). The mice were housed in
cages and maintained in an animal room with controlled lighting (12-

hrs light–dark cycle) and temperature (21 � 1°C). Animals were

allowed free access to standard food and water. After 1 week of

acclimatization, the animals were assigned to one of the eight experi-
mental groups described in Table 2.

Experiments on animals were performed at the Department of Human

Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida,

Malta. The care and treatment of all animals were carried out in accordance
with the EU Council Directive 86/609/EEC, the Animals Scientific Proce-

dures Act 1986. All experimental protocols were approved by the Faculty of

Medicine and Surgery Animal Care and Use Committee, University of Malta.

Training protocol and nandrolone administration

A motorized treadmill (Exer 3/6, Columbus, OH, USA) was used to train
the mice. The TR mice ran 5 days/week at a progressively increasing

duration and intensity of training. During the first week, the mice ran

for 15 min. at a speed of 10 m/min.; during the second and third

weeks, the mice ran for 30 and 60 min., respectively, at the same
speed; during the fourth and fifth weeks, the mice ran for 60 min. at a

speed of 12 m/min. Finally, during the last week, the mice ran for

90 min. at a speed of 14 m/min. All the mice were weighed weekly.

Table 1 The role of some steroidogenic enzymes

Steroidogenic enzymes Abbreviation Role

Steroidogenic acute regulatory StAR Transfers cholesterol to the inner membrane of mitochondria

Cholesterol side-chain cleavage enzyme CYP11A1 Converts cholesterol into pregnenolone within the mitochondria

3ß-hydroxysteroid dehydrogenase HSD3B1 Converts pregnenolone into progesterone

17a-hydroxylase/17,20-lyase CYP17A1 Converts progesterone into androstenedione

Table 2 Experimental groups

Groups Abbreviation Nandrolone Decanoate/kg per week

Normal control mice SED —

Sedentary low dose of nandrolone secanoate SED-ND-L 3.75 mg

Sedentary middle dose of nandrolone decanoate SED-ND-M 10 mg

Sedentary high dose of nandrolone decanoate SED-ND-H 20 mg

Trained control mice TR —

Trained low dose of nandrolone decanoate TR-ND-L 3.75 mg

Trained middle dose of nandrolone decanoate TR-ND-M 10 mg

Trained high dose of ND nandrolone decanoate TR-ND-H 20 mg
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Mice of all experimental groups were treated with intramuscular
injections (IM) of ND (Sigma-Aldrich, St. Louis, MO, USA) or peanut oil

twice a week in the hindlimb for 6 weeks (Table 2). ND was dissolved

in peanut oil with 10% of benzoic alcohol, and the dose of ND was

selected according to the literature [10–12]. Mice of the SED and TR
groups (controls) were administered IM peanut oil and 10% benzoic

alcohol. Forty-eight hours after the last training session, mice were

killed via cervical dislocation. The blood was collected in tubes and cen-
trifuged and serum was stored at �80°C. Testes were dissected and

preserved in liquid nitrogen or embedded in paraffin for morphological

and molecular evaluation.

Measurement of testosterone level with liquid
chromatography–mass spectrometry

Testosterone levels were assessed by ‘Locorotondo Labs srl, Palermo’.

Testosterone in serum was quantified using a validated method for the

analysis in serum/plasma of testosterone by liquid chromatography–
mass spectrometry (LC-MS/MS). The method was performed as

described previously [13]. Total testosterone analysis in serum was per-

formed in all experimental groups (n = 6 per group).

Western blotting analysis

Testis homogenization was performed as described previously [14, 15].
The membrane was incubated in a blocking solution containing 5% milk

in Tris-buffered saline (20 mM Tris, 137 mM NaCl, pH 7.6) containing

0.05% Tween-20 (T-TBS) for 1 hr. Next, the membrane was further

incubated in a primary antibody overnight at 4°C (see Table 3). All the
primary antibodies were diluted in T-TBS containing 5% BSA and incu-

bated overnight at 4°C. The following day, the membrane was washed

with T-TBS and incubated with an HRP-conjugated secondary antibody

(anti-rabbit NA934V, or antimouse NA931; Amersham Biosciences, GE
Healthcare Life Science, Pittsburgh, USA) diluted in T-TBS containing

5% milk for 1 hr. The detection of the immunopositive bands was per-
formed using ECL Western blotting detection reagent (Amersham Bio-

sciences) according to the manufacturer’s instructions.

Quantitative real-time PCR (qRT-PCR)

The qRT-PCR technique was previously described in another study [16].

Reverse transcription was performed using the ImProm-II Reverse Tran-
scriptase Kit (Promega, Madison, WI, USA) according to the manufacturer’s

instructions. qRT-PCR analysis was performed using GoTaq qPCR Master

Mix (A6001, Promega). mRNA levels were normalized to those of GAPDH

and GUSB. Changes in the transcript level were calculated using the 2�DDCT

method [17]. Complementary deoxyribonucleic acid (cDNA) was amplified

using primers indicated in Table 4. cDNA was amplified using the Rotor-

GeneTM 6000 Real-Time PCR Machine (Qiagen GmbH, Hilden, Germany).

Histological examination

After the killing of animals, samples of testes were taken from each
mouse for histological analysis as described previously [18, 19]. Sec-

tions were stained with haematoxylin and eosin, mounted with cover-

slips and finally observed with a Leica DM5000 upright microscope

(Leica Microsystems, Heidelberg, Germany). Two independent observers
(F.C and F.R) examined the specimens on two separate occasions, in a

blind manner, using coded slides without knowing their source.

For the histological evaluation, 10 sections which had a 20-lm dis-

tance from each other were observed with the light microscopy and the
images were taken at 940 magnification.

Immunofluorescence analysis

For immunofluorescence, deparaffinized sections of 4–5 lm were incu-

bated in the antigen unmasking solution (10 mM tri-sodium citrate,

Table 3 Primary Antibody used for WB, IHC and IF

Method Antigen Type and source Clone Supplier Dilution

WB CYP17A1 Rabbit polyclonal M-80 Santa Cruz Biotechnology, Inc.
(Dallas, TX, USA)

1:1000

WB HSD3B1 Goat polyclonal P-18 Santa Cruz Biotechnology 1:1000

WB StAR Rabbit polyclonal FL-285 Santa Cruz Biotechnology 1:1000

WB CYP11A1 Rabbit polyclonal H-165 Santa Cruz Biotechnology 1:1000

WB b-Actin Mouse monoclonal C-2 Santa Cruz Biotechnology 1:1000

IF Tight Junction Protein-1 (TJP1) Rabbit polyclonal Not specified Sigma-Aldrich 1:50

IF MMP-2 Rabbit polyclonal H-76 Santa Cruz Biotechnology 1:50

IF TIMP-2 Mouse monoclonal Not specified Millipore (Temecula, CA, USA) 1:50

IF MMP-9 Rabbit polyclonal H-129 Santa Cruz Biotechnology 1:50

IHC MUC1 Rabbit polyclonal AB2 Sigma-Aldrich 1:200

Abbreviations: WB, Western blot analysis, IHC, immunohistochemistry; IF, immunofluorescence.
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0.05% Tween-20) for 8 min. at 75°C and treated with a blocking solu-

tion (3% BSA in PBS) for 30 min. Next, the primary antibody (Table 3)
was applied, and the slides were incubated in a humidified chamber

overnight at 4°C. Then, the sections were incubated for 1 hr at 23°C
with a conjugated secondary antibody (anti-rabbit IgG–FITC antibody

produced in goat, F0382, Sigma-Aldrich; antimouse IgG–TRITC antibody
produced in goat, T5393, Sigma-Aldrich). Nuclei were stained with

Hoechst stain solution (1:1000, Hoechst 33258; Sigma-Aldrich). The

slides were treated with PermaFluor Mountant (Thermo Fisher Scientific,
Inc. Waltham, MA, USA) and cover-slipped. The images were captured

using a Leica Confocal Microscope TCS SP8 (Leica Microsystems).

Immunohistochemistry analysis

For immunohistochemical analysis, serial sections (4–5 lm) were incu-

bated in an antigen unmasking solution for 8 min. at 75°C. Then, the
MACH1 kit (M1u539 g; Biocare, Concord, CA, USA) was used according

to the manufacturer’s instructions. The sections were incubated with

the primary antibody in a humidified chamber overnight at 4°C. The fol-

lowing day, the sections were incubated for 1 hr with the secondary
antibody. Finally, the slides were cover-slipped, and images were cap-

tured with a Leica DM5000 upright microscope.

Statistical analyses

A one-way ANOVA followed by a Bonferroni post hoc test for multiple

comparisons was performed as an appropriate analysis for the data. All
statistical analyses were performed using the GraphPad PrismTM 4.0

program (GraphPad Software Inc., San Diego, California, USA). All data

are presented as the mean � S.D., and the level of statistical signifi-

cance was set at P < 0.05.

Results

Body weight

All of the trained mice successfully completed the 6-week training
programme without the aid of electric shock incentive, and no injuries
were sustained throughout the training. The mice were weighed at the
beginning of the experiment and every week thereafter. Body weight
of mice from all groups is shown in Figure 1. No difference in body
weight was observed between the trained groups (TR, TR-ND-L, TR-
ND-M and TR-ND-H) and the sedentary groups (SED, SED-ND-L,
SED-ND-M and SED-ND-H) after 6 weeks of training. A statistical
analysis was also carried out within the same group. Only the TR
group showed a reduction in body weight after 6 weeks of training
compared with the body weight at the beginning of the experimental
protocol (P < 0.05) (Fig. 1B).

Effect of ND administration on testosterone
biosynthesis

To determine whether ND stimulation affected testosterone production,
measurement of testosterone level in serum was taken using liquid
chromatography–mass spectrometry. The hormone levels were signifi-
cantly higher in response to endurance training in the TR group com-
pared with the SED group (P < 0.05). We observed a significant
decrease in testosterone production in TR-ND-M and TR-ND-H groups
compared with the TR group (P < 0.01). Moreover, testosterone levels
in serum were significantly lower in SED-ND-M and SED-ND-H groups
compared with the SED group (P < 0.05) (Fig. 2A).

Table 4 Primers used for qRT-PCR

Primer Forward Reverse

GUSB 50-CAAGGGGTCAATAAGCACGA-30 50-TCTGAGTAGGGATAGTGGCT-30

GAPDH 50-CAAGGACACTGAGCAAGAGA-3 50-GCCCCTCCTGTTATTATGGG-30

CYP11A1 50-GGGCACTTTGGAGTCAGTTT-30 50-CGGTCTTTCTTCCAGGCATC-30

HSD3B1 50-GCTGCTGCACAGGAATAAAG-30 50-GCCTGCTTCGTGACCATATT-30

CYP17A1 50-ACACCTAATGCCAAGTTCCC-30 50-AGGCGAAGAGAATAGATGGG-30

StAR 50-ACACCCCAAAGAAGGCATAG-30 50-GCTGAATCCCCCAAACTTCT-30

QuantiTect Primer Assay (Qiagen)

DNM2 NM_001039520, bp 3579

OCLN NM_008756, bp 3192

GJA1 NM_010288, bp 3105

TJP1 NM_001163574, bp 6891

F11R NM_172647, bp 2482
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To determine variation in gene expression, we performed qRT-
PCR for StAR, CYP17A1, HSD3B1 and CYP11A1 genes (Fig. 2B).
The results showed that the expression of StAR and CYP17A1
mRNA increased significantly in the TR group compared with
SED, TR-ND-L and TR-ND-M groups (P < 0.05). The expression
of StAR mRNA increased significantly in the TR group compared
with the TR-ND-H group (P < 0.01). Moreover, the expression of
HSD3B1 mRNA increased significantly in SED-ND-H and TR-ND-H
groups, respectively, compared with SED and TR groups
(P < 0.01). Finally, the expression of CYP11A1 mRNA decreased
significantly in the TR-ND-H group compared with the TR-ND-L
group (P < 0.01).

Lysates of testes were analysed by Western blotting analysis in all
experimental groups to verify the effects of ND administration and
training on expression levels of proteins involved in testosterone syn-
thesis (Fig. 2C). Our results showed that the levels of StAR decreased
significantly in SED-ND-M and SED-ND-H groups compared with SED
and SED-ND-L groups (P < 0.05) (Fig. 2D). The levels of CYP17A1
decreased significantly in SED-ND-M and SED-ND-H groups com-
pared with the SED group (P < 0.05). Moreover, the levels of
HSD3B1 decreased significantly in SED-ND-M and SED-ND-H groups
compared with the SED group (P < 0.05). Finally, Western blotting
analysis for CYP11A1 protein level did not show any significant differ-
ences between the groups.

Histological analysis

The histological analysis carried out on mice testis samples showed
alterations in the normal histological structure in SED-ND-M, SED-
ND-H and TR-ND-H groups. In these groups, some seminiferous
tubules showed degenerative changes and disorganization with an
incomplete germ cell maturation (Fig. 3). Cells that resemble primary
spermatogonial cells with irregular and dense nuclei were present in
the lumen of some tubules while there was a loss of spermatids and
mature germ cells. The samples also showed interstitial Leydig cell
atrophy. Normal histological structure of seminiferous tubules with

complete spermatogenic series and normal maturation was observed
in other groups.

Effect of ND stimulation on gene expression
levels of BTB components

To better evaluate the effect of ND stimulation on BTB dysregulation
at the genetic level, qRT-PCR analysis was performed for Junctional
adhesion molecule A (JAM1) also called F11 receptor (F11R), Dyna-
min-2 (DNM2), Occludin (OCLN), Gap junction alpha-1 (GJA1 or con-
nexin-43) and Tight junction protein-1 (TJP1or ZO-1). The results
obtained are shown in Figure 4. F11R gene levels were elevated in the
TR-ND-M group compared with SED, TR, TR-ND-L and SED-ND-M
groups (P < 0.05). Moreover, F11R and OCLN gene expression levels
were significantly higher in the TR-ND-H group compared with SED,
TR, TR-ND-L and SED-ND-H groups (P < 0.05). TR-ND-M and TR-
ND-H groups showed significantly higher levels of DNM2 compared,
respectively, with SED and TR, TR-ND-L, TR-ND-M, SED and SED-
ND-H groups (P < 0.05). Furthermore, qRT-PCR analysis revealed
that ND stimulation significantly enhanced GJA1 levels in the TR-ND-
M group compared with SED and SED-ND-M groups. In the TR-ND-H
group, GJA1 expression levels were higher compared with SED and
SED-ND-H groups (P < 0.05). TJP1 expression significantly
increased in SED-ND-M, SED-ND-H and TR-ND-H groups compared
with the SED group (P < 0.01). Finally, TR-ND-H group showed ele-
vated levels of the same gene compared with TR and TR-ND-L groups
(P < 0.01).

Immunofluorescence analysis

Blood–testis barrier integrity was examined using immunofluores-
cence staining for TJP1 as a marker of tight junction proteins (Fig. 5).
In testes of SED, TR, SED-ND-L, TR-ND-L and TR-ND-M groups,
TJP1 was distributed only at the base of seminiferous tubules while in
SED-ND-M, SED-ND-H and TR-ND-H groups, testes showed altered

Fig. 1 Functional effects of endurance exercise on body weight. Changes in body weight over time. All mice were weighed every week. Horizontal

axis: time of training (weeks). Vertical axis: body weight (g). (A): normal control mice (SED), sedentary low dose of ND (SED-ND-L), sedentary med-

ium dose of ND (SED-ND-M), sedentary high dose of ND (SED-ND-H). (B): trained control mice (TR), trained low dose of ND (TR-ND-L), trained
medium dose of ND (TR-ND-M) and trained high dose of ND (TR-ND-H). Data are presented as the mean � S.D. # significantly different from TR

first week mice (P < 0.05).
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distribution patterns of the protein. In fact, ND seems to induce TJP1
internalization and localization in the seminiferous tubule cytoplasmic
compartment. Metalloproteinase-9 (MMP-9) immunoreactivity was
detected pre-eminently in the flagella of spermatocytes at the adlumi-
nal compartment of seminiferous tubules in SED, TR, SED-ND-L, TR-
ND-L and TR-ND-M groups (Fig. 5). Indeed, SED-ND-M, SED-ND-H
and TR-ND-H groups did not yield a signal in response to this pro-
tease. Immunofluorescence localization of MMP-2 was detected in
the basal lamina of the seminiferous tubules as well as in the cyto-
plasm and cell membrane of Leydig cells, with a granular distribution
resembling probable secretion bodies. This tissue distribution was

demonstrated in SED, TR, SED-ND-L, TR-ND-L and TR-ND-M groups
while in the other groups MMP-2 was present with a widespread
granular distribution in the cytoplasm of Leydig cells (Fig. 6). Finally,
the tissue inhibitor of metalloproteinase-2 (TIMP-2) immunopositivity
was inversely correlated to MMP-2 immunoreactivity (Fig. 6).

Immunohistochemical analysis

To determine the tissue distribution of mucin 1 (MUC1), immunohis-
tochemistry was carried out (Fig. 7). The observation of the testis

Fig. 2 Effect of ND on testosterone secretion and steroidogenic gene/protein expression. (A): Measurement of testosterone level performed with liq-

uid chromatography–mass spectrometry. Vertical axis: testosterone levels (ng/ml). Horizontal axis: mice groups. Normal control mice (SED), seden-

tary low dose of ND (SED-ND-L), sedentary medium dose of ND (SED-ND-M), sedentary high dose of ND (SED-ND-H), trained control mice (TR),

trained low dose of ND (TR-ND-L), trained medium dose of ND (TR-ND-M) and trained high dose of ND (TR-ND-H). (B): qRT-PCR evaluation of
StAR, CYP11A1, HSD3B1 and CYP17A1 gene expression after ND administration and/or endurance training. The graphs show normalization with the

reference genes, according to the Livak method (2�ΔΔCT). Vertical axis: 2�ΔΔCT. Horizontal axis: mice groups. (C): representative cropped blots for

StAR (30 kDa), CYP11A1 (60 kDa), HSD3B1 (42 kDa) and CYP17A1 (55 kDa). The gels were run under the same experimental conditions and b-
actin was used as the internal control. (D): relative expression levels of StAR, CYP11A1, HSD3B1 and CYP17A1. Vertical axis: arbitrary units (AU).

Horizontal axis: mice groups. Data are presented as the mean � S.D. *P < 0.05; #P < 0.01.
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specimens under optical microscope revealed the presence of MUC1
in the nuclei of spermatids of many seminiferous tubules in SED-ND-
M, SED-ND-H and TR-ND-H groups. The protein immunoreactivity
was strong and intense. The other groups showed MUC1 immunore-
activity inside the cytoplasm of some germ cells, but the signal
strength was moderate. Moreover, in all groups the immunohisto-
chemical staining revealed the expression of MUC1 in the cytoplasm
of Leydig cells.

Discussion

In a previous study, we demonstrated that ND treatment of Leydig
cells interferes with the biosynthesis of testosterone in a dose
increase-dependent fashion [13]. As a consequence of the results
obtained in vitro, here an animal model was utilized to better under-
stand the side effects of ND administration in sedentary and trained
mice.

The results obtained showed that endurance training increased
serum testosterone levels in the TR group compared with the con-
trol group. The increased hormonal level following aerobic training
may represent a physiological adaptation, confirming the effective-
ness of our training protocol in accordance with another study
[20, 21]. Moreover, ND administration at middle to high doses
decreased serum testosterone levels in sedentary and trained mice,
allowing us to hypothesize that ND may, via an unknown mecha-
nism, interfere with testosterone biosynthesis. The results obtained
in this study are consistent with the findings of another study
which demonstrated persistently low testosterone levels throughout
the duration of ND treatment. This may possibly be attributed to
negative feedback mechanisms, with reduced endogenous testos-
terone secretion [22].

It has been established that exercise and high doses of ND may
influence the hypothalamic–pituitary–gonadal axis [23, 24]. In partic-
ular, it has been suggested that chronic administration of ND
decreases levels of LH and follicle-stimulating hormone, which then
lead to decreased endogenous testosterone production and
decreased spermatogenesis in male rats [23, 24]. Low levels of LH
may contribute to low levels of testosterone production as LH stimu-
lates testosterone production in Leydig cells, and this could explain
the results obtained in this study. This therefore demonstrates that
testosterone secretion decreases in mice administered with middle to
high doses of ND. These changes were accompanied by modifications
in expression levels of the main enzymes involved in testosterone
production as ND acts as a competitive inhibitor of testosterone [25].
Our results showed a significant decrease in StAR and CYP17A1 gene
levels in mice trained and administered with the ND group compared
with the TR group. Moreover, we observed a significant increase in
HSD3B1 gene levels in mice administered with a high dose of ND, in
both sedentary and trained mice compared with SED and TR groups,
respectively. A significant increase in StAR and CYP17A1 gene
expression levels in trained mice without ND administration, com-
pared with the SED group, was also observed. These results are in
agreement with previous findings [21] that demonstrated that endur-
ance training and conjugated linoleic acid administration increased
the gene expression of CYP17A1. On the contrary, ND administration
decreased expression levels of this gene and thus testosterone pro-
duction. StAR overexpression has already been associated with an
increment in testosterone production [26] while to the best of our
knowledge, a reduction in CYP17A1 levels and/or expression after ND
stimulation has never been previously reported in the literature. Bjelic
et al. [6] reported a dramatic decrease in CYP11A1 and CYP17A1
gene levels while the levels of HSD3B increased in Leydig cells after
testosterone enanthate treatment. We hypothesize that high ND

Fig. 3 Representative photomicrographs of testis sections stained with haematoxylin–eosin. Testis histology of normal control mice (SED), trained

control mice (TR), low dose of ND (ND-L), medium dose of ND (ND-M) and high dose of ND (ND-H). The photomicrographs showed degenerative
changes and disorganization of the normal histology of testes with an incomplete germ cell maturation of seminiferous tubules (see arrows).

Bar = 100 lm for all panels.
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concentrations may interfere with CYP17A1 gene transcription
through unknown mechanisms, which indirectly affect testosterone
production. It is well known that the regulation of steroidogenic gene
transcription is complex, involving a broad range of different tran-
scription factors. For example, in Leydig cells, StAR, CYPs, HSD3B
and cAMP regulate the promoter’s activity, involving primarily CREB,
NUR77, GATA4 and SF1. It is also modulated by other transcriptional
cofactors as well as repressors [27–29]. As stated above, we pro-
vided data supporting the hypothesis that ND might regulate testos-
terone production by inhibiting CYP17A1 gene/protein levels although
further long-term studies are warranted in order to elucidate the
underlying molecular mechanism involved.

Considering the data obtained for testosterone production after
ND administration and its essential role in male fertility, we investi-
gated whether AAS induces morphological alterations in testes. The
histological analysis of testes from sedentary and trained mice ND
administered showed a disorganized histological structure of the

seminiferous tubules with an incomplete germ cell maturation that
might lead to impaired spermatogenesis. It is well known that the
BTB integrity is crucial for spermatocyte differentiation, and we asked
whether ND stimulation may induce modifications at the gene expres-
sion level of some components of the barrier. The results obtained
demonstrated an increase in the gene levels coding TJ-integral mem-
brane proteins, such as OCLN, F11R and their common adaptor TJP1
in trained mice administered with middle and high ND doses. More-
over, in the same groups, we observed elevated gene expression
levels for DNM2 encoding the homologous protein associated with
ES. Among the D-GJs of the BTB, we examined the gene expression
levels of GJA1 which showed a trend similar to the other molecules
investigated. TJP1 tissue distribution was further investigated by
immunofluorescence staining as this is a key protein that mediates
Sertoli cell–cell adhesion. This function is facilitated by the fact that
the protein is anchored in F-actin bundles, conferring a degree of
impermeability to the BTB [30]. In control testes, TJP1 output

Fig. 4 Effect of ND on gene expression levels of BTB components. qRT-PCR evaluation of Junctional adhesion molecule A (JAM1), Dynamin-2
(DNM2), Occludin (OCLN), Gap junction alpha-1 (GJA1) and TJP1 gene expression after ND administration and/or endurance training. The graphs

show normalization with the reference genes, according to the Livak method (2�ΔΔCT). Vertical axis: 2�ΔΔCT. Horizontal axis: mice groups. Normal

control mice (SED), sedentary low dose of ND (SEDND-L), sedentary medium dose of ND (SED-ND-M), sedentary high dose of ND (SED-ND-H),

trained control mice (TR), trained low dose of ND (TR-ND-L), trained medium dose of ND (TRND-M) and trained high dose of ND (TR-ND-H). Data
are presented as the mean � S.D. *vs SED, TR, TR-ND-L and SED-ND-M (P < 0.05); #vs SED, TR, TR-ND-L and SED-ND-H (P < 0.01); $vs SED

(P < 0.05); &vs SED, TR, TR-ND-L, TR-ND-M and SED-ND-H (P < 0.01); †vs SED and SED-ND-M (P < 0.05); ¥vs SED and SED-ND-H (P < 0.05);

Dvs SED-ND-M, SED-ND-H, TR-ND-H (P < 0.05); ◊vs TR and TR-ND-L (P < 0.05).
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fluorescent signal was visibly accentuated at the level of the BTB as a
line between adjacent Sertoli cells. Following ND treatments, TJP1
signal was mainly distributed in the cell cytoplasm at the basal com-
partment, consistent with the location of the BTB. These positive cells
resembled Sertoli cells. Moreover, TJP1 immunoreactivity was also
observed in the cytoplasm of some cells at the adluminal compart-
ment of the seminiferous tubules. Interestingly, in TR-ND-M group,
TJP1 distribution is similar to control groups suggesting a protective
effect of exercise. The altered distribution of TJP1 suggests that this
protein can be targeted by ND as part of the drug’s side-effect profile,
that is the decrease in testosterone levels. It has been demonstrated
that testosterone promotes the integrity of the BTB in vivo [31, 32]
and in vitro by enhancing the recycling of internalized proteins to the
cell surface and relocating these proteins to reassemble and seal the
barrier [33, 34]. Moreover, TJP1 delocalization could reflect impaired

functionality of the basal epithelium as it is associated with carcinoma
in situ [35]. Similar results were obtained in rabbits fed with choles-
terol-rich diet in which the disruption of the BTB and the appearance
of unconventional TJP1 in endosomes were correlated with impaired
spermatogenesis and infertility [36].

In our study, ND stimulation resulted in deregulated MMP-9,
MMP-2 and TIMP-2 expression. These proteases degrade compo-
nents of the extracellular matrix and basement membranes in a zinc-
dependent manner [37]. MMP-9 was detected on the flagella of sper-
matocytes in SED, TR, SED-ND-L, TR-ND-L and TR-ND-M while the
immunofluorescence signal was absent in the other groups. This pro-
tease is essential for assessing semen quality [37]. MMP-2 regulates
the migration of spermatogonia and spermatocytes via the degrada-
tion of components (laminin, collagen IV) of the BTB at stage VII and
early VIII. This process promotes the disassembling of basal ES and

Fig. 5 Representative images of immunofluorescence stain for TJP1 and MMP-9 in testis sections. Testis histology of normal control mice (SED),

trained control mice (TR), low dose of ND (ND-L), medium dose of ND (ND-M) and high dose of ND (ND-H). The images above show TJP1
immunoreactivity distributed at the level of the BTB visibly as a line between adjacent Sertoli cells (see arrow) whereas arrow head indicates TJP1

signal in the cell cytoplasm at the basal and adluminal compartment of the seminiferous tubules. The images below show metalloproteinase-9

(MMP-9) immunoreactivity distributed pre-eminently in the flagella of spermatocytes at the adluminal compartment of seminiferous tubules (see
arrow). Bar = 100 lm for all panels.
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the dissolution of apical ES after secretion by Sertoli cells [38]. More-
over, MMP-2 was shown to disrupt Sertoli–germ cell adhesion [39].
The immunofluorescence experiments demonstrated that ND seems
to regulate MMP-2 secretion via the induction of TIMP-2, with conse-
quences on spermatocytes maturation and possibly male fertility.

We also investigated whether ND administration might induce
alterations at the cellular surface level through the detection of MUC1.
This protein is a component of the mucosal glycocalyx and has pro-
tective functions. It is associated with the testicular germ cell line and
impaired spermatogenesis [40]. A limited number of studies have
reported data on the role of mucins in the genital tract of males, and
there was also a variable form of glycosylation associated with matu-
ration arrest at the level of spermatids and spermatocytes [40]. The
results obtained revealed moderate immunoreactivity for intracyto-
plasmic MUC1 of both germ cells and Leydig cells of mice testes from

the sedentary and trained groups. Interestingly, MUC1 expression
was detected in the nuclei of spermatids of many seminiferous
tubules in sedentary mice administered with moderate to high doses
of ND, and in trained mice administered with high ND doses. These
results indicate a translocation of the protein from the cytoplasm to
the nuclei. Importation of MUC1 into the nucleus is associated with
diverse functions including regulation of transcription and cell prolif-
eration, acting as an oncoprotein [41, 42].

Conclusion

A comprehensive analysis of the data obtained in this study sug-
gested that middle to high ND doses, in both trained and sedentary
mice, induced diminished testosterone secretion due to alterations in

Fig. 6 Representative images of immunofluorescence stain for MMP-2 and TIMP-2 in testis sections. Testis histology of normal control mice (SED),
trained control mice (TR), low dose of ND (ND-L), medium dose of ND (ND-M) and high dose of ND (ND-H). The images above show MMP-2

immunoreactivity distributed at the level of the basal lamina of the seminiferous tubules as well as in the cytoplasm and cell membrane of Leydig

cells (see arrow) whereas arrow head indicates MMP-2 distribution in the cytoplasm of Leydig cells. The images below show the tissue inhibitor of

metalloproteinase-2 (TIMP-2) immunoreactivity distributed at the level of the basal lamina of the seminiferous tubules and in the cytoplasm of Ley-
dig cells (see arrow). Bar = 100 lm for all panels.
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its biosynthetic pathway. On the other hand, the morphological find-
ings in testes also showed an impairment of the BTB at the periphery
of the seminiferous tubules which may have triggered the maturation
arrest of spermatocytes. ND administration induced diminished
endogenous testosterone production with consequent impaired inter-
nalization and redistribution of the proteins constituting the TJ. These
include TJP1 and probably all the other molecules associated with it,
although their gene expression was clearly enhanced. The testos-
terone decrease may induce the deregulation of other constituent of
the BTB, such as basal and apical ES, via the inhibition of MMP-2
expression. This may therefore affect spermatocyte maturation.
Moreover, MMP-9 depletion and MUC1 overexpression may be con-
sidered as part of a complicated pathway leading to infertility and to
the progression of carcinogenesis. This enforces the idea that ND
abuse may well be considered as both a potential inducer of male
infertility and a potential risk factor to a low endogenous bioavailable
testosterone.
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