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Abstract

Intelligent systems designed to manage smart environments exploit numerous sens-
ing and actuating devices, pervasively deployed so as to remain invisible to users
and subtly learn their preferences and satisfy their needs. Nowadays, such systems
are constantly evolving and becoming ever more complex, so it is increasingly dif-
ficult to develop them successfully. A possible solution to this problem might lie
in delegating certain decisions to the machines themselves, making them more
autonomous and able to self-configure and self-manage.

This work presents a multi-tier architecture for a complete pervasive system
capable of understanding the state of the surrounding environment, as well as
using this knowledge to decide what actions should be performed to provide the
best possible environmental conditions for end-users, in line with the Ambient
Intelligence (Aml) paradigm. To achieve such high-level goals, the system has
to effectively merge and analyze heterogeneous data collected by multiple sen-
sors, pervasively deployed in a smart environment. To this end, the proposed
system includes a context-aware, self-optimizing, adaptive module for sensor data
fusion. Contextual information is leveraged in the fusion process, so as to increase
the accuracy of inference and hence decision making in a dynamically changing
environment. Additionally, two self-optimization modules are responsible for dy-
namically determining the subset of sensors to use, finding an optimal trade-off to
minimize energy consumption and maximize sensing accuracy. The effectiveness
of the proposed approach is demonstrated with the application scenario of user
activity recognition in an Aml system managing a smart home environment. In
order to increase the resilience of the system to highly uncertain and unreliable
information, the architecture is enriched by a filtering module to pre-process raw
data coming from lower levels, before feeding them to the data fusion and reasoning

modules in the higher levels.
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Chapter 1
Introduction

Smart environments and intelligent systems designed for real-world applications
are often based on the sensing-reasoning-acting paradigm; generally, they exploit
a sensory infrastructure to collect measurements, which is then used to obtain a
high-level description of the state of the environment, and of the current context,
reason about it, and select actions to be performed in order to achieve the desired
system goals. In many cases the sensory infrastructure consists of a multitude of
heterogeneous pervasive devices, which may produce a non-negligible uncertainty
such as noisy data and measurements that impact the inference accuracy and
energy consumption, and sensors on mobile devices, which are often energy hun-
gry (De Paola et al., 2014; Rahmati et al., 2015). In such scenarios it is convenient
to adopt a multi-sensor data fusion method, capable of dealing with uncertain
situations.

This work proposes a multi-tier cognitive architecture for a complete smart en-
vironment management system which is able to self-configure and self-optimize its
own submodules, so as to understand what is happening in the surrounding envi-
ronment and plan the actions that should be performed to improve environmental
conditions for end-users. To achieve this result, the system has to aggregate the
raw data fed to it by its sensory infrastructure, integrating heterogeneous and dis-
tributed information to get a unified view of the current situation and efficiently

plan the actions that must be performed to satisfy the needs of users.
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Thus, one of the key components of the smart environment management system
presented here is its data fusion subsystem. In particular, this work presents
a context-aware, self-optimizing, adaptive system for sensor data fusion, which
includes a self-optimization module that reconfigures the sensory infrastructure,
by dynamically selecting the subset of sensors to use, in order to optimize the
trade-off between inference accuracy of the system and energy consumption of the
sensory devices.

To analyze the impact of feeding unreliable information to the system, the pro-
posed architecture is enriched by a filtering module that aims to accurately classify

reliable and unreliable raw data, before sending them to higher level modules.

1.1 Motivations and Goals

Ambient Intelligence (Aml) is an application paradigm of Artificial Intelligence,
which focuses on users and their needs, with the aim of designing intelligent per-
vasive systems capable of providing the best possible environmental conditions for
end-users. In order to achieve such goals, small intelligent devices are pervasively
deployed in the environment and are programmed to act autonomously or in a
collaborative approach to learn and satisfy user preferences (Cook et al., 2009).
The goal is to create an intelligent environment which feels natural and with which
people can interact easily and effortlessly (Ducatel et al., 2001; Remagnino and
Foresti, 2005). However, traditional programming techniques may not be able to
cope with the Aml paradigm (Sanz et al., 2007), which require autonomous sys-
tems that can manage and reconfigure themselves, thereby freeing designers from
these demanding tasks.

Within such a scenario, this work proposes a multi-layer cognitive architecture
for an autonomic Aml system, which is characterized by continuous self-modeling
and self-monitoring, in line with the Autonomic Computing paradigm. According
to this paradigm, a truly autonomous agent should rely on an explicit model of
itself, of the environment in which it operates, and of its interactions with users.
Exploiting such extensive knowledge, the system is thus able to understand the
state of the environment and the preferences of its users, as well as using this

knowledge to decide what actions should be performed next.
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To this end, the proposed architecture exploits ontologies to model the domain
knowledge in a unified and machine-computable format, in order to drive the
process of knowledge abstraction from raw sensory data up to higher-level concepts.
Using such approach, the system is able to understand the interactions between
its cognitive subsystem, its physical subsystem (i.e., sensors and actuators) and
the environment, thus acting in an appropriate manner to achieve its goals. By
exploiting a rule-based inference engine to analyze the ontology and reason about
its internal structure, the system is then able to self-configure its sub-modules and
modify its own behavior at runtime, in order to minimize energy consumption.

One of the most challenging tasks the system has to perform is processing
and merging large amounts of raw sensory data effectively. Multi-sensor data fu-
sion is extensively used in literature to combine data collected by heterogeneous
sensors (De Paola et al., 2013). However, since sensor data are often noisy and in-
accurate, probabilistic techniques are widely adopted to explicitly model the noise
and uncertainty of raw data (Cook, 2010). One of the most effective approaches
for this purpose is the adoption of Bayesian belief networks (Koller and Friedman,
2009), which exploit the statistical correlation between sensory measurements and
the peculiarities of the surrounding world, allowing the system to deal with the
heterogeneity of information sources and with the uncertainty in sensory data and
developed models. In particular, Dynamic Bayesian Networks (DBNs) (Murphy,
2002) take into consideration the past belief of the system, in addition to data
coming from sensors, making it possible to handle the dynamicity of the observed
phenomena.

This work proposes a context-aware multi-sensor data fusion system to infer
high-level context information about the surrounding environment, leveraging low-
level context information in order to refine the inference process. The output of
such process is then exploited by higher level reasoning modules of the architecture
to derive new knowledge.

The inference of context information, as a high-level description of the user’s
activities, is the main goal of the data fusion system; basic context attributes, such
as time-related and location-related information, are used to refine the inference
process. Such basic context attributes can be reliably and easily sensed, and thus

do not increase the uncertainty of the system.
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However, it is not always convenient to blindly include all available context
information in the data fusion process. On the contrary, as demonstrated by the
experimental evaluation presented here, choosing the right combination of con-
text information is fundamental to maximize inference accuracy. To this end, it is
advisable to exploit only context attributes which are readily available and easy
to measure in a reliable way, so as not to increase the uncertainty of the system.
Extensive experiments prove that choosing the right combination of context infor-
mation is fundamental to maximize inference accuracy, especially when only few
sensors are available.

In addition, when performing data fusion, it might not always be efficient to
continuously sample all available sensors. On the contrary, if the sensory infras-
tructure is composed of devices with limited energy resources, it may be useful
to activate only a subset of sensors, in order to increase the lifetime of the whole
network. This is the case of smart environments whose pervasive sensory infras-
tructure includes wireless sensor networks (WSNs) (Yick et al., 2008). WSNs are
composed of devices, namely sensor nodes, characterized by programmability, wire-
less communications capability, and limited computational and energy resources,
such that it is essential to extend the network lifetime by putting inactive nodes in
stand-by state as long as possible. However, since different contexts may require
different sensory capabilities, it is not desirable to determine a priori the subset of
sensors to use. In a real-world scenario, the context conditions may change over
time, implying the need for a system capable of dynamically selecting the subset
of sensory devices.

Thus, the proposed data fusion system is able to dynamically reconfigure the
sensory infrastructure, by selecting the subset of sensors to use in order to optimize
its own performance. The system monitors the behavior of the data fusion process
ascertaining if the inference can be considered reliable, and evaluates the behav-
ior of the sensory infrastructure considering the contribution of different sensors.
These observations are integrated with other context information to determine
whether a different configuration of the sensory infrastructure may be more conve-
nient. Such self-optimization process is performed through dynamic rules, so that

the system is able to modify its own goals in response to context changes.
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The main novelty of the proposed self-optimization is its adaptiveness to dy-
namic environments and its capability of extending the lifetime of the sensory
infrastructure as the context changes, thus reducing human interventions. More-
over, the proposed solution has the capability of self-detecting those critical con-
ditions in which a reconfiguration is needed in order to maintain a good quality of
inference.

The validity of the proposed approach is tested in the application scenario of
user activity recognition in an Aml system managing a smart home environment.
The Aml scenario is particularly appropriate for the evaluation of the proposed
data fusion system, since frequent user interactions make the context highly dy-
namic.

Furthermore, often sensory devices are only partially related to the observed
phenomena, and thus non-negligible noises are typically introduced, e.g., poor
sensor quality, lack of sensor calibration, hardware failures, noise from external
sources, and imprecision in computing derived values from measurements (Wang
et al., 2014b).

The system described so far does not filter out unreliable data coming from its
sensory devices. However, this is a very important issue and a challenging task,
especially if data are coming from users in addition to traditional sensors, and thus
information quality is significantly uncertain.

Indeed, with the emergence of the Smartphone Crowdsensing (SC) paradigm,
it is now possible to use humans as sensors (Wang et al., 2014a), and exploit
their unique abilities to devise sensing applications that monitor the occurrence
of complex events, which are difficult to detect with paradigms based only on
traditional sensors.

However, the central role of people in the sensing process implies that the
success of SC systems is strictly dependent on the reliability of the information
sent by participants. As humans may exhibit selfish, opportunistic and unreliable
behavior (Paxton and Benford, 2009), accurately classifying the reliability of user
reports is paramount.

To this end, the proposed architecture is enriched by a filtering module to
detect unreliable raw data before sending them to the data fusion and reasoning

modules.
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1.2 Contributions

The main contributions of the work presented in this dissertation are:

o The design of a multi-tier architecture for a complete autonomic Aml system
capable of analyzing itself and its monitoring processes, and consequently
of managing and reconfiguring its own sub-modules to better satisfy users’
needs. To achieve such a degree of autonomy and self-awareness, the pro-
posed Aml system exploits the knowledge contained in an ontology that
formally describes the environment it operates in, as well as the structure of

the system itself.

o The design and development of a context-aware Dynamic Bayesian Network
which improves the accuracy of existing probabilistic systems by including
basic context attributes to refine the inference process of high-level context
information. The suitability of such an approach is demonstrated in the ap-
plication scenario of user activity recognition in a smart home environment.
Extensive experimental results prove that choosing the right combination of
context attributes is fundamental to maximize the inference accuracy, espe-

cially when only few sensors are available.

e The design and development of a context-aware self-optimization system for
sensor data fusion, based on a three-tier architecture. Heterogeneous data
collected by sensors at the lowest tier are combined at the intermediate tier by
the context-aware Dynamic Bayesian Network proposed in this work. At the
highest tier, a self-optimization process dynamically reconfigures the sensory
infrastructure, by sampling a subset of sensors in order to minimize energy
consumption and maximize inference accuracy. Experimental results show
that the proposed solution outperforms static approaches for multi-sensor
data fusion, achieving substantial energy savings whilst maintaining a high

degree of inference accuracy.

e The design and development of FIRST, a filtering module to classify and
discard unreliable raw data coming from sensors and users alike, by exploiting

mobile trusting participants (MTPs) to assess the truthfulness of sensing
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reports. FIRST models and solves the challenging problem of determining,
before deployment, the minimum number of trusted participants needed to
achieve the desired classification accuracy, by exploiting a novel algorithm

based on image processing.

1.3 Dissertation Outline

The remainder of the dissertation follows a top-down approach to describe the
proposed architecture, starting with the reasoning module in the top level and the
data fusion module to aggregate data coming from sensors, and ending with the
filtering module in the lowest level to pre-process raw data.

Chapter 2 describes the high-level architecture for a complete autonomic AmlI
system, highlighting the aspects that ensure its adaptivity and context-awareness,
and presents the ontology adopted by the system. Chapter 3 proposes a multi-
sensor Data Fusion module exploiting a context-aware Dynamic Bayesian Network
to infer users’ activities in a smart home, and discusses various context attributes
that can be exploited to increase the accuracy of the system, with experimental re-
sults to validate the analysis. Chapter 4 presents a context-aware self-optimization
module which dynamically reconfigures the sensory infrastructure of the Data Fu-
sion system, selecting the subset of sensors to be used to optimize the trade-off
between inference accuracy and energy consumption of the sensory devices. Fi-
nally, Chapter 5 proposes a filtering module to classify between reliable and un-
reliable sensor reports before sending them to higher levels of the architecture, in

the application scenario of Smartphone Crowdsensing.

1.4 Publications

Parts of the work in this thesis have been published in several referred conference

proceedings and journals:

o Alessandra De Paola, Pierluca Ferraro, Salvatore Gaglio, and Giuseppe Lo

Re. Autonomic Behaviors in an Ambient Intelligence System. [EEE Sym-
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posium on Computational Intelligence for Human-like Intelligence (CIHLI
2014), Orlando, Florida, USA, 2014.

o Alessandra De Paola, Pierluca Ferraro, Salvatore Gaglio, and Giuseppe Lo
Re. Context-Awareness for Multi-Sensor Data Fusion in Smart Environ-
ments. Proceedings of the 15th International Conference of the Italian Asso-
ciation for Artificial Intelligence (AI*IA 2016), Genoa, Italy, 2016.

o Alessandra De Paola, Pierluca Ferraro, Salvatore Gaglio, Giuseppe Lo Re,
and Sajal K. Das. An Adaptive Bayesian System for Context-Aware Data
Fusion in Smart Environments. IEEE Transactions on Mobile Computing

(TMC), 2016.



Chapter 2
High-level System Architecture

The proposed architecture is aimed at building an Aml system which is au-
tonomous and able to self-configure and self-manage, in line with the paradigm
of Autonomic Computing. The case study presented here comprises a Building
Management System (BMS) capable of handling environmental conditions, such
as temperature, humidity and lighting in an office environment, with the twofold
goal of maximizing user comfort and minimizing the energy consumption of sensors
and actuators (De Paola et al., 2014).

The remainder of this chapter is organized as follows. Section 2.1 analyzes some
relevant approaches proposed in the literature in the fields of adaptive behavior
and Autonomic Computing. Section 2.2 introduces the paradigm of Ambient Intel-
ligence and presents Sensor9k, which is a testbed designed to facilitate reasoning
about user comfort and energy saving in an office environment. Section 2.3 out-
lines the general architecture of the proposed system, highlighting the aspects
that ensure its adaptivity and context-awareness. Section 2.4 describes the ontol-
ogy adopted, which defines the concepts used by the system, that relate to the
environment, the user and its interactions with it. Section 2.5 gives an outline
of the rule-based inference engine, which allows the proposed system to configure

and manage itself.
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2.1 Related Work

In the field of Ambient Intelligence, as shown by (Hagras, 2007), it is very difficult,
if not practically impossible, to build accurate mathematical models capable of
grasping the complexity and dynamism of the real world. Therefore, it is necessary
to adopt advanced techniques of Artificial Intelligence to manage the multitude of
devices placed in the environment and build a layer of distributed intelligence so as
to handle the uncertainty inherent in the data collected. The design of Aml systems
thus employs techniques from different disciplines and research fields. Some of the
most common Al techniques used in previous research to study the behavior of
users and learn their preferences have been Bayesian networks (Kushwaha et al.,
2004), fuzzy systems (Doctor et al.,; 2005) and neural networks (Mozer, 1998).

In such a scenario, the Autonomic Computing paradigm might be the key
to developing truly adaptive agents (Jacyno et al., 2013). The paradigm was
originally proposed by IBM, in analogy to the autonomic nervous system (Kephart
and Chess, 2003), which allows the human body to maintain the balance between
all of its complex subsystems, responding to unpredictable external stimuli and
overcoming the dangers caused by external agents.

Similarly, computational architectures inspired by such a model are composed
of collections of autonomic elements that are able to respond to changes au-
tonomously, adapting to the environment in order to better achieve their goals.
A self-configuring and self-managing Aml system should therefore include and
analyze knowledge about itself and the environment in which it acts, so as to
constantly update its model of the world (Kawamura et al., 2005).

By describing concepts from both domains in a machine-computable way, the
agent is able to unify the mechanisms that it uses to reason about the world
and about itself, exploiting the semantic enrichment of data processed by the
system (Bermejo-Alonso et al., 2010).

One issue on which many researchers agree is that an autonomous agent should
not be limited by fixed criteria, because real environments are characterized by
uncertainty, and not all contingencies can be foreseen at design time. In this
regard, a key aspect of every autonomous agent is its capacity of adaptive decision-

making (Chadderdon, 2008), which allows it to make correct decisions based on
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the current situation; this capability improves the context-awareness of the system,
helping it to achieve its goals in the best possible way.

To implement these paradigms, various approaches have been proposed in the
literature. For example, the authors of (Andry et al., 2004) propose an architecture
based on neural networks that allows their robot to learn complex sequences of
actions so as to coordinate vision and arms movements.

Others have used genetic algorithms (Ram et al., 1994), Bayesian networks (Fer-
reira et al., 2012) and reinforcement learning techniques such as Q-learning (Erbas
et al., 2014) to build robust agents that are capable of operating in an uncertain

world.

2.2 Ambient Intelligence and BMS

Aml envisages innovative scenarios in which intelligent systems assist human be-
ings in their daily activities, without the inconvenience of intrusive technologies
which, in this paradigm, remain confined to the background (Remagnino and
Foresti, 2005).

The design of intelligent Building Management Systems (BMSs) is one of the
most significant uses of Aml techniques. Other applications include care for the
elderly, medical assistance, kindergartens, and car automation. The main goal of
BMSs is the control of environmental conditions in buildings (e.g., temperature,
humidity and lighting) to satisfy user requirements and minimize energy consump-
tion. BMSs need a sensory and actuator infrastructure constituting their direct
link to the real world. Sensors acquire environmental data (e.g., temperature, light
intensity, noise, humidity) and context information (e.g., user presence and user
activities), whereas the actuator infrastructure is composed of physical devices in
the building that can influence the state of the environment (e.g., artificial lighting
systems and heating, ventilation and air conditioning (HVAC) systems).

A key requirement of Aml systems is the low intrusiveness of the underlying
technology. This means that the sensory and actuator infrastructures have to be
characterized by a low degree of physical invasiveness.

This work is inspired by the BMS architecture proposed in Sensor9k (De Paola

et al., 2012a), a pervasive testbed whose aim is to support the development
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Main Server

Figure 2.1: High-level scheme of a Wireless Sensor and Actuator Network (WSAN)
installed in an office environment.

of energy-aware Aml systems. The name of the testbed recalls the fictional
HAL 9000 artificial intelligent system, whose sensory and actuator terminations
permeated the spaceship in “2001: A Space Odyssey”. The physical infrastruc-
ture of Sensor9k exploits the technology of Wireless Sensor and Actuator Net-
works (WSANs) (De Mil et al., 2008). These networks are composed of a set of
small devices, called nodes, which are in most cases energetically autonomous, pro-
grammable, and able to perform small computations on boards and to wirelessly
communicate with each other. Each node can be equipped with different sensors
and can control certain connected actuators.

In the proposed setting, sensors installed on nodes gather information about the
state of the environment and about the context, as well as information about the
state of the node itself, such as residual battery charge. Furthermore, by exploiting
a set of ad-hoc sensors, it is possible to monitor the energy consumption of all the
electrical appliances installed in the monitored environment.

Appliances are controlled by the actuators installed on sensor nodes, by means
of the transmission of opportune control signals. Moreover, the proposed architec-
ture lets the user manually control the available appliances, and apposite sensors
capture each of these interactions. The simpler actuators provided by the system

are represented by remotely controllable power relays enriched with the capability
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of providing information about their current state (e.g., the artificial lighting relay
controller). More complex forms of actuators are those controlling domestic ap-
pliances (typically by means of IR remotes) frequently found in homes or offices,
such as HVAC systems.

The sensory information acquired by WSANSs, through the hierarchical com-
munication infrastructure provided by Sensor9k, is sent to a centralized server,
which hosts the reasoning components. The choice of centralizing reasoning activ-
ity makes it possible to preserve its consistency and uniqueness (Amigoni et al.,
2004), even in the presence of a distributed and pervasive physical layer. A high-
level scheme of a WSAN in an office environment is shown in Fig. 2.1.

Furthermore, the middleware provided by Sensor9k enables dynamic tuning of
the sensors’ behavior via control messages sent at runtime. By means of these
control messages it is possible, for instance, to tune the sampling rate of sensor
nodes, or to switch nodes to a low-power mode in order to minimize their energy
consumption. In order to reduce the sensory infrastructure handling effort for
the user, programmability is also exploited by the adoption of replicas of critical
WSAN devices, thereby guaranteeing fault tolerance and robustness. The whole
sensory infrastructure comprises a set of fully active sensor nodes and a comple-
mentary set of duplicate nodes. Replica nodes start in low-power mode with data
gathering and transmission functionalities disabled. Listening to control messages
is the only active functionality in low-power mode. A specific control message can
switch a node from this condition to normal functioning mode in order to activate
ambient monitoring. The proposed adaptive system exploits such features in order

to resume its full operability when a given node switches into fault condition.

2.3 Architecture Design

The architecture proposed in this work is inspired by the paradigms of Ambient
Intelligence and Autonomic Computing. The main goal is to design and develop an
Aml system that is able to self-configure and self-manage, taking inspiration from
certain intrinsic features of human beings, such as introspection and self-awareness,
to make the architecture more robust and resilient and improve the adaptivity of

the resulting system. Using the information represented by the ontologies and
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Figure 2.2: Architecture of the autonomic AmlI system.

instantiated in the knowledge base of the system, the agent can then monitor the
status of its own sub-modules, dynamically adapting its behavior to the context, so
as to best suit the users’ requirements, according to the high-level policies defined
by administrators.

To achieve this result, the system must be able to aggregate the raw data fed
to it by its own sensory infrastructure, integrating heterogeneous and distributed
information to get a unified view of the current situation and efficiently plan the
actions that must be performed to satisfy users’ needs. Although Artificial Intel-
ligence literature includes several techniques for representing the knowledge nec-
essary for the functioning of such a system (Gu et al., 2004; Preuveneers et al.,
2004), the amount of data collected by sensors in a realistic setting is huge, and
would lead to serious problems in terms of computational efficiency.

For this reason, the proposed system filters information from sensors, by using
modules that operate at different levels of abstraction and various techniques for

the efficient fusion, modeling and interpretation of these data, as will be described
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in the next chapters. As shown in Fig. 2.2, the architecture consists of five main

modules, each of which has a highly flexible and configurable structure:

o a Sensing module, based on Wireless Sensor Networks (WSNs), which is
responsible for collecting the raw sensory data about the relevant features of

the surrounding environment and sending that information to higher levels;

o an Understanding module which processes sensory data, aggregating and rep-
resenting them in gradually increasing levels of abstraction, so as to describe
the environment through high-level concepts, which summarize in a succinct

way the huge amount of data extracted by sensors;

e an Intentional module that directly accesses the ontological models of the
environment and of itself, and updates them according to the data collected,

deciding the short-term goals of the system in compliance with a high-level

policy;

e a Reasoning module, which plans the most appropriate sequence of actions
that the system must perform to achieve the goals set by the Intentional

module, so as to better satisfy user needs;

o an Actuation module that can change the status of the environment, by op-
erating heating, ventilation, air conditioning (HVAC) and lighting systems,

as well as other elements that affect the environmental parameters.

The relationships between all the modules, the external world and the ontologi-
cal model are also illustrated in Fig. 2.2. The key element of the architecture is the
feedback loop, which requires that the system is aware of itself, of the surrounding
environment and of their interactions with each other. This allows the system to
keep its world model and self model constantly updated, based on the interactions
between the physical subsystem, the cognitive subsystem and the external world.

In other words, by using an appropriate sensory infrastructure, continuous
monitoring allows the system to identify relevant events concerning the users and
the environment, so as to start the reasoning and planning processes, and then

initiate the actions that are carried out by means of suitable actuators.
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Figure 2.3: Details of the sub-modules of Understanding and Reasoning.

In addition, each of the main modules consists of sub-modules performing spe-
cific tasks within the feedback loop. The behavior of the system as a whole emerges
from the interaction and collaboration of these subsystems.

As shown in Fig. 2.3, the Reasoning module is organized into three different sub-
modules, named Planner, Self-reasoning and World-reasoning. The Understanding
module is also divided into three tiers, namely the Subsymbolic, Conceptual and
Symbolic tiers. Knowledge flows through these tiers, from raw sensory data up to
qualitative descriptions of the environment at the highest level of abstraction.

The Subsymbolic tier is responsible for pre-processing the data coming from
sensors, by uniforming the sampling rate and eliminating any outliers or unreliable
information. The Conceptual module is an intermediate tier between the Subsym-
bolic and the Symbolic levels. This tier uses appropriate classification and data
fusion techniques to identify high-level concepts which are then represented in the
Symbolic level. The specific implementation of the sub-modules may vary depend-
ing on the specific application scenario. Examples of Conceptual and Subsymbolic
modules in the application scenarios of activity recognition and smartphone crowd-
sensing are presented in the following chapters.

A more detailed description of the system structure and of the role played by
each module is presented in the following section, along with an analysis of the

ontology used by the system.
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2.4 Ontology-based Self Modeling

In order to dynamically adapt its behavior to the context where it is running, an
autonomous system should possess an explicit model of itself, of the surrounding
environment, and of the ways it can interact with users (Herndndez et al., 2009).

Therefore, the system has to manage a large amount of information that may
change quickly and often. In order to represent such knowledge in an efficient and
machine-computable way, then, it is advisable to use ontologies, which are doc-
uments that formally define the relationships among a set of terms belonging to
a specific domain (Ribino et al., 2009). The proposed ontology, developed in the
OWL 2 language (World Wide Web Consortium, 2012), provides a uniform termi-
nology to describe the environment and its properties, the user and his interactions
with it, as well as the system components and their interconnections. Furthermore,
it describes how data flows within the system, highlighting the relationships be-
tween sensors and monitored environmental properties, and accomplishes several

objectives:

o it represents in a formal and machine-computable way the relationships be-

tween concepts belonging to the domain of interest;

it enables the system to dynamically and autonomously reconfigure itself,

according to the goals defined by the Intentional module;

o it allows system administrators to define high-level policies affecting the over-

all behavior of the system,;

o it makes it easy to represent the rules needed to infer appropriate control
actions, taking into account the status of the environment and the current

goals of the system.

The adoption of ontologies and semantic technologies is essential for the self-
monitoring and self-management operations, and makes the system architecture
sufficiently abstract and reusable in different application scenarios. In order to infer
new knowledge from the concepts defined in the ontology, performing automated
reasoning on the domain, rule-oriented languages are commonly used, such as the

Semantic Web Rule Language (SWRL) (Horrocks et al., 2004).
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This work proposes a semantic representation that exploits two different on-
tologies. The first one represents the structure of a generic building management
system, and can be easily reused for several applications, since it is not tied to a
specific Ambient Intelligence scenario. The second ontology extends the first one
by defining subclasses and individuals, which describe a specific instance of the
considered application scenario, i.e., the BMS for controlling ambient conditions

in an office environment.

2.4.1 General Concepts

The top-level ontology contains the descriptions of basic elements constituting the
sensory and actuator subsystems in the Device class and in its subclasses, such as
Sensor, Node and Actuator.

The ontological description provides important information about sensors, such
as energy consumption, sampling rate, continuity of monitoring and the node on
which the sensor is installed. Each instance of Device perceives a specific attribute,
or acts upon it. These properties, modeled by means of the AmbientProperty
class and its subclasses, can be related to physical phenomena such as light and
temperature, observable events like user activity, or the status of a particular
environmental element, such as a window or an air cooler.

An important aspect modeled in the ontology concerns the basic topological
elements of the environment in which the system operates. The TopologicalEle-
ment class and its subclasses (e.g., Door and Room) represent such knowledge. For
instance, the Room subclass describes the properties defining the topological rela-
tionships between areas: nextToRoom indicates that two rooms are adjacent, whilst
isInRoom represents each device in the room in which it is deployed.

In order to describe the status of a room, the Room subclass is enriched by
the SystemCondition property. Considering such a property as input, the system
dynamically adapts to the current situation by changing its configuration, its be-
havior and its goals so as to focus on the most important aspects of the external
environment.

The SystemCondition affects the short-term goals identified by the Intentional

module, and thus constitutes the basis of the adaptive and autonomic capabilities
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Figure 2.4: Taxonomy of the SystemModule class.

of the system. In other words, each condition is associated with a different set of
rules, so the system responds differently to the same external stimuli depending
on its current condition. SystemCondition is a generic concept, which can be
exploited by several applications that use the top-level ontology.

The specific ways in which this property affects the functioning of the sys-
tem depends on the application scenario. The possible values of this property
are highlighted in Section 2.5.1 below, along with some of the special rules that
are triggered in the various conditions and the rules for the transition between
conditions.

All the architectural components described in Section 2.3 are represented by
the SystemModule class, whose taxonomic organization is shown in Fig. 2.4. The
main categorization is functional, and differentiates between the Understanding,
Intentional and Reasoning modules, while further subdivisions identify the various
specialties.

All the data processed by the system are modeled by the DataType class, while
the relationships existing between each module and its input and output data is
determined by two ad hoc properties (hasInputData and hasOutputData). By ex-
ploiting such properties, it is possible to analyze how the data flows between mod-
ules, abstracting the knowledge processing that takes place within them through
the integration of information from raw sensory data up to high-level symbolic con-
cepts. This integration of data, which gives the system a unified view of the current

situation, constitutes the basis of its self-awareness and self-reasoning capabilities.
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Fig. 2.5 shows the data flow among the modules that comprise the Aml sys-
tem, highlighting the process of knowledge abstraction from raw sensory data up
to higher-level symbolic data, which occurs in the UnderstandingModule. The
basic sensors deployed in the monitored premises represent the input devices of
the system, and their collected data are sent as instances of RawDataType to the
UnderstandingModule. In addition, the nodes of the wireless sensor network send
information to the UnderstandingModule in order to communicate their status,
thus allowing the AmlI system to reason about its own sub-modules.

Symbolic data constitute the input of the IntentionalModule, which updates
the world and self models according to the data collected, planning the short-term
goals of the system and triggering the ReasoningModule and its sub-modules,
which carry out the reasoning and self-reasoning activities, as described in Sec-
tion 2.3. Finally, in order to close the loop, the WorldReasoningModule sends
action commands to the actuators, while nodes and sensors receive configuration

commands from the SelfReasoningModule.

2.4.2 Domain Concepts

The specific domain ontology is based on the general one, enriching it with specific
knowledge related to a specific Aml system instance. As previously described in

Section 2.2, the application scenario considered here is that of Sensor9k (De Paola
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et al., 2012a), a testbed designed for reasoning about user comfort and energy
saving in an office environment. Each of the nodes installed in the office environ-
ment is included in the ontology as an instance of the Node class, and is related
to the specific sensors that it hosts through the property isEquippedWith. Sev-
eral features of the domain ontology are represented by means of properties that
can be physical or abstract, simple or complex. The PhysicalProperty class is
instantiated by each of the environmental properties monitored in the application
scenario, such as light, temperature, humidity, barometric pressure, loudness and
SO on.

As an example of the self-reasoning capabilities of the system, it is worth
noticing that when defining properties, it is not necessary to specify which of
them are directly observable by the sensory infrastructure, since the system can
automatically infer that any properties perceived by at least one of its sensors are
directly observable. This reasoning capability is easily implementable by exploiting

one of the SWRL rules exploited by the inference engine:

Sensor(?x) A AmbientProperty(?y) A senses(?x, 7y)
— ObservableProperty(?y)

In this way, by exploiting the functionalities of self-diagnosis and self-monitor-
ing, the system recognizes dynamically, at runtime, which of the environmental
properties can be perceived by the sensors actually available. This feature also
affects the short-term goals decided on by the IntentionalModule, since the sys-
tem might easily infer that it is not adequately able to measure certain complex
properties, which are defined as a composition of other basic properties.

In such situations, the system recognizes its inadequacy for the assigned task
and, in the absence of a viable alternative, may notify the administrators, as
explained in Section 2.5.1 below.

Complex properties allow the system to perform high-level reasoning using
abstract concepts, and also form the basis of many of the autonomic and self-
reasoning capabilities of the system. Examples of complex properties defined in
the domain ontology are UserInBuilding, UserInOffice and RoomOccupancy,
which represent, respectively, the presence of the user in the building or in his

own office, and the number of people in a monitored room. UserInOffice, for



2. High-level System Architecture 22

instance, is affected by several basic properties, such as RFIDStriping, Work-
stationActivity, DoorStatus and Loudness, which in turn are instances of a
subclass of AmbientProperty.

To represent the system architecture within the domain ontology, the taxo-
nomic organization defined in the top-level one was extended with new subclasses,
and the actual modules were instantiated as individuals of these subclasses, so as
to reflect the topological and semantic organization of the monitored environment.

As an example of such a process, the domain ontology particularizes a class of
sub-symbolic modules capable of processing the temperature information, and this
class is instantiated in a set of specific individuals. Each of these individuals is
devoted to the monitoring of a given managed room. The same process is followed

for all other monitored environmental properties, such as humidity and lighting.

2.5 Adaptive Behavior of the Monitoring System

On the basis of the ontological representation of the system, the surrounding envi-
ronment, and their interactions, this section illustrates how the Reasoning module
manages the activities of self-monitoring and self-configuration, emphasizing its
integration into the multi-tier cognitive architecture of the system.

The implementation of the Autonomic Computing paradigm proposed here is
based on the classic monitor-analyze-plan-execute cycle, which underlies an intel-
ligent control loop (Kephart and Chess, 2003), as explained in Section 2.4 in the
description of the data flow within the sub-modules constituting the AmI system.

Although this paradigm requires the system to maintain a constantly updated
model of itself and of the surrounding environment, it enables dynamic and runtime
reconfiguration of the monitoring subsystem.

In other words, the planning module implements rule-based reasoning behavior
capable of reconfiguring the sensors on the basis of certain parameters, such as a
user’s presence, the degree of accuracy of the monitored information, the state of
the sensors, their energy consumption, and the residual lifetime of the battery-
powered sensor nodes. However, if the system detects serious problems requiring

the intervention of administrators, opportune alerts are generated.
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Exploiting its reasoning modules, the system is able to understand which sub-
modules are needed to infer certain concepts, and identifies the relationships be-
tween the environmental properties of interest and the specific sensors that perceive
them.

The information required for the self-reasoning and self-configuration of the
monitoring system come from the subsystems of the Understanding module, and
are used by the Intentional module to update the facts defined in the ontology.
This, in turn, affects the short-term goals planned by the Intentional module to
comply with the high-level policy set by administrators, such as the minimization
of energy consumption when the user is not present within the building.

To achieve these objectives, the Self-reasoning module exploits a set of rules
that use the knowledge contained in the ontology in order to infer new evidence
and plan the sequence of actions that the system must perform. At the end of
the planning process, the Self-reasoning module sends the resulting configuration
commands to the sensors.

The following section introduces the rule-based inference engine at the core of
the system, describing some of the most important rules for the functioning of the

automatic reasoner.

2.5.1 Rule-based Reasoning

To implement the operations of reasoning and self-reasoning, this work adopts
Jess (Java Expert System Shell) (Friedman, 2003), a rule-based inference engine
developed in Java.

Jess expresses logical rules with a syntax similar to LISP, and uses a pattern-
matching algorithm to query the knowledge base and extract the information re-
quired by the system. Each fact contained within the knowledge base is a true
proposition about the world or the system itself, and belongs to a template, just
as every object is a member of a class in the object-oriented programming style.

Jess templates define the name of a fact, the properties that a fact possesses
and, optionally, the corresponding range of values that properties may assume.

Four types of templates are used in the system:
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Figure 2.6: Examples of the templates used by the rule-based inference engine.

o static knowledge templates, representing the initial facts known by the rea-
soner during the setup of the system, such as the locations of nodes and

sensors, or static information about the users and their offices;

o dynamic knowledge templates, relating to information that is continuously
updated at runtime, such as the status of sensors and actuators, the presence
of users within their offices, or the accuracy of the monitoring activity that

is estimated by the self-diagnosis modules;

« templates for facts which represent the output of the planning operations of
the WorldReasoningModule and the SelfReasoningModule, that is action

commands for the actuators and configuration commands for the sensors;

« templates relating to the alerts that are sent to administrators when the
self-monitoring modules report any inadequacy of the system with respect

to the operations that should be performed.
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Fig. 2.6 illustrates some examples of the templates used by the system, showing
the relationships between nodes, sensors and environmental properties.

The tuneSensor template, for instance, allows the planner to modify the sen-
sor sampling rate, thus allowing a reduction in the energy consumption of a node,
or a more accurate acquisition of a specific environmental variable. Possible values
are {on, off, up, down, min, max}. This template allows the system to dy-
namically adapt to the context, using the residual energy of the battery-powered
nodes in an intelligent way.

Besides generating configuration commands for sensors, the Self-reasoning mod-
ule also yields alerts for system administrators, such as insufficient sensing capa-
bility or short sensing time. This latter event occurs if all the sensors capable
of measuring a particular environmental phenomenon are battery-powered, and
currently register a low level of residual energy.

Jess allows an easy implementation of rules that produce new knowledge, start-
ing from the information already acquired. Each rule takes the form of an “if
<conditions> then” construct, and it is activated when all its conditions are satis-
fied, that is, when the knowledge base contains facts that match all the antecedents
of the rule. Rules are executed only once for any given set of facts, and are re-
evaluated only after the insertion of new facts within the knowledge base.

In order to minimize energy consumption, the system dynamically decides
whether and how to change the sampling rate of sensors, depending on the current
value of the SystemCondition property, which was introduced in Section 2.4 along
with the top-level ontology.

In this way, limited resources such as residual energy in battery-powered nodes
can be managed efficiently, minimizing energy consumption and increasing the
network lifetime. The possible values of the state slot in the SystemCondition
property are {normal, stress, attentive}.

A stress condition occurs when the amount of energy currently used is no
longer sustainable, i.e., when all the sensors devoted to monitoring a given envi-
ronmental variable are installed on sensor nodes that are battery-powered, and
such devices have a low level of residual energy.

When the system falls into a stress condition, the Reasoning module activates

a set of special rules to minimize energy consumption and put the system back into
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a condition of normal functioning, indicating balanced behavior, and improving
the chances of meeting both the short-term and long-term goals of the system.

Finally, the attentive condition is triggered when users are occupying the
monitored premises. In this state, the system gives priority to user comfort, ac-
tivating a set of special rules in order to maximize the accuracy of monitoring.
Some rules are described below which govern state transitions.

For example, when the sensory infrastructure signals that the user is not present
in his office, and the knowledge base contains at least one statement of short-
sensing-life type instantiated in the same room, the following rule puts the

system into the stress condition:

defrule setStressCondition:

if (no user is in room R) and (3 “low” battery node in R) then

system-condition <— “stress”

For each environmental property, the following rule checks that there exists at
least one sensor node with a sufficient residual charge. If this is not the case, the

rule sends a short-sensing-life alert to administrators:

defrule computeSensingLife:
if (all sensors that monitor ambient property AP are installed on “low” battery
nodes) then

send short-sensing-life alert to administrators

More specifically, the system finds all the sensors that monitor a given property
within a room. If all of these sensors are installed on battery-powered nodes, and
if all these nodes have a low level of residual energy, the system sends an alert to
administrators, warning them in a proactive way.

The minimizeRoomSensing rule makes it possible to infer that, if the system
is in a stress condition, it is necessary to minimize the monitoring activities for

all the measured quantities in the room.

defrule minimizeRoomSensing:
if (system-condition is “stress”) then
for each sensor S in room R do

set minimum sampling rate for S
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Figure 2.7: Finite state machine showing the transitions between system condi-
tions.

The previous rule sets the sampling rate of all the sensors installed in the room
at the minimum value, thus minimizing energy consumption. This is an example
of a rule that is only triggered when the system is in a particular condition, thus
improving adaptability and context awareness.

The attentive condition is activated when the user enters his office and the
following rule succeeds. As shown by the finite state machine in Fig. 2.7, this
condition has the highest priority. That is, the system activates the attentive
condition when the user enters his office, and remains in this state until the user

leaves, regardless of other factors, thus prioritizing the accuracy of monitoring.

defrule setAttentiveCondition:

if (user U is in room R) then

system-condition < “attentive”

When in such a condition, the system triggers a set of rules that increase the
sampling rate of sensors in order to better monitor the environment and satisfy
users’ needs. For instance, the increaseRoomSensing rule detailed below increases

the monitoring rate of any ambient property characterized by a low level of accu-
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racy. The rule is triggered only if the system is in the attentive condition, and

hence, indirectly, if a user is in his office.

defrule increaseRoomSensing:
if (system-condition is “attentive”) and
(3 “low” accuracy ambient property AP in room R) then

increase sampling rate for AP in R

The rule works to increase the sampling rate of the sensors, so as to maximize
the accuracy of monitoring. If the sampling rates of all available sensors are
already at their maximum value, the rule sends an insufficient-sensing alert
to administrators, informing them that the sensory infrastructure of the system
can not adequately achieve the goals set by the reasoner.

The setNormalCondition rule puts the system into the normal condition,
which is triggered when the user is not present in his office and the knowledge base

does not contain short-sensing-life statements related to the current room:

defrule setNormalCondition:

if (no user is in room R) and (# “low” battery node in R) then

system-condition < “normal”

Finally, in cases where any active node consumes all the residual energy, the
activateBackupNode rule leverages the redundant sensory infrastructure of the
WSAN, as described in Section 2.2, to enable the backup sensor nodes to operate.

In particular, the rule searches all sensor nodes with a very low battery level
and tries to activate the corresponding backup nodes. If the operation is successful,
the system can delegate the gathering and transmission of sensory measurements
to the backup nodes, which then become fully active and replace the original nodes

in all respects.

defrule activateBackupNode:

if (3 “very low” battery node N in room R) then
activate backup node of N

The purpose of this special rule is to restore the system from a stress con-
dition and put it back to a normal one, thus implementing the self-healing capa-

bilities required by an autonomic system. If the activation of the backup nodes
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is not successful, the system signals a discharged-battery alert to administra-
tors, warning them about the energy shortage and urging the replacement of the
uncharged batteries.

Considering that the activation of the backup nodes increases the survivability
of the system and does not involve a decrease in monitoring accuracy, the ac-
tivateBackupNode rule is independent of the active SystemCondition, and can
therefore be activated even if the user is present in his office and the system is
currently attentive.

It is important to note that the rules described are static and there is no mech-
anism for learning them automatically. The adaptivity of the system lies in the
ability to dynamically modify the state of its sensory infrastructure. Neverthe-
less, the rules developed are generic and do not depend on a particular instance of
the system. Moreover, they implicitly manage the conflicting goals of maximizing

sensing accuracy and minimizing energy consumption.



Chapter 3

Context-Aware Multi-Sensor
Data Fusion

Multi-sensor data fusion is extensively used to merge data collected by heteroge-
neous sensors deployed in smart environments, so as to infer high level concepts
exploited by the reasoning module. However, data coming from sensors are often
noisy and inaccurate, and thus probabilistic techniques, such as Dynamic Bayesian
Networks (DBNs), are adopted to explicitly model the noise and uncertainty of
data.

This work proposes to improve the accuracy of probabilistic inference systems
by including context information, and proves the suitability of such an approach in
the application scenario of user activity recognition in a smart home environment.
The selection of the most convenient set of context information to be considered
is not a trivial task. To this end, this chapter presents an extensive experimental
evaluation which shows that choosing the right combination of context information
is fundamental to maximize inference accuracy.

The remainder of this chapter is organized as follows. Section 3.1 briefly dis-
cusses related work on multi-sensor data fusion and context-aware systems. Sec-
tion 3.2 describes the multi-layered architecture of the data fusion system, focusing
on the context-aware DBN that performs the inference. Section 3.3 discusses con-
text information that can be exploited to increase the accuracy of the system.

Section 3.4 presents the experimental setting and the evaluation results.
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3.1 Related Work

Multi-sensor data fusion techniques are widely used to meld data acquired by
sensors deployed in the environment, in order to drive the process of knowledge
abstraction from raw data and generating high-level concepts. Although plenty
of research work has been done on data fusion, many challenging problems still
remain unsolved, especially those inherent to the fusion of multi-source informa-
tion, such as scalability, data inaccuracy and heterogeneity, outliers, or conflicting
information. Further problems arise from the modeling of dynamic phenomena
varying over time, or when addressing privacy and security concerns. A compre-
hensive survey on the state of the art of multi-sensor data fusion solutions can be
found in (Khaleghi et al., 2013).

Existing literature addresses the problem of data imperfection by proposing
different approaches, based on various theoretical foundations. Probabilistic tech-
niques (Koller and Friedman, 2009), such as Naive Bayes classifiers, Hidden Markov
Models, and Conditional Random Fields (CRFs), representing data uncertainty
by using probability distributions, have been described in (Cook, 2010), which
analyzes and compares the performance of these approaches in a smart home sce-
nario. Alternative approaches deal with other aspects of data inaccuracy, such as
vagueness, for example those based on the fuzzy set theory (Zadeh, 1965). The
authors in (Stover et al., 1996) proposed a general-purpose fuzzy logic architecture
that combines multi-sensor data for automatic object recognition, control of sys-
tem resources, and automated situation assessment. In (Zheng and Zheng, 2010),
a multi-sensor image fusion for surveillance systems is proposed, which exploits
fuzzy logic in order to enhance the fused image.

The problem of detecting sensory measurements that mismatch with the ex-
pected pattern of observed data has been thoroughly studied in the literature
(Zhang et al., 2010), with the aim of eliminating outliers from the fusion pro-
cess. An adaptive, distributed Bayesian approach for detecting outliers in data
collected by a wireless sensor network is proposed in (De Paola et al., 2015) to
guarantee reliability and fault tolerance, as well as to reduce energy consumption

for unnecessary transmissions.
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Heterogeneity of information sources is another significant challenge for data
fusion systems. The raw data to analyze might be generated by a large number of
heterogeneous sensors and extensive research effort has been devoted to coherently
and accurately combine the resulting data (Hall and McMullen, 2004; De Paola
et al., 2013). In recent years, a lot of attention has been paid to include con-
text information in the data fusion process in order to reduce ambiguities and
errors (Huebscher and McCann, 2004). HiCon (Cho et al., 2008) is a hierarchical
context aggregation framework that deals with a broad spectrum of contexts, from
personal (e.g., the activities of individuals) to city-wide (e.g., locations of groups
of people and vehicles) and world-wide (e.g., global weather and financial data).
The authors in (Padovitz et al., 2005) defined a formal model capable of repre-
senting context and situations of interest, and developed a technique that exploits
multi-attribute utility theory for fusing the modeled information and thereby at-
tain situation awareness. An extensive framework to mediate ambiguous contexts
in pervasive environments is presented in (Roy et al., 2011, 2012).

When dealing with phenomena that evolve over time, adaptiveness is a fun-
damental feature. In such cases, where the external environment may constantly
change, the system needs to dynamically adapt to the situation, and modify its
behavior accordingly. Dynamic Bayesian Networks (DBNs) (Murphy, 2002), in ad-
dition to current sensory readings, consider the past belief of the system, thus cap-
turing the dynamicity of the phenomena under observation. Several works adopt
DBNs to perform adaptive data fusion for different applications, such as target
tracking and identification (Zhang and Ji, 2006), user presence detection (De Paola
et al., 2012b, 2011), user activity recognition (Tapia et al., 2004; van Kasteren and
Krose, 2007), and healthcare (Roy et al., 2007). Other works integrate machine-
learning algorithms in the data fusion process, to develop adaptive systems. Inter-
esting examples of this trend are reported in (Hossain et al., 2009), which exploits
reinforcement learning, and in (Fabeck and Mathar, 2008), which proposes kernel-
based learning methods to improve the effectiveness of data fusion.

In the field of pervasive systems, and particularly in Ambient Intelligence, the
adoption of an adaptive information fusion scheme, capable of exploiting context
information, is fundamental to develop a truly smart environment (Cook and Das,

2004) that is able to dynamically adapt to the external events. Context infor-
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mation, such as time, location, and user presence or activity, allows for refining
the inference process, thus significantly improving the accuracy of reasoning (Dey
et al., 2001). The authors in (Roy et al., 2012) propose a resource-optimized
framework for sensor networks based on DBNs and information-theoretic reason-
ing to minimize ambiguity in the context estimation process and context quality
determination.

When the pervasive sensory infrastructure is enriched with mobile devices, as
proposed in (Yurur et al., 2014), the set of sensors capable of perceiving context
information becomes larger. Nevertheless, those sensors are often energy hungry,
thus many solutions in literature focus on the reduction of their consumption.
In (Rahmati and Zhong, 2011) a static scheme of exclusion of most costly sensors
is proposed. SeeMon (Kang et al., 2010) is an energy-efficient context monitor-
ing framework for mobile devices, which adopts event-based monitoring policies to
save energy by reducing unnecessary wireless communications. ACE (Acquisitional
Context Engine) (Nath, 2012) is a middleware for context-aware applications that
dynamically learns associative rules among context attributes, so as to infer the
value of expensive attributes by sensing cheaper ones. On a similar note, CAR-
LOG (Jiang et al., 2014) adopts a rule-based approach to minimize bandwidth
usage, energy and latency, and supports multiple concurrent queries of context
attributes, further minimizing bandwidth usage.

The authors in (Rahmati et al., 2015) propose a solution that reduces energy
consumption by selecting the set of sensors that achieves the minimum value of
accuracy of estimation. The authors of (Yurur et al., 2014) suggest instead to
reduce the sensors sampling rate and propose a data fusion approach capable of

dealing with such inhomogeneity of data sources.

3.2 Architecture of the data fusion system

This work proposes a novel approach to multi-sensor data fusion for intelligent
systems based on the use of pervasive sensors. The system presented here is highly
scalable and its inference tier can be used to implement the Understanding module
of the autonomic AmlI architecture described in Chapter 2, so as to infer high-level

concepts from raw sensory data.
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Figure 3.1: Multi-layered architecture of the context-aware data fusion system.

One of the main features of the system is its capability of dealing with in-
accurate and noisy data coming from sensory devices. In particular, the use of
probabilistic techniques allows the system to merge information coming from mul-
tiple sensors by explicitly modeling the noise and uncertainty of data (Khaleghi
et al., 2013).

Fig. 3.1 shows the multi-layered architecture of the system. At the lowest
tier, the Sensory module perceives the world through the pervasive sensory in-
frastructure. The inference tier is composed of multiple levels: at each level, one
or more Data Fusion modules exploit context attributes coming from lower levels
to perform probabilistic inference on the pre-processed sensory data, fusing them
to infer new context information which provides a higher level description of the
environment. The process of knowledge abstraction continues until the context
information requested by the top-level application is inferred.

This work focuses on a single Data Fusion module, and on the impact that
context information has on its inference accuracy. A more accurate description of
the Data Fusion module is presented in the following section. Chapter 4 describes

a self-optimizing module that enriches the system presented here by selecting a
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Figure 3.2: Structure of the DBN used for the context-aware data fusion.

subset of sensors to use in the data fusion process, so as to find the best trade-off

between inference accuracy and energy consumption of sensory devices.

3.2.1 Data Fusion Module

The proposed data fusion system is based on a Dynamic Bayesian Network (DBN),
which models the observed phenomena by taking into account the past state of
the world besides current sensory readings. DBNs are a specialization of Bayesian
Networks that guarantee a great flexibility in model expressiveness (De Paola and
Gagliano, 2014). They pose no restrictions on conditional probability distributions,
differently from Kalman filters (Meinhold and Singpurwalla, 1983), and allow for
more general topologies than Hidden Markov Models (Sanchez et al., 2007). A
DBN is partitioned in temporal slices, where each slice represents the state of
the world in a given moment, besides the evidences representing the observable
manifestation of the hidden state of the world. Each slice of a DBN can have any
number of state variables and evidence variables. Since DBNs represent a good
trade-off between expressiveness and tractability (Murphy, 2002), they provide a
useful tool for performing data fusion.

Fig. 3.2 shows the structure of the designed DBN. Its main goal is to infer the
state of the world, in the form of a given feature of interest, which is represented
by the hidden variable X;. The belief is updated on the basis of a set of sensory
readings, represented by the evidence nodes E; = (E},..., E"') at any time slice t.
Differently from prior work, the system also exploits a set of context information,
represented by the evidence nodes C; = (C}, ..., CF) in the time slice t. The set

of context information heavily depends on the application scenario; however, it is
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crucial to limit the number of context variables in order to control the size of the
conditional probability tables (CPTs) and, consequently, the number of parameters
to learn in the training phase. Section 3.3 analyzes in detail the choice of which
context information to use.

To fully characterize the DBN, it is necessary to define the sensor model and
the state transition model (Murphy, 2002). The probability distribution P(E;|X};)
expresses how sensory readings are affected by the state variable, and is named
sensor model. The state transition model, defined as P(X;|X;_1, C;), represents
the probability that the state variable takes a certain value, given its previous
value and the current context information.

The belief of the system about a specific value of the state variable at time ¢

is defined as:
Bel(zy) = P(xi| Eyy, Chut). (3.1)

By following a procedure analogous to that adopted in (Thrun et al., 2005) for

deriving the equation of Bayes filters, it is possible to express Eq. (3.1) as follows:

Bel(llft) = P(ZUt’El:m Cl:t) = P(xt‘ElztflyEt,Clzt) =

(3.2)
=n- P(Et|xt, E1:t717 Cl:t) : P(%ﬁ’El:tfl’ C1:t),

where 7 is a normalizing constant. By using the Markov assumption, and consid-
ering that the sensor nodes in E; do not depend on the context variables in Cj,

given the state variable X}, the following holds:
P(E|xy, Evy1,C1y) = P(Ey|xt, Cry) = P(Ey|zy). (3.3)

Assuming that sensor measurements are mutually conditionally independent, given

the value of the parent node X, Eq. (3.3) can be further decomposed into:

P(Ei|x;) = HP(ei\xt), (3.4)

where e} is the specific value of the sensory reading gathered by sensor i in time

slice t.
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Moreover, the last term in Eq. (3.2) can be expressed as follows:

P($t|E1:t—1,C1;t) = Z P(It,xt—ﬂEl:t—l,Cl:t) =

Ti—1

=a- Y P(x|zi1, Ery1, Cry) - P(ai-1|Ery_1, Cry),

Tt—1

(3.5)

where « is another normalizing constant. C}; can be safely omitted from the last
term, since X;_; does not depend on the next context C; if the next state X; is
not considered. Thus, using the Markov assumption, Eq. (3.5) can be expressed
as:

P(xt‘Elztbel:t) =

= Z P(ﬂ%‘l’tfl,ct) 'P(xtflyEl:tfla Cl:tfl) =

Tt—1

=q- Z P(z¢|xi—1, Cy) - Bel(xy—q).

Ti—1

Finally, by substituting Eq. (3.4) and Eq. (3.6) into Eq. (3.2), the belief can

be defined with the following recursive formula:

(3.6)

Bel(zy) =n-[[ Plej|xe) - > P(ai|zio1, Cy) - Bel(wi1), (3.7)

i Tt—1
€t

where « is integrated in the normalization constant 7. Using Eq. (3.7), the infer-
ence can be performed by storing the last two slices of the DBN, and thus the time
and space required for updating the belief do not increase over time.

The computational complexity of calculating the belief for a single x; is O(n +
m), where n is the number of sensor nodes and m is the number of possible values
of X;. Thus, the overall complexity of computing Bel(x;) for all values of X; is
O(m? +m - n).

In order to populate the conditional probability tables of the DBN, several dif-
ferent methods can be adopted, depending on the available training set of historical
data, =. In a fully labeled dataset, it is possible to compute sample statistics for
each node. For example, let P, denote the parents of a node V;. The sample
statistic P(V; = v;|P; = p;) is given by the number of samples in = having V; = v;
and P; = p; divided by the number of samples having P, = p;. To learn the CPTs,

it suffices to calculate these sample statistics for all the nodes in the network. If
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Table 3.1: CPT for state transition: P(X,|X;_ 1, C}).

X4

C! | X4 0 1

0 0 0.75 | 0.25
0 1 0.11 | 0.89
1 0 0.85 | 0.15
1 1 0.07 | 0.93
2 0 0.95 | 0.05
2 1 0.10 | 0.90

Table 3.2: CPTs for sensor models: P(E}|X;), P(E?|X;) and P(E?|X;) .

E; E} E;
ol 1|2 o] 1] o]
0.50 | 0.20 | 0.30 || 0.87 | 0.13 || 0.68 | 0.32
1] 0.15]0.050.80 || 0.36 | 0.64 || 0.10 | 0.90

Xy

the values of one or more of the variables are missing for some of the training
records, different techniques can be used, such as the Expectation Maximization
(EM) algorithm or gradient ascent (Koller and Friedman, 2009).

Running Example

The following running example illustrates how the DBN of the Data Fusion mod-
ule operates. The example network has a single state variable X, with two possible
different values, three evidence nodes E!, E2, E3, taking 3, 2 and 2 values respec-
tively, and a single context node C!, taking three possible values; the network is
defined through the CPTs reported in Tables 3.1 and 3.2.

Let P(Xy) = (0.85,0.15) represent the probability distribution for the state
variable at time ¢t = 0, ie., P(Xy = 0) = 0.85 and P(X, = 1) = 0.15. If
the sensory readings at time ¢t = 1 are [E], F?, Ef] = [1,0,1], and the value of

the context node C] is 0, the corresponding belief for the state variable can be
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computed according to Eq. (3.7):

Bel(X; = 0) =
=75 (0.2-0.87-0.32) - (0.75 - 0.85 + 0.11 - 0.15) =
—1-0.037,

Bel(X,; =1) =
=7+ (0.05-0.36-0.9) - (0.25- 0.85 + 0.89 - 0.15) =
— 1 0.006,

where the normalization constant can be computed as 7 = W}ro.ow = 23.256.
Thus, the belief at time ¢ = 1 is Bel(X;) = (0.867,0.133). At time ¢ = 2, for the
sake of the example, let the sensors produce the readings: [Fj, B3, B3] = [2,1,0],
and let the value of the context node C1 be 1. Applying again Eq. (3.1), it is
possible to calculate Bel(X3) = (0.606,0.394). As mentioned, context information
greatly influences inference results. Indeed, if the value of the context node C3
had been 0 at time ¢t = 2, the corresponding belief would have been Bel(X;) =

(0.507,0.493).

3.3 Context-awareness

The role of context in the system is twofold. The main goal is the inference of
context information, intended as a high-level description of the surrounding world.
In particular, this chapter focuses on recognizing activities performed by users in a
smart home environment, which in turn will enable higher-level Reasoning modules
to provide the most appropriate services to users, as described in Chapter 2.
Low-level context information, such as time and location, can be exploited
by such data fusion system to improve the accuracy of reasoning by refining the
inference process, as demonstrated by many context-aware data fusion systems
proposed by researchers over the years (Nimier, 1995; Padovitz et al., 2005).
However, using too many context attributes can actually be detrimental to
the inference accuracy, as will be demonstrated in Section 3.4.3, and increases the

computational burden of the system, especially in the training phase. Thus, it is
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important to analyze the possible context information and select only the most
informative attributes, which may vary depending on the application scenario.

It is possible to identify some principles that can drive the selection of con-
text attributes. First of all, context information should be readily available in all
situations, regardless of the sensors used. Therefore, the proposed system does
not include information provided by users manually, as well as context attributes
which are difficult to sense or that cannot be sensed directly and reliably, thus
introducing new elements of uncertainty in the system.

The authors of (Dey et al., 2001) provide a widely accepted definition of con-
text, which identifies the primary categories of contextual information, i.e., iden-
tity, activity, location, and time. Identity and activity are high-level attributes,
while location and time are low-level attributes. Thus, according to the principles
stated above, this chapter focuses on location-related and time-related context
information, analyzing the possible benefits they can provide to the system, and
validating the proposed approach in the experimental section.

Time-related context information is used by most context-aware systems in
literature, since it is very easy to obtain (i.e., it is sufficient to check the current
date and time). For activity recognition systems, in particular, time-related con-
text information provides remarkable improvements to the accuracy (Perera et al.,
2014). First of all, intuitively, activities performed by users may vary a lot in
different periods of day: for example, sleeping is the most probable activity during
the night, and many users have lunch and dinner at regular time each day. Thus,
exploiting this context attribute should improve the accuracy of the system, with
almost no drawbacks. However, the number of periods in which a day is divided
can influence the performance of the system, as demonstrated in Section 3.4.3.
Both too coarse-grained periods (e.g., intervals of 12 hours) and too fine-grained
ones (e.g., intervals of 1 minute) do not convey much information; hence, finding
the best granularity is very important.

Similarly, activities performed by users might be influenced by the current day
of the week and, to a lesser extent, by the month of the year. However, users’
activities should be less correlated to these context attributes, with respect to the
period of day. For example, it is possible that users will behave differently during

weekends, but it is unlikely that activities will change much among the other days.
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Further considerations regarding the day of the week and month of the year are
deferred to the experimental section. Other time-related context information, such
as the timezone, might be interesting for different scenarios, but are irrelevant for
the case study of activity recognition in a smart house.

As regards location-related context information, this work focuses primarily on
the position of users, leaving to future work an analysis on how to exploit the posi-
tion of objects to improve the awareness of the system about users’ surroundings.
In the case of a smart home, with no strong assumption on the kind of sensors
used, this work proposes to exploit user location information with a room-level
granularity. Regardless of the sensors used, estimating the position of users with
this level of detail is required to correctly inferring their activities.

However, a system that relies primarily on location-related context information
will encounter difficulties in recognizing certain activities. Intuitively, this can be
explained by considering that some activities are performed in well-defined loca-
tions (e.g., sleeping in the bedroom), and therefore are well recognized using this
kind on information, while other activities are more irregular (e.g., housekeeping,
which may be carried out in all rooms of the smart home), and more heterogeneous

context information should be exploited to recognize them with higher accuracy.

3.4 Experimental Analysis

In order to evaluate the possible contribute of different context information to the
data fusion process, the performance of the proposed DBN will be tested while

varying the type and granularity of context information.

3.4.1 Simulation Setting

This section evaluates the performance of the system in a smart home where several
programmable wireless sensor nodes are deployed. The traces, collected by a set
of real sensors, have been exploited in order to simulate the interaction of sensory
devices with the environment, according to principles defined in (Lalomia et al.,
2009). Sensory traces and corresponding user activities were obtained from the
Aruba dataset of the CASAS Smart Home Project (Cook, 2010), developed at
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Washington State University. This dataset contains annotated data collected in
a smart apartment with a single resident, over a period of seven months. Events
are generated by 31 motion sensors, 3 door sensors, and 5 temperature sensors,
deployed in 8 rooms (5 sensors per room on average).

A pre-processing of the original data was required to test the system. The
sequence of sensor events was partitioned into time windows of 30 seconds, counting
how many times each sensor was activated during each slice. Considering the low
correlation between temperature readings and the activity performed by the user,
this information has been discarded.

Moreover, a heuristic was developed to label each interval with the predominant
activity performed by the user during that time slice. The Aruba dataset considers
eleven activities of daily living (ADLs), i.e., Bed to Toilet, Eating, Enter Home,
Housekeeping, Leave Home, Meal Preparation, Relaxz, Resperate!, Sleeping, Wash
Dishes, and Work. To better evaluate the system, a new activity, named Qutside,
has been added to the dataset. This activity takes into consideration the periods
of time when the user is not at home, i.e., the intervals between Leave Home and
Enter Home. This information can be used by the system to further optimize the
energy consumption of the sensory infrastructure, since all the sensors installed in
the smart home can be deactivated when no one is present, with the exception of
the door sensors, thus minimizing energy consumption without sacrificing inference
accuracy.

In a real scenario, it is very difficult, if not impossible, to predict all the activi-
ties that will be performed by users and, furthermore, a fixed list of activity classes
cannot take into consideration the unavoidable transitions between activities. To
address both of these problems, a further activity class was added to the ones
annotated within the original dataset, as suggested in (Krishnan and Cook, 2012).
This special activity, named Other, groups all the sensor events that do not match
any of the known activities. It is essential to detect this activity class accurately
in a real world scenario, since nearly 20% of the sensor events in the dataset con-
sidered here belong to the Other class. However, considering the heterogeneity of

the activities grouped by this class, it is very challenging to recognize it with good

'Resperate is a device used for the treatment of high blood pressure.
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accuracy, and many approaches in the literature ignore it altogether, relying on a
static list of known activities, as noted in (Krishnan and Cook, 2012).

The cross validation method was used to evaluate the system, dividing the
dataset into ten parts. For each test, nine parts were used for learning the CPTs
(Conditional Probability Tables) of the DBN, and the tenth was used for the test.
This process was then repeated changing the test set ten times and averaging the
results.

After the pre-processing phase, the dataset consisted of 633 468 sensor events.
Each test of the cross validation used 570 121 sensor events as training cases, and
63 347 sensor events as test cases. All experiments have been performed on a
workstation equipped with an Intel® Core™ i5-3470 CPU (4 cores, 3.20 GHz,
4 GB RAM). The training phase required 4914 ms on average.

3.4.2 Performance Metrics

The most common metric to evaluate activity recognition systems is the average

accuracy, defined as:

TP+TN

Acc =
“CTTPYTN+FP+FN’

(3.8)

where TP, TN, FP, and FN are, respectively, the true positives, true negatives,
false positives and false negatives. However, accuracy alone is not sufficient to
evaluate different approaches, since data are skewed towards the most probable
activities. In fact, activities such as Sleeping and Relax account for a large number
of time slices, while others like Resperate and Leave Home or Enter Home are much
rarer and shorter. For this reason, the evaluation proposed here adopts additional
metrics to provide a more detailed analysis of the performance of the systems.
An index based on the classic definition of Shannon entropy (Shannon, 2001)
has been exploited to measure the uncertainty of the probabilistic reasoning per-
formed by the systems. Another metric that will be used in the following is the

average cross-entropy error function, which is defined as follows:

1
N - Z Yij log pij, (3.9)

=1 j5=1

CF = —
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where N is the number of timesteps, M is the number of activity classes, and y;;
and p;; are, respectively, the ground truth and the predicted probability for the ;%
activity class at time i. The cross-entropy error is an information-theoretic measure
of accuracy that incorporates the idea of probabilistic confidence, measuring the
cross-entropy between the distribution of true labels and the prediction of the
system. This kind of error becomes extremely large (i.e., 400 in the extreme
case) if the system is over-confident about a wrong prediction, and it is thus
useful to evaluate the accuracy of the belief with a fine granularity. Finally, the
precision (positive predictive value) has been used as fidelity measure, and the
recall (sensitivity) has been selected for measuring completeness. These metrics

are defined as follows:

TP
pT@C’LSlOTZ = TP —|— FP,
. (3.10)
T
Tt = TP Y FN

Precision and recall, in turn, are used to calculate the F-score, which is defined

as the harmonic mean of precision and recall, as follows:

precision - recall
F-score =2 -

. 3.11
precision + recall ( )

3.4.3 Experimental Results
Time-related context information

The first set of experiments presented here is a detailed analysis on the importance
of some time-related context attribute, i.e., period of day, day of week, and month.

The analysis starts by studying the performance of the system when changing
the granularity of the period of day node. Fig. 3.3 shows the accuracy, uncertainty,
F-score and cross-entropy error of a system exploiting the period of day node, as a
function of the number of periods in which a day is divided, starting from a single
period (i.e., a single interval of 24 hours) up to a maximum of 48 periods (i.e.,
48 intervals of 30 minutes). The figure shows an increment of the accuracy and
F-score when increasing the granularity up to 6 periods (i.e., intervals of 4 hours).

Likewise, uncertainty and cross-entropy error are very low using this granularity.
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Figure 3.3: Accuracy, uncertainty, F-score, and cross-entropy of the data fusion
system when varying the granularity of the period of day node.

However, dividing the day in more than 6 periods yields a steady decrease of the
F-score, as well as an increase of uncertainty, whilst accuracy and cross-entropy
remain unchanged. Thus, increasing time granularity is beneficial only up to a
point; going further only adds to the noise, resulting in a system that performs
worse with no added benefits.

The experimental results show that it is possible to improve accuracy and F-
score of the system even more by dividing the day manually in four periods, namely
morning (8AM - 12PM), afternoon (12PM - 8PM), evening (8PM - 11PM) and
night (11PM - 8AM). This way, periods closely follow the phases of the day when
the type of activities performed by typical users changes, as shown in Fig. 3.4.
As the figure points out, the user’s behavior changes remarkably during the day.
For example, the Housekeeping and Wash Dishes activities are much more prob-
able during morning or afternoon, and it seems the user works prevalently on
afternoons. As expected, activities such as Sleeping and Bed to Toilet take place
mainly at night. However, some activities, such as Other, show less variance during
the day, and are thus more difficult to identify. Results show that this granularity
yields the best accuracy, F-score and uncertainty (0.793, 0.416, and 0.231, respec-
tively), and one of the lowest cross-entropy errors, i.e., 1.858.

The frequency of the user’s activities, during the week (Fig. 3.5) and among
different months (Fig. 3.6), was analyzed to evaluate the effect of context infor-

mation concerning the day of week and the month. It is worth noting that the
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Figure 3.4: Frequency of the activities during morning, afternoon, evening, and

night.
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Figure 3.5: Frequency of the activities during different days of the week.

user’s behavior is pretty regular during the week, including weekends. The only

exception appears to be the Resperate activity; however, this is a fairly rare activ-

ity, thus its weight when determining the accuracy of the system is limited. Even

among different months, the activities are quite regular (only Housekeeping and

Resperate show a remarkable variance). By analyzing such results, it is easy to
predict the different impact of the period of day (PoD) node with respect to the
day of week (DoW) and month ones.

In order to verify such analysis, Table 3.3 reports the comparison of eight

systems that exploit different combinations of context information. The difference

in accuracy between the best and worst combination of context nodes is more than
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Figure 3.6: Frequency of the activities during different months of the year.

Table 3.3: Average accuracy (Acc), uncertainty (Unc), cross-entropy error (CE),
and F-score of the analyzed systems, sorted by accuracy in descending order.

PoD DoW Month Acc Acc w/o Other Unc CE F-score
v — - 0.793 0.889 0.231 1.858 0.416
v v — 0.779 0.874 0.245 1.950 0.400
v — v 0.778 0.876 0.280 1.815 0.385
— — - 0.760 0.853 0.282  2.146 0.403
v v v 0.739 0.833 0.373 1.911 0.366
— v - 0.734 0.826 0.347  2.232 0.390
— — v 0.714 0.800 0.429  2.222 0.363
— v v 0.690 0.772 0.562  2.347 0.349

10%. It is worth noting that four systems out of the five with highest accuracy

exploit the period of day node. Moreover, these systems show high F-scores and

low uncertainty and cross-entropy errors. As expected, the accuracy of all systems

improves significantly if the Other activity class is ignored, increasing by about

10% on the average. Surprisingly, the system which includes all three context nodes

performs worse than the one which excludes them. This can be explained by the

interference of the month and day of week nodes. In fact, the system that exploits

only these two context nodes is the worst according to all metrics. Conversely, the

system that performs better is the one which uses only the period of day node.

Activities are too regular during the week and among months, and therefore the

usefulness of the day of week and month nodes is limited. Thus, at a first glance,
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Figure 3.7: Confusion matrix of the baseline data fusion system.

it appears that the day of week and month nodes are not needed to improve the
performance of the data fusion system, and can, in fact, be detrimental.

The system which uses only the period of day node will be considered as baseline
for comparison with other systems in the following experiments. To provide a more
detailed analysis of its performances, its confusion matrix, row-wise normalized, is
presented in Fig. 3.7. Each cell Cj; represents the number of instances of class ¢
predicted to be in class j by the system. Therefore, diagonal entries correspond to
true positives, and non diagonal entries correspond to classification errors. Darker
blocks indicate higher values, as suggested by the color bar. The large number of
dark diagonal entries and the light entries in the rest of the matrix imply a high true
positive rate and low confusion among activities. However, the matrix highlights
that some activities are difficult to handle, i.e., Housekeeping (often misclassified
as Other), Resperate (misclassified as Work), and Wash Dishes (misclassified as
Meal Preparation).

In the following, the location in which each activity is carried out will be ana-
lyzed in detail, so as to explain why some activities are more difficult to recognize

than others.
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Figure 3.8: Diversity index of each activity.
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Figure 3.9: Frequency of the activities performed in the kitchen.

Location-related context information

Intuitively, some activities are performed in well-defined locations, and therefore
are well recognized using only motion sensors, while other activities are more irreg-
ular. Furthermore, it is reasonable to assume that some activities are performed
mainly in the same rooms (and roughly in the same time periods), such as Wash
Dishes and Meal Preparation. To verify these hypotheses, the smart house was
divided in rooms, so as to measure the variability of the association between ac-
tivities and rooms, exploiting the diversity index, defined as the classical Shannon
entropy (Shannon, 2001).

Fig. 3.8 summarizes the diversity index of the activities, which indicates how
they are carried out in different rooms. Activities performed in a well-defined lo-
cation have a low diversity index, while activities carried out in different rooms
exhibit a high diversity index. As expected, activities which are difficult to rec-
ognize correctly, such as Housekeeping and Other, exhibit the highest diversity
indices. On the other hand, activities that are easier to classify accurately, such

as Sleeping, have low diversity indices. The Wash Dishes activity seems to contra-
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dict this statement, since it sports a low diversity index, but is often misclassified.
However, this activity only takes place in the kitchen, since almost 80% of sensor
events associated with it comes from sensors deployed there. This accounts for its
low diversity indez, but, as Fig. 3.9 shows, there are much more probable activities
taking place in the same room, such as Meal Preparation (52.9% of sensor events)
and Other (37.7% of sensor events); even Relaz is a more probable activity than
Wash Dishes, in the kitchen. Therefore, it is understandable that a system which
relies mostly on motion sensors will have a hard time identifying this kind of activ-
ity. To overcome this problem, it is possible to exploit the information associated

to the duration of each activity.

Duration of activities

The experiments reveal that some activities exhibit a much longer average duration
than others. For example, Sleeping has an average duration of about 4 hours, while
FEating generally takes about 10 minutes. Thus, it is intuitive that making use of
this kind of context information should be beneficial to the system.

In order to verify the usefulness of such information, a system with an additional
context node exploiting the duration of activities was tested and compared to the
baseline system. Surprisingly, the resulting accuracy was lower than the baseline
system by about 2%, and the other metrics were unchanged or slightly worse. A
closer look at the data reveals that only a couple of activities (i.e., Sleeping and
Outside) have average durations longer than one hour. Most of the other activities
have durations similar to each other, generally between 10 and 30 minutes. It
seems that this type of context information fails to help the system if it is possible
to exploit enough data coming from the sensory devices.

However, when performing data fusion, it might not always be efficient to
sample all available sensors. On the contrary, it may be useful to activate only
a subset of sensors, depending on the application scenario. For instance, if the
sensory infrastructure is composed of devices with limited energy resources, the
use of a subset of devices might increase the lifetime of the whole network.

For this reason, the comparison experiments were repeated using only a sub-

set of sensors, discarding the rest of the data. As expected, in these conditions
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Figure 3.10: Improvement of inference accuracy when exploiting context informa-
tion with different number of sensors.

context information proved to be much more valuable. Using only 10 sensors (out
of 34), the accuracy of the baseline system is 65.87%, while exploiting duration
information results in an accuracy of 74.25%, with a significant improvement of
8.38%. As it turns out, the same is true for other context information as well.
Fig. 3.10 shows the improvement in accuracy of systems exploiting activity
duration, month and day of week, with respect to the baseline system (i.e., the one
exploiting only the period of day) as a function of the number of sensors used. It can
be noted that, in the extreme case of using only 5 sensors, exploiting the activity
duration improves the accuracy of the system by almost 13%. Conversely, the
benefits of using context information decrease when there is enough data coming
from the sensory devices. The same holds true for the month node, whilst the
improvement when using the day of week is negligible even with few sensors.
Chapter 4 analyzes how to further use context information to dynamically
reconfigure the sensory infrastructure, by exploiting a self-optimization module
which samples a subset of sensors in order to minimize energy consumption, whilst

maintaining a high degree of inference accuracy.



Chapter 4
Context-Aware Self-Optimization

This chapter proposes a context-aware self-optimizing module for multi-sensor
data fusion in pervasive computing scenarios, enriching the Data Fusion system
described in Chapter 3. Differently from previous works on the subject, the pro-
posed self-optimization module focuses on dynamic management of sensors, finding
the best trade-off between inference accuracy and energy consumption of sensory
devices. Furthermore, this work exploits contextual information in a novel way,
both to increase the accuracy of reasoning and to improve the adaptiveness of the
system, thereby reducing energy consumption.

The remainder of this chapter is organized as follows. Section 4.1 outlines
the proposed self-optimization system and provides a high level description of its
modules. Section 4.2 highlights the dynamic reconfiguration capabilities, explain-
ing the behavior of the self-optimization modules. Section 4.3 presents the case
study used to demonstrate the effectiveness of the proposed approach with the help
of activity recognition in an Aml scenario. Section 4.4 describes the experimental

setting and analyzes the experimental results.

4.1 The Three-tier Architecture

One of the main features of the approach proposed in Chapter 3 is its capability
of dealing with the inherent inaccuracy of sensors. Probabilistic techniques, such

as Dynamic Bayesian Networks, enable the fusion of information coming from
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multiple sensors by explicitly modeling the noise and uncertainty of data so as to
improve confidence and reliability of the reasoning process (Khaleghi et al., 2013).

The chapter adds another relevant feature to the system, i.e., the capability
of adaptively selecting the best subset of sensors to be used in the data fusion
process. Such selection is performed to activate only the sensors that are strictly
necessary on the basis of the current needs of the system, rather than exploiting
all the available data sources.

This approach meets several requirements of intelligent pervasive systems. It
decreases the computational burden of the information fusion process, and con-
sequently the system response time (Zhang and Ji, 2006). Moreover, it reduces
the energy consumption of the sensory infrastructure; this aspect plays a relevant
role in pervasive systems, such as Ambient Intelligence, considered here as a case
study.

Although such an approach minimizes the number of sensors used during the
inference process, it still guarantees a high degree of accuracy. The system is de-
signed to autonomously modify the state of the sensory infrastructure by switching
sensors to a low-power mode which disables data gathering and transmission func-
tionalities in order to minimize their energy consumption, whenever this does not
compromise the inference accuracy.

The proposed architecture, depicted in Fig. 4.1, consists of three different tiers
characterized by increasing abstraction levels. The lowest tier (sensory) is in charge
of the observation of external phenomena occurring in the environment through
the pervasive sensory infrastructure that manages only raw data. The interme-
diate tier (data fusion) copes with the uncertainty of gathered data and tries to
infer the external world conditions, which contribute to define the current context,
by performing a multi-sensor data fusion with the integration of further available
context information, as described in Chapter 3. Finally, the highest tier (self-
optimization) aims at finding an acceptable trade-off between costs (e.g., energy
consumption) and system performance (e.g., accuracy of reasoning). Fig. 4.1 il-
lustrates the main modules within each tier of the proposed architecture. The
sensory and data fusion tiers present a simple structure exploiting respectively the

following two functionalities:
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Figure 4.1: Block Diagram of the three-tier architecture.

o Sensor Control: collects raw data coming from the sensors, sends them to the

Data Fusion module and modifies the state of sensory devices, by activating

or deactivating them according to the policy indicated by the modules of the

self-optimization tier;

Data Fusion: exploits the available context information, performs probabilis-

tic inference on the raw data coming from sensors, and combines them into

describing the world through higher-level concepts.

The self-optimization tier exhibits the highest complexity, since it considers the

state of the system and the current context conditions, and selects the actions to

be performed in order to optimize the system behavior. The main functionalities

of this tier are performed by the following three modules:

Feature Extraction: selects the relevant context information about the ex-

ternal world and the internal state of the system in order to perform self-

optimization. Such features are inferred both from the outcome of the Data

Fusion module, and from the meta-analysis of the system internal behav-

ior. The set of features is specific and depends on the particular application
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scenario. In order to adapt the system to a specific scenario, it is necessary
to identify the meaningful information needed for dynamically reconfiguring

the sensory infrastructure.

o Global Optimization: exploits context information, in the form of features
selected by the Feature Extraction modules, to dynamically modify the cost
and uncertainty thresholds triggering the self-configuration performed by the

Constrained Optimization module.

o Constrained Optimization: this module is activated by a set of alarms trig-
gered by the Global Optimization module, when cost and uncertainty of the
information fusion process exceed their respective thresholds. The cost and
uncertainty quantities are two of the features selected by the Feature Extrac-

tion module for the specific scenario considered here.

A more accurate description of the role played by the modules of the self-

optimization tier is given in the following sections.

4.2 Context-aware Self-Optimization

The self-optimization modules aim to dynamically optimize the state of the sensory
infrastructure, in order to find the best trade-off between performance and costs.
To this end they need to exploit the maximum of available information on the
external world and on the internal system conditions. Useful information can be
obtained by the analysis of the behavior of the Data Fusion module, in addition
to the other information acquired from the external world.

The Feature Extraction module produces a feature vector containing meta-
information about the world state and the system state, which, as a whole, defines
the current context. Such information are then exploited by the Global Opti-
mization and Constrained Optimization modules to update the alarm thresholds
and reconfigure the sensory infrastructure respectively, as will be described in the

following.
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4.2.1 Feature Extraction

The Feature Eztraction module produces, for each time slice ¢, a feature vector

composed of the following elements:
FV, = [conf,, WSB, Ty, RUE, SC, SIE], (4.1)

where conf; is the configuration of the sensory infrastructure, WSB (World State
Belief) is the belief distribution about the surrounding environment, as inferred by
the Data Fusion module, T is the elapsed time since the last estimated transition
of the world state, RUE (Reasoning Uncertainty Estimation) is an estimation of
the reasoning uncertainty, SC' is the cost associated to the active sensors, and SITE
(Sensor Importance Estimation) is an estimation of the importance of each sensor
for the inference.

The sensory configuration, which fully describes the state of each sensor, is
defined as a binary vector, conf; = [s}, s?,...,s?], where si € {0,1}. Each element
s! specifies whether the corresponding sensor E' is off or on, respectively, in the
time slice t.

The belief about the state of the world, WSB, is obtained directly from the
Data Fusion module at each time slice, as calculated by Eq. (3.7). The Global
Optimization module exploits such information along with 7%, the elapsed time
since the last transition of the world state as perceived by the system. Let x}

represent the most probable world state, defined as follows:

xf = arg max(Bel(mt)). (4.2)
The Feature Extraction module evaluates the number of time slices elapsed since

the last transition of the world state with the following equation:

Tp(t—1)+1 ifzf |, =},
TE(t) _ E( ) t—1 t (4'3>
0 otherwise.

The uncertainty and cost indices associated with a specific sensory configura-

tion are used by the Global Optimization module to decide whether to trigger an
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alarm, thus requiring a reconfiguration of the sensory infrastructure. To measure
the uncertainty of the probabilistic reasoning performed by the Data Fusion mod-
ule, this work adopts an index based on the definition of Shannon entropy (Shan-
non, 2001):

RUE “ — 3" Bel(x,) log,(Bel(x1)). (4.4)

Tt

Assuming that the cost of acquiring information from node E° in the time
slice ¢ is expressed by the function f,..(FE?), the total cost associated to a specific

sensory configuration can be evaluated as:

SCY S foul(ED - si. (4.5)

E}EEt

The specific cost function closely depends on the application scenarios. The de-
scription of the one adopted for the case study presented here is deferred to Sec-
tion 4.3.

Finally, to support the system in selecting the most useful sensors to activate
at any time slice, this work proposes a heuristic that estimates the importance
of each sensor in the current situation, based on the Kullback-Leibler (KL) di-
vergence (Kullback and Leibler, 1951), known as relative entropy or information
gain. The KL divergence of an approximate distribution GG, with regard to a true
distribution F', measures the information that is lost when G is used instead of F'.
It is defined as:

Dis(FIG) = ¥ Fa) 1g(§§§) (46)

The information gain of an active sensory configuration can be computed as
the KL divergence of the prediction P(X;|E.4_1,C1.) with regard to the belief
Bel(Xy).

However, given a sensory infrastructure with n sensors, in order to exactly
determine the optimal sensory configuration, the optimization modules should
evaluate the information gain for all the possible 2™ sensor states, with an effort
that, as n grows, becomes quickly intractable. For this reason, this work defines
a heuristic which roughly approximates the information gain of a given sensory

configuration with the simple sum of the information gains of each sensor. The
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current information gain of a single active sensor can be simply evaluated by
comparing the belief obtained by using its last reading with the belief obtained by
ignoring such evidence. The belief that would be obtained by ignoring the evidence
e, for a specific state of the world, is defined as a function of the belief Bel(x;):

— Bel(x;

(4.7)
where [ is a normalizing factor. It is then possible to compute the information gain
of a single active node E’, in the time slice ¢, as the KL divergence of Bel,;(X;)
with regard to Bel(X}), as follows:

inf gain(E}) =inf gain(El =¢l) =

" (4.8)
= Dy (Bel(X,)||Bel;(X))-

The evaluation of the information gain of an inactive sensor shows a higher
computational cost, since the absence of a reading involves the computation of the
belief change for all the possible sensory readings. Namely, the information gain

of an inactive sensor should be calculated as follows:

inf gain(E}) =Y P(E; =¢€}) inf gain(E; = ¢}). (4.9)
e

However, in order to reduce the computational cost, the heuristic adopts a
further simplification that exhibits the advantage of considering not only the in-
stantaneous information gain, but also the past history. Accordingly, the system
does not exploit Eq. (4.9) to compute the information gain of an inactive sensor;
rather, at each time slice, it evaluates the current information gain only of the ac-
tive sensors and updates their sample mean and variance. In this way, an estimate
of the value of information provided by the whole sensory configuration conf; can

be represented as

SIE™ linf gaing,g(conf,),inf gain,. (conf;)], (4.10)
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where .
inf  gaing,,(confy) ] Z inf_gaing.,(E}) - s,
s ' - (4.11)
inf  gain,g (conf,) = Z inf  gaing.(Ey) - s

Since the KL divergence does not satisfy the triangle inequality, the proposed
approach constitutes only a heuristic, although it performs well in practice, as will
be shown in the experimental section. Moreover, storing the sampling mean and
variance of the information gain for n sensors is much more efficient than exploring
all the 2" sensory configurations and all possible readings of inactive sensors.

The computational complexity of calculating the feature vector F'V; is dom-
inated by the evaluation of Eq. (4.11). The information gain of a single sensor
node can be derived in O(m), where m is the number of possible values of Xj.
Their mean and variance can be updated online in O(1), using the recurrence for-
mulas proposed by (Knuth, 1997). Thus, the overall complexity of the operations

performed by the Feature Extraction module with n sensors is O(m - n).

4.2.2 Global Optimization

The goal of the Global Optimization is to dynamically drive the behavior of the self-
configuring component, according to context changes, since static criteria regarding
reconfiguration frequency or global objectives of the system are inappropriate for
dynamic scenarios.

The Global Optimization module dynamically modifies two alarm thresholds,
concerning inference uncertainty and cost, which are used for triggering and con-
straining the reconfiguration performed by the Constrained Optimization module,
as depicted in Fig. 4.1. The basic idea is that, in order to obtain significant en-
ergy savings, it is appropriate to reduce the set of active sensors when the system
expects a reduced variability in context conditions, even if such an action may
involve a reduction in the inference accuracy. On the other hand, whenever sig-
nificant context variability is expected, a better policy might be to increase the
sensory activity of the system. To this end, the Global Optimization module uses
the estimated temporal lengths of world states, as learned during the training

phase by the Data Fusion module, the inferred belief about the current state of
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Figure 4.2: Functions used in the Global Optimization module.

the world, and the time elapsed since the last state transition observed by the
system.

For instance, if the system identifies a state condition with a high probability to
persist for a long time, it might switch off most of the sensors without a relevant
accuracy reduction. Conversely, if the system estimates a sudden transition for
current state, it should activate all the sensors necessary to achieve the desired
accuracy, even at the cost of higher energy consumption.

To this end, the Global Optimization module tries to predict if the state of the
world will change in the next time slice, by estimating the probability of a state

condition transition with the following soft-threshold function:

1
Ch(lngept(fchange) =1- 1+ e/\fchange(t)—l” (412)
where l .
elapse me
fchange(t) = L (413)

expectedDuration(X;)’
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and X\ and v are parameters of the soft-threshold function. This implies the proba-
bility of transition of a state condition increases as fehange(t) value grows, as shown
in Fig. 4.2a. The function expected Duration(X;) in Eq. (4.13) is computed as the

expected value of the current state duration, as follows:

expectedDuration(X;) = Y w} - avgDuration(z'),
i (4.14)
w; = Bel(x}),

where avgDuration(z") represents the estimation of the temporal length of a spe-
cific state of the world 2, as learned during the training phase by the Data Fusion
module, and each weight w! is the belief of a specific state in the time slice ¢, such
that >, wi = 1.

The transition probability of the state condition computed by the Global Op-
timization module is used to dynamically modify the cost and uncertainty thresh-
olds, which can vary between minimum and maximum values set by the system
administrator. Whenever the uncertainty and cost of the inference performed by
the Data Fusion module exceed these thresholds, an alarm is triggered and con-
sequently the Constrained Optimization module performs the reconfiguration of
the sensory infrastructure. The thresholds for cost and uncertainty, i.e., 6.5, and

Ounc,, are modified according to the following equations:

Qcostt = MiN¢ostT

+ (maxcost - mincost) : Changept(fchange)»

(4.15)

Qunct = MiNypct

+ (MaZyne — Minyne)(1 — changePy( fenange))-

As shown in Fig. 4.2b, when changeP;( fehange) is close to 0, the system enters
a power-saving mode, thereby reducing the cost threshold and raising the uncer-
tainty threshold. Conversely, when changeP,( fehange) is close to 1, the system gives
priority to the accuracy of the inference, raising the cost threshold and reducing
the uncertainty threshold.

At each time slice, the Global Optimization module updates the thresholds and

compares them with the cost and uncertainty computed by the Feature Extraction
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Figure 4.3: The Global Optimization module influence diagram.

module, checking whether any alarm is triggered. If both the thresholds are ex-
ceeded, priority is given to the reduction of uncertainty, since the main goal of the
system is to infer the state of the world in a precise and reliable way.

The computational complexity of the Global Optimization module is dominated
by Eq. (4.14), which can be computed in O(m), where m is the number of possible
values of X;.

The Global Optimization module is implemented as an Influence Diagram (Koller
and Friedman, 2009), a generalization of a Bayesian network, capable of support-
ing probabilistic decision-making. Such Influence Diagram is shown in Fig. 4.3.
It merges two types of information: (i) information describing the state of the
world, captured by the Data Fusion module, and (ii) meta-information about the
behavior of the Data Fusion module, extracted by the Feature Fxtraction module.
All such information represents the context from the point of view of the Global
Optimization module.

The Alarm node and the Reconfigure decision node represent binary variables
that indicate, respectively, whether an alarm is triggered and whether the system
should dynamically modify the state of its sensors.

The conditional probability distributions of the State transition node and of
the thresholds nodes are based on Eq. (4.12) and Eq. (4.15), respectively. Finally,

the utility function of the Influence Diagram is computed as the XNOR (exclusive
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NOR) of the Alarm variable and the Reconfigure decision variable, in order to

trigger a reconfiguration when an alarm condition holds.

4.2.3 Constrained Optimization

In order to achieve the best possible trade-off between cost and reasoning accu-
racy, the Constrained Optimization module leverages the dynamic thresholds set
by the Global Optimization module to dynamically modify the state of the sensory
infrastructure. For instance, it can reduce the energy consumption of the sensory
infrastructure at the cost of a sacrifice in accuracy, by switching redundant de-
vices to low-power mode, thus suspending their data gathering and transmission
functionalities, as explained in Section 4.1.

To manage the above conflicting goals, this work adopts a multi-objective trade-
off analysis based on a Pareto-dominance criterion (De Paola and Gagliano, 2014;
De Paola et al., 2011), since the traditional approach of using multi-attribute utility
theory (Padovitz et al., 2005), capable of maximizing a single expected utility that
summarizes all the considered attributes, has several drawbacks. Namely, it is often
difficult to formulate an utility function which correctly models the optimization
problem. Moreover, such an approach would require a precise assessment of the
relative relevance of the goals to achieve.

In order to guarantee a steady adaptation of the sensory infrastructure, and
to limit the computational complexity of the optimization, the system considers
only atomic reconfigurations, i.e., actions that modify the state of single sensors.
Thus, in a system with n sensors, the Constrained Optimization module chooses
among n possible sensory configurations when an alarm is raised. If neither of
the thresholds is exceeded by the system, no reconfiguration will be performed.
The cost and information gain of each achievable configuration can be derived in
constant time. Thus, the overall complexity of computing these quantities for all
n achievable configurations is O(n).

The Constrained Optimization module categorizes the sensory configurations
achievable in the time slice ¢ as two disjoint classes: dominated configurations and
non-dominated configurations. A sensory configuration conf; is non-dominated,

or Pareto-optimal, if no other solution has better values for all the objectives
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Figure 4.4: The Constrained Optimization module multi-objective influence dia-
gram.

considered, so that the following holds Vi € {1,...,n}:

cost(conf}) < cost(conf})

or (4.16)

inf_gaing(conf;) > inf _gaing,(conf}).

In order to determine the action that achieves the best trade-off between costs
and performance, the Constrained Optimization module considers only the set of
non-dominated configurations, also known as Pareto front. The selected sensory
configuration depends on the alarm raised by the Global Optimization module, as

follows:

o if only the cost threshold was exceeded, the sensory configuration minimizing

the expected cost(confi1) is selected among the non-dominated solutions;

o otherwise, if only the uncertainty threshold or both thresholds were reached,
the sensory configuration maximizing the expected inf gain(conf, ) is

selected among the non-dominated solutions.

The Pareto front can be derived in O(n?) time, and the final selection of the

configuration to choose requires O(n) time, which yields a total complexity of
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O(n?). The operations performed by the Constrained Optimization module are
implemented as a multi-objective influence diagram (Diehl and Haimes, 2004).
This approach extends traditional influence diagrams, which only allow a single
utility node or a single combined utility node that is sum or product of other
utility functions (Tatman and Shachter, 1990). To overcome this limitation, a
new kind of utility node was defined in (Diehl and Haimes, 2004) as a vector
of objectives, together with an algorithm for the solution of such multi-objective
influence diagrams.

This work proposes the influence diagram shown in Fig. 4.4, where the Change
configuration decision node indicates the single sensor whose state must be changed,
depending on its previous state. Finally, the best sensory configuration is chosen
among the optimal front, as explained above, and a control message is sent to
the appropriate sensor, thus triggering the dynamic reconfiguration of the sensory

infrastructure.

4.3 Case Study: Activity Recognition in AmlI

Scenario

The application scenario chosen to prove the effectiveness of the proposed approach
is an Ambient Intelligence (Aml) environment. In particular, an implementation of
the system was simulated in a smart home system enriched with a pervasive sensory
infrastructure based on WSNs. Such scenario is suitable for the experimental
evaluation for several reasons: first of all, Aml contexts are characterized by a
high dynamism, due to their continuous and unpredictable interaction with users.
Second, the use of WSNs as sensory infrastructure poses severe constraints on
device energy consumption, justifying the necessity of finding the best trade-off
between inference accuracy and energy consumption of sensory devices. Finally,
since observed data are not collected by specialized sensors, but rather by sensors
whose readings are only partially correlated with the environmental features of
interest (De Paola et al., 2011), it is necessary to perform a multi-sensor data

fusion.
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The system is designed for inferring any hidden characteristic of the observed
world. In the case study proposed here, activities performed by the user were cho-
sen as context features to be inferred, since such information allows Aml systems
to be fully responsive to user needs. Moreover, recognizing user activities such as
eating, cooking, sleeping, or working (Cook, 2010; Krishnan and Cook, 2012), is
one of the major challenges of Aml systems.

The approaches to address this challenge vary greatly depending on the kind
of activities to classify, the data fusion method adopted, and the sensors used. For
example, inertial sensors such as accelerometers and gyroscopes, also installed on
mobile devices, are commonly used to recognize activities that involve physical
movements, e.g., walking, running, sitting down and standing up (Gao et al.,
2014; Kwapisz et al., 2011). The authors of (Gao et al., 2014) compared the
advantages and disadvantages of single-sensor and multi-sensor wearable systems,
and proposed an approach based on a decision tree classifier to find a trade-off
between recognition accuracy and computational and communication complexity.
In recent years, several works, such as (Kwapisz et al., 2011), have considered the
possibility of exploiting the increasing pervasiveness of smartphones to recognize
user activities, by merging the raw data coming from the sensors embedded in these
devices. The data collected by wireless sensors which are pervasively deployed in
the environment are often used to recognize a wider range of Activities of Daily
Living (ADLs), such as eating, cooking, sleeping, or working (Cook, 2010; Krishnan
and Cook, 2012).

The implementation of the proposed system in a specific application scenario
implies the characterization of (i) the components of the feature vector which are
related to the state of the world, (ii) the context information acquired directly from
the external world, and (iii) the cost function adopted by the self-configuration
modules.

In the scenario considered here, i.e., user activity recognition in a smart home,
the feature vector contains the belief about the activity currently performed by the
user and the time elapsed since the last activity transition, in addition to features
which do not depend on the application scenario.

The best available context information for improving the accuracy of the system

proved to be the period of day, as demonstrated in Section 3.4.3. The duration
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of the activities also play an important role in the Global Optimization module,
highly influencing the performance of the system, as described in Section 4.2.2.
The cost function was defined with the goal of enforcing an energy saving policy
that aims to extend the devices’ lifetime; thus, the value of the proposed cost
function increases when the residual battery charge of the corresponding sensor

decreases, according to the following equation:
feost(EY) = baseCost(E!) - (1 + 7 (1 - charge(Eti))) : (4.17)

where 0 < charge(E!) < 1 is the remaining charge of sensor E’ in the time slice
t, and v is a parameter that controls the relative importance of the charge level.
When the value of v increases, the system is more inclined to use all the sensors
in a uniform manner, instead of preferring only the best ones, and this greatly
extends the sensory infrastructure lifetime with little impact on accuracy, as will

be shown in the next section.

4.4 Experimental Evaluation

The experimental results compare the performance of three different systems. The
first one, called All-On, is the Data Fusion system presented in Chapter 3; it does
not exploit the optimization modules to adaptively self-configure its behavior at
runtime, and uses all the available sensors in each time slice, thus minimizing
the uncertainty of reasoning regardless of energy consumption. The second one,
called Subset-On, gives priority to energy savings, leveraging only a small subset of
sensors, i.e., 10 of the 39 available sensors, and does not exploit the optimization
modules to improve its performance. The last system, finally, is the context-aware
self-optimizing system proposed in this chapter, and it fully exploits the Global
Optimization and Constrained Optimization modules described in the previous
sections. The first two systems are considered as baseline for comparison with the
proposed one.

The experimental setting and metrics are the same as the ones presented in

Section 3.4.1 and Section 3.4.2. In particular, the experiments presented here
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Figure 4.5: Uncertainty, cost, and accuracy trends of the three systems considered
during a given week.

compare the uncertainty, cost, and accuracy of each system, as well as precision,

recall, and F-score of each activity, as detailed in the following.

4.4.1 Experimental Results

The first experiment presented in this section is the comparison of uncertainty, cost,
and accuracy trends of the three systems during a given week, when also the Other
activity class is considered. In this first test, temperature readings were discarded,
considering the low correlation between such data and the activity performed by
the user. Fig. 4.5 shows the simple moving averages (SMAs), i.e., the unweighted
mean of the values collected in the previous hour. As expected, the All-On system
exhibits the lowest uncertainty and the highest energy cost. Conversely, the Subset-
On system presents the highest uncertainty and a lower power consumption than
the All-On system. The Adaptive system shows an uncertainty close to that of
the All-On system, with a lower power consumption. It is worth noticing that
the average cost of the Adaptive system increases very slowly over time, since the
optimization modules are smart enough to exploit sensors in a uniform manner, so
as to maximize the life span of the WSN and minimize power consumption. With
regards to the accuracy, the All-On and Adaptive systems perform similarly, and

occasionally the Adaptive system overcomes the All-On. The Subset-On system,



4. Context-Aware Self-Optimization 69

Table 4.1: Average accuracy of the two baseline systems compared with the pro-
posed Adaptive system, in each test of the cross-validation experiment based on
the CASAS dataset (Cook, 2010).

All-On Subset-On Adaptive

0.780 0.659 0.755
0.802 0.704 0.818
0.788 0.670 0.796
0.792 0.677 0.803
0.810 0.672 0.815
0.803 0.657 0.811
0.790 0.539 0.777
0.782 0.652 0.788
0.811 0.687 0.817
0.769 0.644 0.773

on the other hand, behaves poorly, and its accuracy is behind those of the other
two systems.

Table 4.1 reports the average accuracy of the two baseline systems compared
with the proposed Adaptive system, in each test of the cross-validation experiment.
Table 4.2 summarizes the results of the cross-validation tests, reporting the average
accuracy (both considering and excluding the Other activity class), uncertainty,
power consumption, number of active sensors, and F-score of the three systems
in all tests. It can be observed that the proposed Adaptive system achieves an
accuracy slightly higher than that of the All-On system. This may seem a bit
unexpected, but it can be explained by considering the particularity of the dataset
used, which mainly contains motion sensors. In such a scenario, using an optimal
subset of sensors can lead to higher accuracy than keeping all sensors on, since
it allows the system to exclude some false positive readings. For instance, when
the user is sleeping, the Adaptive system exploits only sensors near the bedroom,
while the All-On system will leave all the sensors on, possibly incurring in a greater
number of false positive readings coming from sensors in other rooms, which may
have a non-negligible noise level. The Subset-On system shows a lower accuracy,
i.e., almost 14% less than the Adaptive system. The average costs of the two

approaches, on the other hand, are very similar, with only a 1% difference. The
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Table 4.2: Cross-validation results reporting the average accuracy, uncertainty,
power consumption, number of active sensors, and F-score of the two baseline
systems compared to the proposed Adaptive system.

All-On Subset-On Adaptive
Accuracy 0.793 0.656 0.795
Accuracy without Other 0.889 0.705 0.878
Accuracy with temperature 0.749 0.534 0.786
Uncertainty 0.231 0.573 0.349
Power Consumption 44.771 13.168 13.494
Active Sensors 34.000 10.000 12.124
F-score 0.416 0.271 0.408
Execution Time 1.00x 0.76x 0.81x

average cost of the All-On system is more than three times that of the proposed
Adaptive system.

Table 4.2 confirms that the uncertainty of the Adaptive system is comparable
to that of the All-On system, whilst the Subset-On system performs worse than
the other two, with an average uncertainty that is 64% higher compared to that
of the proposed system. Similar considerations apply to the F-score of the three
systems, which is similar for the All-On and Adaptive system, and more than 30%
lower on the Subset-On system. To evaluate the optimization overhead, Table 4.2
also reports the average execution time, normalized by the same factor, so as to
have 1 computation unit in the case of the All-On system. It is worth noticing
that the Adaptive system gets a 19% speed-up with regard to the All-On system.
Thus, the speed-up due to the fact of using fewer sensors in the data fusion pro-
cess overweights the optimization overhead. Considering that the Adaptive and
Subset-On systems use a similar number of sensors, on the average (12 and 10,
respectively), the small difference in execution time of the two systems (0.81x and
0.76x, respectively) gives an idea of the optimization overhead.

These results indicate the advantage of using the Adaptive approach, since it
performs better than the baseline systems, finding an optimal trade-off between
performance and consumption. As expected, the accuracy of all systems improves
significantly if the Other activity class is ignored, increasing by almost 10% in the
All-On and Adaptive systems, and by about 5% in the Subset-On system. Table 4.2
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Figure 4.6: True positives, precision and F-score of each activity.

also shows the accuracy of the systems when using temperature data. In the case of
the Subset-On system, the five temperature sensors were added on top of the fixed
10 normally used. The accuracy of all systems decreases when using temperature
data, since there is a low correlation between this information and the activities
performed by the user. However, the accuracy of the Adaptive system decreases
by less than 1%, whilst the other two systems show a more noticeable reduction,
since the Adaptive system detects the low importance of the temperature sensors,
and often turns them off.

Fig. 4.6 compares the true positives rate, precision, and F-score of each activity
in all systems, without considering temperature sensors. The performance of the
All-On and Adaptive systems regarding many activities is largely comparable, and
the Adaptive approach actually obtains better results than the All-One system in
some of them. However, there are a few activities that are better recognized by the
All-On system, due to a very low average duration that does not allow the Global
Optimization module to correctly estimate the probability of an activity transition.
As expected, the performance of the Subset-On system is visibly worse than the
other two approaches. Nevertheless, it can be observed that some activities are

easily recognized by all the systems, i.e., Sleeping, Outside and Meal Preparation,
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Figure 4.7: Uncertainty, cost, and accuracy trends of the Adaptive system in a
single day, showing the adaptive thresholds.

while other activities are difficult to handle, regardless of the approach considered,
i.e., Housekeeping and Wash Dishes. This can be explained by considering that
some activities are performed in well-defined locations and times during the day,
and therefore are better recognized using only motion sensors, while other activities
are less structured, and some heterogeneous sensors should be installed in order
to recognize them in a satisfying manner, as already noted in Section 3.4.3.

The experimental evaluation includes also a deep analysis of the effect of the
Global Optimization module on the behavior of the Adaptive system. Fig. 4.7 shows
the uncertainty and the cost trends of the Adaptive system, with the related alarm
thresholds, during a given day. The uncertainty and cost alarms triggered by the
system in the same day are also highlighted. As explained in Section 4.2.2, when
the Global Optimization module expects a reduced variability in context conditions,
it changes the alarm thresholds in order to switch off most of the sensors without a
relevant reduction of accuracy, switching them on when it believes that the current
activity will change in a short time, so as to ensure adequate accuracy, even at

the expense of higher energy consumption. Sleeping is the most regular activity
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Figure 4.8: Sensor statistics usage with a fixed and variable cost function. The
x axis enumerates all the available sensors: door sensors (Dxxx), motion sensors

(Mxxx) and temperature sensors (Txxx).

in the dataset considered, and it is also the one with the longest average duration.

This regularity makes the Sleeping activity ideal to analyze the way in which the

system dynamically changes the alarm thresholds. The cost threshold is low at the

beginning of the night, when the user goes to sleep, whilst the uncertainty threshold

is high. This means that the system believes as unlikely a context transition in

a short time, and thus enters a power-saving mode, reducing the cost threshold

and raising the uncertainty threshold. During the night, the probability of an

activity transition, as defined in Eq. (4.12), increases, and therefore the system

gradually reduces the uncertainty threshold and increases the cost threshold. In

the morning, when the probability of an activity transition is close to 1, the system

gives priority to the accuracy of the inference, thereby increasing the cost threshold

to its maximum value, and reducing the uncertainty threshold to its minimum.

Finally, the experimental evaluation compares the effectiveness of using the

variable cost function, defined in Eq. (4.17), against an approach that leverages

a fixed cost function, that does not increase when the residual battery of the

corresponding sensor decreases. The goal of choosing a variable cost function is to

enforce an energy saving policy that extends the sensory infrastructure lifetime by

using sensors in a uniform manner. Fig. 4.8 compares the two approaches, showing

the number of time slices in which each sensor has been powered on during the

simulations, and the remaining energy charge at the end of the simulations. In

this experiment, temperature sensors were also included, so as to show that the

system correctly avoid sensors with a very low information gain, which are not

deemed useful. It is evident that with a variable cost function the system uses
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sensors more uniformly than the fixed cost approach, greatly extending the sensory
infrastructure lifetime. However, it is worth noticing that, despite the energy
policy, sensors which show a very low information gain, such as the temperature
sensors (i.e., the last five sensors in Fig. 4.8), are seldom used by the system.
Finally, comparing the accuracy of the variable cost approach against that of the

fixed cost approach, the decrease is less than 1%.



Chapter 5
Filtering out unreliable data

To minimize the impact of feeding unreliable information to the system, the pro-
posed architecture is enriched by a filtering module that aims to accurately classify
reliable and unreliable sensing reports. Such a module can pre-process raw data
coming from sensors and users, before feeding them to data fusion and reasoning
modules in the higher levels of the Aml architecture.

The filtering module proposed in this chapter is validated in the challenging
scenario of Smartphone Crowdsensing (SC) in a smart city, in which users send
sensing reports about events of interest via smartphone applications. Classifying
unreliable data is especially important in a smart city scenario, since it might not
be feasible to monitor an entire city using only traditional sensors.

According to the SC paradigm, it is possible to use humans as sensors (Wang
et al., 2014a), designing pervasive sensing applications to confirm the occurrence of
complex events, which are difficult to detect by exploiting only traditional sensors.
Reports may be sent manually or automatically, by leveraging the plethora of sen-
sors equipped on today’s smartphones, that provide information such as location,
acceleration, temperature, and noise. However, the central role of people in the
sensing process implies that the success of such systems is strictly dependent on
the reliability of the information sent by participants.

This chapter proposes a novel Framework for optimizing Information Reliability

in Smartphone-based participaTory sensing (FIRST), that increases the accuracy
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in classifying sensing reports with the help of mobile trusted participants (MTPs),
which are special users hired to send reliable reports to the system.

The remainder of this chapter is organized as follows. Related work on SC sys-
tems is summarized in Section 5.1. Section 5.2 presents the application scenario
considered, while Section 5.3 introduces the concept of trusted participants. Sec-
tion 5.4 describes the three components of the filtering module. Finally, Section

5.5 presents the experimental results.

5.1 Related Work

Related work can be divided into two main approaches: trusted platform modules
(TPMs) and reputation-based systems. TPMs are hardware chips that reside on
the participants’ devices, and ensure that the sensed data is captured by authentic
and authorized sensor devices within the system (Dua et al., 2009; Gilbert et al.,
2011; Saroiu and Wolman, 2010). The main drawback of this approach is that
TPMs require additional hardware not currently available on off-the-shelf devices,
implying such solutions are not readily deployable. Moreover, TPM chips are
tailored to verify data coming from physical sensors (e.g., accelerometer, camera,).
Thus, they are not applicable to SC systems in which the information is directly
supplied by the participants.

Most of related work has focused on developing reputation-based systems to in-
crease information reliability (Mousa et al., 2015). Specifically, they associate each
user with a reputation level, which is estimated and updated over time. Among re-
lated work, (Restuccia and Das, 2014; Luo et al., 2014; Wang et al., 2014c; Huang
et al., 2014) are the most relevant. In (Wang et al., 2014c), the authors pro-
posed ARTsense, a reputation-based framework that includes a privacy-preserving
provenance model, a data trust assessment scheme, and an anonymous reputation
management protocol. The main issue of (Wang et al., 2014c) is that user rep-
utation is updated by considering contextual factors, such as location and time
constraints. Given user location and timestamp of reports are easily forgeable
quantities, the solution proposed in (Wang et al., 2014¢) may not perform well
in practical SC systems, where malicious users may voluntarily tamper with their

GPS location and timestamp of reports.



5. Filtering out unreliable data 77

Recently, in (Huang et al., 2014), the authors proposed a reputation framework
which implements an improved version of majority vote. The main limitations
of this framework are (i) the assumption of constant sampling rate, which is not
realistic in asynchronous SC systems, and (ii) the poor resilience to a large number
of malicious users, as the framework uses a modified version of majority vote to
update user reputation levels. To overcome such limitation, in (Restuccia and
Das, 2014) the authors proposed FIDES, a reputation-based framework that used
mobile security agents to classify sensing reports. Similarly to the filtering module
presented in this work, FIDES is also resilient to a large number of malicious users.
However, as in (Huang et al., 2014), the necessity to set a significant number of
parameters makes the actual performance of the framework hardly predictable in
reality. On the other hand, the work presented here does not depend on specific
parameters.

A number of frameworks aimed to recruit participants in order to maximize the
coverage of the sensing area have been recently proposed (Khan et al., 2015; Zhang
et al., 2014; Xiong et al., 2015; Zhang et al., 2016; Liu et al., 2016; Ueyama et al.,
2014). In (Khan et al., 2015), the authors propose a framework to ensure coverage
of the collected data, localization of the participating smartphones, and overall
energy efficiency of the data collection process. (Zhang et al., 2014) proposed
CrowdRecruiter, a framework that minimizes incentive payments by selecting a
small number of participants while still satisfying probabilistic coverage constraint.
In (Xiong et al., 2015), the authors proposed a framework aimed to maximize the
coverage quality of the sensing task while satisfying the incentive budget constraint.
In (Ueyama et al., 2014), the authors formulate the problem of sensing given
points of interest as a gamification problem, and devise a heuristic algorithm for
deriving the set of users to which requests are sent and appropriate reward points
for each request. The approach proposed here is different because it relies on
MTPs to compute the trustworthiness of participants, which ultimately improves
information quality significantly, as will be shown in the remainder of this chapter.
Furthermore, this work considers also the problem of modeling and optimizing the

information reliability (Mousa et al., 2015).
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Figure 5.1: SCP system architecture.

5.2 Application Scenario

The scenario considered in this chapter is that of a smartphone crowdsensing ar-
chitecture, as depicted in Figure 5.1, consisting of a platform (SCP) which can
be accessed through 3G /4G or WiFi Internet connection. Participants download
through common app markets, like Google Play or App Store, the smartphone
crowdsensing app, which is responsible for handling data acquisition, transmis-
sion, and visualization (step 1). Then, the SCP sends (periodically or when nec-
essary) sensing requests through the cloud to registered participants (step 2). The
participants can answer such requests by submitting their sensed data (step 3),
and eventually receive a reward for their services (step 4). Hereafter, the terms
participant and user will be used interchangeably.

As far as the sensing application is concerned, the phenomenon being monitored
has to be (i) quantifiable, (ii) dynamic (i.e., varies over time), and (iii) not subject
to personal opinion. This includes phenomena measurable with physical sensors,
such as air/noise pollution levels (D’Hondt et al., 2013), but also quantities such as
occupancy level of parking lots (Nawaz et al., 2013), gas prices (Dong et al., 2011),
traffic events (e.g., car crashes and traffic jams), and so on. Furthermore, this work
assumes that the range of the sensing quantity being monitored may be divided
up into intervals or categories, which are specific to the SC application but are

properly defined before deployment. For example, in a gas price monitoring system,
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the range of possible values could be from $2 to $3 dollars per gallon, divided into
intervals of 10 cents each. In a traffic monitoring application, a different category
for each traffic event (e.g., “Car Crash”, “Road Closure”, “Traffic Jam”) could be
specified. A sensing report is considered reliable if the quantity being reported falls
into the interval the phenomenon is currently in (or belongs to that category). For
example, if the actual gas price at a station is $2.46, a report is considered reliable
if the reported value falls into the range [$2.40, $2.50).

As far as security assumptions are concerned, the SCP is considered trustworthy
in terms of its functionality (such as user registration, issuing credentials, receiving,
processing, and redistributing data). Furthermore, confidentiality, integrity, and
non-repudiation are assumed to be addressed by using standard techniques such
as cryptography and digital signatures. This chapter concentrates on tackling the
inappropriate behavior of participants, and assume they may exhibit malicious or

unreliable behavior:

o Malicious: these users are willingly interested in feeding unreliable reports to
the system; their purpose is to either creating a disservice to other users (e.g.,

fake road traffic lines), or gaining an unfair advantage w.r.t. other users.

o Unreliable: these users are not willingly submitting false information, but
they still do it because of malfunctioning sensors or incapability in performing
the sensing task (Restuccia and Das, 2014).

The proposed filtering module provides a general approach to determine the
reliability of each user depending on his/her behavior. Section 5.5 experimentally
studies three types of attacks, namely the corruption, on-off and collusion attacks
previously defined in (Mousa et al., 2015), and prove that FIRST is able to quickly
detect the malicious behavior and discard unreliable reports. The remainder of this
chapter will focus only on the issue of information reliability. Other threats, such
as DoS-based attacks, are out of the scope of this work. Also, incentivizing users’
participation is out of the scope of this chapter; solutions such as (Yang et al.,
2012) may be integrated. Finally, the output of the filtering module can be used
by higher-level modules of the architecture proposed in this dissertation to merge
the collected data and drive the process of knowledge abstraction up to high-level

concepts.
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5.3 Mobile Trusted Participants

This work takes the same approach used by the successful National Map Corps
(McCartney et al., 2015) project, and use mobile trusted participants (MTPs)
to tackle the attacks described in the previous section. Specifically, MTPs are
individuals who are able and willing to submit regularly reliable reports regarding
the phenomenon being monitored or observed. These reports are used to wvalidate
users’ sensing reports coming from nearby, and ultimately estimate the reliability
of those participants. Such estimate is used to classify reports generated where
MTPs are currently not present, as explained in the next sections.

To allow mathematical formulation, the sensing area is logically divided into
S = {s1,..., 8.} sectors, which may have variable size and shape and represent
the sensing granularity of the application. For example, in a gas price app, each
sector can represent a gas station. In an air pollution monitoring application, a
sector may be as large as a neighborhood of a city, whereas in a traffic monitoring
application, sectors may be as large as a city block. Let also U = {uy,...,u.} be
defined as the set of users contributing to the sensing application.

The MTP report validation process is modeled as follows. In order to validate
user reports, the module assumes that reports sent by MTPs are valid for a time
period of T units. The value of T is a system parameter that is dependent on
the variance over time of the sensing quantity being measured. For example, in
a traffic monitoring application, a good value of T" could be 5-10 minutes, while
in a gas price monitoring app 7' can be much longer. Section 5.5.2 evaluates the

impact of T" on the system performance.

Definition 5.1. Validation of sensing reports. Whenever a sensing report q
is received from a user u; in sector s;, the platform checks whether a report from an
MTP in sector s; was received in the previous T' time units. If yes, then the report
is cross-checked with that coming from the MTP. If q is reliable (i.e., falls into the
range of the report sent by the MTP), q is marked as validated and classified as
reliable. Instead, q is rejected if unreliable. If q is not validated, it is classified as

reliable or unreliable depending on an algorithm discussed in Section 5.4.

Figure 5.2 illustrates an example in which an MTP is moving over a sensing

area comprising three sectors. The locations at which the MTP submits a sensing
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Figure 5.2: Example of an MTP moving over the sensing area.

report are marked as white circles, while users are depicted as black dots. The
user reports from sector s; between ¢ = 0 and 7" units are validated by using the
MTP report sent at t = 0. Meanwhile, the MTP moves to sector s, and generates
a new report at time 27, which then validates users reports from sector s, in the
next time window. Similarly, the MTP report at 37T validates the user reports
from sector s3 in the time interval 27", 37.

Examples of MTPs in urban sensing scenarios include, but are not limited to,
professional drivers (i.e., taxi/bus), policemen, employees of the SC application, or
people commuting on a daily basis to their workplace. Henceforth, the MTPs will
be considered as reliable, in the sense that it is implied that their reports reflects
the actual status of the event being monitored. This also implies that MTP reports
originating from the same sector during the same time window are supposed to
be equivalent. The case in which trusted participants can be, up to some extent,

unreliable has already been studied (Restuccia and Das, 2014).

5.3.1 MTP Optimization Problem

It is intuitive that the number of validated sensing reports (and therefore, infor-
mation reliability) increases as the number of recruited MTPs increases. However,
in practical implementations, the budget to recruit MTPs is not unconstrained;
the number of MTPs that can be used by the system will be limited and therefore,
insufficient to guarantee perfect information reliability. The question this chapter
aims to answer is the following: it is possible to find, before deployment, a good
estimation of the minimum number of MTPs that will allow the SC system to

achieve desired classification accuracy? To this end, the MTP Optimization Prob-
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lem (MOP) is defined in the next section. Before that, the metric of classification

accuracy is defined as follows:

Definition 5.2. Classification accuracy. Let A define the event of the system
considering a report as reliable, and let F' define the event of a user submitting an
unreliable sensing report. Let E define the event of erroneously deeming reliable
(resp. wunreliable) an unreliable (resp. reliable) report. By definition, it follows
that the probability of event E, denoted as P{E}, can be computed as

P{E} =P{F}-P{A | F} +P{F} -P{A | F} (5.1)

where X is defined as the complement of event X. Thus, 1 —P{E} represents the
classification accuracy of the SC system, and will henceforth be used to evaluate

its performance.

The proposed framework will provide the mathematical tools to relate the
number m of MTPs to the error probability P{E} and the mobility of users.

Let €™ be the desired maximum classification error probability. The MTP
Optimization Problem (MOP) is then defined as follows.

Definition 5.3. MTP Optimization Problem.

Minimize m such that P{E} < ™

5.4 The FIRST Filtering Framework

Figure 5.3 illustrates the main components of the framework, defined as follows.

» Likelihood Estimation Algorithm (LEA): it provides an approximation
of the mobility of users and MTPs. LEA is based on an image processing
technique that produces an approximate likelihood based only on geograph-

ical information (i.e., the map of the sensing area).

« Computation of Validation Probability (CVP): this component derives
the probability P{V'} of the event V' that a sensing report will be validated
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Figure 5.3: Components of FIRST.

by at least one M'TP, as a function of the number of MTPs deployed and the

approximate mobility of users.

« MTP Optimization Algorithm (MOA): it takes P{V'} and computes
P{E}, so as to provide a solution to the MTP Optimization Problem to

achieve desired maximum error €%,

For better clarity, Section 5.4.1 describes the CVP component assuming that
the actual mobility distribution is known. Then, Section 5.4.2 explains how to
obtain an approximate distribution of the mobility by using LEA, when the real
mobility is unknown. Finally, Section 5.4.3 describes the MTP Optimization Al-
gorithm, and Section 5.4.4 discusses how FIRST can be implemented in real-world

SC systems.

5.4.1 Computation of Validation Probability

This section derives the probability P{V'} of the event that a sensing report will be
validated by at least one MTP. Let Q be the set of MTPs competing for offering
their sensing services, and U be the set of users of the application. Let u(i, z,t) be
the distribution over the sector set S of the random variable (r.v.) U! describing
the location of user z at time t. Let also ¢(i, z, t) be the distribution over the sector
set S of the random variable (r.v.) Q! describing the location of MTP z at time ¢.

The following equation calculates the probability P{V.,} that a sensing report

coming from user u, is verified by an M'TP, conditioned to the fact that user u, is
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currently in sector s; of the sensing area:

PV | UF =i} =1— [[ (1 —q(i,k.1)) (5.2)
keQ

In the above equation, it is assumed that the mobility of each MTP is independent,
which is sound because it is highly unlikely MTPs would influence each other’s mo-
bility in any way. The above equation can be explained as follows. The probability
that a sensing report is verified is the complement of the probability that no MTP
is in the same sector as the user. The probability that a sensing report is verified,
irrespective of the location of the user, can thus be computed by using the theorem

of total probability, i.e.,
P{V.} =) P{V. | U = s;} - u(i, 2, ) (5.3)
i=1

The probability P{V'} that on the average a sensing report will be validated can

be computed as the average P{V,} over all the users, which is

| M

i 2P (54)

z=1

PV} =

Example. Figure 5.4 shows two sensing areas (S; and Ss) divided into the
same number n = 8 of sectors. A total of m =5 MTPs are present. For simplic-
ity, this example assumes that the mobilities of users and MTPs follow the same

distribution and that all users follow the same distribution.

Si Sy
1,1 2, 3
s11 5 '8 8 18 8
IO | S
1 1+ 1 1
Ss| 3 < < 0 |se
8 ' 8 8 !

IS N | R [
S 11 1 0 |s
31 8 1 8 g ! 4
S R | RER R
g sl s 0|52

Figure 5.4: Example to illustrate the computation of P{V'}.
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Let Ef be defined as the probability that an MTP will be in sensing area j
and sector 4. The corresponding mobility distributions ¢} and ¢? are given as:
0} =1/s for 1 <14 < 8, while

+ 1=1,3,5
2 =7
B=1: . _4 (5.5)
= Z:
8
0 i=2,4,6

To calculate P{V'} for both sensing areas, P{V | U = s;} has to be computed

for each s;:

¢« 51 :P{V |U=s;}=1-(1-18)°=0.49 for every 1, since ¢; is equal for
each sector. Therefore, P{V} =1/3-8-0.49 = 0.49.

¢« So:P{V|U=5}=P{V|L=s3}=P{V |U=s5}=1—(1-1/3)°>=0.49.
P{V |U=s;}=1—(1—25)> = 0.76, P{V | U = s5} = 1 — (1 —3/s)° = 0.90,
P{V | U = s} =PV |U = s4} =P{V|U = sg} = 0. Therefore,
P{VY} =3/s-0.49 +2/s - 0.76 + 3/5 - 0.90 = 0.71.

The above example suggests that the likelihood that some sectors will be more
occupied than others significantly impacts on the report validation probability. In-
deed, if the mobility of MTPs and participants is more concentrated, the validation

probability will increase with respect to the case when the mobility is uniform.

5.4.2 Likelihood Estimation Algorithm

Estimating the mobility distributions u and ¢ is paramount to compute P{V'} and,
therefore, provide a cost-efficient solution to the MTP Optimization Problem. In
cases where information about the mobility of users and MTPs is available, for
example, if mobility traces of MTPs and users are available, an exact computation
of u and ¢ may be used. However, prior information about MTP and user mobility
may not always be available.

This work proposes a heuristic, named Likelihood Estimation Algorithm (LEA),

to provide an estimate on the mobility of users and MTPs, just knowing the sensing
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Figure 5.5: (a) Heatmap of mobility traces vs. (b) Arterial roads.

area location. Such heuristic is based on the following rationale: the SC systems
considered are deployed in cities, or close to urban areas. This implies that the
mobility of users and MTPs will be likely to be almost restricted to the main
arterial roads of the sensing areas, or anyway the zones/roads with the greater
amount of traffic (both pedestrian and vehicular). By restricting the possible area
of movement of the MTPs and users, it is possible to reduce the randomness of their
movement, and therefore, provide a better estimate on the likelihood of sectors.

To demonstrate this point, Figure 5.5(a) shows the heatmap of the mobility
traces' of taxi cabs in a section of Downtown San Francisco, where the intensity
of the color indicates the popularity of the place. As the figure points out, the
mobility of taxi cabs is definitely not uniform, and mostly concentrated on a few
popular places. Furthermore, Figure 5.5(b) shows the main arterial roads provided
by Google Maps APIs?. From this figure, it emerges that the roads point out (with
some degree of approximation) the most popular places as shown in the heatmap
of Figure 5.5(a).

The proposed Likelihood Estimation Algorithm works as follows. Let M be the
map of the sensing area, divided into n sectors as required by the application, where
S = {s1, -+, Sn} is the set of sectors. Then, information about the most popular
places (which may be roads/squares/buildings) and the geographical constraints of

the sensing area is acquired. By using Google Maps APIs?, it is possible to highlight

'Published in (Piorkowski et al., 2009), available at http://www.crawdad.org

2APIs publicly available at https://developers.google.com/maps/documentation/
javascript/styling

30ther approaches, such as Open Street Maps (https://www.openstreetmap.org), could be
also used for such purpose.


http://www.crawdad.org
https://developers.google.com/maps/documentation/javascript/styling
https://developers.google.com/maps/documentation/javascript/styling
https://www.openstreetmap.org
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Algorithm 5.1 Likelihood Estimation Algorithm (LEA)

Input: M, map of the sensing area

Output: /, approximate distribution of mobility
1: S < set of sectors s;...s,

2: [ < processed image with most popular areas
3: B < 0 (sum of black pixels in sensing area)

4: for each sector s; € S do
)
6
7

B; + number of black pixels € s;
B <+ B+ B;

. return /¢

the main arterial roads on a specific location area. This information is leveraged
to mark such places in the map M, the background of which is further removed to
get a black-and-white image of the sensing area as shown in Figure 5.5(b), where
the dark areas represent the popular places.

LEA is described by the pseudocode in Algorithm 5.1. The experimental results
in Section 5.5 shows that LEA is remarkably effective in approximating the mo-
bility distribution of users in various settings, by using real-world mobility traces
collected in three major cities in three different continents, namely Rome, San
Francisco and Beijing.

The implicit assumptions that LEA makes are (i) the mobility of users and
MTPs is stationary (i.e., does not change over time); and (ii) users and MTPs
follow the same mobility distributions.

Although these are pretty strong assumptions, the experimental evaluation
conducted in Section 5.5 shows that LEA provides a pretty good approximation
of the likelihood of the sectors, considering that only information from a map are
used. Indeed, LEA is not a fine-grained mobility estimation algorithm. Instead, it
is a simple heuristic that provides, before deployment, an approximate information
regarding the likelihood of certain sectors with respect to others. If more reliable
information about the mobility is known, it could be used to complement LEA’s

analysis and achieve better optimization results.



5. Filtering out unreliable data 88

5.4.3 Solving the MTP Optimization Problem

This section describes the methodology adopted by FIRST to solve the MTP
Optimization Problem (MOP) defined in Section 5.3.1. In order to solve the MOP,
it is necessary to compute the error probability P{FE}. This implies the need to
derive P{A | F'} and P{A | F'}, defined in Equation (5.1), as a function of P{V'}.

This section provides the mathematical tools that relate the number m of
MTPs to the error probability P{E} and user mobility. Equation (5.4) shows how
to compute P{V'} given ¢ and u. By applying probability theory, it is possible to
obtain P{ANF} =P{F} -P{V} -P{A |V} and P{A N F,;} =P{F;}- (P{V} +
P{V} -P{A | V}).

The only unknown in P{A N F'} and P{A N F} is P{A | V}, which is, the
probability of deeming a sensing report reliable in the case it has not been validated
by an MTP. Ideally, this probability should be close to 1 when the report being
sent is reliable, and close to 0 when the report being sent is not reliable. To this
end, FIRST leverages the knowledge provided by the reports submitted by the
MTPs, and computes P{A | V} as follows:

P{A |V} = PV} - P{F} + ; P{V} (5.6)

This formula can be explained as follows. The first part, P{V} - P{F}, rep-
resents the “degree of belief” the system has in the users; it is higher when the
user is validated most of the time (P{V'} close to 1) and the reports are reliable.
The second part, 1/2-P{V'}, represents the “degree of uncertainty” in the users; it
is higher when most of the reports have not been validated. Note that, as P{V'}
increases, the value of P{A | V} approximates to P{F'}. Also, if P{V} = 0 (i.e.,
no MTPs are present), the system deems as reliable every report with probability
1/2 (coin tossing), since there is no reason to be more inclined to accept or reject
the report if no information is available.

This work proposes the MTP Optimization Algorithm (MOA), which is based
on a modified version of binary search algorithm, called Left-most Insertion Point
(LMIP). More specifically, LMIP returns the left-most place (i.e., the minimum
value) where P{E} can be correctly inserted (and still maintains the sorted order)

in the ordered array of the errors corresponding to a particular choice of m. This
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Algorithm 5.2 MTP Optimization Algorithm (MOA)

Input: (;, P{F}, emer mmer
Output: m*
1: €™" « CalculateError((;, P{F}, m™*)
2: if €M% < ™" then
3: return ‘infeasible’
4: return LMIP({;, P{F}, ¢me 0, m™*)

Algorithm 5.3 Left-most Insertion Point (LMIP)

Input: (;, P{F}, €™ i, j
Output: m*
if 7 <7 then
return ¢
mid «+ |(+5)/2]
if CalculateError((;, P{F} mid) < ¢™* then
return LMIP({;, P{F}, €™ i mid — 1)
else
return LMIP({;, P{F}, €% mid + 1, §)

corresponds to the lower (inclusive) bound of the range of elements that are equal
to the given value (if any). Note that such algorithm can be applied to solve
the MTP Optimization Problem due to the fact that P{E} is a monotonically
decreasing function of m.

The algorithm takes as input the approximate distribution ¢; provided by LEA

(equal for participants and MTPs), and also P{F'}, the desired maximum error

max i

€™ and the maximum number m™** of MTPs available. It provides as output
the optimum number m* of MTPs to be used to achieve the desired maximum
error €M%,

In lines 1-3, Algorithm 5.2 checks, with a procedure implementing Equation 5.1),
whether the minimum error €™ obtained with the maximum number of MTPs
available is greater than the desired maximum error €”**. If this is the case, then
the problem has no feasible solutions and therefore the algorithm terminates im-
mediately. If not, the routine LMIP is invoked, which finds m* by implementing

the left-most insertion point algorithm.
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Figure 5.6: Example of the LMIP algorithm.

As regards the time complexity of Algorithm 5.2, LMIP is a variation of binary

mar) “where x is the com-

search, therefore its overall complexity will be O(z -logm
plexity of CalculateError. Such complexity is ©(n - z), given it requires constant
time to compute P{E} using Equation (5.1), and n - z iterations to compute P{V'}
using Equation (5.4), where n is the number of sectors and z is the number of users.
Therefore, the overall time complexity of MOA is given by O(n - z - log m™).
Example. In the example of Figure 5.6, the ¢ distribution is assumed equal
to ¢? presented in Figure 5.4, P{F} = 0.01, m™* = 8 and ¢™* = 0.1. In this
case, the LMIP will return m* = 4, since it is the left-most element that provides

P{E} < 0.1.

5.4.4 Practical Implementation

This section describes how the system, after deployment, handles the case in which
a report has not been validated by MTPs (i.e., how P{A | V} is actually computed).
For each user u;, the system keeps track of the number k; of sensing reports sub-
mitted, the number &} of sensing reports validated by an MTP, and the number
k7 of reports that have been validated as reliable.

As soon as a report ¢ is sent by user u;, if the report has not been validated

by an MTP, then the report is classified as reliable with probability

— kI 1 ke
PMHG:h+j<—k> (5.7)

After being classified as reliable, reports may be subsequently analyzed by
additional data fusion algorithms in the higher levels of the proposed Aml archi-
tecture, so as to determine the actual status of the sensing area by combining only

the information conveyed by reliable reports.
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5.5 Experimental Results

This section presents the experimental results obtained by evaluating the perfor-
mances of FIRST and comparing it with relevant related work. First, Section 5.5.1
reports the performance results obtained by considering an application monitoring
vehicular traffic events. Then, Section 5.5.2 describes the Participatory PerCom

application and discusses the results obtained during the experiment.

5.5.1 Participatory Traffic Sensing

This experiment considered mobility traces collected from the following datasets:

o CRAWDAD-SanFrancisco (Piorkowski et al., 2009): This dataset contains
mobility traces of approximately 500 taxis in San Francisco, USA, collected

over one month’s time;

o« CRAWDAD-Rome (Amici et al., 2014): In this dataset, 320 taxi drivers in

the center of Rome were monitored during March 2014,

e MSR-Beijing (Yuan et al., 2013): This dataset collected by Microsoft Re-
search Asia contains the GPS positions of 10,357 taxis in Beijing during one

month.

The scenario is a traffic sensing application in which taxi cab drivers report
traffic anomalies. Consistent with the example mentioned in Section 5.2, the re-
ports are divided into 4 categories such as “Car Crash”, “Road Closure”, “Traffic
Jam”, “No Event”. The sensing areas are of approximately 4x4km square areas,
which characterize the downtown of cities such as San Francisco, Rome, and Bei-
jing. In the chosen scenario, the taxi cabs report every 5 minutes information
about their surroundings to the SCP. The application was implemented using the
OMNeT++ simulator?.

Evaluation of FIRST components

This section evaluates the proposed Likelihood Estimation Algorithm (LEA) and
MTP Optimization Algorithm (MOA). The goal of the first set of experiments

4 Available at https://www.omnetpp.org


https://www.omnetpp.org
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Figure 5.7: Comparison of mobility traces vs. Likelihood Estimation Algorithm.

is to test the efficacy of LEA in computing the likelihood of sectors. To obtain
ground-truth information about the actual mobility of taxi cabs, the traces were
processed using OMNeT++-. To apply LEA, the sensing area was divided into a
grid of 20x20 sectors, with sectors having the same size as a city block.

Figure 5.7 shows the distribution of the likelihood of sectors and the one ob-
tained by LEA, respectively. More specifically, the figure shows the actual and
estimated probability of a taxi to be in each sector of the sensing area. These
experiments conclude that LEA approximates well the likelihood of sectors, con-
sidering the scarce information available. This result is extremely significant, as
it is necessary to provide very precise estimation of the classification accuracy of
FIRST as a function of the number of MTPs.

Figure 5.8 shows P{ E'} as a function of the number of MTPs, calculated analyt-
ically by the Computation of Validation Probability (CVP) component of FIRST.
For comparison purposes, CVP was evaluated by providing as input (i) the dis-
tribution computed by LEA as applied to each considered sensing area (CVP-
LEA, represented by a dashed line), and (ii) the uniform mobility distribution
(CVP-Uniform, represented by a dotted continuous line) as a baseline approxima-
tion. Such analytical results are compared with the experiments using the traffic
datasets.

As shown in Figure 5.8, in all three scenarios, C'VP-LEA computes P{E} with
remarkable precision. In particular, the maximum difference obtained is 3.47%,
achieved in the Rome setting. Furthermore, Figure 5.8 shows that the accurate
estimation of the mobility provided by LEA translates into an improved predic-
tion accuracy of CVP w.r.t. the uniform distribution, as C'VP-Uniform yields a
maximum difference of 17.02% in the case of Rome. Finally, the figure highlights
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Figure 5.9: Results of the MTP Optimization Algorithm.

that San Francisco requires the largest number of MTPs to achieve a specified
maximum error probability.

In Figure 5.9, the MTP Optimization Algorithm (MOA) is applied to ana-
lyze the number of MTPs that are necessary to provide maximum desired error
probability €™%*. In this experiment, users sends unreliable reports with three
probability values P{F'} = 0.01, 0.5 and 0.9. The figure confirms that San Fran-
cisco requires the highest number of MTPs to achieve given ¢™**. These results
also highlight that FIRST is remarkably effective in achieving high accuracy with
a low number of MTPs. More specifically, it provides on the average 85% of accu-
racy with a density of about 32% MTPs per sector in case of Rome and Beijing,
and 55% in the case of San Francisco.

Note that higher accuracy values require in general a significant number of
MTPs, especially when the behavior of participants becomes hardly predictable
(i.e., P{F'} = 0.5) and the mobility is highly entropic (i.e., in San Francisco). In
these cases, only a high number of MTPs can guarantee that a sufficient number
of reports are validated and therefore, the desired accuracy may be provided.

Indeed, somehow surprisingly, Figure 5.9 also shows that fewer MTPs are
needed when P{F'} = 0.9 than when P{F'} = 0.5. Intuitively, this is due to the
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Table 5.1: Experimental parameters.

Parameter Value
Experiment length 240mins
Timestep length dmins
Location Rome
Number of users 1000
P{F} for non attackers 0.01
a, (FIDES) 0.7
a, (FIDES) 0.9
Initial reputation (FIDES) 0.5
Reputation threshold (FIDES) 0.75
Initial weights (FIDES) 1,0, 0]
As (Huang) 0.7
A, (Huang) 0.8
a (Huang) 1
b (Huang) -2.5
¢ (Huang) -0.85
Initial reputation (Huang) 0.5
Reputation threshold (Huang) 0.5
Number of MTPs (FIRST, FIDES) 400
Number of attackers 500
Attackers P{F'} 0.8
On-off steps (10, 10)
Collusion groups 3

fact that, when participants send reports randomly, it is more difficult to under-
stand their reliability. On the other hand, when their behavior is more “regular”

(i.e., consistent over time) it is easier to evaluate their reliability.

Evaluation of attack resiliency

Based on the behavior models defined in Section 5.2, this work takes into account
the following security attacks, which were defined in other domains and recently
cast in the context of smartphone crowdsensing (Mousa et al., 2015). For sim-
plicity, hereafter the term attacker will be used for both malicious and unreliable

users, and the terms threat and attack will be used interchangeably.
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1. Corruption attack: for each sensing report, the attacker sends unreliable data
with probability p and correct data with probability 1 — p. This attack can

be carried out by unreliable and malicious users alike.

2. On-off attack: in this attack, the malicious user alternates between normal
and abnormal behaviors to conceal his/her maliciousness. Specifically, the
adversary periodically sends n reliable reports and then m unreliable reports,
and then repeats the process. This attack is extremely easy to carry out but
also extremely challenging to detect and contrast (Perrone and Nelson, 2006;
Chae et al., 2015; Alzaid et al., 2012).

3. Collusion attack: in this attack, two or more malicious participants coordi-
nate their behavior in order to provide the same (unreliable) information to
the SCP (Marforio et al., 2011; He et al., 2015). The malicious behavior may
also include GPS location spoofing, so as to mislead the SCP into assuming

colluding participants are nearby (Restuccia and Das, 2014).

For comparison reasons, the FIDES framework (Restuccia and Das, 2014),
and the reputation-based framework proposed in (Huang et al., 2014), hereafter
referred to as [Huang 2014, have been implemented. FIDES uses a modified
version of Jgsang’s trust model to update the reputation of users. This framework
inherits from Jgsang’s trust model a strong sensitivity to parameter tuning. On
the other hand, [Huang 2014] proposes an approach which is a improved variation
of majority vote, and its performance also depends on the choice of parameter
setting (Gompertz’s function’s, among others). To obtain baseline performance,
a pure majority vote scheme was also implemented. The parameters used in the
comparison experiments (as proposed in the respective papers) are reported in
Table 5.1. Confidence intervals at 95% are shown only when above 1% of the
value.

Figure 5.10 reports the false positive rate (percentage of false reports accepted
w.r.t. the total number of reports accepted) obtained by the frameworks when
subject to a corruption attack, as a function of the (constant) attack probability,
number of MTPs (applicable only to FIDES and FIRST), and number of attackers.
Figure 5.10a and Figure 5.10b show that the performance of Majority and [Huang
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Figure 5.10: Corruption attack: False Positive Rate vs. P{F'}, MTPs, and attack-
ers.
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Figure 5.11: On-off attack: False Positive Rate vs. on-off steps, MTPs, and at-
tackers.

2014] decreases as the number of false reports and attackers increases. This is rea-
sonable, as both schemes are based on data aggregation and therefore not resilient
to large number of malicious users and/or unreliable reports.

Figure 5.11 shows the results obtained under the On-off attack by all the con-
sidered schemes. As expected, the performance of FIRST is slightly affected by
this attack, especially when the percentage of ON steps is less than the OFF one.
This is because, the less the ON steps are, the harder it is for FIRST to decrease
the accept probability of malicious users. However, FIRST is able to achieve a
False Positive Rate of about 10% in the worst case of ON=5. On the other side,
[Huang 2014] and Majority are instead more affected when the ON step is greater
than the OFF, as it is more likely for them to misclassify sensing reports when the
percentage of unreliable reports/number of attackers is higher.

Figure 5.12 shows the results obtained by running the Collusion attack. The

experiment has been implemented as follows. There are k collusion groups. An
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Figure 5.12: Collusion attack: False Positive Rate vs. P{F'}, MTPs, and attackers.

attacker belonging to the k-th group coordinates with the other attackers belonging
to the same group by implementing together an On-off attack. In such attack,
during the ON phase the attackers send false reports pertaining to a chosen sector,
the same for every user in the k-th group. The results conclude that [Huang
2014] and Majority are severely affected by this attack, while FIRST tolerates well
this attack by keeping the False Positive Rate below 10% by using 400 MTPS,
regardless of the number of attackers and collusion groups considered. This is
because FIRST uses MTPs to validate data and does not rely on data aggregation.

Interestingly enough, [Huang 2014] and Majority perform slightly well when
the collusion groups are more. This is explained by considering that when the
collusion groups are more, less attackers will belong to the same group, and so it
is more likely that a scheme based on aggregation may perform better.

Finally, Figure 5.13 reports the probability P{A|V} of FIRST (i.e., the prob-
ability that a report will be accepted when not validated) as a function of time,
in all the considered attacks. In the Corruption attack, as expected P{A|V} con-
verges to the P{F'} probability of the attackers. In the On-off attack, FIRST reacts
by decreasing the P{A|V} probability and increasing it in the OFF phases. The
same behavior is also experimented in the Collusion attack, but in this case, the
performance is not affected by the number of attackers, as explained above.

As described in Section 5.4.3, P{A|V} is equal to P{F}, because when re-
ports are verified the probability of misclassification is zero; on the other hand,
when the reports are not validated, ideally P{A|V'} should also tend to P{F'}, and
Figure 5.13a shows that FIRST achieves such goal.
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Figure 5.13: Acceptance probability P{A|V} in corruption, on-off, and collusion
attacks.

5.5.2 Participatory PerCom

In addition to the traffic sensing application scenario described above, the perfor-
mance of FIRST has been evaluated by implementing an SC system designed to
monitor the attendance of participants at various events during the IEEE PerCom
2015 conference held in St. Louis, Missouri, USA. In such a system, the voluntary
participants were asked to regularly submit (i) the conference room they were cur-
rently in, and (ii) the (approximate) number of participants in that room. The
goal of the experiment was to evaluate the accuracy of FIRST in classifying sensing

reports sent by participants in a practical scenario.

Experimental setup

The server-side of the SC system handling the storage of sensing reports was im-
plemented by using a dedicated virtual machine on Amazon Web Services. Figure
5.14 shows the screenshots of the Android and iOS apps distributed to the par-
ticipants. The apps provided a simple interface for the participants to report the
room they were in (8 choices, from ‘A’ to ‘H’), and the approximate number of
people in that room (5 choices, i.e., ‘Less than 10°, ‘Between 10 and 20’, ‘Between
20 and 507, ‘Between 50 and 100’, and ‘More than 1007).

In order to recruit participants, the conference and workshop attendees were
asked if they were willing to install the app and participate in the experimental
study. This way, 57 participants attending the entire conference and workshops

were recruited, which is significant considering that participants were not incen-
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Figure 5.14: Screenshots of the Android and iOS apps.

tivized with any kind of reward. To better test the resilience of the system, about
25% of users were asked to purposefully send unreliable reports once in a while,
besides the correct ones.

In order to acquire ground-truth information about the location of participants,

20 Gimbal™ bheacon devices®

were used, deployed as shown in Figure 5.15. The
beacons emitted periodically Bluetooth packets that were received by the SC app.
Whenever a user sent a report, the location of the nearest beacon was also au-
tomatically included in the report by the SC app. This way, it was possible to
acquire ground-truth information on user location. Note that FIRST does not use
such information to verify the reliability of the report. The purpose of such infor-
mation was to calculate the accuracy of FIRST after the experiment was over, as
explained below.

To acquire ground-truth information about the number of people in each room,
three people voluntarily acted as MTPs and sent every 5 minutes the actual number

of people in each conference room. To evaluate the impact of the MTP reporting

5 Available at http://www.gimbal.com
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interval on the performance of the system, 4 different intervals have been considered
(10, 15, 20, and 25 minutes).

During the experiment, the number of people attending a particular event was
almost constant during a 10-minute time window. Therefore, each MTP report
was used to validate all the reports sent in the following 10-minute time frame.
More specifically, a user report was validated as reliable if (i) an MTP report r
was sent during the 10-minute time frame before the user report was received,
and (ii) the reported number of people in that room was in the same range as the
one sent by the MTP in r. If the number of people in the room reported by the
user mismatched the information acquired by the MTP, the report was considered
unreliable. Otherwise, if no MTP report was available during the previous 10-
minute time window, Equation (5.7) was used to decide whether to consider the
report as reliable, as explained in Section 5.4.4. After the experiment, the ground-
truth information provided by the Bluetooth beacons and the MTPs was used to

calculate the classification accuracy of FIRST.

Experimental results

Figure 5.16 illustrates the accuracy of the considered approaches as a function of
the MTP reporting intervals implemented in the experiments. Reports sent by
MTPs were used by FIRST and FIDES to update the reputation of users and
validate their reports, but are not included in the results, which measure the
classification accuracy of the compared systems with regard to reports sent by

normal users.



5. Filtering out unreliable data 101

1| — FIRST EXXX |.
FIDES ——=
[Huang 2014] =———=
0.8 e Majority Vote Tz
) ]
(&) -
© 0.6
>
3
< 04|
0.2
10 min 15 min 20 min 25 min

MTP Reporting Interval
Figure 5.16: Comparison of FIRST vs. FIDES, Majority Vote and [Huang 2014].

These results conclude that FIRST outperforms existing approaches as far as
classification accuracy is concerned. In particular, FIRST achieves on the aver-
age an accuracy of 80.16%, as compared to FIDES, [Huang 2014] and majority
vote which achieve 69.20%, 62.76%, and 43.38%, respectively. The results can
be explained as follows. When the MTP reporting interval is 10 minutes, both
FIDES and FIRST achieve accuracy of 100%, because each report is validated by
MTPs. As the reporting interval increases, FIDES performs worse than FIRST
due to the challenge in finding a parameter setting which achieves good perfor-
mance in all scenarios. In contrast, FIRST does not require any parameter setting
to be implemented, and it is able to achieve high accuracy in all the considered
scenarios.

Note that the majority vote and [Huang 2014] schemes do not rely on MTPs.
As a result, the accuracy achieved by majority vote and [Huang 2014] in Figure
5.16 does not depend on the MTP reporting interval. As far as performance is

concerned, Figure 5.16 concludes that such approaches do not obtain accuracy
values close to FIRST and FIDES.



Conclusions

This work described the design and implementation of a multi-tier cognitive ar-
chitecture for a robust and resilient Aml system, capable of self-configuring and
self-managing its sensory infrastructure. The entire hardware and software system
is represented in increasing levels of abstraction, so as to describe the environment
and interactions with the system through high-level symbolic concepts. The sys-
tem is capable of focusing on those aspects of the external environment which are
considered the most important at different times, depending on the context, by
managing its resources intelligently and minimizing energy consumption.

To achieve such goals, the system relies on heterogeneous data collected by nu-
merous wireless sensors pervasively deployed in the environment. To this end, one
of the main modules of the proposed architecture is a context-aware self-optimizing
adaptive system for sensory data fusion. The inference subsystem leverages Dy-
namic Bayesian Networks for inferring the state of the world, exploiting contextual
information to increase reasoning accuracy.

Moreover, a self-optimization module chooses dynamically the subset of sensors
to use, finding an optimal trade-off to maximize sensing accuracy and minimize
energy consumption. The experimental results have confirmed that selecting the
right combination of context information is fundamental to maximize the infer-
ence accuracy, especially when only few sensors are available, and that exploiting
the best context information set greatly improves the accuracy of activity recogni-
tion systems. Furthermore, the results demonstrated that the proposed adaptive
system performs better than static systems, achieving substantial energy savings
compared to a system that statically uses all the available sensors, with only a

small increase in inference uncertainty.
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The proposed architecture is also enriched by a filtering module to accurately
classify reliable and unreliable sensing reports in a scenario with highly uncertain
information quality.

In the current study, both training and test data are collected from the same
environment. As part of future development, the generalization potential of the
proposed approach should be evaluated by considering training and test data com-
ing from different smart homes or offices. Furthermore, it would be interesting to
test the system in a real scenario with heterogeneous sensors, including data com-

ing from wearable devices such as smart watches.
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