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Isn’t it against all logic, if a whole urban surface 
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Thesis aims and chapter outline 

When I started the long and winding road (the Beatles) of this PhD, I found myself within a forest dark, for the 

straightforward pathway had been lost (Dante, Inferno). At that time, someone asked me: “do you investigate 

innovative green paints?”… With these contributions, I will try to prove that green roofs can be more that green 

painted surfaces even in regions with Mediterranean climate: they give back what we plunder from Nature building 

houses (Hundertwasser, 1970) and they optimise a space that otherwise would be left alone to dialogue with the 

stars (Le Corbusier, 1930). Can you imagine what would happened and how powerful it would be if every flat 

roof of every building in our contemporary sprawling cities would have a green roof? It would be fantastic! Birds 

can feed and rest, other animals will nest and plants would grow, flower and perish. We would build living spaces 

above our houses, re-connecting the build environment with the surrounding landscape! 

This thesis is based on four manuscripts (three of them published), on the awareness developed designing, 

building and maintaining green roofs in Switzerland and on the skills acquired during courses I attended in 

Germany, Czech Republic and Greece. The well-known history of green roofs, back to Babylonian hanging 

gardens was deliberately neglected, as such notions are widely available from several works regarding green 

roofs1. It seemed significant instead, to review some European green roofs norms in order to assess their 

effectiveness in supporting biodiversity and in particular in tackling the implementation of green roofs in 

Mediterranean climate (Chapter 1. Some European green roof norms through the lens of biodiversity: what about 

the Mediterranean climate?). The second chapter gives an introduction on the ecological role of green roofs 

focusing on the link between ecology and design, on the key design factors of biodiversity green roofs and on 

the template approach (Chapter 2. Extensive green roofs: biodiversity at high levels). The third chapter deepens 

the the plant sociology approach as a designing tool for the implementation of Mediterranean green roofs 

(Chapter 3. A plant sociological approach for extensive green roofs in Mediterranean areas). Finally, the fourth 

chapter presents the results of a long-term study on the vegetation dynamic of unmanaged green roofs in central 

Europe but also their implications for ecological design (Chapter 4. Thirty years unmanaged green roofs: 

ecological research and design implications). 

  

                                                      
1 Ahrendt, J. (2007). Historische Gründächer: ihr Entwicklungsgang bis zur Erfindung des Eisenbetons. Dissertation, TU Berlin. 
Grancharov, R. (2013). Green Roofs, History and The Present. In Global Virtual Conference Workshop (pp. 220–226). 
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Abstract 

In the realm of the doctoral program in technologies for sustainability and land restoration, this thesis deepens 

sustainable and ecological solutions for Mediterranean environment after the German tradition and the Swiss 

school of green roofs for biodiversity. Specific aims were to: (1) assess the effectiveness of the existing green 

roofs norms in supporting biodiversity; (2) review methodologies and approaches for the implementation of 

biodiverse green roofs but also their application for ecological design; (3) identify habitat templates in the 

Mediterranean ecoregion replicable on green roofs; and (4) investigate the long term vegetation development of 

unmanaged green roofs in order to give ecological design guidance. 

As regards the green roof norms assessment, the German guidelines were chosen for its traditional referential 

role, the Swiss norm for its peculiar biodiversity approach, the Italian one for affecting a territory with remarkably 

heterogeneous environmental conditions, stretching from Alpine to Mediterranean ecosystems. Even if the three 

regulations at comparison addressed to some extent biodiversity related matters, none of them focused on the 

peculiarities of different ecoregions in term of plant species selection and assemblage, growing medium 

composition (materials and granular size) and system build-ups (multi-layers and single-layer construction). It 

was concluded that at the current knowledge, an official and effective regulation for green roof design in 

Mediterranean ecoregion is still missing. 

Biodiverse green roofs, being characterised by different and contiguous microhabitats (habitat mosaics or 

patches) can host several species with different morphological and functional traits (Brenneisen, 2003). As 

regards their implementation methods and approaches, the habitat template consists in choosing suitable plant 

species among the one living in nature under similar conditions e.g. shallow and nutrient poor substrate and 

drought, while the phytosociological approach applied to green roofs considers habitat analogues not only as 

species pools, but also as models to group plants in specific associations. It was concluded that nature 

conservation approaches on green roofs offer new perspectives for urban sustainability and for ecological design. 

However, in order to give the “naturalistic” approach a chance to develop extensively, it is necessary to act into 

the education and technical spheres: sensitizing the public opinion starting from the new generations (eco-

litteracy) and training professionals able to conjugate scientific knowledge (analytic phase) and design (creative 

phase). An Eco-designer should operate considering the local climatic conditions, the potential vegetation and 

the interactions with neighbouring biocenosis: he/she has to be also an ecologist in order to combine the ways 

of nature to the ways of man. 

As regards replicable habitat on green roofs in Mediterranean areas, the proposed methodology approach 

was based on a practical plant sociology understanding of EU Directive 92/43: a recognition of Natura 2000 

habitat that could be imitated on roofs in terms of characteristic species and substrates. The results lead to three 
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groups: those linked to sandy substrates (psammophilous vegetation), to gravely-pebbly substrates (glareicolous 

vegetation) and to xeromorfic soils (garrigues and dry grasslands). Desirable plants establishment methods on 

green roofs should be based on diaspore hay- transfer and threshing from selected donor meadows, as it happens 

for grasslands restoration. 

Finally, as regards the long term vegetation development over a thirty year period, results demonstrated that 

the main driver of the observed functional changes on undisturbed simple-intensive green roofs in temperate 

climate, was a shift towards relatively more thermo-xeric conditions. In terms of plant life strategies, the 

competitive species sown on the roof gradually gave way to stress-tolerant and ruderal species, along with a 

progressive increase in species with short-distance seed dispersal strategies. It is concluded that: (a) to create 

resilient green roofs, spontaneous colonisation should be accepted and considered as a design factor; and (b) 

regional plant communities could serve as a model for seed recruitment and design. 

Keywords: green roofs; guidelines; norms; Mediterranean climate; biodiversity; ecological design; hay transfer; 

wild species; spontaneous colonisation; stepping stones. 
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1 Some European green roof norms through the lens of biodiversity: what about the 
Mediterranean climate? 

Abstract 

Green infrastructure and in particular green roofs are crucial to meet the challenge of sustainable urbanisation 

fostered by the current European Research and Innovation agenda. Several guidelines were issued in the last 

decades in Europe for regulating design, construction and up-keep of roof greening. In particular, the actual 

German guidelines (FLL 2008) have been widely adopted as reference basis for green roof design and regulation 

worldwide, because of its exhaustiveness and proven building- and landscaping tradition. With the aim to assess 

the effectiveness of green roof norms in supporting plant and soil biodiversity of different ecoregions, and 

particularly of the Mediterranean one, the German, the Swiss and Italian regulations are screened and discussed 

in this paper. The German guidelines were chosen for its traditional referential role, the Swiss norm for its peculiar 

biodiversity approach, the Italian one for its application on a territory with remarkably heterogeneous 

environmental conditions, stretching from Alpine to Mediterranean ecosystems. Even if the three norms at 

comparison addressed to some extent biodiversity related matters, none of them focused on the peculiarities of 

different ecoregions in term of plant species selection and assemblage, growing medium composition (materials 

and granular size) and system build-ups (multi-layers and single-layer constructions). This is a crucial point for 

countries, like Italy, encompassing very different climatic conditions. It was concluded that at the current 

knowledge, an official and effective regulation for green roof design in Mediterranean ecoregion is still missing. 

Keywords: green roofs, biodiversity, Mediterranean climate, norms, guidelines 

1.1 Introduction 

The current European Research and Innovation agenda fosters sustainable development and urbanisation by 

means of nature based solutions with the aim to restore degraded ecosystems, to favour climate change 

adaptation and mitigation, to improve risk management and resilience. Moreover, Nature-based solutions, 

provide at the same time environmental, social and economic benefits bringing nature and natural processes into 

the built environment (Horizon 2020 Expert group). 

Green infrastructure is the network of natural and semi-natural areas, features and green spaces in rural and 

urban, and terrestrial, freshwater, coastal and marine areas (Naumann et al. 2011). In densely populated lands, 

the connection to this network ensures natural multiple ecosystem services including, water and air purification, 

landscape conservation, soil protection and space for recreation (Tzoulas et al. 2007). In built environments, 

constructed ecosystems such as green roofs and bioreactors are of utmost importance to ensure urban resilience 

(Ranalli & Lundholm 2008, Gómez-Baggethun & Barton 2013). 
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Green roofs can be synthetically defined as rooftops covered with growing medium, intentionally vegetated 

and/or spontaneously colonised (SIA 312:2013). These surfaces represent novel urban habitats fulfilling several 

benefits and ecosystem services: they reduce storm-water runoff, bring slowly rain-water back to its moisture 

cycle via evapotranspiration, increase the roof waterproof membrane lifespan, reduce the energy consumption 

for heating and cooling, mitigate the urban heat island effect, reduce air and sound pollution (Oberndorfer 2007). 

The recognition of green roof benefits has been inferred from the synergic work of technical universities, 
private companies and professionals over the last century in central Europe. The need to complement scientific 
interest and practical issues brought to the publication, in 1990, of the first guideline on green roofs by the 
German Landscaping and Landscape development Research Society (Forschungsgesellschaft 
Landschaftsentwicklung Landschaftsbau E.V. - FLL). 

The German guidelines formalised a classification of green roof types, intensive, simple-intensive and 
extensive (according to the vegetation forms, use and maintenance), as well as a standardised system build-up. 

As regards the green roof typology: 

1. Intensive green roofs can host trees, shrubs, perennials herbs and lawns on a 15-200 cm thick growing 

medium. They can be freely designed and developed on spatially connected areas on the same level 

and or at different quotes. The loading bearing structure and the total costs represent the only constrains 

to the design and construction possibilities. The vast species selection palette confers to intensive green 

roofs a comparable recreation function to that of parks and gardens on the ground but it requires also 

similar maintenance effort in terms of irrigation, fertilization, pruning and weeding. 

2. Simple-intensive green roofs can hosts shrubs, perennial herbs and lawns on a 12–100 cm thick growing 

medium. The spatial design and plant species selection are comparable to those of intensive green roofs 

but execution, maintenance costs and total loads on the bearing structure are reduced. 

3. Extensive green roofs are near-natural greened surfaces hosting mosses, succulents, forbs (including 

bulbs and tubers) and grasses on a 6-20 cm thick growing medium. The plants species should be local, 

stress tolerant, able to regenerate themselves and propagate easily. The maintenance regime is reduced 

to the minimum, unless of wanted pattern and specific design. 

This traditional subdivision was implemented by the British code of practice (GRO 2011) with a fourth 

intermediate typology between simple-intensive and extensive green roofs: 

4. Biodiverse green roofs aim to recreate habitats similar or even ameliorated compared to the one lost due 

to the construction. These roofs are sown or plug planted with autochthonous species that in turn attract 

specific fauna; are constructed with different substrate thickness and kind such as sand and gravel; and 

are supplied with specific structural elements for habitat provisioning such as trunks and boulders. This 

approach provide for: the spontaneous development of the vegetation, the reduction of the maintenance 
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effort to the minimum; and the creation of areas without vegetation to mimic brownfields (Kadas 2006, 

GRO 2011). 

It is worth to mention that this typology was implemented for the first time in Switzerland at the beginning of 

this century (Brenneisen 2006, Dunnet 2015). 

As regards the standardised construction build-up, from the waterproof barrier upwards, it consisted in the 

following functional or working layers (figure 1): anti-bonding layer, separation layer, root barrier, mechanical 

protection, drainage layer, filter layer, vegetation supporting layer (growing medium) and vegetation. 

For each stratum and expected component of the roof, the norms give definite requirements and functions. 

The anti-bonding layer has the function to prevent the adhesion of various materials and reduce the shear stress 

between different layers; the separation layer to divide chemically incompatible materials; the root barrier to 

protect the waterproofing layer and the structure against root penetration; the mechanical protection to defend 

the waterproofing layer from mechanical damages (also as root barrier); the drainage layer to deliver the water 

in excess into the outlets for the prevention of waterlogging (also as protection of the membranes below it), but 

 

Figure 1. Extensive green roof standard technical section according to FLL guideline and UNI standard. In the drawing: 1) bearing 
structure, 2) draining slope, 3) vapour barrier, 4) thermic insulation, 5) waterproof membrane, 6) root barrier and mechanical protection, 
7) drainage (and possible water storage), 8) filter, 9) vegetation supporting layer (and possible water storage) and 10) vegetation. The 
drawing was realised with Adobe illustrator CS6 and was inspired by both the technical details and the drawings as represented in the 
UNI and the SIA norms. 
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also to increase the available space for root development; the filter layer to prevent the drainage layer to be 

clogged by the fine soil and substrate particles of the vegetation-supporting layer (growing medium); the growing 

medium to accommodate the roots of the plants. Actually, the water storage is needed when the growing medium 

is not able to meet the water retention demand and it can be integrated in the vegetation-supporting layer and/or 

in the drainage layer and/or be a separated layer. An extra water supply and irrigation system is normally installed 

in intensive greening and may be required also on extensive greening to support the plants in case of extreme 

weather conditions. 

The German guidelines have been used as a reference for green roof design and for regulation worldwide 

because of its exhaustiveness and proven building- and landscaping tradition (Doug et al. 2005, Dvorak 2001, 

Abram 2006). Several national guidelines, code of practices and standards were developed after the FLL in 

Europe, such as the Swiss (SIA 217/2:1994), the Austrian (ONR 121131:2002) and the Italian (UNI 11235:2007) 

norms as well as the Dutch guideline (SBR 2006), the British code of practice (GRO 2011) and the Czech 

standard (SZÚZ 2016). It is worth to notice that some of the regulation were driven by ecological needs. In 

particular, the SIA norm followed the Federal Act on the Protection of Nature and Cultural Heritage by focusing 

on the ecological compensation role of green roofs (Brenneisen 2015), while the UK guideline were co-financed 

by the European Community LIFE+ funding program which is focused in strengthening the environmental policy 

across Member States (GRO 2011). 

The rationale of this study was to assess the effectiveness of some European green roof norms in supporting 

plant and soil biodiversity in different ecoregions, with particular reference to the Mediterranean one, and to 

check how regulations coped with complex environmental variables and heterogeneous climatic contexts. 

1.2 Materials and methods 

The regulation analysed were the German “Guidelines for the Planning, Construction and Upkeep of Green-

roof sites” (FLL 2008), later FLL; the Swiss “norm for roof greening” (SIA 312:2013), later SIA; and the Italian 

norm “criteria for design, execution, testing and maintenance of roof garden” (UNI 11235:2015), later UNI. 

The FLL were chosen for their traditional referential role, the SIA for its peculiar biodiversity approach, the 

UNI for its application on a territory with remarkably heterogeneous environmental conditions, stretching from 

Alpine to fully Mediterranean ecosystems: perhaps the most environmentally complex and diverse context among 

the countries where currently the green roof technology is still rising. 

The first German guidelines were published in 1990 by the Forschungsgesellschaft Landschaftsentwicklung 

Landschaftsbau e.V. – FLL (The Landscape development and Landscaping Research society) and since then 

further revised versions appeared in 1992, 1995, 2002 and 2008 (FLL 2008). Actually, the FLL Research Society 
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published the “principles of green roofing” in 1982 and revised them in 1984, prior to the publication of the 

effective guidelines. The FLL consisted of 16 chapters and 3 annexes regarding the planning, execution and 

upkeep of green roofs, roof terraces and other buildings with a growing medium up to 2 m thickness, while 

referred to other norms (e.g. DIN and EN standards), guidelines and code of practices for specific technical 

topics (e.g. structural design loads and waterproofing materials). 

The Swiss norm was published by the Swiss Society of Engineers and Architects in 2013 (SIA 312:2013). 

The norm refers to the SIA 318 “gardening and landscaping” and substitute the SIA 271/2 “roof greening” written 

in 1994 and refined in 2007 (SIA 271:2007). The SIA consisted of five chapters and three annexes regarding the 

design and construction of roof greening while referred to other SN and SIA norms for specific technical details 

(e.g. draining features, top and down-soil parameters and other engineering related matters). 
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The UNI norm was issued for the first time by the Italian organisation for standardisation (UNI) in 2007 and it 

was revisited in 2015. The UNI consisted of 11 chapters and three annexes regarding the design, the execution, 

the control and the maintenance of roof greening while referred to other UNI norms for specific technical details 

(e.g. waterproof membrane parameters, soil and substrate improvers) 

The proposed assessment was based on the evaluation of the contents affecting directly or indirectly the 

ecological value of green roofs. Therefore, the chapters of the regulations were grouped in one or more of the 

following competence domains (table 1): 1) Design (Ds), 2) Requirements (Rq), 3) Construction (Cs), 4) 

Materials (Mt), 5) Maintenance (Mn) and 6) Testing (Ts). The relevant details related to biotic factors were made 

explicit and further discussed. 

1.3 Results 

The regulations are structured in a way that any component designed to absolve a specific function and made 

with a certain material, has to fulfil given requirements, respect target values and be constructed in a well-defined 

manner in order to prevent failures. However, the SIA norm is more the enumeration of what needs to be planned 

when constructing a green roof, while it referred to other norms to define the characteristics of the functional 

layers (e.g. bearing capacity calculation, waterproof membrane and root barriers requirements, growing medium 

materials and properties). 

1.3.1 Design 

The three main aims and benefits recognised by the norms to green roofs are related to planning (town 

planning and amenities provisioning), environmental services (environmental compensation, water management 

and climatic mitigation) and economy (improved thermal- and acoustic insulation, increase of the building value 

and reduced demand on the sewage system). In particular, intensive green roofs have a recreation and aesthetic 

attitude similar to gardens and parks on the ground while extensive green roofs mimic dry habitats (FLL 2008) 

but also promote spontaneous species colonisation and development in order to build self-sustaining 

ecosystems (SIA 2013). Once the purpose of the green roof is defined, the factors to consider when designing 

it are the environmental conditions (e.g. climate, rainfall and wind) and the roof characteristics (e.g. exposition, 

slope, bearing structure and photovoltaic panels). 

1.3.1.1 Environmental compensation value 

As regards the environmental compensation value of green roofs, the SIA and the UNI norms introduced a 

grading system on the base of the habitat provisioning and the capability to restore the moisture cycle: “basic”, 

“advanced” and “special” according to the SIA and A, B, C and D according to the UNI. 



Biodiverse green roofs in Mediterranean climate - Input and lessons learned from Germany and Switzerland  11 

According to the SIA “Basic” roofs contribute almost only to the moisture cycle restoration according to their 

water retention capacity (table 2a). “Advanced” roofs fulfil the “basic” requirements, but are also characterised 

by an irregular distribution of the growing medium (figure 2) and by plant material belonging to class 1, 2 or 3 

(table 2b). Optional features are the following: the use of two or three kinds of substrate with local top- or sub-

soil or with local extracted materials; the use of structural elements constituting special habitats (table 3); the 

use of rainwater for the irrigation and the creation of temporary ponds; and the connection of the roof to the 

ground via green- and stone-walls. 

“Special” roofs fulfil both the “basic” and the “advanced” requirements, but are also supported by a detailed 

ecological compensation study to foster target habitat types and/or organisms. 

Furthermore, the SIA norm provided suggestions to combine green roofs with solar panels by varying 

substrate thickness as show in figure 3. The reduction of the substrate depth in front of the panels for a width of 

30 to 50 cm and the sowing of Sedum sp. or small growing plants will reduce the risk of shading the panels. 

Similarly, it is possible to increase the substrate depth on the backside of the panels where plant growth does 

not interfere with energy production. In this kind of roof, environmental (plant biodiversity) and economic aspects 

(energy production) have the same priority. 

 



Biodiverse green roofs in Mediterranean climate - Input and lessons learned from Germany and Switzerland  12 

According to the UNI, “C level” roofs are sown at least on the 1/3 of the surface, with autochthonous plant 

species. “B level” roofs fulfils the C level requirements but are also characterised by three vegetation forms 

assemblage among Sedum sp., small forbs, grasses, woody herbs and bushes, and by three substrate 

thicknesses (figure 2). “A level” roofs fulfils the B and C levels requirements but are also characterised by 

structures to attract and host motile animals, physical contiguity with the ground and are supplied by a detailed 

naturalistic study tackling ecological connectivity. Finally “D level” roofs have none of the above requisites but 

still an ecological mitigation value in comparison with impervious roofs. 

 

Figure 2. Example of substrate thickness variation according to SIA. In the drawing: 1) bearing structure, 2) waterproof membrane, 
3) root barrier and mechanical protection, 4) drainage, 5) filter, 6) vegetation supporting layer and 7) vegetation. The drawing was 
realised with Adobe illustrator CS6 and was inspired by both the technical details and the drawings as represented in the UNI standard 
and the SIA norm. 
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The UNI distinguished as well the performance of green roofs with respect to water cycles restoration into 

four levels on the base of the coefficient of discharge (water-drained volume on the rainfall volume) due of the 

overall system (table 2a). For this regards, the FLL do not use grades but considered the annual water retention 

as the ratio between the annual water run-off volume and the annual rain volume. 

1.3.1.2 Plant species selection and growing medium 

As it is mentioned by all three norms, the plant species should be selected according to the following criteria: 

abiotic factors (e.g. regional and local climate, including rainfall pattern), building and construction type (e.g. 

slope, aspect or orientation, sun/shade, wind flow), and plant physiological features (e.g. sensitivity to pollutants, 

prolonged drought and high evapotranspiration rates). Finally, the surrounding vegetation must be considered 

as it may affect future species pool, but also the trees growing around the building that shading the roof will 

influence the species composition. 

Among the abiotic factors influencing plant species selection, the growing medium thickness is particularly 

relevant as it is shown in figure 4 (FLL), figure 5 (SIA) and figure 6 (UNI). The tables and the drawings describe 

in fact, the relationship between growing vegetation forms (e.g. herbs, grass) and different thicknesses. For 

example, according to the FLL (figure 4) in the case of extensive green roofs (4-20 cm) in a 4-8 cm thickness 

can grow an assemblage of mosses and Sedum sp., while in 6-10 cm Sedum sp., mosses and forbs. According 

to the SIA, the variation of substrate thickness on the same roof is recommended to promote biodiversity (as it 

 

Figure 3. Integration between green roofs and photovoltaic panels. To diminish the risk of shading the panels, 
the substrate depth is reduced in front of the panels for a width of 30 to 50 cm and sown with Sedum sp. or small 
growing plants. Similarly, it is possible to increase the substrate depth on the backside of the panels where plant 
growth does not interfere with energy production. The drawing was realised with Adobe illustrator CS6 and was 
inspired by drawings of the SIA norm. 
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is required in the “advanced” level of the environmental compensation scale as shown in figure 2). In fact, with 

the intention of building a mosaic of different habitats, it would be possible to recreate rocky steppes, flower 

meadows, lawns and hedgerows (figure 5). According to the UNI, the substrate thickness-vegetation relationship 

is expressed in terms of minimum thickness required for a certain growth form: for example, 8 cm for Sedum sp. 

and 10 cm for small perennial herbs (figure 6). 

1.3.2 Requirements 

The two working layers effecting the overall ecological value of the roof in term of plant growth and water 

management are the draining and the vegetation supporting layers. For these layers the norms provided the 

correspondent hydraulic and horticultural properties (table 4). 

1.3.2.1 Vegetation supporting layer, drainage and water storage 

The drainage layer has the main function to take the water away as fast as possible but also to increase the 

available space for root development. The main properties of the drainage layer are the granulometric particle 

distribution, the water permeability, the water retention and the maximum run-off that is the volume of water 

cleared via the drainage course expressed in l/(s m). 

 

Figure 4. Substrate thickness-vegetation forms relationship scheme according to the German norm (FLL 2008). Its validity is 
restricted to temperate climates and depends on the vegetation needs and requirements, the properties of the materials used for the 
working courses, the slope, the aspect (north and south facing slopes), the regional and the local microclimatic condition. Thickness 
is meant after subsidence. 
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The growing medium, while performing certain hydraulic properties, has to possess the physical, chemical 

and biological requisites necessary for plant growth. In fact, the distinguishing parameters are the organic matter 

 

Figure 5a. Substrate thickness-vegetation forms relationship scheme for extensive green roofs according to the Swiss standards 
(SIA 312:2013). Thickness is meant after subsidence. 

 

Figure 5b. Substrate thickness-vegetation forms relationship scheme for intensive green roofs according to the Swiss standards 
(SIA 312:2013). Thickness is meant after subsidence. 
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content, the water retention capacity, the nutrient content, pH and of course the granulometric particle distribution 

or texture (figure 7). 

In the UNI, the water storage is treated as a separate layer while in the SIA and the FLL, both the drainage and 

the vegetation supporting layers absolve the function to store water. To manage the effect on the plant growth 

and the hydraulic performance, the UNI requires the calculation of the following parameters: 1) the maximum 

water retention (MT) at pF 0.7 (-0.005 MPa), 2) the water content at the wilting point (PA) at pF 4.2 (-1.5 MPa) 

and 3) the intermediate water content (CI) at pF 2.0 (-0.01 MPa). The first is used to estimate the plant available 

water (ATD) as the difference between MT and PA; while the second to compute the water content at decreasing 

potential (APD) as the difference between CI and PA. The water retained by the system must be comprised 

between CI and the PA so to stimulate the plants to adopt water saving and drought tolerance strategies. This 

concept leads to the efficiency ratio (EF) obtained dividing APD by ATD. The ratio varies between 0 and 1 meaning 

that the higher the values the more efficient is the system (since the plant available water is comprised between 

CI and PA). 

1.3.2.2  Irrigation 

Beside the water retained by the substrate and the drainage, both the UNI and the FLL suggested to install an 

irrigation system for intensive greening but also on extensive greening to support the plants with supplemental 

irrigation in case of extreme weather conditions. 

Figure 6. Substrate thickness-vegetation forms relationship scheme according to the Italian norm (UNI 11235:2015). Thickness is 
meant after subsidence. 
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1.3.2.3 Plant material 

According to the FLL, seed mixtures must be certified while native species must have a nursery provenance. 

This is valid also for shoots, perennials, bulbous and woody species, turfs and vegetated mats. In this regards, 

both the SIA and the UNI did not mention such requirements. 

1.3.3 Construction 

1.3.3.1 Working layers 

The FLL suggested two standard build-ups consisting of several layers performing a specific function (multi-

layers construction) or one single layer fulfilling almost all the functions (single layer construction). The UNI 

norm discarded the multi-layers solution due to its presumed instability in a long-term perspective while the SIA 

norm did not go in such details. 

 



Biodiverse green roofs in Mediterranean climate - Input and lessons learned from Germany and Switzerland  18 

1.3.3.2 Plants establishment methods 

As regards plant establishment methods, the guideline and the norms suggested dry seeding and wet seeding, 

spreading plant parts, laying vegetated mats, laying turfs and planting. The SIA introduced the hay transfer 

technique (known also as mulch technique) i.e. plant material with seeds coming from a selected donor meadow 

from the same biogeographic region (table 2b, class 1). The plant material should be exposed on the roof in 

spring or in autumn. 

1.3.4 Materials 

1.3.4.1 Drainage- and vegetation supporting layer 

As regards the formation of drainage layer, both the FLL and the UNI listed the following materials: aggregates 

(e.g. gravel, lava and pumice, broken and unbroken expanded clay and slate), loose recycled materials (e.g. 

crushed bricks), drainage matting (e.g. non-woven fabric, plastic and fibre woven matting), drainage boards (e.g. 

foamed pellets and shaped plastic boards) and drainage-substrate boards (modified foams). 

As regards the formation of the growing medium, the FLL listed loose materials (improved top soil or down-

soil and mineral mixtures with or without organic compounds) substrate boards (foam and mineral fibres), water 

retention fibres (fleece, mats and boards) and finally vegetation matting with mineral/organic loose compounds 

in permanent or biodegradable carriers. 

 

Figure 7. Granulometric distribution range of green roof substrate according to the FLL 2008 and the UNI 11235:2015. The curves 
shows the range for single layer extensive and intensive green roofs and for multi-layer extensive green roofs according to the FLL 
2008; and for multi-layer extensive green roof according to the UNI 11253:2015 standards. On the x-axis the diameter of the particles 
is expressed in mm; on the y left-axis the grains passing through in % m/m, on the y right-axis the grains retained in % m/m 
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The UNI and the SIA referred as well to natural soils, amending materials and substrates (mineral- and 

recycled materials based growing media) but did not specify the materials composing them. 

1.3.5 Maintenance 

The classification of green roofs is also based on the maintenance effort. In particular, the UNI introduced a 

further classification according to the maintenance regime measured in minutes per square meter a year. In this 

classification there are extensive green roof with very low maintenance (<2 min/m2/year), extensive green roof 

with low maintenance (<4 min/m2/year), intensive green roof with reduced maintenance (<8 min/m2/year), 

intensive green roof with medium maintenance (<15 min/m2/year) and intensive green roof with high 

maintenance (>15 min/m2/year). It is worth to mention that according to the FLL, the maintenance reflects the 

aim for which the roof was built. In fact, the aesthetical approach prevails on intensive and simple-intensive green 

roofs, while the ecological approach on extensive ones since the latter are characterised by a natural appearance 

driven by vegetation dynamics. 

1.4 Discussions 

Simple-intensive and extensive green roofs may have a higher ecological value than intensive greenings as 

they are eventually not subjected to aesthetic judgments, require less maintenance, solicit to a lesser extent the 

bearing structure and, consequently, are cheaper and easier to execute and to apply on a larger scale. With this 

regard, the SIA dedicated a subchapter to ecological compensation that include measures to foster biodiversity 

by design, such as the use of local plants species and of different substrate depths. 

In general, while considering the environmental conditions, the regulations advised the use of plant growth 

morphological strategy (e.g. small succulents, bushes, trees) and life forms in the guidelines for plant species 

selection and for substrate depth determination (figure 4, 5 and 6). Actually, figure 5a is also an ecological 

succession scheme showing how the vegetation on the roof is expected to evolve in e.g. 30 years. The SIA 

therefore, considered green roofs as dynamic ecosystems where spontaneous colonisation should be 

consequently accepted. 

Life forms classification considers the position of the perennating tissues (e.g. buds) in relationship to the 

ground and the strategy to survive the unfavourable season i.e. cold winter and dry/hot summer (Cornelissen 

2013). To this regards, the UNI norm referred to: 1) therophytes (annuals surviving the adverse season in form 

of seeds); 2) hemicryptophytes (biennials and perennials with buds positioned close to the ground) e.g. grasses 

and rosette forming herbs; 3) geophytes (buds below the ground) e.g. bulbs, tubers and rhizomes developing 

species. The plants belonging to the mentioned categories are favoured because they develop scarce above- and 

belowground biomass, have good propagation capacity and are stress resistant. 
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However, the regulations did not suggest any specific life-form assemblage neither in relationship to the 

provisioning of ecosystem services (regulating, supporting, cultural, provisioning and regulating) nor to different 

ecoregions. To this respect, it has been suggested that life-form diversity per se cannot guarantee the best green 

roof performance in term of ecosystem services e.g. regulation of climate and water management, support to 

flora and fauna, provision of edible plants and aesthetic valuable plants; however, assemblage of succulents, 

grasses and tall forbs seams to optimise them (Lundholm et al. 2010). Additionally, plant traits selection should 

be driven by the most limiting factor, for instance in Mediterranean climate, drought tolerance traits (e.g. CAM 

metabolism, small leaf area, low leaf dry mass, stress-tolerance) should be favoured to screen plants among the 

regional species pools. For the same reason in cooler and humid climates, tolerance to low temperatures and 

humid condition should be the main screening factors (Van Mechelen et al. 2014).  

Clearly, substrate depths strongly influence species diversity shaping the functional and taxonomical 

composition of plant communities that in turn affect the benefits provided. In fact, species-rich assemblage have 

higher functional diversity that in turn corresponds to higher ecosystem services (Madre et al. 2014, Van 

Mechelen et al. 2015). For example, higher depths determine a better water retention management while plants 

are crucial for the mitigation of the urban heat island effect thanks to evapotranspiration and shading (Monterusso 

et al. 2004). 

Together with substrate depths, also substrate type with peculiar chemical and physical characteristics affect 

the vegetation composition. The FLL and the UNI considered this by suggesting different grain size distribution 

ranges (texture) for multi- and single layer intensive and extensive green roofs. It has to be mentioned that the 

UNI considered the single layer build-up unreliable to assure a long-term functioning while for the SIA this issue 

was not relevant at all. Moreover, the texture affects the porosity, the water holding- and field capacity, the 

hydraulic conductivity, the nutrients availability and compaction in time (figure 7). As regards the chemical 

characteristics, the regulations advice maximum and minimum contents/values for the organic matter, nutrients 

(N, P2O5, K2O and Mg), pH and cation exchange (table 4). In fact, soil fertility (especially nitrogen and 

phosphorous content) strongly influences species richness, composition and functional diversity: poor nutrient 

soils generally determine higher plant diversity while the addition of nitrogen often favour alien and perennial 

species (Wilson & Tilman 2002). 

In particular, Bretzel et al. (2009, 2016) investigating the relationship between native herbaceous species 

(able to survive in unproductive soil) and soil characteristics, found that seedling emergence was influenced by 

soil texture and structure while plant growth, biomass, flowering time, numbers and duration was effected by 

fertility (especially carbon and nitrogen contents). 
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Therefore, the compensation value of green roofs is not intrinsic in the use of wild and native species per se, 

but it is crucial to determine the conditions suitable for their establishment prior to the installation. However, the 

UNI and FLL did not mention plant-soil relationships and biogeographic diversifications at all, while the SIA 

stated the crucial importance of biogeography and plant species needs to implement the ecological 

compensation value. However, which plant needs and how the substrate should vary accordingly remained 

unclear. 

Together with productivity, disturbance (e.g. burning, grazing, tillage) influences species richness and 

composition as well, for example grazing in productive soils has a positive effect on biodiversity, whereas in poor 

nutrient soil negative. Finally, the combination of disturbance and fertilisation normally exacerbate the rapid 

colonisation of alien and invasive species but also of annual species to the detriment of perennials (Wilson & 

Tilman 2002). With this regard, green roofs may be relatively undisturbed artificial habitats where native flora 

and fauna can establish. In fact, maintenance activities mainly aims to control the presence of unwonted species 

by mowing and weeding. With this respect, the FLL and the SIA mentioned the reduction of maintenance regimes 

to enhance the natural aspect and environmental compensation role of extensive green roofs. In fact, the cutting 

intensity can affect species richness and community assemblage, for example in temperate climate, the optimum 

between biomass and species richness can be obtained with one or two cuts per year (Bretzel et al. 2016). 

As regards the materials used for the formation of growing media, the UNI remained vague about the most 

suitable materials with the exception of “substrates”, top- and down (amended) soils. It is worth to mention that 

the previous version of the UNI (UNI 11235:2007) clearly discouraged the use of natural soils as “rarely fulfilling 

the requisites to assure a correct functioning of the green roof”. In the contrary, the UNI referred to commercial 

substrates as “normally used” by practitioners and firms as “fulfilling the specific functions”. This negative 

connotation of natural soils to be used for green roofs in favour of commercial substrates, evolved in the last 

version of the norm: substrates are now considered as a “possible choice” and not as the advised (exclusive) 

solution (in line with the German and the Swiss norms). 

Other remarkable aspects to highlight are the seed provenance and plant establishment methods. At the state 

of the art, for the Italian and the German norms, seeds and plants provenance should be certified while greening 

methods are common to gardening practices such as sowing, plug planting and laying pre-vegetated mats. The 

Swiss norm, instead, suggested for the first time the use of land restoration methods such as hay transfer and 

seed collection from donor meadows. This revealed the ecological predominance on the technical understanding 

of roof greening, thus enlarging the “technical target” with ecologists and naturalists besides agronomists, 

landscape architects, engineers and companies to whom the German and Italian norms referred as well 

(Brenneisen 2015). 
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Finally, with reference to green infrastructures and the provisioning of ecosystem services, the missing 

information regarding genotypes in such constructions causes an issue of uncertainty: since not all plant species 

are equal, which vegetation assemblage is more effective in providing which ecosystem service? Actually, the 

green infrastructure term is nowadays used too generically since urban planners neglect the complexity of green 

spaces and the peculiar plant community populating them. This is particularly true for green roofs as their 

ecosystem services are related to human needs that go beyond the aesthetical appeal e.g. regulation of air 

temperature, atmospheric pollution and storm water run-off and amelioration of the thermal building insulation 

(Cameron & Blanusa 2016). 

1.5 Conclusions 

Likewise “languages are the best mirror of people soul” (Die Sprachen sind der bester Spiegel des Geistes, 

G. W. Leibniz), norms and guidelines content may reflect the national industrial interest but also research 

innovations. However, norms alone could not have boost green roofs technology without public direct or indirect 

incentives campaigns and local building regulations. The most famous examples in this sense came again from 

German speaking countries: Germany (e.g. Stuttgart), Switzerland (e.g. Basel) and Austria (e.g. Linz) (Abram 

2006). On the contrary, in Italy the normative effort overwhelmed the incentive one by issuing a second revised 

norm, a guideline for the implementation of green roof ecological value (ISPRA 2010), while only few 

municipalities significantly promoted green roofs implementation (e.g. Bolzano, Trieste, Firenze). Probably this 

was due to the roofing experience developed in the north-eastern part of the country (e.g. the self-governing 

Bolzano/Bozen province) in turn influenced by the German-Swiss tradition (Abram 2006, ISPRA 2010). 

Even if the three regulations at comparison addressed to some extent biodiversity related matters, none of 

them focused on the peculiarities of different ecoregions in term of plant species selection and assemblage, 

growing medium composition (materials and granular size) and system build-up (multi-layers and single-layer 

construction). This is a crucial point for countries, like Italy, encompassing very different climatic conditions. 

With this regard, it has been suggested that guidelines instead of going after national political divisions, they 

should follow climatic conditions in order to develop regionally based standards (Dvorak 2011). With that, the 

adoption of single layered build-ups together with the multi-layered ones would significantly reduce the total 

costs, thus pulling down one of the main limiting factor to the spread of roof greening technology. 

Finally, if green roofs will be executed for environmental compensation reasons, ecological aspects should 

have a relevance comparable to aesthetic and technical ones. Luckily, the rising biophilic approach (Ignatieva & 

Ahrné, 2013) such as the use of wild plants for landscaping, is smoothing technical constraints: from merely 

building and roofing techniques, green roofs are starting to be considered real ecosystems (Sutton 2015). This 

is particularly true in Mediterranean regions where the biodiversity approach in roof greening seems to drive the 
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research as shown by the interest of naturalists, scientists and eco-designers. However, an official and effective 

guideline for Mediterranean ecoregions does not yet occur. Therefore, future research should investigate 

substrates from local materials, soil-amended growing media and build-up systems suitable to host 

Mediterranean biocenosis. 
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2 Extensive green roofs: biodiversity at high levels 

[Translated into English from Catalano, C., Brenneisen, S., Baumann, N. & Guarino, R. (2016). I tetti verdi di 

tipo estensivo: biodiversità ad alta quota. Reticula, 12, 1-10. The manuscript was completed with supplementary 

pictures] 

Abstract 

Cities are defined as heterotrophic systems (Odum, 1983) as they depend mainly on external resources and 

cause habitat loss and fragmentation. Green roofs represents a fundamental means of ecological compensation 

within the built environment, i.e. in highly altered and disturbed places by humans. In particular, green roofs for 

biodiversity (or biodiverse green roofs), being characterised by different but contiguous microhabitat (habitat 

mosaics or patches), can host several species with different morphological and functional traits (Brenneisen, 

2003). The method known as the habitat template consists of choosing suitable plant species for green roofs 

from among the one that live in nature under similar conditions e.g. shallow and nutrient poor substrate, drought 

(Lundholm, 2006). The phytosociological approach applied to green roofs considers habitat analogues not only 

as species pools, but also as models to group plants in specific associations (Catalano et al. 2013). 

Key words: Green roofs, habitat template, phytosociological method, ecological networks 

2.1 Ecology and landscape planning: the need for a common language 

 

Figure 1. London urban sprawl from the 1814 to the 1978. The maps show the scattered decentralization of the city in 
the (a) 1840, (b) 1880, (c) 1914, (d) 1929 and (e) 1978. In green Hyde Park and Regent Park (two of the royal parks in 
London), in blue the Thames. The dashed circle encompasses the perimeter of the city of London in 1840. 
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Before the end of the Second World War, despite the attention was focused on the contemporary human 

tragedy rather than on sustainability and environmental protection, Saarinen (1943) wrote: 

The city is an open book in which to read aims and ambitions. When it is built in a disorderly 

manner and the inhabitants are indifferent to its appearance, they automatically reveals this 

attitude. 

The Finnish architect and urban planner described in a metaphor what we would nowadays call Urban sprawl 

(figure 1). In the same years the German botanist Kreh (1945) published Pflanzenwelt unserer Kiesdächer (the 

plant world of our gravel roofs), where he described the plant communities that colonised the coat of sand and 

gravel protecting the waterproof membrane of some roofs in Stuttgart. Similar studies followed in the 60s, the 

80s and at the beginning of 2000 in Germany, Switzerland and Italy, respectively by Bornkamm (1961), Thommen 

(1986) and Martini et al. (2004). 

Common issues were related to the uprising awareness of the big failure to design and build sustainable and 

resilient cities with respect to natural cycles and equilibrium. However, cities in their turn were still able to host 

an unexpected biodiversity and characteristic plant communities (from Linnaeus on, certain specific plant names 

- tectorum, murorum, muralis, urbicum – confirmed the historical and not casual occurrence of such species in 

urban habitat). 

In the 70s, similar thoughts took the Scottish landscape architect Jan McHarg, the author of Design with 

Nature (McHarg, 1969), to advocated the use of ecology as the basis for design. Ideas that were brought 

eventually into the new graduate program in landscape architecture and regional planning he began at the 

University of Pennsylvania. Similarly, the landscape ecologist Konrad Buchwald introduced the scientific base of 

landscape ecology into landscape management and planning at the institute of landscape care and nature 

protection of the University of Hannover (Buchwald & Engelhart, 1968). 

The work done by McHarg and Buchwald continues to influence architects, landscape architects and 

ecologists. Contemporary examples of extraordinary synergy among ecology and design disciplines are 

expressed by the work of Ken Yeang and Vittorio Ingegnoli both architects and ecologists. The first focused on 

eco-design that is the connection between biodiversity, ecology and architectural forms and functions (Yeang, 

2006), the second focused on the responsibility of men (ecologists) for habitat health and ecosystems 

functioning (Ingegnoli, 2011). 

The peculiar ecology of cities was clear enough already from the study of the pioneer communities 

spontaneously colonising ruins, walls, pavements and gravel flat roofs. These were species mostly occurring in 

anthropic degraded and highly disturbed habitats: the so called “ruderal communities”. Urban ecology, with 
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studies on climate, soil, water, organisms and biotopes, was formalised as an independent discipline from 

landscape ecology only in the 70s despite the existing studies done since more than a century (Sukopp, 2002, 

Barker 1997). 

Urban planning and urban ecology are still two distinct disciplines and there is an urgent need to establish a 

common language between social and natural sciences (Steiner, 2008) in order to attain an holistic approach in 

designing sustainable cities (Niemelä, 1999).  

There is a need of a common language, a common method among all those concerned about 

social equity and ecological parity. This method must be able to transcend disciplinary territorialism 

and be applicable to all level of government (Steiner 2008. The Living Landscape, p. 9) 

2.2 Habitat fragmentation and ecological networks: towards a model of bio-permeable city 

Cities were compared by Odum (1983) to heterotrophic organisms which grows upon resources (energy and 

goods often not renewable) produced far beyond its physical boundaries thanks to integrated transporting 

systems, industrial development and modern technologies (figure 2). In this development process, cities release 

into the environment heat and pollution, alter biogeochemical cycles while causing habitat loss and 

fragmentation (Fischer & Lindenmayer, 2007). 

 

Figure 2. The city as an incomplete heterotrophic organism sensu Odum (1983). The city depends on large areas outside of the 
urban physical boundaries, requires a high input energy level e.g. fuel, food, fibre, water, and raw materials, and returns the output of 
chemical origin materials, heat, waste, etc. 
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However, man-made habitats and in particular urban environments, offers constant adaptation opportunities 

for several living forms, plants and animals coming from different biogeographic regions that in turn used humans 

as their dispersal vectors (anthropocorous species). Moreover, urban environments are characterised by high 

habitat patchiness and diversity with respect to the surrounding cultivated lands and may host species of 

conservation interest (Kowarik, 2011). This suggest that if cities would be designed and transformed to favour 

biodiversity and resilience, they could have an active role in nature conservation measures and in fostering 

ecosystem services upon which our life on earth depends. 

Landscape architect Gille Clement, author of “Third Landscape” (2005), suggested the refuge role of the 

“landscape fragments” within the “built environment” (e.g. railway lines and dismissed industrial areas, green 

roofs) according to density: in urban cores, fragments are smaller and closer, in the outskirts bigger but more 

distant to each other. The equilibrium between the centrifugal energy of the expanding built environment and the 

centripetal energy of nature recolonization of empty niches, determines the resilience of urban environments. 

Saarinen (1943) anticipating the organic and systemic understanding of cities as done by Odum (1983) built 

a metaphor between cells, organisms and cities. As the cells of one organism are distinct but correlated in the 

function and in turn the organism is unique but in relationship with other organic forms (form-manifestation), 

cities at the same way, have to be planned and built according to the principles of expression and correlation to 

attain a superior organic order. 

The ideas of Saarinen and Odum are extremely up-to-date with respect to what has been done recently to 

integrate anthropic habitats to cultural landscapes and protected areas (Rete Natura 2000) with the aim to find 

an optimum compromise between human activities and ecosystem conservation. In fact, the challenges of 

landscape planning of the smart lands are centred on ecological corridors, stepping stones, ecological network 

and green infrastructure. The effectiveness of these instruments is related to the bio-permeability of built 

environments. The latter will be higher the more green public spaces (garden, parks and intensive green roofs, 

etc.), not accessible green spaces (extensive green roofs on apartment buildings and warehouses), residuals 

and peripheral areas (greened tunnels, bridges, railways, brownfields), will be realised or restored with reference 

to the potential vegetation, the floristic, the pedological and climatic context (Ercole et al., 2010). 

[…] the present and future methods [of town building] must be based on entirely new 

premises. And these new premises can and must be found only in and through the existing 

difficulties (Saarinen 1943, The city, p 143). 
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2.3 Ecological tools: green roofs for biodiversity 

Green infrastructure constitute a fertile ground for the interaction between ecology and design through 

experimentation: they are crucial to attain a sustainable urban development integrating landscape ecology and 

planning at different levels and scales. 

Green infrastructure is […] an interconnected network of waterways, wetlands, woodlands, 

wildlife habitats, and other natural areas; greenways, parks and other conservation lands; 

working farms, ranches and forests; and wilderness and other open spaces that support native 

species, maintain natural ecological processes, sustain air and water resources and 

contribute to the health and quality of life […] (Benedict e McMahon, 2006, p.3). 

Green roofs represents a powerful mean of environmental compensation and mitigation within urban cores 

where high density and disturbance constrains other living forms and inhibit natural dynamics. Extensive green 

roofs are greened rooftops generally not accessible and requiring low maintenance, with a substrate varying 

between 8 and 15 cm (FLL 2008) doomed to be colonised by the vegetation of the Sedo-Scleranthetea in 

Northern Italy and of the Thero-Brachypodietea in the south. From the ecological viewpoint, green roofs can act 

as stepping-stones through built environments for specific and targeted biocenosis, becoming an integral part 

of a greater ecological network (Catalano et al., 2013). 

Green roofs for biodiversity originated in Switzerland thanks to the work of the geographer Stephan Brenneisen 

(Dunnett 2015) actually leading the urban ecology research group of the Zurich University of Applied Science 

(ZHAW). Initially, the specific aim was to create artificial habitats on roofs able to host invertebrate communities 

of riverbanks and floodplains of the Rhine River (Brenneisen, 2003). Brenneisen’s activity was facilitated by a 

funding campaign (ca. 20.– CHF/m2) to promote the construction of green roofs initiated by the Basel 

municipality between 1995-1996 for a total of 13 million Swiss francs (Brenneisen, 2010). 

It is worth to mention that in Switzerland at the beginning of the 30s, Le Corbusier (1927) made green roofs 

sacred to generations of architects as he included them in the 5 points for a new architecture: they protect the 

waterproof \membrane and the structure while maximising the use of the space (figure 3). Extending the concept 

from architecture to town planning, supposing that all the flat roofs were green, they could compensate the 

construction of a whole city: 

[…] généraliser le cas [green roofs], c’est récupere la totale superfie d’une ville 

(Le Corbusier, 1927, p. 86). 
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In 2002 the city of Basel introduced in the building regulation that every new flat roof had to be greened and 

that in case of areas bigger than 500 m2 the system had to be optimised for biodiversity (e.g. different substrate 

kind and thickness, use of top soil, use of regional seed mixture). With that, the first campaign was followed by 

a second one between 2005 and 2007 (ca. 40.- CHF/m2) oriented to sustain retrofitting of existing grey roofs. 

The final result of the two campaigns was the construction of more than 600 000 m2 of green infrastructure: the 

23% of all the existing flat roofs were extensive- (1711) and intensive (218) green roofs. 

The fundamental design criterion for the construction of green roofs for biodiversity, consisted in creating 

micro-mosaic of different contiguous habitats capable to host different biological forms of plants and animals. 

In fact, the studies of Bornkamm (1961) in Germany and of Thommen in Switzerland (1983) showed how plant 

species establishment and succession was affected by the substrate kind and thickness, climatic conditions and 

of course time (succession). For instance, on the traditional roofs constructed in Germany at the beginning of 

the 19th century and characterised by a coat of sand and gravel protecting the waterproof membrane of tar and 

carton from fire hazards and weathering, the first stadium (couple of years) was dominated by commensal species 

(e.g. Panico-Galinsogetum). Temporary meadows species (e.g. Lolio-Plantaginetum) follow in about 10 years; 

Poa compressa meadow species (Poetum anceptis-compressae) follow in about 30 years in shaded areas, while 

mosses and Crassulaceae species (e.g. Sedo-Sempervivetum ceratodontetosum purpurei) in shallow substrate 

and fully exposed areas. 

 

Figure 3. Detail of a constructive section of a green roof (Riedmiller, J. 1994). 
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Keys designing features distinguishing the green roofs for biodiversity from extensive green roofs, can be 

synthesised in (Brenneisen, 2006, Baumann 2006): 

1.  Spatial heterogeneity: 

a. Variable substrate thickness (figure 4a). In temperate climates 8-10 cm of substrate can host Crassulaceae 

species (e.g. Sedum sp.), mosses and few grasses and depths greater than 10 cm can host also forbs, in 

particular in 12 cm of substrate forbs and grasses out compete the Crassulaceae species allowing the 

establishment of a balanced mixture of forbs and grasses meadow. In thickness greater than 15 cm, 

a 
 

b 

Figure 4. a) Substrates of different thickness (6, 12, 20 cm) used to accommodate different biotic communities on the roof of the 
Cantonal Hospital in Basel (Klinikum II). Design Stephan Brenneisen, University of Applied Sciences Zurich (ZHAW). b) Klinikum II roof 
from a bird’s-eye view perspective (photo Stephan Brenneisen). 

 
a 

 
b 

Figure 5. a) Graphical representation of the typical additional characteristics of biodiverse green roofs e.g. variable thickness of the 
substrate, rocks, logs, branches, etc. (Design, Zurich University of Applied Sciences - ZHAW). b) Detail of the Basel Cantonal Hospital 
green roof (Klinikum II). Transition between different micro-habitats (photo Chiara Catalano). 
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grasses predominate. Shallow substrates and low vegetation cover favour predatory insects of xeric 

habitats. 

b. Different kind of substrate (figure 4b). Generally the substrate used for extensive green roofs is constituted 

by commercial mixture of light aggregates in different granulometry (recycled materials like crushed- 

bricks and ceramics, volcanic 

materials like lava beams, pumice and 

zeolite, expanded aggregate like clay 

and slate) and organic material (peat, 

sterile compost, etc.). To sustain a 

bigger floristic diversity and host 

specific animal species, it is possible 

to use other coarse aggregate like 

silica sand, clay, silt, slate, pebbles 

and top soil (paying attention to avoid 

contaminated soils or containing exotic 

invasive species in the seed bank). 

Areas with solely sandy gravel favour 

thermophilous insects. 

c. Extra design features (figure 5 a,b). Stones, trunks, brunches constitute a shelter against weathering for 

micro fauna as they effect micro-climatic conditions. Temporary ponds offer water source for insects and 

birds and favour the establishment of ephemeral biocenosis of wet areas (Isoeto-Nanojuncetea, fig. 6). 

 

Figure 6. Drosera rotundifolia. Green roof of the Cantonal Hospital in St. 
Gallen (photo Stephan Brenneisen). 

 
a 

 
b 

Figure 7. a) Lapwing chick (Vanellus vanellus) on a green roof in Gossau (ZH) (photo Claudio Lotti). b) Lapwing adult (Vanellus 

vanellus) on a green roof in Gossau (ZH) (photo Nathalie Baumann). 
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Moreover, ground nesting birds relay on green roofs to nest due to the scarcity of proper habitats on the 

ground because of land use change in favour of agricultural fields (figure 7 a,b). 

2. Use of autochthonous plant species. The use of species belonging to regional species pool guarantee 

resilience to the artificial ecosystem as these species are already adapted to local conditions. In this way 

green roofs can be part of the greater ecologic network as they can host metapolulations of targeted 

species that otherwise would not survive in urban environments. Moreover, nurseries would be encouraged 

to produce seeds and plants of native species. 

3. Low maintenance and disturbance. It is know from applied ecology that to a moderate disturbance 

correspond higher biodiversity. For this reason, green roofs for biodiversity do not need maintenance if 

not the annual cut in case of established grasslands or the eradication of little phanerofites (shrubs and 

trees). However, the low maintenance regime requested from the biotic and abiotic parts of the system, 

should not influence the periodical check-up of the technical and structural part. 

2.4 Extensive green roofs: stepping stones for habitat of Community interest. 

The interest of ecologists for urban habitats and of the applied research for green roofs was crucial to 

determine a comprehensive evaluation of their ecosystem services (Oberndorfer 2007) but also their 

consideration as habitat within the urban ecosystem (Sutton 2015). This arising awareness affected the designing 

phase especially the plant species selection for extensive- and simple-intensive green roofs (10-20 cm of 

substrate thickness). In fact, both typologies are not specifically meant to be accessible and therefore do not 

have to satisfy any specific aesthetical need and appreciation (Dunnett 2009) as it happens for roof gardens or 

intensive green roofs (50-100 cm thickness). 

The species able to survive on green roofs are the one that in nature live in similar conditions: shallow and 

nutrient poor substrates, wind and sun exposure, high evapotranspiration and prolungated drought period. The 

approach to use natural habitat like limestones pavements, dry meadows, cliffs and stone outcrops as models 

for species selection is known as habitat template or habitat analogue (Lundholm 2006, Lundholm e Richardson 

2010). This approach came across particular success in USA and in the Mediterranean regions of Europe 

(Catalano et. al. 2013; Van Mechelen et al. 2013) that is in geographical areas where green roof technology do 

not have an old and consolidated tradition like in central Europe. In Italy in fact, research is predominant and 

homogeneously distributed along the national boundaries (Palermo, Catania, Messina, Cosenza, Roma, Pisa, 

Firenze, Perugia, Bologna, Genova, Milano, Padua, Bolzano, Trieste) in comparison to the production which 

mostly concentrated in the north east part of the country (Venetia, Bolzano and Trieste). 
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In France, Van Mechelen et al. (2013) determined a pool of 142 species adapted to grow on green roofs in 

Mediterranean climate adopting the habitat template approach for the regions Languedoc-Roussillon and 

Provence-Alpes-Côte d'Azur. Plant species were obtained from vegetation relevès in open vegetated areas with 

shallow soils and limestones pavements but also from published phytosociological relevès of the selected areas. 

The results were refined according to specific functional traits (Raunkiaer life forms, Grimes’s plant strategies - 

CSR) obtaining a list with several hemicryptophytes (perennial plants with overwintering buds at soil level) and 

few therophytes (annual plants that overwinter as seeds). According to the selected habitats the four clusters 

were 1) garrigue vegetation of limestone pavements rich in annual species with mosaic of other biological forms; 

2) basophilic vegetation rich in therophytes with mosses and lichens; 3) mesophilic calcareous grassland with 

few therophytes and geophytes (perennials herbs with underground buds); 4) mesophilous and xerophilous 

garrigue and dry grasslands with very fiew therophytes. Species with roots deeper than 20 cm were excluded 

from the initial dataset. The latter could be reconsidered as species on green roofs develop differently than on 

the ground e.g. dwarf species, bigger root area, plagiotropic behaviour due to the shallow substrate and the 

constrain of the root barrier membrane. 

In Italy, Caneva et al. (2013) obtained a list of 138 Mediterranean species capable to cope with green roof 

condition by comparing the list of species tested and published in literature and species selected using the 

habitat template approach. The latter list of species was obtained using the following filters: phytosociological 

relevès, habitat analogues to green roofs (rocks, walls, screes, retro-dunes, perennial steppe meadows and 

synanthropic habitats) (Blasi et al. 2011), chorology, biological forms and physiological characteristics (Landolt 

and Ellenberg indexes) for the Italian flora (Burba et al. 1992, Pignatti et al. 2005, Guarino et al. 2010, 2012). 

Unjustified excluded species were the annual and biennial species (therophyte and short cycle hemicriptophytes) 

that constitute actually a distinguish characteristic of Medieterranean landscapes. Moreover, a comprehensive 

species list for all the Mediterranean basin is not suitable to be used as a guideline for local seed mixture. 

The phytosociological approach (Braun-Blanquet 1932) was proposed in Sicily as a specific case of habitat 

template (Catalano et al. 2013) where analogous habitat are considered as a model in order to recreate the 

specific plant consortia. The phytogeographyc approach was brought to landscape architecture from Jacobous 

P. Thijsse in the Netherland (Woudstra 2004): the planting and design according to species provenance and the 

characteristic assemblage as occurred spontaneously in nature (Van Laren 1929, Thijsse 1934). Probably is not 

just a casualty that Reinhold Tüxen from the neighbouring Lower Saxony emphasised the utility of the 

phytosociological method for ecological planning (Tüxen 1939, Kniese 1942). 

To implement the ecological value of green roofs, habitat analogues could be selected among the one of 

Community Interest (Habitat Directive 92/43/CEE, Annex I) fostering the connectivity among those habitat as it 



Biodiverse green roofs in Mediterranean climate - Input and lessons learned from Germany and Switzerland  36 

is advisable in the Directive document itself (Biondi et al 2012). The key role of green roof for habitat connectivity 

within the built environment was proved in Zurich for the arthropod communities with different mobility 

(Carabidae, Araneae, Curculionidae and Apidae) (Braaker et al. 2014). 

The habitat of the Directive 92/43/CEE (Biondi et al. 2009) replicable on green roofs are those related to: 1) 

sandy substrate (psammophilous vegetation of sea dunes of the Mediterranean costs); 2) substrate with gravel, 

pebbles and sand (scree and cliff vegetation); and 3) xeric substrates (garrigue and dry grasslands) (Catalano et 

al. 2013). 

1. To the first group belong the habitats of 

the sea dunes of the Mediterranean costs: the 

Crucianellion marittimae fix beach dunes 

(2210), the Malcolmietalia dune grasslands 

(2230), the Brachypodietalia dune grasslands 

with annuals (2240) and the Cisto-

Lavanduletalia dune with sclerophilous 

vegetation (2260). In this case, the gradient 

corresponding to primary succession of the 

vegetation, from the shoreline to the retro-dune 

(Acosta et al. 2007), could be replicated on 

green roofs by choosing sandy substrate with 

different thickness. This will allow the creation 

of spatial heterogeneity mimicking the dune 

communities: therophytes will dominate on the 

very shallow substrate areas (2230), 

therophytes and hemicriptophytes on 

intermediate thickness (2240, 2210) and 

hemicriptophyte and camephytes (small bushes 

with buds at less than 30 cm from the ground) 

(2210, 2260) on small higher hills. 

2. To the second group belong: the low formation of Euphorbia close to cliffs (5320); the vegetation of the 

Thermo-Mediterranean and pre-desertic scrub (5330); the western Mediterranean and thermophilous scree 

(8130); and the calcareous rocky slopes with chasmophytic vegetation (8210). This will allow the creation of 

 

Figure 9. The phytosociological approach. Photomontage with actual 
habitats (spontaneous green roof in Palermo) and reference habitat (6220* 
Thero-Brachypodietea in Cornino Capo, Trapani). Photo Chiara Catalano. 
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rock gardens-like roofs where dense and patchy vegetation flourishes among coarse gravels and pebbles of 

different size. 

3. To the third group belong the vegetation of the pseudo-steppe with grasses and annuals of the Thero-

Brachypodietea (6220*) of semi-natural dry grasslands. This kind of vegetation is characterised by the presence 

of hemicriptophyte, camephyte and therophyte and it could be easily and well reproducible on green roofs. A 

preliminary study at issue was run on a green roof realised at the beginning of the ’90 with Mediterranean red 

soil in Palermo (fig. 9). To verify the compatibility between the host- (the roof) and the donor (dry grassland of 

the 6220*) habitat, 16 substrate cores were analysed (5 on the roofs, 4 on natural areas in Palermo, 4 in natural 

areas in Trapani and 3 in the neighbouring agricultural field). Of the 15 chemical and biochemical parameter 

measured (e.g. Carbonio Organico Totale (TOC); Azoto Totale (TN); Conduttività Elettrica (EC); pH; Capacità di 

Scambio Cationico (CSC), etc.) none of them showed a significant difference assessing the suitability of a 25 

years old soil-based green roof substrate to host semi-natural mediterranean dry grassland communities 

(Catalano et al. 2015). 

2.5 Conclusions 

Nature conservation on green roofs offer new perspectives to urban sustainability: green roofs for biodiversity 

constitute rooms for Nature above our houses. To camouflage the vegetated rooftops into the landscape, the 

design and the maintenance regime have to take into account spontaneous colonisation, communities 

succession, natural cycles and the decay of the vegetation from green to brown and yellow (fig.10). 

 
a 

 
b 

Figure 10. a) Summer yellowish vegetation on the green roof of the of the Ottawa war museum. b) Wheat Field with Cypresses by 
Vincent van Gogh (1889). 
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However, in order to give the “naturalistic” approach a chance to develop it is necessary to act into the 

education and technical spheres: sensitizing the public opinion starting from the new generations (eco-litteracy) 

and training professionals able to conjugate scientific knowledge (analytic phase) with design (creative phase) 

(Stokman, A., & von Haaren, 2012). Landscape architects have to be able to express the genius loci and to shift 

the traditional anthropocentric way of design which satisfy only human-needs (aestethical) and sensitivity 

(emotion connected to the individual knowledge) towards an ecologic, systemic and ecocentric approach (Austin 

2014). An Eco-designer should operate considering the local climatic conditions, the potential vegetation and 

the interaction with neighbouring biocenosis: he/she has to be also an ecologist in order to combine the ways of 

nature to the ways of man. 
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3 A plant sociological approach for extensive green roofs in Mediterranean areas 

[Text from Catalano C., Guarino R., & Brenneisen S. (2013). A plant sociological approach for extensive green 

roofs in Mediterranean areas. Proceedings of CitiesAlive: 11th Annual Green Roof and Wall Conference, San 

Francisco, October 23-26, 2013. The manuscript was completed with supplementary pictures] 

Abstract 

Extensive Green roofs can be an important mean for environmental mitigation if designed according to the 

principles of restoration ecology. Moreover, if optimally executed, properly managed and of sufficient extension, 

they could be assimilated to meta-populations of natural habitats, worth to be included in the biodiversity 

monitoring network. The best example supporting this hypothesis is the Lake water plant Moos in Wollishofen 

(Zurich, Switzerland) where, on three 100 years old units of extensive green roofs, occur most of the typical flora 

of Mesobromion, including high density of some endangered orchid species. With this work, we propose a 

methodology approach for green roofs in Mediterranean areas, based on a practical plant sociology 

understanding of EU Directive 92/43: a recognition of Natura 2000 habitat that could be imitated on roofs in 

terms of characteristic species and substrates. Our results lead to three category groups: those linked to sandy 

substrates (psammophilous vegetation), to gravely-pebbly substrates (glareicolous vegetation) and to xeromorfic 

soils (garrigues and dry grasslands). According to the last theories and practical application for grasslands 

restoration, we suggest a method applied and studied in Switzerland for green roofs based on diaspore hay 

transfer from a donor meadow, in order to obtain the highest plant species richness and diversity. 

Keywords: Extensive green roofs, plant sociology, habitat replication, biodiversity assessment, Natura 2000, 

hay transfer. 

3.1 Introduction 

The Mediterranean climate is characterized by dry, sunny summers and mild, rainy winters which are 

imposing to the vegetation two critical periods: summer drought and winter cold that, above 500 m, can be rather 

intense (Mitrakos, 1980). The environmental conditions on the roofs are even more critical, because of the 

shallow substrates, the daily temperature fluctuations and intense evaporation, with an increased tendency to 

dehydration. Moreover, green roofs are exposed to all the features typical of the urban ecosystem, such as the 

heat island effect, pollution and particulate, nitrogen and nutrients upload from human activities (Bettez & 

Groffman, 2013) including the abundance of synanthropic and invasive neophytes. 

In this work we present a methodological approach for roof greening in Mediterranean regions, bases on the 

mutual relationship between the vegetation and the edaphic-climatic conditions, studied by the plant sociological 

science to describe the natural vegetation in terms of species assemblages, spatial and ecological range, 
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endogenous variability and dynamics (Braun-Blanquet, 1964). We believe that getting inspired by the plant 

communities existing in nature, may be a fundamental mean in the functional design of the green roof system. 

The approach of restoration ecology will give new perspectives regarding the spatial importance and impact, 

beside the traditional gardening approach of establishing vegetation on extensive green roofs which often 

includes the use of non-native plant species, often invasive, that may cause problems threatening native 

ecosystems. In fact, variables such as size, substrate depth, type and composition, micro-habitats patchwork and 

species diversity and interaction (endogenous variability) together with micro-climate influence, local disturbing 

factors and/or proximity to natural habitats (exogenous variability), can affect species richness, composition and 

succession in this built environment (Kadas, 2002; Gedge, 2002; Brenneisen, 2003; Dunnett 2006; Bass & 

Currie 2010). 

An astonishing example of what kind of plant communities can establish - showing the potential conservation 

value of extensive green roofs - is the Lake Water Plant Moos in Wollishofen (Zurich, Switzerland) (Brenneisen 

2006, Landolt 2001) (figure 1). Landolt (2001) found 175 plant species, including nine orchids species and 

many other endangered or rare in the eastern Swiss Plateau. Most impressive are the ca. 30’000 individuals of 

Anacamptis morio a species otherwise extinct in the surroundings of Zurich (Schnurrenberger & Spühler 2010). 

Moreover, the vegetation on Lake water plant Moos reflect the species richness of agricultural land at the 

beginning of the 20th century. 

Figure 1. Lake Water Plant Moos in Wollishofen (Zurich, Switzerland) after the annual mowing. The meadow is cut in stripes to 
allow animals to find refuge and late flowering plant to disperse their seeds (photo Chiara Catalano) 
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Besides of being widely used to describe the natural vegetation throughout Europe, the Braun-Blanquet's plant 

sociological approach has been used to analyse and describe the spontaneous vegetation that colonized some 

roofs in the historical centres of many central European towns, with particular reference to those built at the 

beginning of 1900 (Sukopp et al. 1990, 1995; Thommen 1988). Typically, those roofs adopted a sandy-gravel 

layer as a protection for the waterproof membrane that enhanced the vegetation to permanently establish, due 

also to the accumulation of dung and nitrates over time (e.g. seagull colonies and city pollution). These 

phytosociological investigations highlighted an abundant vegetation ascribed to the class Sedo-Sclerantetea, 

whose chief species are featuring several habitat types targeted in the EU Directive 92/43 for the conservation of 

the most relevant European biotopes (Natura 2000 framework). In particular, the habitat codes 2330, 8230 and 

8240 have many similarities with the natural vegetation colonizing the central European ancient roofs. This 

demonstrates that a well designed extensive green roof, besides of enhancing the aesthetical value and 

environmental performance of a building, could also play an active role against habitat loss, being a potentially 

undisturbed areas where also endangered species could find their habitat or, at least, a stepping stone within the 

urban environment. For instance, the rare Sideritis montana has its only stand within the Region of Friuli Venezia 

Giulia in the town of Trieste, on the gravel roofs of Liberty-style buildings (Martini et al. 2004). 

According to the results of these investigations, we identified some habitats mentioned in the EU Directive 

92/43/EEC that could be potentially imitated on roofs in terms of characteristic species and substrates (natural 

top soil, sandy gravel and loamy sand substrates) in Mediterranean basin. Beside of the theoretical interest of 

our experimental design, it may represent an useful approach for the promotion and proper use of eco-building 

techniques. 

3.2 Methodology 

Habitat selection 

Basing on the available plant sociological literature, a first screening was done on all habitats belonging to 

the Natura 2000 network known for the Mediterranean region. A reference list of the consulted literature is 

available at the following website: http://vnr.unipg.it/habitat/index.jsp. 

In order to select the most suitable habitats for extensive green roofs, the following criteria were considered: 

species composition, vegetation structure, ecological conditions and distribution range. On the base of the 

Raunkier's classification of plant life forms (Box, 1987), preference was given to the vegetation types linked to 

the habitats characterized by the prevalence of pioneer, drought tolerant therophytes, hemicryptophytes and small 

chamaephytes, dwelling poorly developed soils and eroded slopes. 



Biodiverse green roofs in Mediterranean climate - Input and lessons learned from Germany and Switzerland  45 

Habitats having a species poor and scattered vegetation were excluded, as well as those characterized by a 

limited distribution range in the Mediterranean Region. The remaining habitats were grouped into three 

categories: those linked to sandy substrates (psammophilous vegetation), to gravely-pebbly substrates 

(glareicolous vegetation) and to xeromorfic soils (garrigues and dry grasslands). 

Biodiversity assessment 

Even if the approach to biodiversity assessment on extensive green roofs is classically based on the evaluation 

of species richness (Coffman & Waite, 2011) included non-native species (Hui & Chan, 2011) or presence-

absence of Red List animal species (Brenneisen, 2006), we esteem that the similarity, and therefore the 

compatibility, with natural biotopes should be focused on the vegetation cover, coherently with the current trends 

in ecological research. In particular, a plot-based approach enable to evaluate a number of additional parameters, 

which are much more informative than species checklists (Box & Fujiwara, 2011) based on the assumption that 

a given fauna can always be associated to well defined vegetation units. Indeed, it has been widely demonstrated 

in ecological research, that the occurrence of motile organisms in a given site, does not necessarily imply their 

stable presence, which instead is related to the attitude of the system vegetation-soil, to fulfil the behavioural 

traits of the inhabiting fauna. 

An highly standardized method widely used for the biodiversity assessment and monitoring of herbaceo-

chamaephytic natural vegetation was proposed by Dengler (2009) and it is based on a nested-plot sampling 

sized 0.0001 m², 0.001 m², 0.01 m², 0.1 m², 1 m², 10 m², 100 m². All areas below 100 m² are replicated twice 

within the largest plot. Besides of the species list in incremental surfaces, the following parameters are recorded 

in every 10 m² plot: percentage cover value of all occurring plant species; structural data (height and cover of 

vegetation layers); GPS coordinates (latitude, longitude, altitude); relief (inclination, aspect, relief position, 

microtopography); land use; soil depth, stone cover, litter and a mixed soil sample for the analysis of basic 

chemico-physical parameters (Corg, nutrients, pH, carbonate, conductivity, loss on ignition, soil texture). 

By using replicated smaller subplots, the approach does not only provide mean richness values, but also 

information on their variability, such as diversity indices, accounting for the varying performance of different 

species. Another parameter that can be easily obtained is the characterization of the species-area relationship 

and its variation over time, if the sampling is replicated yearly. Further, the frequency distributions of species at 

different spatial scales provide meaningful diversity information (Allers & Dengler, 2007) and the sampling 

approach with several replicates of all smaller plot sizes distributed within the largest plot allows a sound 

assessment of spatial heterogeneity of floristic, structural and abiotic parameters (Dengler, 2009). 
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The Dengler's approach can be easily applied to the biodiversity assessment on green roofs, to analyse the 

similarity ratio with comparable vegetation types in natural biotopes and its eventual variability over time. 

3.3 Results 

According to our screening, the list of Natura 2000 sites that could be imitated on Mediterranean roofs, in 

terms of characteristic species and substrates (loamy-sandy substrates, sandy gravel and natural top soil) is 

reported below, with short references to the construction techniques. Further details on such issue are reported 

in the discussion paragraph. In the following comments, bioclimatic units refer to Rivas-Martínez (1994,1996); 

plant sociological units refer to the European syntaxonomical checklist (Rodwell et al., 2002).  

1. Psammophilous vegetation (Habitats 2210 Crucianellion maritimae, 2230 Malcolmietalia dune 

grasslands, 2240 Brachypodietalia dune grasslands with annuals, 2260 Cisto-Lavanduletalia dune 

sclerophyllous scrubs) 

Coastal dune system are characterized by strong environmental gradients, which determine the coexistence 

of different vegetation types in relatively small areas (Frederiksen et al., 2006). One of the most outstanding 

features of these habitats is an high ecological diversity in terms of environmental heterogeneity and variability 

of species composition (Van der Maarel 2003; Martínez et al. 2004). In dune ecosystems, the most obvious 

gradient associated with vegetation diversity is related to primary succession with the earliest stages along the 

shoreline and more developed vegetation types landwards (Acosta et al. 2007; Doody 2008). This shoreline–

inland gradient is influenced by a set of ecological factors such as wind, waves, salt concentration, dryness and 

grain size of sand (Boyce 1954; Rozema et al. 1985; Hesp 1991) resulting in characteristic zonation of species 

assemblages and vegetation types (Barbour 1992; Davy & Figueroa, 1993). 

This allow a great versatility to design green roofs with sandy substrate, that, according to granulometry and 

see side distance, could recreate combinations of both annual and perennial species. In fact, different condition 

can be recreated by varying the substrate thickness with reference to habitats 2210 and 2260 for higher depths 

(10 -16 cm) and habitats 2220 and 2230 for lower ones (6-10 cm). Moreover, the vegetation of the latter habitats 

is dominated by annual plants and therefore is suitable to be mowed in order to get seed and mulching materials 

that, due to its fast decomposition, is a good initial biomass source. Instead, to get seeds from characteristic 

species from habitats 2210 and 2260, which are dominated by hemicryptophites and chamaephytes respectively, 

manual collection should be preferred. In this case the mulching material could be represented by alfalfa hay 

(Medicago sativa L.), which is mowed in flowering time and therefore doesn't contain seed that could compete 

with the sowed species, compromising the integrity of the system. 
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In Mediterranean areas, coastal littoral has been strongly damaged due to high urbanization rate (urban 

sprawl) and tourist infrastructure. Green roofs (recommended on existing buildings) with the previously 

mentioned communities could contribute to the protection of endangered species and habitats. 

2. Glareicolous vegetation (3250 Constantly flowing Mediterranean rivers with Glaucium flavum, 5320 Low 

formations of Euphorbia close to cliffs, 8130 Western Mediterranean and thermophilous scree) 

Mixed perennial and annual vegetation, growing on lithoclastic incoherent substrates, where the pedogenetic 

processes are hampered by a periodical supply of clasts. These habitats are represented by riverbeds and talus 

slopes covered with pebbles, stones and gravel. In the Mediterranean region, the vegetation at issue refers mainly 

to the plant communities ascribed to the class Scrophulario-Helichrysetea italici (Brullo et al. 1998). They are 

dominated by pioneer hemicryptophytes and chamaephytes forming an open patchwork, whose interstitial space 

is occupied by annual species that dry up at the beginning of the summer drought, leaving behind a rich soil 

seed bank that ensures their persistence across the dry season. 

The ecological gradients associated with vegetation diversity are driven primarily by the elevation, 

granulometry, chemical properties of the substrata together with water availability and periodical floods. In 

particular, the most suitable plant communities for green roofs belong to the following two alliances: Linarion 

purpureae and Euphorbion rigidae, the former including the vegetation of scree and talus slopes from the meso- 

to the oromediterranean bioclimates; the latter including the vegetation of gravelly riverbeds in the thermo- 

mesomediterranean bioclimates. The interstitial annual vegetation belongs to the classes Tuberarietea guttatae 

and Stipo-Trachynietea distachyae on acidic or neutral alkaline soils, respectively. 

The vegetation units characterizing the habitat 5320 are suitable for application on coastal areas, on roofs 

slightly influence by the marine areosol, while those of the habitat 8130 can be considered only in mountain 

areas (supra- and oromediterranean bioclimates).  

As in the previous case, there is plenty of possibilities to design highly diverse vegetation covers through the 

variation of depth and granulometry of the adopted substrata. On wide surfaces these variations will increase the 

patchiness and the chromatic-textural variance of the roof. The seeds of annual plants can be obtained through 

the mowing while those of perennial ones have to be collected manually. 

3. Garrigues and dry grasslands (5330 Thermo-Mediterranean and pre-desert scrub, 5420 Sarcopoterium 

spinosum phryganas, 6220* Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea) 

The considered habitat units include a variety of xerothermophilous garrigues and dry grasslands growing on 

oligotrophic soils throughout the Mediterranean region, from the thermo- to the supramediterranean bioclimate, 

from coastal to inland areas within markedly edapho-xeric conditions (Biondi et al, 2012). This vegetation is 
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mainly secondary, linked to degradation processes of woodlands due to the human influence (fire, overgrazing, 

deforestation). In particular, fire has been traditionally used in the Mediterranean area to create rangelands since 

prehistorical times. The species diversity in these habitats is constrained within certain limits of predictability by 

the spatial heterogeneity, periodical disturbance and stochasticity that is the basis for understanding the 

coexistence, in the same plots, of annual and perennial species (Guarino, 2006; Guarino & Ilardi, 2009). 

Typically, the Mediterranean dry grasslands consist of a mosaic, formed by more or less dense tussocks of 

perennial grasses with interstitial spaces occupied by annual grasses. The density of perennial vs. annual species 

is greatly influenced, as well, by disturbance and soil compaction: an excessive grazing pressure during the rainy 

season compacts the soil near the surface, which reduces infiltration, percolation, and water holding capacity, 

and concentrates roots near the surface (Menke 1989). Soil compaction also impedes root elongation, placing 

deep rooted species, such as the perennial bunchgrasses, at a disadvantage during seedling establishment. 

Seeds of annuals germinate faster and earlier and the roots develop faster than those of the seedlings of perennial 

grasses. Differences in germination date and early seedling vigour may determine the competitive ability of one 

functional group (Joffre 1990, Garnier 1992). 

As far as perennial plants are concerned, the ratio between grasses and dwarf-shrubs is often influenced by 

the structure and texture of substrata, with grasses dominating on relatively more nutrient-rich carbonatic or 

marly soils and dwarf-shrubs on acidic or leached substrata (Guarino et al., 2006). In particular, most of the 

Mediterranean thermo-xerophilous dwarf-shrubs display several symbioses with fungi and bacteria, in order to 

increase the efficiency of nutrient-uptake (Kummerow, 1981; Puppi & Tartaglini, 1991) 

Due to the strong relationship between human disturbance and the vegetation units at issue, the optimal way 

to collect seeds material is hay transfer from a donor meadow to the roof combined with manual collection of 

the seeds of shrub species. Copying the habitat and varying the thickness and the quantity of organic matter of 

the substrate, the characteristic patchiness of colours and textures of ephemeral and perennial species would be 

easily recreated. 

3.4 Discussion 

The methodology of hay transfer, as an alternative restoration method, is a technique developed since the last 

decade, based on the application of fresh mowing from areas with similar habitat conditions, which may be 

paired to topsoil removal (Kirmer & Mann, 2001; Patzelt et al. 2001; Hölzel & Otte 2003). Moreover, studies 

showed successful results in terms of plant species richness, number of target plant species and Red List plant 

species, both in a short- and long-term analysis, for the re-establishment of species rich grasslands (Kiehl & 

Wagner, 2006). 
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Applying diaspores with plant material (hay) has the advantage of having large plant species pools that 

normally are not commercially available with particular reference to rare species; of serving and maintaining the 
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Figure 2. Hay transfer method (known also as mulching technique) applied on the green roof of Technopark in Zurich. a) roof 
(sandy-gravel substrate with scarce vegetation) prior to the intervention, b) laying of ca. 2 cm commercial garden substrate and fresh 
hay  collected in September from the Zurich Lake water plant green roof in Wollishofen, c) result of the installation after a year, d) laying 
of ca 2 cm commercial garden substrate and sowing of seeds from threshed hay collected from July to September from the Zurich Lake 
water plant green roof in Wollishofen), e) result of the installation after a year 
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genetic material; of protecting seeds from extreme micro-climate conditions, specially on bare soils; of being a 

cheaper practical application in comparison with direct seed sowing. 
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Figure 3. Seeds obtained from donor meadow hay. a) Collection from donor meadow, b) drying of the hay and collection of the 
seeds from the ground, c) sieving of the final material containing seeds and fine hay to remove bigger leaves and stems, d, e) material 
germination tests in trays. 
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This technique, indeed, has been applied to improve Natura 2000 poor mesophilus species-rich grasslands 

(Buchwald et al., 2007) and in general to restore grassland biodiversity in combination with the sowing of 

structuring species (Coiffait-Gombault et al., 2011; Pèter Török et al. 2012). 

In Switzerland, the Green Roof team from the Zürcher Hochschule für Angewandte Wissenschaften (ZHAW – 

University of Applied Science) utilize for roof greening selected seed-mixture (UFA certified seeds) together with 

hay from close protected areas and/or from Lake water plant Moos in Wollishofen (Zurich). This suggest that 

green roofs themselves could represent also an alternative seed source. In fact, the team is running an experiment 

on hay transfer and seed collection from the aforesaid roof in Wollishofen (Zurich) (figure 2) and from donor 

meadows in Reinach (Basel land, Switzerland) and Lörrach (Baden-Württemberg, Germany) (figure 3).  

The total plant species richness and the number of target plant species are surely affected by mowing time 

and frequency. In fact, the seeds obtained from one time mowing source material, contain lower number of 

species compared with the richness of the donor meadows, due to the early- or late- flowering species (Kiehl & 

Wagner, l.c.). Therefore, one of the aim of the project is to define a replicable method to gain a final greater 

specie richness results, due to the repeated mowing within one season. To determine the seed quantity/diversity 

apex and therefore the mowing frequency, that in this specific case was set weekly from July to September 2013, 

a preliminary vegetation analysis and a floristic list is needed. Successively, according to the theoretical anthesis 

diagram, it is possible to establish the maximum flowering period that involve the higher number of species and 

consequently the highest diaspora, generally after one month. Evaluating on site the shifting period due to yearly 

changing climatic conditions, it is possible to define the mowing schedule. Unfortunately, the possibility to apply 

fresh plant clippings is rare and therefore the hay, after harvested, is dried and stored in big bags in a ventilated, 

covered space. The monitoring of the achieved results will be done through plant sociological relevés that will 

be compared with the known genetic material source. 

3.5 Conclusions 

The desirable collaboration between vegetation ecologists and planners, when designing a green roof in terms 

of species richness, seed source and collection, will lead to a comprehensive designing approach counting on 

some preliminary analysis such as climatic conditions (bio-climatic regions) and vegetation potential, including 

endangered species and habitats. Moreover, with the adoption of the plant-sociological approach to select the 

species, it is reasonable to predict that living roofs without irrigation are also possible in Mediterranean areas 

due to an increased resiliency of the system. In fact, many Mediterranean species (xerophytes) have developed 

morpho-functional and physiological adaptations to survive in the arid climatic conditions: changes that affect 

the leaves (imbricate or often linear, with a thick, waxy cuticle, silvery colour, sunken stomata), the roots (deep 

rooting, hairy surface, fast development of young plants, symbiotic relationships), decreased photosynthesis, 
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loss of leaves in response to drought, incident solar radiation and high summer temperatures (Davis & 

Richardson, 1995). Furthermore, the Mediterranean regions have a unique floristic richness, with over 24,000 

species of plants of which 35% are endemic (hot spots) and many of them linked to the Mediterranean basin. 

As last, but not less important, people should be aware that those roofs would change colour and appearance 

during the year, following nature cycles, seasonality and respecting the genus loci. This has to be considered as 

an assumption that would need public effort: if roofs of public buildings would be greened following this approach 

(best practices), imitating and blending with the surrounding, citizens would start to perceive green differently 

and in line with the main principle of sustainability to design with nature. 
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4 Thirty years unmanaged green roofs: ecological research and design implications 

[Catalano, C., Marcenò, C., Laudicina, V. A., & Guarino, R. (2016). Thirty years unmanaged green roofs: 

ecological research and design implications. Landscape and Urban Planning, 149, 11–19] 

Abstract 

The variations in species composition and assemblage of unmanaged simple-intensive green roofs in 

Hannover, Germany, were investigated over a thirty year period, in order to assess the persistence of the initial 

seed mixture and to evaluate floristic changes. The roofs were greened in 1985 with soil-based turf rolls sown 

with a mixture of five grasses (Festuca rubra, F. ovina, Agrostis capillaris, Lolium perenne and Poa pratensis). 

Three sets of 120 phytosociological relevés, sampled in 1987, 1999 and 2014, have been compared to assess: 

(1) nestedness vs. spatial turnover, (2) functional diversity and (3) the importance of vegetation dynamics on 

green roof performance and design. Results demonstrated that from 1987 to 1999 the species diversity increased 

and the species turnover prevailed over nestedness, due to the progressive niche occupation by new species. In 

contrast, from 1999 to 2014 species diversity remained steady, suggesting that nestedness prevailed over 

species turnover. The main driver of the observed functional changes was a shift towards relatively more thermo-

xeric conditions. In terms of plant life strategies, the competitive species sown on the roof gradually gave way to 

stress-tolerant and ruderal species, along with a progressive increase in species with short-distance seed 

dispersal strategies. It is concluded that: (a) to create resilient green roofs, spontaneous colonisation should be 

accepted and considered as a design factor; and (b) regional plant communities could serve as a model for seed 

recruitment and installations. 

4.1 Introduction 

Urban sustainability is one of the urgent challenges of the 21st century (Wu, 2014), since more than 50 % of 

the world’s population live in urban areas, and this figure is estimated to reach 66 % by 2050 (UNDESA, 2014). 

Continuously spreading cities and the growth of intensive agriculture are the major causes of habitat loss and 

fragmentation worldwide (Grimm et al., 2008). However urban green spaces can play a key role in biodiversity 

conservation (Goddard et al., 2010) and enhance urban ecosystem resilience (Colding, 2007). In particular, 

green roofs can partially compensate for the loss of green areas by replacing impervious surfaces, contributing 

to an increase in urban biodiversity (Brenneisen, 2003, 2006). In fact, by replicating specific habitat features and 

conditions, these artificial biotopes can host native flora and fauna in relatively undisturbed stands where plants, 

insects and birds can become established (Köhler, 2006; Kadas, 2006; Baumann, 2006).  

The first known study of the biotic colonisation of green roofs dates back to 1940, when Kreh (1945) listed 

the plant species colonising some tar-paper-gravel roofs in Stuttgart, Germany. This roofing technique was 
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developed at the beginning of 19th century in Silesia and consisted of a combination of tar and four layers of 

paper covered by a mixture of gravel and sand (Köhler & Poll, 2010). In Kreh's study (1945), species were 

categorised according to the following functional group: bryophytes, CAM (Crassulacean Acid Metabolism) 

species and therophytes, substrate depth preferences (5 to 20 cm), pollination and dispersal strategies. 

Modern green roofs can be classified as intensive, extensive and simple-intensive (German guidelines; FLL, 

2008). Extensive green roofs consist of a shallow substrate ranging from 6 to 15 cm, planted or sown with 

drought tolerant plant species, and require low maintenance; intensive green roofs consist of a > 20 cm thick 

substrate (normally top-soil), planted with woody and/or herbaceous species, and generally require irrigation 

and high maintenance; and simple-intensive green roofs can be seen as an intermediate roof type, consisting of 

15-20 cm thick substrate (including top-soil), hosting perennial grasses and tall herbaceous species, and require  

medium maintenance. 

Several studies of spontaneously colonised tar-paper-gravel, simple-intensive as well as extensive green 

roofs in central Europe, have described the recurrent plant communities thriving on different depths and kinds of 

substrate (Darius & Drepper, 1984; Thommen, 1986; Borchardt, 1994). These studies found that on 5-8 cm 

gravel roofs, stress tolerant species (Sedo-Scleranthetea) are enhanced while greater depths favoured ruderal 

species (Artemisietea vulgaris and/or Stellarietea mediae) and competitive species (Molinio-Arrhenatheretea 

and Festuco Brometea) (Bornkamm, 1961; Bossler & Suszka, 1988). Moreover, humus accumulation, nutrient 

supply and water holding capacity were identified as the main environmental drivers for plant establishment and 

community dynamics over time. 

Recently, plant functional traits including Grime’s CSR strategies (Grime, 1974, 2001) and life forms, have 

been used to predict green roof ecosystem services and identify suitable plant species (Nagase and Dunnett, 

2010; Lundholm et al., 2010; Van Mechelen et al., 2014). 

Despite the importance of long-term data in providing adequate planning recommendations (Rowe et al. 

2012), only few studies have examined green roof dynamics for more than a decade (Krüger, 1999; Köhler, 2006; 

Köhler & Poll, 2010).  Köhler & Poll (2010) assessed the effects of growing media on the vegetation quality and 

species richness of roofs in Berlin over a time span ranging from 13 to 48 years. Krüger (1999, 2001) instead 

focused on the changes in species composition over 12 years on the roofs of an eco-settlement in Hannover 

previously investigated by Ackermann & Vahle (1987). 

The present study revisited the research site investigated by Ackermann & Vahle (1987) and Krüger (1999, 

2001) to examine the composition of the plant community over a thirty year period. Where the main goal of 

previous studies was the phytosociological description of the vegetation, with the recognition of different facies 
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(characterized by the dominance of a given species) and typologies, the current study focuses on whole roof 

communities.  

We hypothesised that species composition and assemblage on unmanaged green roofs would have changed 

over the course of thirty years. Specific aims were: (1) to assess if such changes were due to nestedness (species 

loss) or to turnover (species replacement), (2) to determine changes in species and functional diversity over 

time and (3) to assess the importance of vegetation dynamics on green roof performance and design. 

4.2 Materials and methods 

Study area 

The study area consisted of 15 simple-intensive 

green roofs of the Waldorf School in the eco-

settlement "Laher Wiesen" in Hannover (Germany, 

52°22'N, 9°43'E; 55 m a.s.l.), built between 1983 and 

1985 on land formerly cultivated for rye, 9 km away 

from the city centre. The area lies north of the city 

park Eilenriede, near Laher Wald, at the southern 

edge of the Bothfeld district. Along the northern side, 

the eco-settlement is adjacent to farmland, whereas 

the other sides neighbour the city conurbation. 

The local climate, according to the Köppen-

Geiger classification, is warm-temperate, fully humid 

(Kottek et al., 2006). The roofs of the eco-settlement 

were designed by Boockhoof & Rentrop architects 

and by the landscape architect Gustav Störzer on the 

basis of the Grassdach-System-Minke roofing 

technique (fig. 1) (Minke & Witter, 1983; Minke 

2000). This technology was conceived for sloped 

roofs (5-25°) and consists of a wooden structure 

sealed with a root resistant, waterproof PVC 

membrane and a mixture of local topsoil and light 

aggregates overlapped by a readymade turf carpet 

(Rollrasen). The investigated roofs had an inclination 

of 25°, and were elevated 4 to 7 m from the ground. 

 

Figure 1. Detailed sketch of System Minke used in investigated 
roofs (after Minke & Witter, 1983, p. 42, modified). 
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Although differences in exposure and shade cast by trees could have locally influenced the roof vegetation, the 

effect of these variables were not investigated in the current study since we were interested in temporal changes 

in species composition, rather than in spatial variation. The substrate consisted of a mixture of topsoil/expanded 

clay (liapor) in a 1:1 ratio, 8 cm thick, plus another 8 cm in a 2:1 ratio. The turf rolls were prepared next to the 

settlement on plastic films to prevent root penetration into the ground. Ten centimetres of topsoil was sown with 

commercial seeds of Festuca rubra (50%), Festuca ovina (25%); Agrostis capillaris (5%); Lolium perenne (5%); 

Poa pratensis (15%) and installed on the roofs after 6 months. Our investigation focussed on the roofs of the 

Waldorf School (fig. 2), since they were left to the natural succession, in contrast to the rest of the settlement, 

where turfs were periodically irrigated, fertilised and mown as was originally intended (Krüger 1999, 2001). 

Since their installation, the roofs of the Waldorf School have been surveyed twice: in 1987 (Ackermann & Vahle, 

1987) and in 1999 (Krüger, 1999), allowing the presented long-term vegetation study and a realistic performance 

assessment. 

 

Figure 2. Location of the 64 relevés sampled in 2014. 
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Vegetation data 

A database of 138 species x 120 phytosociological relevés was created using TURBOVEG software 

(Hennekens & Schaminée, 2001), 33 of which were sampled between July and November 1987 (Ackermann & 

Vahle, 1987), 23 between May and June 1999 (Krüger, 1999), 64 between June and July 2014. In all cases, plot 

size ranged from 1 to 4 m2. All relevés were sampled following the phytosociological method of the Zürich-

Montpellier School (Braun-Blanquet, 1964). In addition to the species list and their respective cover values, each 

relevé included the following attributes: exposure, slope, total cover of grass and cryptogramic layer. 

Taxonomical nomenclature was standardised using The Plant List (http://www.theplantlist.org/, accessed in 

November 2014). All the relevés were georeferenced via the Google Maps interface of the TURBOVEG software 

and then exported in Quantum GIS vers. 1.8.0-Lisboa (fig. 2). 

Species traits 

In order to analyse the vegetation data, 32 plant species traits were considered, grouped into the following 

categorical (c) or ordinal (o) functional units: (1c) cholorogy, (2c) life form, (3c) seed dispersal strategy, (4c) 

life strategies (5o) Ellenberg indicator values (EIVs) (6c) hemeroby,  and (7o) urbanity. Species traits were taken 

from the BIOFLOR web database (http://www2.ufz.de/biolflor/index.jsp, accessed in November 2014; Klotz et al. 

2002) and from the archives of the Digital Flora of Italy (Guarino et al., 2010). In particular, each of the surveyed 

species was assigned: 

1. (1c) one of the following seven chorologic units: Boreal, Atlantic, Central-European, Eurasiatic, 

Cosmopolitan (including sub-cosmopolitan), Eurimediterranean (including paleotropical, 

eumediterranean, mediterranean-turanian) and Exotic, drawn from Guarino et al. (2010); 

2. (2c) one of the following five life forms, according to the Raunkiaer's classification (Cornelissen et al., 

2003; Harrison et al., 2010): chamaephyte, hemicryptophyte, phanerophyte, geophyte and therophyte, 

drawn from Guarino et al., (2010); 

3. (3c) one of the following five seed dispersal strategies: anemochory, autochory, barochory, zoochory 

(including epizoochory, endozoochory and myrmecochory), drawn from Guarino et al., (2010); 

4. (4c) one of the following three life strategies (Grime, 1974, 2001; Frank & Klotz, 1990): Competitor, 

Ruderal and Stress-tolerant, drawn from BIOLFLOR (Klotz et al., 2002); 

5. (5o) one of the following EIVs, based on Ellenberg et al. (1992): light (L), temperature (T), continentality 

(C), soil moisture (F), soil reaction (R), soil nitrogen (N), drawn from  BIOLFLOR (Klotz et al., 2002); 

6. (6c) one of the following five hemeroby degrees (Hill et al., 2002; Walz & Stein, 2014): oligohemerobic, 

mesohemerobic, β-euhemerobic, α-euhemerobic, polyhemerobic, drawn from BIOLFLOR (Klotz et al., 

2002); 
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7. (7o) an urbanity value (U), expressing the species’ affinity to urban environments on a scale from 1 to 5: 

from urbanophobic (1) to urbanophilic (5), drawn from BIOLFLOR (Klotz et al., 2002). 

Substrate chemical analyses 

In July 2014, fourteen representative plots (in terms of exposure, orientation and thickness) were selected. In 

each plot, three replicates of substrate cores were sampled to assess their chemical properties. Substrate 

samples were air dried and then sieved at 2 mm. Total organic carbon (TOC) and total nitrogen (TN) were 

determined on pulverised substrate samples by the Walkley– Black dichromate oxidation method (Nelson & 

Sommers, 1996) and by Kjeldahl digestion (Bremmer, 1996), respectively. Soil reaction was measured in 

distilled water using a soil/solution ratio of 1:2.5 (w/v) and a glass membrane electrode. Chemical properties in 

1985 (LUFA, 1985) were compared with those from 2014 using paired t-tests. 

Species change 

To compare species composition and relative abundance over time, the whole data set was imported into 

JUICE software (Tichý, 2002) and relevés were grouped according to the year: 1987 (group 1), 1999 (group 2) 

and 2014 (group 3). Based on presence/absence data and down-weighting of rare species, a non-metric 

multidimensional scaling (NMDS) ordination of the species composition of the three groups was performed 

using R software (version 2.9.0; R Development Core Team 2009). Since NMDS is a measure of dissimilarity 

based on a monotonic transformation where the rank order and the distances between points of the original 

correlation matrix are preserved in the ordination (Austin, 1976; Kenkel & Orlóci, 1986; Whittaker, 1987), it 

represents an ideal tool to assess the spatial turnover. In order to measure the percentage differences between 

the considered groups, the Mann-Whitney U similarity was measured on presence/absence data. In this specific 

case, the presence/absence method was adopted instead of the square root data transformation to discard the 

influence of the species percentage cover. The total number of species (species pool) per group (year of survey) 

was calculated together with the average species richness per plot and the species pool sizes were compared by 

means of accumulation curves. Moreover, to visualise how the species-richness varied across increasing number 

of plots, a sample-based rarefaction curve was computed (Colwell et al., 2004; Jiménez-Alfaro et al., 2012). 

Relative frequency (RF) of diagnostic species (Φ > 0.20; Chytrý et al., 2002), was calculated on a 0 to 1 scale, 

as a factor of a given species occurrence (N) on the total number of relevés for each group. Sørensen index was 

calculated to determine the β-diversity, using presence/absence data and bootstrap procedure with 500 

iterations. 

Functional diversity 
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To assess the shift in mean species trait values and their dissimilarity, a community-weighted mean (CWM) 

of each trait was calculated using FunctDiv (Lepš et al., 2006). CWM values are weighted by the relative 

abundance of species (Garnier et al., 2004). Species with mixed strategies and/or hemeroby (see tab. S1 for 

details) were assigned multiple traits. The obtained values for each group were organised in a traits/plot matrix, 

and a non-parametric Wilcoxon test was used to evaluate the differences between the years 1987-2014, 1987-

1999 and 1999-2014 (pairwise comparison). The analysis was performed in SPSS software 22.0. 

4.3 Results 

Species change 

There were clear differences in 

species composition between the 

three survey years (fig.3), particularly 

between the years 1987-2014, with a 

Mann-Whitney U percentage 

difference of 76.32% (z-statistics 

44.9, p <0.001). The lowest 

difference was detected between the 

years 1999-2014 (Mann-Whitney U: 

percentage difference 36.59%, z-

statistics 18.94, p <0.001) and 

intermediate values were obtained 

between the years 1987-1999 (Mann-

Whitney U: percentage difference 

68.82%, z-statistics 23.38, 

p<0.001). 

The total species richness 

increased from 1987 to 2014, with more species detected in 2014 (N=80 in 64 relevés), than in 1999 (N=70 

in 23 relevés) and 1987 (N=67 in 33 relevés). Although the sampling effort differed between the three survey 

years, the rarefaction curve (fig.4), showed that the cumulative number of vascular plants at the 23rd relevé was 

higher in the 1999 group, with 70 estimated species, followed by the 1987 group, with 61 species, and by the 

2014 group, with 58 species. The mean species richness per plot (α diversity) decreased from 1987 (14.1±9.1) 

to 2014 (10.8±3.7), reaching the maximum in 1999 (14.3±5.8). Furthermore, in 2014 the highest value of 

exclusive species was recorded, with 37 (26.8%) species, whereas 21 (15.2%) and 27 (19.5%) exclusive species 

 

Figure 3. NMDS ordination of group 1 (1987, +), group 2 (1999, ○) and group 3 
(2014,*). Dashed lines envelope the three sampling periods. 
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were recorded in 1999 and 1987, respectively. Only 23 (16.6%) species were in common among all three years, 

while 14 (10.1%) species were in common between the years 1999-2014; 11 (7.9%) between the years 1987-

1999 and only 5 (3.6%) between the years 1987-2014. The β diversity, instead, increased from 1987 

(0.49±0.03) to 1999 (0.63±0.03) and then it remained constant until 2014 (0.65±0.02). 

Concerning the relative frequency (RF) of the diagnostic species, 10 of them were in common in all three 

groups; 15 were exclusively found in 1987, 9 in 1999 and 12 in 2014 (tab. 1). 

Functional diversity 

A pairwise comparison of functional diversity between years found that for most of traits there were differences 

over time. Out of 32 traits, 23 traits differed significantly between the years 1987-2014, 18 between the years 

1987-1999 and 14 between the years 1999-2014 (tab. 2). 

Between the years 1987-2014, the following traits displayed a significant variation: Boreal and Central-

European species decreased while Exotic, Eurimediterranean and Eurasiatic species increased. The distribution 

frequency of all life forms changed: hemicryptophytes and geophytes decreased whereas chamephytes, 

 

Figure 4. Rarefaction curves showing the cumulative number of vascular plants with increasing the number of plots sampled 
on the grass roofs in 1987, 1999 and 2014 (differentiated in grey scale). Solid lines show the estimated species-richness, dotted 
lines show their 95 % confidence intervals and the dot-dashed line cuts the curves at the same sampling effort. 
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phanerophytes and therophyte 

increased. All the seed dispersal 

strategies changed significantly: 

anemochore species decreased 

while autochore, barochore and 

zoochore species increased. EIVs 

varied significantly, with the 

exception of R and N: in particular, 

C, M, and T decreased, while L 

increased. As regards life strategies, 

competitor species decreased 

significantly, while ruderal species 

increased. Hemeroby values 

showed that α-euhemerobic 

decreased while β-euhemerobic 

and oligohemerobic species 

increased. 

Considering the significant 

variations observed between the 

years 1987-1999, Boreal species 

decreased while Eurasiatic and 

Eurimediterranean species 

increased. Life forms varied as well: 

hemicryptophytes and geophytes 

decreased while therophytes 

increased. As regards the seed 

dispersal strategies, anemochory 

decreased whereas barochory and 

zoochory increased. The following 

EIVs decreased: C, M, R, N. 

Competitor species decreased while 

ruderal and stress tolerant ones 
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increased. Oligohemerobic species increased and urbanity decreased. 

The significant variations observed between the years 1999-2014 indicated a decline of Boreal, Central-

European and Cosmopolitan species, while Eurasiatic, Eurimediterranean and Exotic increased. Concerning the 

life form, only phanerophytes and chamephytes increased significantly. As regards the seed dispersal strategies, 

anemochore and zoochore species decreased while autochore and barochore species increased. As regards 

EIVs, only R increased. Life strategies and hemeroby did not show any significant variation, while urbanity 

displayed a slightly significant increase. 

Substrate parameters 

The chemical properties of the substrate sampled in 1985 were 36 g kg-1 total organic carbon (TOC), 2.6 g 

kg-1 total nitrogen (TN) and 4.5 pH, whereas those determined on substrates sampled in 2014 were (means ± 

standard deviation) 31.0±3.0 g kg-1 of total organic carbon, 1.7±0.2 g kg-1 of total nitrogen and pH of 

5.4±0.5. The absence of significant shifts in chemical properties between 1985 and 2014 was congruent with 

the absence of significant variation of the edaphic EIVs (N, R) between 1987 and 2014 (tab. 2). Unfortunately, 

no chemical data of the substrate are available for the year 1999 when, according to the EIVs, a slight acidification 

of the substrate could have occurred. 

4.4 Discussion 

The hypothesis that species composition and assemblage changed during 30 years was confirmed by the 

estimation of species pools, α- (species richness per plot) and β-diversity (species diversity within group) and 

diagnostic species per group. These changes were due both to spatial turnover (species replacement) and 

nestedness of assemblage (species loss) (Wright & Reeves, 1992; Ulrich et al., 2009). Since in the first decade 

(1987-1999) the species richness per plot and the species diversity per group increased, species turnover was 

more important than species loss, due to the progressive occupation of empty niches. In contrast, during the 

years 1999-2014 species richness per plot decreased and species diversity per group remained steady, revealing 

that nestedness prevailed on turnover. Our results showed that only few of the species included in the initial seed 

mixture were able to establish themselves permanently. 

The CWM values of the considered plant traits are useful descriptors of the roof ecosystem dynamics (Garnier 

et al., 2004). Since ecosystem functioning is influenced more by the functional diversity than by the species 

richness (Díaz et al., 2007), and the functional diversity significantly changed between our three survey years, 

we expect that stability, productivity, nutrient balance and resilience of the green roofs also changed over the last 

30 years (Mason et al., 2003). The main driver of these changes was a shift towards relatively more thermo-xeric 

conditions, revealed not only by the significant increase of Eurimediterranean and Eurasiatic species but also by 
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the decrease of hemicryptophytes in favour of therophytes and, consequently, by the significant variation of the 

EIVs related to temperature and edaphic humidity. 
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With regard to plant dispersal, two years after the construction of the roof (1987) anemochory dominated. 

This means that the competitive species that were originally sown decreased gradually, leaving space and 

resources to the ruderal ones. This may be a result of the ability of wind-dispersed ruderal species to colonise 

empty niches, which progressively became available (Grime, 2001). A greater number of ruderal species was 

recorded in 1999 (tab. 2) after which, stress-tolerant ones gained space, and were at their most common in 

2014. Along with that, the progressive increase in barochory and autochory illustrated a shift in the succession 

towards short-distance dispersal species. Furthermore, the establishment of ant colonies probably affected the 

vegetation dynamics (Guarino et al., 2005) as the observed increased incidence of zoochorous 

(myrmecochorous) species in 1999-2014 would suggest.  

Unexpectedly, zoochory and hemerochory played a more important role than wind which may be related to 

the habitat filtering as provided by settlements. In fact, dispersal by man and animals may express species-

specific preferences i.e. animals may prefer locations with already established biocenosis (fertile surfaces) rather 

than roads or pavements (sealed surfaces). Wind, instead, is normally channelled along streets, buildings and 

in general sealed surfaces increasing the probability that anemochorous species will land on unfertile grounds 

(Knapp et al., 2008). 

As a matter of fact, green roofs can serve not only as extra fertile surfaces (not sealed) where plant species 

can grow in urban environments, but also as places where they may thrive and build a viable population.   

There remain other factors that could have affected community dynamics: (a) the influence of the seed bank 

persisting in the substrate, which contained a relevant percentage of local topsoil, (b) the possible influence of 

random human visits (e.g for maintenance purposes) which may have accidentally introduced seeds from 

neighbouring areas, and (c) the effect of climate change on the observed shifts in life strategy. Indeed, since the 

edaphic conditions remained almost steady over the thirty year period and the selected roofs were not maintained, 

environmental factors might have been the most influential. Throughout the last century, Central Europe has 

experienced a remarkable increase in mean temperatures and the last decade in particular (2005-2014) was the 

warmest on record (EEA, 2015). In Germany specifically, there has been a strong increase in air temperature and 

between 1988-2000, almost all years had warmer annual means than the average (Chmielewski et al., 2004). 

This trend has been even more substantial in urban agglomerations due to the heat-island effect which favours 

the establishment of xeric species coming from warmer regions (Sukopp & Wurzel, 2003). 

Moreover the turf-roll construction and the inclination of the roofs was responsible for certain abiotic 

conditions. The greening took place on the ground and after six months, the grown grass-mats were installed on 

the sloped roofs. This resulted in the change of several growing conditions such as moisture (from damp, due 

to the effect of the plastic film used to prevent the root penetration into the soil, to drained, due to the roof slope 
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and used substrate mixture) and exposure as the roofs were facing north, south, east and west. Moreover, the 

inclination caused a slight shift of the substrate and thus an alteration of the initial homogeneous thickness: on 

the ridge, the substrate varied from 5-10 cm whereas the depth at the gutter ranged from 20-25 cm. These effects 

became visible after several years: the survey conducted in 1987 still reflected the initial conditions, while in 

1999 and 2014 the decline of competitor species in favour of ruderal and stress tolerant species became evident. 

4.5 Conclusions 

Species composition and assemblage changed dramatically over 30 years: from five species sown in 1985, 

over 10 times more species were recorded in 1987 (67), in 1999 (70) and in 2014 (80), with only 23 of them 

in common across the whole data set. This suggests that tailored seed mixtures rarely possess the ability to 

create stable communities without high maintenance (irrigation, fertilisation and weeding). Therefore, if the aim 

is to develop resilient plant communities on green roofs, spontaneous colonisation should be accepted and 

considered as a design factor.  

We believe that screening regional flora, the recurrent combinations of plant species could serve as a model 

for seed recruitment and installation on green roofs (Catalano et al., 2013). In fact, plants thriving in similar 

conditions to those of the roofs but not belonging to the regional nor to the local species pool (sensu Zobel et 

al. 1998) can become successfully established but may fail to enhance habitat connectivity in urban areas. 

From a monitoring perspective, plant functional traits prove to be a good means to assess and interpret 

species change over time. With reference to CSR strategies, the most successful plants in our study were the 

stress-tolerant species (which have the capacity to maximise limited resources) followed by the ruderal species 

(which have the capacity to maximise resources in disturbed conditions). These species were better adapted to 

green roof conditions and outcompeted the sown ones. 
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