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In this work lipid ordering phase changes arising in planar membrane bilayers is

investigated both accounting for elasticity alone and for effective viscoelastic response

of such assemblies. The mechanical response of such membranes is studied by minimizing

the Gibbs free energy which penalizes perturbations of the changes of areal stretch and

their gradients only (Deseri and Zurlo, 2013). As material instabilities arise whenever areal

stretches characterizing homogeneous configurations lie inside the spinoidal zone of the

free energy density, bifurcations from such configurations are shown to occur as oscillatory

perturbations of the in-plane displacement. Experimental observations (Espinosa et al.,

2011) show a power-law in-plane viscous behavior of lipid structures allowing for an

effective viscoelastic behavior of lipid membranes, which falls in the framework of

Fractional Hereditariness. A suitable generalization of the variational principle invoked

for the elasticity is applied in this case, and the corresponding Euler–Lagrange equation is

found together with a set of boundary and initial conditions. Separation of variables

allows for showing how Fractional Hereditariness owes bifurcated modes with a larger

number of spatial oscillations than the corresponding elastic analog. Indeed, the available

range of areal stresses for material instabilities is found to increase with respect

to the purely elastic case. Nevertheless, the time evolution of the perturbations solving
rved.
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the Euler–Lagrange equation above exhibits time-decay and the large number of spatial

oscillation slowly relaxes, thereby keeping the features of a long-tail type time-response.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Lipid bilayers are known to be building blocks of almost all
types of biological membranes, as they surround the cells of
almost of all living organisms. In the last decade, the growing
availability of advanced microscopy and imaging techniques
has determined a blooming of interest in the study of biol-
ogical membranes, often revealing spectacular examples of
intricate patterns at micro and nano scales (see, e.g.,
Baumgart et al., 2003).

The intimate presence of lipids in the cell membrane
strongly influences its multiphysics and, hence, its mechan-
ical behavior. Of course this is highly dependent on a rich list
of parameters such as the configuration assumed by the
lipids, the chemical composition, temperature of their watery
environment and applied osmotic pressure (Bermúdez et al.,
2004; Das et al., 2008; Iglic, 2012; Sackmann, 1995; Hu et al.,
2012; Norouzi and Müller, 2006; Agrawal and Steigmann, 2008,
2009; Walani et al., 2015; Baumgart et al., 2005).

In particular, these amazing structures are capable to
sustain bending moments and normal stress, due to their
special constitutive nature, showing ordering–disordering
phenomena which allow changes in the shape for responding
to the external solicitations. The pioneering works on model-
ing the bending behavior of biological membranes can be
traced back to Canham (1970) and Helfrich (1973). These
models rely upon the assumptions of (i) “in-plane fluidity”
and (ii) elasticity of the membrane, hence in-plane shear
stress cannot arise.

Other studies on the equilibrium shapes of biomembranes
include the influence of presence of embedded proteins
(Canham, 1970; Jenkins, 1977; Agrawal and Steigmann, 2009;
Biscari and Bisi, 2002).

The ordering–disordering phenomena have been exten-
sively investigated (Akimov and Kuzmin, 2004; Chen et al.,
2001; Falkovitz et al., 1982; Goldstein and Leibler, 1989; Iglic,
2012; Jahnig, 1981; Owicki et al., 1978; Owicki and McConnell,
1979) in order to understand their influence on the mechan-
ical behavior of the biological membranes. This leads to the
formation of buds (Lipowsky, 1992), but this transition can be
also related to the molecules structure (Komura et al., 2004;
Pan et al., 2009; Rawicz et al., 2000).

The energetics governing the thermo-chemo-mechanical
behavior of this structure was recently derived (Deseri et al.,
2008; Deseri and Zurlo, 2013; Agrawal and Steigmann, 2009;
Maleki et al., 2013) for a better understanding of the mechanics
of the biological membranes and a powerful tool for predicting
their response whenever specific conditions occur.

The main feature of this approach is that the energetics of
the membrane can be described through one single ingredi-
ent: the in-plane membrane stretching elasticity. This allows
for describing the response with respect to local area changes
on the membrane mid-surface. The principle of the mini-
mum of energy allows for characterizing the governing
equation of the mechanical response of the membrane. This
approach allows for determining the profile and the boundary
layer of the disordering–ordering phenomena, i.e. the change
from a thicker domain (ordered phase) to a thinner one
(disordered phase), and their associated rigidities.

The main feature of the energy derived in Deseri and
Owen (2010) is the presence of two turning points in the local
stress governing the biological membrane behavior (see
Fig. 2(a)). They are placed in a region characterized by
material instabilities, i.e. in a spinoidal zone. Henceforth,
whenever the external conditions are such that the areal
stretch, i.e. the reciprocal of the thinning, is enclosed in this
region, the response may produce a rapid change of the
geometry, i.e. material instabilities can occur. In this work,
we show that this occurrence is exhibited even when the in-
plane viscosity of the lipid membrane is accounted for. In this
regard, the experimental observations of lipid viscous beha-
vior showed that the loss and storage moduli are well
described by power law functions (Espinosa et al., 2011). This
observation suggests that the viscoelastic behavior of the
biological membrane is properly described in the framework
of the Fractional Hereditariness. Indeed, upon introducing an
enriched kinematics accounting for in-plane shears and the
exhibited in-plane power-law viscosity in a parallel contribu-
tion, a dimension reduction procedure analog to one
shown in Deseri et al. (2008) and Deseri and Zurlo (2013) will
be used for studying the fractional viscoelastic behavior
mentioned above.

The onset of bifurcated configurations possibly arising
from homogeneous configurations characterized by an areal
stretch lying in the spinoidal region is studied in Section 2.
Here we minimize the total elastic (Gibbs free) energy to
determine the bifurcated modes and the relationships
between the number of nucleated spatial waves with the
critical values of the areal stretches.

The influence of the effective viscoelasticity on the mate-
rial instabilities exhibited by the membrane is studied in
Section 3.

The problem is formulated by seeking for the values of the
areal stretches for which unknown time evolving bifurcated
configurations could occur. To this aim, in full analogy with
the elastic case, a variational principle is employed. Here, the
Gibbs free energy density is taken from Deseri et al. (2014),
where a rheological model yields the Staverman–Schartzl free
energy (Del Piero and Deseri, 1996, 1997; Deseri et al., 2006;
Deseri and Golden, 2007) as the one for power-law materials.

As in the elastic case, the viscoelastic free energy has a
local and a nonlocal part. There, the power at which stress
and hyperstress (which performs work against changes of the
displacement gradient ux, see (Deseri and Zurlo, 2013) for
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more details) relax could be different, as diffusion mechan-
isms may occur at different average speed depending on
whether or nor they arise in a boundary layer between
different phases or in a given phase.
2. The membrane elasticity theory for the lipid
bilayers

In this section we briefly recall the main results obtained in
Deseri et al. (2008) and Zurlo (2006), together with a schematic
description of the approach followed in the papers. There the
formulation of the membrane problem is restricted to initially
planar membranes, i.e. the effects of spontaneous curvature
have been neglected. In this case a simplified version of the
elastic energy for the configuration change of the membrane
geometry is obtained.

An orthonormal reference frame ðe1; e2; e3Þ is introduced
and a prismatic region B0 of constant thickness h0 is taken as
reference configuration. A flat mid-surface Ω in the plane
spanned by ðe1; e2Þ is singled out for further use. Points of B0

are denoted by

x¼ xþ ze3; ð1Þ
where x¼ x e1 þ y e2 and zAð�h0=2;h0=2Þ. Denote by f the
deformation map and by F¼∇f its gradient. Thus, the stored
Helmholtz free-energy can be expressed as

Eðf Þ ¼
Z
B0

WðFÞdV¼
Z
Ω

Z h0=2

�h0=2
WðFÞdz dΩ; ð2Þ

where W is the purely elastic Hemholtz energy density per
unit volume. The surface energy density is, then,

ψðf Þ ¼
Z h0=2

�h0=2
WðFÞdz: ð3Þ

Lipid membranes are known to be characterized by in-plane
fluidity, corresponding to the impossibility of sustaining shear
stresses in planes perpendicular to e3, unless some viscosity
is present. This constitutive assumption can be used to
restrict the pointwise dependence W on a list of three
invariants of F

I ðxÞ ¼ ~JðxÞ; det FðxÞ; ϕðxÞ� �
; ð4Þ
Fig. 1 – Schematic representation of the deformation (5) of a
prismatic, plate-like reference configuration B0 into the
current configuration B. The gray box depicts the space
occupied by two lipid molecules, their volume being
conserved during the deformation. Courtesy of Deseri and
Zurlo (2013).
which can be interpreted as the areal stretch of planes
perpendicular to the direction e3, the volume variation and
the stretch in direction e3, i.e. the thickness stretch
ϕðxÞ ¼ hðxÞ=h0, respectively.

In order to capture the out-of-plane deformations of the
membrane and the occurrence of thickness changes, the
following ansatz (see Fig. 1) has been assumed:

f ðxÞ ¼ gðxÞ þ zϕðxÞnðxÞ; ð5Þ
where gðxÞ ¼ gðx; y;0Þ defines the current mid-surface of the
membrane, that is θ¼ gðΩÞ, where n is the outward normal to
θ and where ϕðxÞ ¼ hðxÞ=h0 is the thickness stretch, with h the
current thickness. Such ansatz permits to make explicit the
dependence of the invariants I on z and, ultimately, to
perform the expansion of (3) in powers of the reference
thickness h0.

The molecular volume of biological membranes can be
considered almost constant in a wide range of temperature
(Goldstein and Leibler, 1989; Owicki et al., 1978). Because (5)
holds, this condition can be imposed by means of a quasi –
incompressibility constraint

det Fðx; 0Þ ¼ ~Jðx; 0ÞϕðxÞ ¼ 1: ð6Þ
The constraint (6) is first order approximation of the exact

incompressibility requirement, since det FðxÞ ¼ det Fðx;0Þ þ
OðzÞ for a planar deformations, the condition (6) implies that
det FðxÞ ¼ 1 holds exactly. This is the special case considered
in this work.

It is then appropriate to introduce the restriction of the
Helmholtz energy density W to Ω for quasi-incompressible
deformations,

wðJÞ ¼Wð~J; det F;ϕÞ
���
z ¼ 0

¼WðJ; 1; J�1Þ; ð7Þ

where JðxÞ ¼ ~Jðx;0Þ.
At this point, under ansatz (5) and the assumptions of in-

plane fluidity and bulk incompressibility, the expansion of (3)
up to h0

3 gives

ψ ¼ φð JÞ þ κðJÞH2 þ κGðJÞKþ αðJÞ
��� gradθ Ĵ
� �

m

���2; ð8Þ

where H and K are the mean and Gaussian curvatures of the
mid-surface θ, respectively, κðJÞ and κG are the corresponding
bending rigidities and

α Jð Þ ¼ h2
0

24
φ

0 ðJÞ
J5

: ð9Þ

In Eq. (8), Ĵ is the spatial description of J, defined by the
composition Ĵ○g¼ J, gradθ is the gradient with respect to
points of the current mid-surface θ, and ð�Þm gives his material
description.

The main ingredient of the two-dimensional membrane
model derived in (8) is the surface Helmholtz energy φð JÞ,
which regulates the in-plane stretching behavior of the
membrane and describes the phase transition phenomena
taking place in lipid bilayers. In fact, due to increase in
temperature the (hydro)carbon tails of phospholipid mole-
cules undergo a (first-order) phase transition, i.e. a thickness
reduction from the liquid ordered phase Lo to the liquid
disordered phase Ld. Due to the constraint Jϕ¼ 1, both J and
ϕ have been adopted in the literature as coarse-grained order
parameters for the study of the Lo�Ld transition (see, e.g.,
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Fig. 2 – The stretching energy φðJÞ adapted from Goldstein
and Leibler (1989) for a temperature T� 30deg and related
local stress φ

0 ðJÞ ¼ τðJÞ. The areal stretch Jo¼1 corresponds to
the unstressed, reference configuration B0. Courtesy of
Deseri and Zurlo (2013).
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Falkovitz et al., 1982; Goldstein and Leibler, 1989; Jahnig, 1981,
1996; Owicki et al., 1978; Owicki and McConnell, 1979;
Sackmann, 1995).

Experimental evidence clearly shows that for a given
chemical composition there exists a temperature range
where the Lo and Ld phases coexist, organizing themselves
in domains called rafts.

A classical method to determine φð JÞ is the construction of
an appropriate Landau expansion of the stretching free
energy in powers of the order parameter J (see, e.g.,
Falkovitz et al., 1982; Goldstein and Leibler, 1989; Komura
et al., 2004; Owicki et al., 1978; Owicki and McConnell, 1979).
The advantage of the Landau expansion is that its para-
meters can be related to measurable quantities, such as
the transition temperature, the latent heat and the order
parameter jump (see (Goldstein and Leibler, 1989) and the
treatise (Sackmann, 1995) for a detailed discussion).

By assuming that for a fixed temperature the membrane
natural configuration B0 coincides with the flat, ordered Lo
phase, in which J¼ Jo ¼ 1, the stretching energy is chosen in
the form

φð JÞ ¼ a0 þ a1 Jþ a2 J2 þ a3 J3 þ a4 J4; ð10Þ
where the parameters ai ði¼ 0;…;4Þ depend in general on
temperature and chemical composition. In the lack of specific
experimental data and in order to show the numerical
feasibility of the model, we calibrate these parameters on
the basis of the experimental estimates provided by
Goldstein and Leibler (1989), Komura et al. (2004), and
Komura and Shimokawa (2006). For a temperature T� 301,
we have

a0 ¼ 2:03; a1 ¼ �7:1; a2 ¼ 9:23; a3 ¼ �5:3; a4 ¼ 1:13; ð11Þ

dimensionally expressed in ½J�½m��2. It is worth pointing out
that this specific choice is illustrative and is meant to show
the feasibility of the current approach.

2.1. Planar case

The study of the equilibrium problem for a planar lipid
membrane described by the energy (10) with the constants
given by (11) permits to elucidate the emergence of thickness
inhomogeneities in the membrane and allows one to calcu-
late the corresponding rigidities and the shape of the bound-
ary layer between the ordered and disordered phases.
Whenever no curvature changes are experienced by the lipid
bilayer, the elastic energy density in (8) takes the form:

ψDZ ¼ φ Jð Þ þ αð J Þ‖gradθ Ĵ‖
2: ð12Þ

In this work, following Coleman and Newman (1988), we
consider a membrane that in the reference configuration B0

has the form of a thin plate of homogeneous thickness h0
(direction e3), width B (direction e2) and length L (direction e1).
The reference membrane mid-surface θ corresponds to z¼0,
and its edges are defined by x¼7L=2 and y¼7B=2. Hence-
forth, the three-dimensional membrane deformation is
further restricted with respect to (5), according to

f ðxÞ ¼ gðxÞe1 þ ye2 þ zϕðxÞe3 ð13Þ
so that the width B is kept constant and its gradient takes the
following form:

F¼∇f ¼
gx 0 0

0 1 0

zϕx 0 ϕ

2
64

3
75; ð14Þ

where the subscript x denotes differentiation with respect to
x. The displacement component along e1 is uðxÞ ¼ gðxÞ�x.
After setting

λðxÞ ¼ gxðxÞ ð15Þ

for the stretch in direction e1, we have det F¼ λϕ¼ 1 and J¼ λ.
Hence ϕ¼ λ�1, so that the membrane deformation is com-
pletely determined by J¼ λ. In Deseri and Zurlo (2013), the
Euler–Lagrange equation related to this kinematics and the
same form of local energy (10) was deeply studied, obtaining
the following result:

γ Jð Þ Jþ 1
2γ Jð Þ J2x þ τ Jð Þ ¼ Σ ð16Þ

where γð J Þ ¼ 2αð J Þ and Σ is a force per reference length on the
edges x¼7L=2. In such conditions, it is easy to show that
homogeneous configurations are in the set of equilibria.
Indeed, whenever an homogeneous configuration is consid-
ered, the higher-order terms drop to zero and the equilibrium
equation reads as:

τð J Þ ¼ Σ ð17Þ
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The special form of the local stress τð J Þ ¼ φ
0 ð J Þ shown in Fig. 2

allows for discriminating several cases around the spinoidal-
zone,i.e. where the function τð J Þ is an S-shaped function.
Indeed,whenever JoJ1 and J4J2 the equilibrium can be
reached for only one value of J, namely Σ ¼ τð J Þ. On the
contrary,if J1oJoJ2 the configuration lies in the spinoidal-
zone,and the membrane can sustain the same value of the
stress by assuming three different configurations,i.e. the
three intersection of the function τð JÞ with the horizontal
straight line representing the values of the stress at the
edges. Here,the only parameter governing the membrane
behavior is the areal-stretch J, henceforth,by recalling the
basic idea of the instabilities of structures,the system is
stable if the second derivative of the total potential energy
(namely φð J Þ for an homogeneous configuration) is positive.
Therefore,two different behaviors occur inside the spinoidal
zone: if J1oJoJmax or JminoJoJ2 the second derivative of the
energy is positive φ″ð J Þ40 (i.e. the slope of τð J Þ ¼ φ

0 ð J Þ is
positive),and the behavior is stable,otherwise JmaxoJoJmin and
the second derivative assumes negative values,namely
φ″ð J Þo0 and the slope of τð J Þ ¼ φ

0 ð J Þ is negative, determining
the unstable behavior. The only interesting phenomena due
to a perturbed configuration arise whenever the membrane,
for some reasons (e.g. a configuration imposed in an experi-
mental setup), is homogeneously stretched with a value lying
in the unstable zone.

2.2. The linearized mechanics of membrane elasticity

In this section we obtain the linearized equation of lipid
membrane under the plane strain geometry (14) with gx ¼ J
and ϕ¼ ϕ (hence ϕx ¼ 0). In this regard let us denote with ε the
strain field perturbing uniformly the stretched configuration
just described. The elastic free energy density (8) for the
membrane is then evaluated at the perturbed configuration
J¼ J þ ε, and takes the form

ψDZ ε; εxð Þ ¼ φ J þ ε
� 	þ α J þ ε

� 	
J J þ ε
� 	

x J
2 � φ J

� 	þ φ
0
J
� 	

ε

þφ″ð JÞ
2

ε2 þ α J
� 	

Jεx J2 ð18Þ

where we neglected higher-order contributions in ε2. Then
the free energy takes the form

ΨDZ ¼
Z
Ω
ψDZðε; εxÞdx; ð19Þ

where a domain ΩA ½�L=2; L=2� is considered and

ψDZ ε; εxð Þ ¼ φ J
� 	þ φ

0
J
� 	

εþ φ
00 ð JÞ
2

ε2 þ α J
� 	

ε2x : ð20Þ

As a consequence of this choice, the (in-plane) displacement
field is described through a perturbation v such that u¼ u þ v.
Of course, εðxÞ ¼ vxðxÞ.

We assume that the membrane is pulled by opposite
tractions of magnitude Σ (force per reference length) at the
boundary, i.e. on the edges x¼7L=2, although the case in
which the end displacements are controlled may be treated
in an analog way (see, e.g., Triantafyllidis and Bardenhagen,
1993). Due to the presence of nonlocal terms εx, it is necessary
to introduce hyper-tractions Γ which perform work against
displacement gradient vx at the boundary (Puglisi, 2007).
Henceforth, the total energy E change in a neighborhood of
the homogeneously deformed configuration reads as follows:

E ¼ B ΨDZ�Wðv;vxÞ; ð21Þ
where B denotes the width of the membrane patch and W is
the external work of the applied tractions Σ and hypertrac-
tions Γ (see Deseri and Zurlo, 2013) defined as follows:

Wðv;vxÞ ¼ B Σðu þ vÞ þ Γðux þ vxÞ½ �∂Ω; ð22Þ
where u ¼ Jx is the displacement corresponding to the homo-
geneously stretched configuration from which bifurcations
are sought. Upon substituting (18) and (21) in (22) the total
energy change takes the following form:

E ¼ B
Z
Ω

φþ φ
0
J
� 	

vx þ
φ″ð JÞ
2

v2x þ α J
� 	

v2xx


 �
dx�B Σ vþ Γ vx½ �∂Ω þ E : ð23Þ

The variation of the energy is computed with respect to a
reference value EðJÞ defined as follows:

E ¼ B
Z
Ω
φð JÞdx� Σu þ Γux½ � ∂Ω: ð24Þ

In the sequel all the quantities with the over-bar are referred
to the homogeneously stretched configuration, e.g. φ≔φð JÞ,
φ″≔φ″ð JÞ and α≔αð JÞ.

The resulting governing equation of the planar membrane
is obtained by imposing the stationarity of E (see Appendix A
for details). Such equation together with its boundary condi-
tions reads as follows:

2αv⁗�φ″v″ ¼ 0 in Ω

either φ″v
0 �2αv‴ ¼ Σ�φ or δv¼ 0 in ∂Ω

either 2α v″ ¼ Γ or δv
0 ¼ 0 in ∂Ω

8><
>: ð25Þ

It is worth noting that homogeneous configurations of the
membranes from which oscillatory perturbations could arise
are not known. In order to find the values of J characterizing
such homogeneous states and to study the solution of the
boundary value problem governing bifurcated equilibria from
such configurations, a parameter ω is introduced as follows:

ω2≔
þφ

00

2α
if φ

00
40

�φ
00

2α
if φ

00o0;

8>>><
>>>: ð26Þ

where

φ
00

2α
¼ 12

h2
0

φ
00

φ
0 J

5
; ð27Þ

because of (9). Henceforth, Eq. (25) can be recast as

v⁗8ω2 v
00 ¼ 0 in Ω

either7ω2v
0 � v

00 ¼ Σ�φ

2α
or δv¼ 0 in ∂Ω

either 2α v
00 ¼ Γ or δv

0 ¼ 0 in ∂Ω:

8>><
>>: ð28Þ

The choice of the boundary conditions above generates
various cases. For the sake of illustration, we choose the case
in which the displacement is constrained and the hypertrac-
tions are imposed at the boundary, i.e. v¼0 and 2αv″ ¼ Γ.

It is worth noting that the assumed value of ω2 affects the
quality of the solution, i.e. the onset of phase changes in the
elastic membrane. In this regard some sub-cases can be
identified depending upon the location of the reference con-
dition associated to J in the stretching energy function in Fig. 2.
Indeed, because φð JÞ has at most one stationary point J0 unless
the lipid bilayer is at its transition temperature, inspection of
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Fig. 2 shows that there are four values of J besides J to be
accounted for, namely Jnr Jmaxr Jminr Jn. Here Jmax; Jmin are
stationarity points of τð J Þ ¼ φ

0 ð J Þ, i.e. φð J Þ changes curvature
there (namely φ″ð JÞ changes sign, while Jn and Jn are the
abscissas of the two points sharing common tangent on φð J Þ.
Two alternative situations may arise depending on the sign of
φ″. This depends on whether or not the configuration J is in the
spinoidal (unstable) zone of the local energy density φð J Þ.

2.3. Unstable zone: φ″o0

We explore the case for which φ″o0 in (26), which happens
whenever J is located in the spinoidal zone, i.e. JmaxoJoJmin,
corresponding to a negative slope of the local stress, since
τðJÞ ¼ φ

0 ð J Þ (see Fig. 2). The governing Eq. (28) takes the
following form:

vxxxx þ ω2vxx ¼ 0; ð29Þ
which admits the integral

vðxÞ ¼A1 cos ðωxÞ þ A2 sin ðωxÞ þ A3 xþ A4: ð30Þ
We explore this solution for the following boundary condi-
tions apply:

v
���
∂Ω�

¼ 0 v
���
∂Ωþ

¼ 0 2αv″
���
∂Ω�

¼ Γ̂L 2αv″
���
∂Ωþ

¼ Γ̂R ð31Þ

where Γ̂R ¼ Γ
���
∂Ωþ and Γ̂ L ¼ Γ

���
∂Ω� . The values of the coefficients

Ai in (39) depend on the specified boundary conditions. For
the sake of convenience the positions c¼ cos ðωL=2Þ and
s¼ sin ðωL=2Þ are assumed; henceforth, the BCs assume the
following form:

A1 c�A2 s�A3
L
2
þ A4 ¼ 0

2αω2 �A1cþ A2sð Þ ¼ Γ̂L

8<
: at x¼ � L

2

A1cþ A2 sþA3
L
2
þA4 ¼ 0

2αω2 �A1c�A2sð Þ ¼ Γ̂R

8<
: at x¼ þ L

2

In this example we assume Γ̂ L ¼ Γ̂R ¼ Γ̂ . These assumptions
lead to a simplified matrix system:

0 s L
2 0

c 0 0 1

0 s 0 0

�2α ω2c 0 0 0

2
6664

3
7775

A1

A2

A3

A4

0
BBB@

1
CCCA¼

0

0

0

Γ̂

0
BBB@

1
CCCA; ð32Þ

whose determinant is α c s L ω2. We first study the nontrivial
modes (39) of the system, i.e. we explore the roots of the
following equation

α c s L ω2 ¼ 0: ð33Þ
It is worth noting that, because of the definition (9) and

1oJmaxoJoJmin, we have α40 for all J41. Then, the orthogon-
ality of the trigonometric functions imposes that the equa-
tion is satisfied if either for c¼ cos ðω L=2Þ ¼ 0 or for
s¼ sin ðωL=2Þ ¼ 0. Henceforth, we are left to examine two
subcases.

Case 1: Let us consider the case s¼0 and c¼71. This
condition implies that

sin ω
L
2


 �
¼ 0 ⟹ ω

L
2
¼ n π ⟹ ω¼ 2 n π

L
ð34Þ
and a closer analysis of (34) shows that this case occurs
whenever the following relationship holds:

φ″

φ
0 J
5 ¼ � n2π2

3
h0
L

� �2
:

ð35Þ

The thinness of the membrane here enters with the ratio
h0=L
� 	2 which is normally smaller than 10�8. A large but finite
number n of oscillation can certainly arise from (35) for J such
that φ″-0� , i.e. right after change on convexity of the local
part of the strain energy density. The solution of the system
allows for deducing the values of amplitude of the nth mode:

0 0 L
2 0

71 0 0 1

0 0 0 0

82αω2 0 0 0

2
66664

3
77775

A1

A2

A3

A4

0
BBB@

1
CCCA¼

0

0

0

Γ̂

0
BBB@

1
CCCA

then

A1 ¼ 8
Γ̂

2αω2

A3 ¼ 0

A4 ¼ 8A1

8>>><
>>>: :

Hence, the buckled mode n has the following form:

vn xð Þ ¼7
Γ̂

8α n2π2
cos 2nπ

x
L

� �
�1

h i
þA2 sin 2nπ

x
L

� �
: ð36Þ

It is worth noting that even if the hyperstress Γ̂ at the
boundary would vanish, Eq. (36) assures that a bifurcation
always occurs with a bifurcated mode vn ¼A2 sin 2nπðx=LÞ� 	

.
It is natural to ask if there is a reduction of energy by

nucleating oscillations. The amount of the extra energy for
getting the final configuration from J is computed in
Appendix B. It turns out that it is identically zero. This fact
suggests that all the buckled configuration from J posses the
same quantity of energy and then such buckled configuration
do have the same likelihood to occur.

Case 2: Let us now consider the case s¼71 and c¼0. This
condition implies that

cos ω
L
2


 �
¼ 0 ⟹ ω¼ ð1þ 2nÞπ

L
ð37Þ

and

φ″

φ
0 J

5 ¼ � ð1þ 2nÞ2π2
12

h0

L


 �2

; ð38Þ

which has certainly roots for J such that φ″-0� for the
reason explained in Case 1. As usual, the coefficients of the
mode are found by imposing the boundary conditions. We
find A2 ¼A3 ¼A4 ¼ 0. Hence, in this case a solution is possible
if and only if Γ̂ ¼ 0. It follows that the buckled modes take the
forms:

vn xð Þ ¼A1 cos ωxð Þ ¼A1 cos 1þ 2nð Þπ x
L

� �
: ð39Þ

It is easy to recognize that also in this case the extra amount
of energy needed to bifurcate from J is equal to 0.

2.4. Stable zone: φ″40

Whenever the configuration of the membrane J is located
outside of the spinoidal zone, i.e. φ″40 and either 1oJoJmax

or J4Jmin, the governing equation assumes the following
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form:

v⁗�ω2 v″ ¼ 0: ð40Þ
In such a case, the profile of the perturbation becomes

vðxÞ ¼A1 coshðωxÞ þ A2 sinhðωxÞ þA3 xþ A4; ð41Þ

where the coefficients Ai, as in the previous analysis, depend
of the specific boundary conditions.

2.5. Singular points: φ″¼ 0

Before proceeding further some additional discussion may be
withdrawn from the analysis of the singular points J ¼ Jmax

and J ¼ Jmin. In both cases, the first derivative of the local
stress is zero, i.e. φ″ ¼ 0: then the case ω¼ 0 occurs. Hence-
forth, the governing equation appears to be simpler than in
the other cases: v⁗ ¼ 0, whose solution reads

vðxÞ ¼A0 þ A1 xþ A2 x2 þ A3 x3: ð42Þ
As an example, let us consider boundary conditions (31) with
Γ̂R ¼ Γ̂L ¼ Γ̂ , which yields the following values for the con-
stants:

A0 ¼ � Γ̂ L2

16 α
A1 ¼ 0 A2 ¼

Γ̂

4α
A3¼ 0: ð43Þ

Of course no bifurcated perturbations would occur in the
absence of hyperstress at the boundary.

2.6. Numerical examples

Let us consider a planar lipid membrane at the fixed tem-
perature T� 301 (see Fig. 2). Under this assumption, the use of
the experimental data allows for determining the energetic
coefficients (11) of the local part of the strain energy density
as suggested in Deseri and Zurlo (2013). These values are
reported in Table 1, where the values Jn, Ji and Jn represent the
configuration balanced by the Maxwell stress (see Coleman
and Newman, 1988).

The solution of the problem in (28) depends on the sign of
the ratio φ″=φ

0
, appearing in (27) and (28). We recall that

bifurcations occur if φ″o0, i.e. whenever the membrane
stretch J lies in the unstable part of the spinoidal zone. This
circumstance is highlighted in Fig. 3 as a gray region under
the orange curve which, as expected, is contained in the
spinoidal zone between the two turning points for the
convexity of φ, i.e. in the range ½Jmax; Jmin�.

Fig. 3 shows that for each chosen value of n, representing
the index mode or “wave number”, there exist two admissible
solutions for (35). One of such values of J lies on the left and
the other one on the right branch of the curve with respect to
Jn the location where the horizontal tangent is found. More-
over, this is the only location where a unique value of n is
possible, i.e. JR ¼ JL ¼ Jn. The wave number related to this
location is labeled nmax, because (35) ensures that greater
Table 1 – Characteristic values of the membrane stretch-
ing energy at T� 301.

T[1C] ΣM(J/m
2)� 10�3 Jn Ji Jn Jmax Jmin

30 5.923 1.02539 1.16667 1.30794 1.0851 1.24823
values of n do not allow the presence of bifurcated solutions.
This value can be computed as follows:

nmax ¼ 1
π

L
h0


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3φ″J

5

φ
0

s ���
J ¼ Jn

: ð44Þ

The energy used for this numerical example leads to Jn¼1.2235
and nmax ¼ 10:832. Each choice of n, therefore, allows for
finding two configurations J from which a bifurcated mode
can be nucleated. Such values are found numerically by
choosing values of n from 0 up to nmax and computing the
intersection JL and JR by means of Eq. (35). The results are
shown in Fig. 4. The lower blue curve represents the intersec-
tion with the left branch of the curve in Fig. 3, whereas the red
curve is the intersection with the right branch. Obviously,
these two curves share a common point at J¼ Jn. In order to
show the behavior of the system, a value n¼10 is chosen for
the sake of representation, then the stretch J and the stress Σ

related to this specific bifurcated configuration are computed
through (16). Two cases are considered for illustrative purpose
only, in order to show the behavior of our numerical solution:
as first case, the arbitrary constant A2 is set to 0 and the
hyperstress is chosen such that Γ̂ ¼ αðJÞ=50 L, whereas in the
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Fig. 5 – Buckled mode 1: A2 ¼ 0 and Γ̂ ¼ αðJÞ=50 L. Buckled mode
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second example a case with a null hyperstress, Γ̂ ¼ 0, is
considered and the constant A2 is chosen as A2 ¼ ð1=
50ÞðL=2πnÞ. Both the results are shown in Fig. 5.
3. The mechanics of fractional order lipid
bilayers

Available experimental data (Harland et al., 2010; Espinosa
et al., 2011; Craiem and Magin, 2010) show that lipid bilayers
present a time-dependent behavior depending on the in-
plane anomalous viscous behavior exhibited by various lipid
molecules at different temperatures.

In this section we aim to introduce the governing equa-
tions of a Fractional Hereditariness capturing the evolution of
the perturbations on the ordered/disordered phase transition
shown by lipid bilayers. Such perturbation are predicted to
occur in the lipid membrane starting from a homogenously
squeezed configuration.

The experimental data about lipid membrane hereditariness
that can be found in the literature (Harland et al., 2010) show that
the case of a purely elastic membrane represents the asymptotic
condition of the mechanics of the lipid bilayer under a constant
uniform stress. However, this circumstance is very seldom
present in the physiological conditions of living cells, for which
intracellular and/or extracellular fluids contributes to change the
areal membrane stretch several times during cell lifetimes.
Therefore the membrane stress at a certain observation time t

may be much higher than the value evaluated in the non-linear
elasticity framework, it may evolve into breakage of the cell
membrane or to lipid phase modification towards ceramide
phase and then to cell apoptosis (Craiem and Magin, 2010).

The case of the non-homogeneous reference configuration
is addressed as in Section 2 and it will be not studied in this
context for brevity.
3.1. The physical description of lipid membrane
hereditariness

The mechanics of lipid bilayers forming artificial and natural
cytoplasmatic membranes presents a significative hereditary
behavior (Espinosa et al., 2011). Storage and loss moduli G

0 ðpÞ,
G″ðpÞ of lipid membrane depend on the type of lipids (in the
membrane e.g. phosphatidylcholine (PODC), the sphyingo-
myelin (SM) based lipid chains) and on the melting tempera-
tures of such mixtures (Espinosa et al., 2011). The morphology
of the lipids in the bilayers influence their viscosity. It may be
either liquid-ordered or gel-phase, for temperatures over or
below the melting temperatures of the PODC. For SM the
liquid-disordered or the solid phase (ceramide) may be
involved depending upon the temperature of the membrane.

Several experimental observations on lipid mono-and-
bilayer (Harland et al., 2010) showed that the storage and
loss moduli, namely G

0 ðpÞ and G″ðpÞ, are proportional to the
frequency through a power-law of fractional order, i.e.
G

0 ðpÞppβ and G″ðpÞppβþ1, where the exponent β depends on
temperature and specific chemical composition of the biolo-
gical structure.

Henceforth, the use of Maxwell rheological elements to
model storage and loss moduli of the material does not
provide a suitable representation for the behavior of lipid
membrane. This is because Maxwell models yield G

0 ðpÞpp

and G″ðpÞpp2, which are not observed in experimental
rheology of such membranes (Espinosa et al., 2011).

In this context appropriate models of the hereditary
behavior of the lipid membranes must contain fractional-
order operators models, in which creep and relaxation are
described as power-laws of real-order, such that JðtÞptβ and
GðtÞpt�β, respectively. The time evolution of small perturba-
tions arising in lipid bilayers from homogeneous configura-
tions describing uniform squeezing is here modeled by
making use of the Boltzmann–Volterra superposition integral.
In particular, this allows for measuring the stress evolution at
a generic location x depending on an applied strain history
ϵðx; tÞ as follows:

s x; tð Þ ¼ Cβ

Γ½1�β�
Z t

�1
t�τð Þ�β _ϵ x; τð Þ dτ; ð45Þ

the right-hand side of this expression is related to the Caputo
fractional-order derivative (Caputo, 1969; Podlubny, 1998;
Magin, 2010; Samko et al., 1987; Kilbas et al., 2006), i.e.:

Dβ
t f tð Þ ¼ 1

ΓðβÞ
Z t

�1
ðt�τÞ�β _f x; τð Þ dτ: ð46Þ

A rheological model known as springpot element (after Scott-
Blair, 1974) is associated to (46). This represents an
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intermediate behavior among a linear elastic spring and a
viscous dashpot that are obtained for β¼ 0 and β¼ 1,
respectively.

In the next section the free energy function obtained in
Deseri et al. (2014) for power-law hereditary materials is
utilized. Such a free energy will be further specialized to yield
the rheological description of the springpot element to
handle lipid membrane hereditariness.

3.2. The free energy of hereditary lipid bilayers

In this section we aim to introduce the governing equations
for the evolution of small perturbations of homogeneous
configuration of hereditary and planar lipid membranes.

To this aim it is worth bearing in mind that the quad-
ratic form of the free energy in (20) contains both a local
perturbative term, namely εðx tÞ, and a non-local contribution
in terms of a first order gradient εxðx; tÞ. As we observe that
the free energy function of the purely elastic case is a
function of the state variables εðxÞ and εxðxÞ, the free energy
function in presence of material hereditariness may be
assumed as the sum of different contributions related to
the local and the non-local state variables (see e.g. Breuer and
Onat, 1964; Del Piero and Deseri, 1996, 1997; Deseri et al., 1999,
2006; Deseri and Golden, 2007).

By looking at purely (nonlinear) elastic contributions, in
the previous section the phase transition phenomena
describing areal changes of lipid membranes were obtained
(Deseri et al., 2008; Deseri and Zurlo, 2013). Time evolution of
small perturbation of such configurations are inferred to be
modulated by the local and nonlocal stresses sLðx; tÞ and
sNðx; tÞ respectively, i.e.

sLðx; tÞ ¼
Z t

0
GLðt�τÞ_εðx; τÞ dτ; ð47aÞ

sNðx; tÞ ¼
Z t

0
GNðt�τÞ_εxðx; τÞ dτ; ð47bÞ

where GL and GN are the local and nonlocal relaxation moduli
(relative to the configuration J), respectively, defined as
follows:

GLðtÞ≔φ″ þ f LðtÞ;
GNðtÞ≔2α þ fNðtÞ:
Here the following relationship must hold:

lim
t-1

f LðtÞ ¼ lim
t-1

fNðtÞ ¼ 0; ð49Þ

as the elastic case has to be retrieved as limit. The specific
dependence of the functions f LðtÞ and fNðtÞ on time depends
on the experimental observation of the evolution of the
ordered–disordered phase as well as of their transition zone.
Motivated by the experimental evidence discussed in the
previous section, in this work a power law relaxation function
is used for the description of the decay behavior of both local
and nonlocal evolution. In particular, two different decay
laws for describing both the local and the nonlocal contribu-
tion are assumed. Thus the following relaxation moduli,
based on Deseri et al. (2014), are considered:

GLðtÞ≔φ″ þ CL t� λ; ð50aÞ

GNðtÞ≔2α þ CN t�ν; ð50bÞ
where CL and CN represent generalized moduli of the local
and nonlocal relaxations, λ and ν are the decay exponents of
the relaxations (for now chosen in the range ½0; 1�). It is worth
nothing that the contributions φ″ and 2α in (50a) come from
the third and fourth terms of the linearized functional in (23).
The use of an additive relaxation form in (50a) corresponds to
the use of a fractional order rheological element introduced
in (46).

After these considerations, the free energy function Ψ ðx; tÞ
can be thought as composed by two distinguished contribu-
tions:

Ψ ðx; tÞ ¼ ΨDZðx; tÞ þ ΨVðx; tÞ; ð51Þ

where ΨDZðx; tÞ is defined by (19) and represents the elastic
contribution to the free energy at equilibrium (see Del Piero
and Deseri, 1996), while ΨVðx; tÞ denotes the free energy
associated to the hereditary response of the membrane. This
has been shown (Deseri et al., 2014) to be the Staverman–
Schartzl energy (Breuer and Onat, 1964; Del Piero and Deseri,
1996, 1997). This result and Eqs. (47a), (50a) suggest that
Ψ ðx; tÞ may be written also as

Ψ ðx; tÞ ¼ Ψ Lðεðx; tÞÞ þ ΨNðεxðx; tÞÞ; ð52Þ

where a local and nonlocal term are accounted for. The
former depends on the stretch itself, while the latter on its
gradient. Following (Breuer and Onat, 1964; Deseri et al., 2014)
we introduce a kernel Kð○;○Þ as a symmetric function, i.e.
Kð○;○ÞZ0 and Kðτ1; τ2Þ ¼ Kðτ2; τ1Þ. The contribution above can
finally be written as follows:

Ψ L x; tð Þ ¼ 1
2
KL 0; 0ð Þεðx; tÞ2 þ ε x; tð Þ

Z t

�1
_KL 0; t�τð Þε x; τð Þ dτ

þ1
2

Z t

�1

Z t

�1
€KL t�τ1; t�τ2ð Þε x; τ1ð Þε x; τ2ð Þ dτ1 dτ2;

ð53aÞ

ΨN x; tð Þ ¼ 1
2
KN 0; 0ð Þεxðx; tÞ2

þεx x; tð Þ
Z t

�1
_KN 0; t�τð Þεx x; τð Þ dτ

þ1
2

Z t

�1

Z t

�1
€KN t�τ1; t�τ2ð Þεx x; τ1ð Þεx x; τ2ð Þ dτ1 dτ2;

ð53bÞ
where

KL t; 0ð Þ≔φ″ þ CL

Γð1�λÞ ðtþ δÞ� λ ¼Gδ
L tð Þ; ð54aÞ

KN t;0ð Þ≔2α þ CN

Γð1�νÞ ðtþ δÞ�ν ¼Gδ
N tð Þ; ð54bÞ

where δ is a preloading time. Of course KLð0; tÞ ¼KLðt;0Þ and
KNð0; tÞ ¼ KNðt;0Þ. It is worth noting that the form of Eq. (53a)
comes from the definition of the Staverman–Schartzl energy
(Deseri et al., 2014; Del Piero and Deseri, 1996; Breuer and
Onat, 1964). This result, together with (50a) and the consid-
erations addressed in Eqs. (17)–(22) by Deseri et al. (2014),
allows for writing down the final form of the free energy as

Ψ L x; tð Þ ¼ 1
2
Gδ
L 0ð Þε2 x; tð Þ þ ε x; tð Þ

Z t

�1
_G
δ
L t�τð Þε x; τð Þ dτ

þ1
2

Z t

�1

Z t

�1
€G
δ

L 2t�τ1�τ2ð Þε x; τ1ð Þε x; τ2ð Þ dτ1 dτ2;

ð55aÞ
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ΨN x; tð Þ ¼ 1
2
Gδ
N 0ð Þε2x x; tð Þ þ εx x; tð Þ

Z t

�1
_G
δ

N t�τð Þεx x; τð Þ dτ

þ1
2

Z t

�1

Z t

�1
€G
δ

N 2t�τ1�τ2ð Þεx x; τ1ð Þεx x; τ2ð Þ dτ1 dτ2;

ð55bÞ
where εðx; tÞ ¼ vxðx; tÞ, where vðx; tÞ represents the perturba-
tion of the configuration of the lipid membranes at the
location x and time t. Finally, the total (Gibbs) free energy
related to the perturbation vðx; tÞ can be computed as

E ¼ B
Z t2

t1

Z
Ω
Ψ Lðx; tÞ þ ΨNðx; tÞ½ � dx


 �
dt�B Σ vðx; tÞ þ Γ vxðx; tÞ½ �∂Ω;

ð56Þ
where t1 and t24t1 are two subsequent times during which
the time evolution of the membrane is investigated.
4. Linearized evolution of lipid membranes

The governing equation for the evolution of lipid membrane
is sought for v by stationarity of the functional E in the class
of synchronous variations, i.e. δvð○; t1Þ ¼ δvð○; t2Þ. The compu-
tation of the first variation of (56) (see Appendix A for details)
leads to the Euler–Lagrange equation in the form:

2α
∂4

∂x4
vþ Cn

NDν
t v

� 	�φ″ ∂2

∂x2
vþ Cn

LDλ
t v

� 	¼ y xð Þ; ð57Þ

where Cn

L ¼CL=φ″ and Cn

N ¼CN=2α represent the normalized
local and nonlocal moduli of the membrane, respectively, and
the forcing term y(x) is defined as follows:

y xð Þ ¼ 2α
∂4 v0
∂x4

�φ″∂2 v0
∂x2

: ð58Þ

Here v0ðxÞ represents an initial perturbation displacement
that can be induced on the membrane at the beginning of the
observation time, and it can be thought as the initial config-
uration before the relaxation.The governing Eq. (57) is
coupled with the following boundary conditions:

either

φ″ v
0 þ CLDλ

t v
0� 	�2α v‴þ CNDν

t v
‴� 	¼ Σ þ Σ0

or

δv¼ 0

8>>><
>>>: ð59aÞ

either

2α v″ þ CNDν
t v

″� 	¼ Γ þ 2αε0 0

or

δv
0 ¼ 0

8>>><
>>>: ð59bÞ

It is worth nothing that the term Σ0≔φ″ε0 þ 2αε″0 can be
interpreted as the initial stress acting on the membrane to
hold it in the initially perturbed configuration. Of course, if no
initial perturbation is induced on the membrane, Eq. (57) and
its boundary conditions lead to an eigenvalue problem,
examined in Section 4.3 in the sequel.

The structure of the linear partial differential equation (57)
allows for separation of variables for the perturbation vðx; tÞ,
i.e.:

vðx; tÞ ¼ f ðxÞqðtÞ; ð60Þ
where q(t) describes the time change of the perturbation or
“transfer function”, and f(x) describes the shape of the mode.
Henceforth, the governing equation can be written in the
following form:

2α
φ″

f ivðxÞ
f ″ðxÞ

¼ qðtÞ þ Cn

LDλ
t qðtÞ

qðtÞ þ Cn

NDν
t qðtÞ

¼ k2; ð61Þ

where k2 is a constant to be determined. In this context,
relationship (26) holds. In this work we are interested in
exploring conditions from which oscillations can occur,
henceforth only the case φ″o0 is studied. Then

� 1
ω2

f ivðxÞ
f ″ðxÞ

¼ qðtÞ þ Cn

LDλ
t qðtÞ

qðtÞ þ Cn

NDν
t qðtÞ

¼ k2; ð62Þ

as oscillatory perturbations are explored. In analogy with (31)
the following boundary conditions are assumed for all times
t:

vj∂Ω� ¼ vj∂Ωþ ¼ 0

2α½v″ þ Cn

N Dν
t v

″�j∂Ω� ¼ 2α½v″ þ Cn

N Dν
t v

″�j∂Ωþ ¼ Γ̂

(
ð63Þ

which by (60) imply

f ðxÞj∂Ω ¼ 0

2αf ″½qðtÞ þ Cn

N Dν
t qðtÞ�j∂Ω ¼ Γ̂

(
ð64Þ

4.1. Solution of the space-dependent equation

The space-dependent function f(x) is found through (61) to
obey the following ordinary differential equation:

f ivðxÞ þ k2 ω2 f ″ðxÞ ¼ 0: ð65Þ
After setting

ζ2 ¼ k2 ω2; ð66Þ
bearing in mind that φ″o0, the solution of (65) reads as

f ðxÞ ¼A1 cos ζ xð Þ þ A2 sin ζ xð Þ þ A3xþ A4: ð67Þ
As usual, the boundary conditions (64) must be used in order
to determine the coefficients Ai, i¼1–4. In particular, a closer
analysis of the condition on the second derivative of the
space-dependent function f(x) yields

2α f ″
���
∂Ω

qðtÞ þ Cn

N Dν
t qðtÞ

 �¼ Γ̂ 8 t:

The latter boundary condition can be fulfilled if either Γ̂ is a
prescribed time or if it is constant. This second case is
explored in the sequel. Whenever Γ̂ is constant, then

qðtÞ þ Cn

N Dν
t qðtÞ ¼ κn; ð68Þ

where κn is a constant. Consequently, the boundary condition
is written as follows:

2α f ″
���
∂Ω

κn ¼ Γ̂ : ð69Þ

Moreover, this condition at the edge highlights that the
second derivative vxxðx; tÞ

���
∂Ω

there can be zero if and only if

f ″
���
∂Ω

¼ 0 ⟺ Γ̂ ¼ 0 ð70Þ

the hyperstress is zero. For such a case, Eq. (68) is irrelevant.
Because in this section the attention is focused on the case
φ″o0, after setting s¼ sin ðζL=2Þ and c¼ cos ðζL=2Þ, the bound-
ary conditions can be written explicitly in the form:

A1c�A2s�A3
L
2
þ A4 ¼ 0

2αζ2 �A1cþ A2sð Þκn ¼ Γ̂

8<
: at x¼ � L

2
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A1cþ A2sþA3
L
2
þA4 ¼ 0

2αζ2 �A1c�A2sð Þκn ¼ Γ̂

8<
: at x¼ þ L

2

Such a system is the analogue of (32):

0 s L
2 0

c 0 0 1

0 s 0 0

�2α κnζ
2c 0 0 0

2
66664

3
77775

A1

A2

A3

A4

0
BBB@

1
CCCA¼

0

0

0

Γ̂

0
BBB@

1
CCCA ð71Þ

whose nontrivial solutions can be found by studying the roots
of the determinant, namely after solving:

α c s L κn ζ
2 ¼ 0: ð72Þ

Because of Eq. (69), the case κn ¼ 0 implies that the hypers-
tress at edges is zero, and for now we do not consider this
possibility to occur. Then, the quantities α, L and κn are
always nonzero, and we are left to study only two cases.

Case 1: Because ζ2 ¼ k2 ω2 with k40 (although still
unknown at this stage), if s¼0 we have

k2 ω2 ¼ 4n2π2

L2
; ð73Þ

and

� φ″

φ
0 J

5 ¼ n2π2

3 k2
h0

L


 �2

: ð74Þ

Case 2: If c¼0 then Γ̂ ¼ 0. As highlighted in (70), this
happens if and only if f ″ ∂Ωð Þ ¼ 0.

4.2. Solution of the time-dependent equation

The time-dependent solution q(t) turns out to depend on the
value of the second derivative in space at the edges (see (69)).

Whenever in (64) the boundary condition on the second
derivative of the displacement is nonzero, the presence of a
hyperstress Γ̂ at the edges implies that the time-dependent
term is constant, assuring that relation (68) holds. This
equation can be easily solved through the method of the
Laplace Transform method (see Appendix C) to yield:

q tð Þ ¼ κn
Cn

N
tνEν;νþ1 � 1

Cn

N
tν


 �
þ q0Eν � 1

Cn

N
tν


 �
; ð75Þ

where Eα;β ðzÞ is the Mittag–Leffler function of two parameters.
At the same time, the assumption of the separation of
variables dictates that (61) be satisfied. Hence, (61) and (68)
imply that the following relationship has to hold:

qðtÞ þ Cn

L Dλ
t qðtÞ ¼ k2 κn; ð76Þ

whose solution is again found by using the Laplace Transform
method:

q tð Þ ¼ k2 κn
Cn

L
tλEλ;λþ1 � 1

Cn

L
tλ


 �
þ q0Eλ � 1

Cn

L
tλ


 �
: ð77Þ

Both Eqs. (75) and (77) give explicit analytic closed forms for
the time-dependent function q(t). Obviously they must be
same. The trivial case in which the local and nonlocal terms
have both the same relaxation exponent λ¼ ν and the same
normalized material parameters Cn

L ¼ �Cn

N shows that

k2 ¼ Cn

L

Cn

N
¼ 1;
bearing in mind that the local term Cn

Lo0 as it is made
dimensionless dividing CL by φ″o0.

4.3. Complete time-dependent equation: eigenvalues

The fact that (61) and (68) must be consistent also in the
nontrivial case is studied in this section. In this regard, the
complete equation coming from (61) and (68) is considered:

Cn

L Dλ
t qðtÞ�Cn

N k2 Dν
t qðtÞ þ ð1�k2ÞqðtÞ ¼ 0: ð78Þ

Equation (78) has the form of a Fractional Order Eigenvalue
Problem, which is not easy to be solved. Indeed, very recent
works show the strong effort in finding this kind of solutions
(Henderson and Kosmatov, 2014; Duan et al., 2013; Qi and
Chen, 2011; Mainardi, 1996; Li and Qi, 2014). In order to solve
this eigenvalue problem, we make use of the right-sided
Fourier transform Q(p)

QðpÞ≔
Z þ1

0
e� i p tqðtÞ dt pAR: ð79Þ

By Fourier transforming both sides of (78) we obtain

Cn

Lð� i pÞλ�Cn

N k2ð� i pÞν þ ð1�k2Þ
h i

Qðp
�
¼ 0: ð80Þ

The roots of the function inside square brackets supplies
the eigenvalues of the fractional differential equation (78).
Consider � i¼ e� iðπ=2Þ and expand (80):

Cn

L p
λ e� iðπ=2Þ λ�k2Cn

N pν e� iðπ=2Þ ν þ ð1�k2Þ ¼ 0: ð81Þ

The constant k2 introduced in (61) must be a real-valued
number. Solving Eq. (80) in terms of k2 we get

k2 ¼ 1þ Cn

L p
λ cλ� i sλð Þ

1þ Cn

N pν cν� i sνð Þ ¼
1þ Cn

L p
λ cλ

� 	� i Cn

L p
λ sλ

� 	
1þ Cn

N pν cν
� 	� i Cn

N pν sν
� 	

¼ a� i b
c� i d

¼ a� i b
c� i d

cþ i d
cþ i d

¼ a cþ b d

c2 þ d2
þ i

a d�b c

c2 þ d2
;

where we set

a¼ 1þ Cn

L p
λ cλ

b¼ Cn

L p
λ sλ

(
c¼ 1þ Cn

N pν cν
d¼Cn

N pν sν

(
;

and for the sake of convenience the positions cα ¼ cos ðα π=2Þ
and sα ¼ sin ðα π=2Þ are used. Because of the fact that k is real,
the following relationships must hold:

k2 ¼ a cþ b d

c2 þ d2
ð82aÞ

a d�bc¼ 0: ð82bÞ

The latter of these conditions allows for characterizing the
value k2 as

Cn

N pν sν�Cn

L p
λ sλ þ Cn

L C
n

N pλþν sνcλ�cνsλð Þ ¼ 0:

Bearing in mind the transformation formulae for the differ-
ence of two angles, the relationship (82b) becomes

Cn

N pν sin ν
π

2

� �
�Cn

L p
λ sin λ

π

2

� �
þ Cn

L C
n

N pλþν sin ν�λð Þ π
2

� �
¼ 0 ð83Þ

Finally, a relationship for k2 is found in the form:

k2 ¼ 1þ Cn

L p
λ cλ

� 	
1þ Cn

N pν cν
� 	þ Cn

L p
λ sλ

� 	
Cn

N pν sν
� 	

1þ Cn

N pν cν
� 	2 þ Cn

N pν sν
� 	2 : ð84Þ
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Fig. 6 – Locus of values p such that the eigenvalues k2 are
real and their correspondent values as function of the ratio
R¼ �C�

N=C
�
L whenever λ¼ 0:9 and ν¼ 0:3 (see Eqs. (83) and

(84)).
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Fig. 7 – Locus of values p such that the eigenvalues k2 are
real and their correspondent values as function of the ratio
R¼ �C�

N=C
�
L whenever λ¼ 0:7 and ν¼ 0:4 (see (83) and (84)).
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Fig. 8 – Right hand side of Eq. (74) as function of k2.

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 5 8 ( 2 0 1 6 ) 1 1 – 2 722
Whenever the trivial case λ¼ ν and Cn

L ¼ Cn

N is considered,

Eq. (83) has solution p¼0, that implies k2 ¼ 1, as noticed

qualitatively above. The solution of (84) cannot be found in

closed form. In Figs. 6 and 7 some numerical results are

represented whenever the local modulus Cn

L , the nonlocal

modulus Cn

N and both the viscoelastic exponents are known.

The value of R is defined as function of the moduli ratio

Cn

L=C
n

No0, showing that the eigenvalues are continuous func-

tions, then for each choice of R is possible to find the

correspondent value of k2.
Each bifurcated configuration is characterized by a chosen

value of k2 that modifies the left and right branch of the ratio

φ″=φ
0
, as shown in (74). Indeed, the elastic case (35) is

recovered whenever k2 ¼ 1. A numerical example handling

the same energy used in the elastic case is reported in Fig. 8.

A closer analysis of the curves shows that k2 works as a

rescaling parameter, increasing the magnitude of the ratio

φ″=φ
0
as k increases. The location of Jn is not affected by the

rescaling, whereas the upper bound of the curve is deeply

influenced by that. Henceforth, the value nmax of the spatial

oscillations depends on such a rescaling, as shown in the

insert in Fig. 8. Consequently, the left and right branch

change their shape, and the intersections yielding the corre-

sponding configurations J are modified as shown in Fig. 9.
4.4. Initial condition and eigenvalue problem

Let us consider the complete fractional differential equation

(78) with inhomogeneous initial conditions:

Cn

L Dλ
t qðtÞ�Cn

N k Dν
t qðtÞ þ ð1�k2ÞqðtÞ ¼ 0;

qð0Þ ¼ q0:

(

As suggested in Podlubny (1998), a Transform method is used

for solving this Fractional Differential Equation. As first step,

let use the right-sided Fourier Transform on the original



Fig. 9 – Modification of the left and right intersection
depending on k2 (see also Fig. 4).
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N and h0 ¼ 1:5. Here t� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
tν=C�

N
ν
p

is a
dimensionless time (see Eq. (75)).
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Fig. 11 – Transfer function ĜkðpÞ: real and imaginary part.
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equation taking into account the initial condition:

Cn

L ½ði pÞλQ̂ �ði pÞλ�1q0��Cn

N k2½ði pÞνQ̂ �ði pÞν�1q0� þ Q̂ ð1�k2Þ ¼ 0;

where p is the variable in the Fourier domain; the solution of

the obtained algebraic equation in terms of the transformed

function Q̂ ðpÞ reads

Q̂ k p
� 	¼ q0

Cn

L ði pÞλ�1�Cn

N k2 ði pÞν�1
� �
Cn

Lði pÞλ�Cn

N kði pÞν þ ð1�k2Þ
: ð85Þ

By means of the solution displayed in Podlubny (1998, Eqs.

5.22–5.25, p. 155) (where a¼Cn

L ; β¼ λ;b¼ �Cn

N k2; α¼ ν and

c¼ 1�k2), the transfer function in the frequency domain of

this problem reads as follows:

Ĝk p
� 	¼ 1

Cn

Lði pÞλ�Cn

N k2ði pÞν þ ð1�k2Þ
: ð86Þ

It would be worth noting that the transfer function is strictly

related to the eigenvalue of k2; for this reason, we denoted Ĝ

with the subscript k, in order to highlight the importance of k2

on the transfer function. Finally, the transfer function in the

real time domain if found simply by using the Inverse Fourier
transform:

Gk tð Þ ¼F �1 ĜkðpÞ; t
n o

¼ 1
Cn

L

X1
z ¼ 0

ð�1Þz 1�k2

Cn

L

 !zþ1

tλðzþ1Þ�1EðzÞ
λ� ν;λþzν

Cn

N

Cn

L
k2 tλ� ν


 �
: ð87Þ

The transfer function Gk(t) is strictly connected with the

Mittag–Leffler function, and it plays a modulation role in the

evolution of the membrane response in terms of both stretch

and stress.
As an illustrative example, the transfer function is

numerically explored in Fig. 10 whenever two subcases of

Cn

L ¼ �Cn

N are considered, by assuming several values of the

exponential decay λ¼ ν. Similarly, in Fig. 11 the real and

imaginary part of the transfer function are analyzed when-

ever different exponents of the decay λaν are chosen for

some values of k2. The Mittag–Leffler function drives the

evolution of the membrane stretch, determining changes in

the amplitude of the membrane response, as expected from

the analysis with a separation of variables.
5. Discussion and conclusions

Lipid phase transition arising in planar membrane and

triggered by material instabilities and their linearized evolu-

tion are studied in this paper by accounting for the effective
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viscoelastic behavior inherited by their exhibited power-law
in plane viscosity (Espinosa et al., 2011).

First, the critical set of areal stretches, i.e. the reciprocal of
thinning of lipid bilayer, are determined in the limiting case
of elasticity and for two sets of boundary conditions. Spatial
oscillations corresponding to the nucleated configurations
arising from any of such critical stretches are investigated.
Perturbations of the phase ordering of lipids are predicted to
form bifurcated shapes, sometimes of large periods relative to
the reference thickness of the bilayer. The corresponding
membrane stress changes are also oscillatory.

Then, the influence of the effective viscoelasticity of the
membrane on its material instabilities is investigated. A
variational principle based on the search of stationary points
of a Gibbs free energy in the class of synchronous perturba-
tion is employed for such analysis.

The resulting Euler–Lagrange equation is a Fractional
Order PDE yielding a non-classical eigenvalue problem.
Although its fully general solution is not provided in the
paper (see e.g. Henderson and Kosmatov, 2014; Duan et al.,
2013; Qi and Chen, 2011; Mainardi, 1996; Li and Qi, 2014 for
recent analysis on Fractional Eigenvalue Problems), eigenva-
lues of the viscoelastic problem (65), namely ζ2 (see also Eq.
(66)), are found to be amplified by the factor k2 with respect to
their elastic counterpart, defined by Eq. (28). Separation of
variables is applied and the mode (spatial dependence) and
transfer (time dependence) functions of any admissible per-
turbations of the stretched configuration are determined.

Time synchronous variations are considered for finding
the boundary conditions and the field equations governing
the problem. Such equations yield a non-classical eigenvalue
problem to be analyzed through the method of separation of
variables. Because we analyze bifurcations of the areal
stretch from the spinoidal zone, the spatial modes are still
found to be oscillatory. The period of oscillation is shown to
decrease with the ratio of (nondimensional) generalized local
and nonlocal moduli and, hence, the number of oscillations
increases with respect to the elastic case. As the ratio just
mentioned above increases, for a given number of oscilla-
tions the interval of stretches for which bifurcation can occur
gets larger if compared with the one determined by the
purely elastic behavior.

First of all, it is found that while the range of critical areal
stretches does not get affected, the number of oscillations per
given critical stretch significantly increases, thereby drasti-
cally reducing the period of oscillations of the bifurcated
configurations. Indeed, the factor k2 induces an higher fre-
quency of oscillation. Nevertheless, the relaxation of the
bifurcated configurations is shown to occur. For instance,
whenever the same power-law applies both for the local and
the nonlocal response, the explicit time decay is displayed in
Fig. 10, while in all of the other cases the frequency depen-
dence of the real and imaginary part of the transfer function
reveal that fading memory in time occurs as well (see Fig. 11).

The time-dependent part of the problem leads to a non-
classical fractional eigenvalue problem. Upon exploring the
transfer function of the governing equation for different
values of the local and nonlocal relaxation power, it can be
concluded that time-decay occurs in the response. Hence,
large number of spatial oscillation slowly relaxes, thereby

keeping the features of a long-tail type response.
Henceforth, although in bifurcated modes a significantly

higher number of oscillations is expected than in the limiting

case of the equilibrium elastic response of the bilayer, the

transfer function, namely the time dependence of bifurcated

solution, exhibits a slow decay.
Acknowledgments

The authors are grateful to the financial support provided in

the course of the study. Luca Deseri acknowledges the

Department of Mathematical Sciences and the Center for

Nonlinear Analysis, Carnegie Mellon University through the

NSF Grant no. DMS-0635983 and the financial support from

Grant INSTABILITIES – ERC-2013-ADG – “Instabilities and

nonlocal multiscale modelling of materials” held by Prof.

Davide Bigoni, who is gratefully acknowledged. Pietro Pollaci

greatly acknowledges the Italian INdAM-GNFM for the finan-

cial support through “Progetto Giovani 2014Mathematical

models for complex nano- and bio-materials”. Massimiliano

Zingales acknowledges the PRIN2010–2011 with national

coordinator Prof. A. Luongo. Kaushik Dayal acknowl-

edges support from AFOSR Computational Mathematics (YI

FA9550-12-1-0350), NSF Mechanics of Materials (CAREER

1150002), and ONR Applied and Computational Analysis

(N00014-14-1-0715).
Appendix A. Computation of first variation

In this Appendix, the explicit calculations referred to func-

tional first variation are displayed.
A.1. Elastic case

Whenever the elastic case is considered, after neglecting the

material constant B the energy functional E in (23) reads as

follows:

E ¼
Z
Ω

φ J
� 	þ φ

0
J
� 	

λþ φ″ðJÞ
2

λ2 þ α J
� 	

λ2x


 �
dx� Σvþ Γvx½ �∂Ω

In this work, the unidimensional case only was considered,

then the relationship λ¼ v
0 ðxÞ holds. By entering this result

into the energetic functional the first variation reads as

follows:

δE ¼
Z
Ω

φ 0 þ φ″v
0� 	
δv

0 þ ð2α v″Þδv″� Σδvþ Γδv
0 �
∂Ω: ðA:1Þ

Finally, after expanding all contributions and integrating by
part, the Euler–Lagrange equation with its boundary condi-

tion takes the form:

2α v⁗�φ″ v″ ¼ 0in Ωφ″ v
0 �2α v‴ ¼ Σ�φ or δv

�
¼ 0in ∂Ω2α v″ ¼ Γ or δv

0 ¼ 0in ∂Ω
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A.2. Viscoelastic case

Whenever the viscoelastic case is studied, we consider the
following functional:

E ¼
Z t2

t1

Z
Ω

ψ ðlÞðλÞ þ ψ ðnlÞðλxÞþ
�

� Σ vþ Γ vx½ �∂Ω
	
dx dt ðA:2Þ

whose first variation takes the form

δEL ¼
Z t2

t1

Z
Ω

Gδ
Lð0Þλþ

�
 Z t

�1
_G
δ

Lðt�τÞλðτÞdτ
�
δλ

�
dx dt ðA:3aÞ

δEN ¼
Z t2

t1

Z
Ω

Gδ
Nð0Þλ

0�

þ
Z t

�1
_G
δ
Nðt�τÞλ0 ðτÞ dτ

�
δλ

0
�
dx dt ðA:3bÞ

Equation (A.3) can be rewritten bearing in mind the Volterra-
type integral in the following form:

δEL ¼
Z
Ω

Z t

�1
Gδ
Lðt�τÞ_λðτÞ dτ


 �
δλ dx ðA:4aÞ

δEN ¼
Z
Ω

Z t

�1
Gδ
Nðt�τÞ _λ0 ðτÞ dτ


 �
δλ

0
dx ðA:4bÞ

and, after exp substitutions:

δEL ¼
Z
Ω

φ″ λðx; tÞ�λ0½ �� þCLDλ
t λðx; tÞ

	
δλ dx ðA:5aÞ

δEN ¼
Z
Ω

2α λ
0 ðx; tÞ�λ

0
0

 �� þCNDν
t λ

0 ðx; tÞ	δλ0
dx ðA:5bÞ

Henceforth

δE ¼
Z
Ω

φ″ v
0 �λ0

� 	þ CLDλ
t v

0 �
δv

0þ�
2α v″�λ

0
0

� 	þ CNDν
t v

″ �
δv″
	
dx

� Σ δvþ Γ δv
0 �
∂Ω

Finally, the Euler–Lagrange equation reads

2α
∂4

∂x4
vþ Cn

NDν
t v

� 	�φ″ ∂2

∂x2
vþ Cn

LDλ
t v

� 	¼ 2α
∂2 λ

0
0

∂x2
�φ″∂ λ0

∂x|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
yðxÞ

ðA:6Þ
coupled with the following attendant boundary conditions:

either

φ″ v
0 þ Cn

LDλ
t v

0� 	�φ″λ0�2α v‴þ Cn

NDν
t v

‴� 	�2αλ″0�Σ ¼ 0

or

δv¼ 0

8>>><
>>>: ðA:7Þ

and

either

2α v″ þ Cn

NDν
t v

″� 	�2αλ
0
0�Γ ¼ 0

or

δv
0 ¼ 0

8>>><
>>>: ðA:8Þ

where the following normalized moduli were used:

Cn

L ¼
CL

φ″ ; Cn

N ¼ CN

2α
: ðA:9Þ
Appendix B. Computation of the extra energy

The nth buckled mode obtained in the elastic case (36) can be
expanded as follows:
v¼ Γ L2

8π2α
1� cos ωxð Þ½ � þA2 sin ωxð Þ

v
0 ¼ Γ L2

8π2α
ω sin ωxð Þ þA2ω cos ωxð Þ

v″ ¼ Γ L2

8π2α
ω2 cos ωxð Þ�A2 ω

2 sin ωxð Þ ðB:1Þ

Because the solution v(x) depends on the trigonometric

functions, for the sake of discussion we distinguish two

contributions related to the cosine and sine components,

respectively, i.e.

v¼ vc þ vs: ðB:2Þ

The energy stored by the membrane for getting the final

configuration from the reference one can be then decom-

posed as follows:

E ¼
Z
Ω
φ

0
v

0
xð Þ þ φ″

2
v

02 þ α v″2

¼
Z
Ω
φ

0
v

0
c þ v

0
s

� 	þ φ″
2

v
0
c þ v

0
s

� 	2 þ α v″c þ v″s
� 	2

¼
Z
Ω

φ
0
v

0
c þ

φ″

2
v

02
c þ αv″cÞ þ φ

0
v

0
s þ

φ″

2
v

02
s þ αv″s


 �


þ2
φ″
2

v
0
cv

0
s

� 	þ α v″cv
″
s

� 	
 �
¼ Es þ Ec þ Ecs ðB:3Þ

where the following relationships were assumed:

Ec ¼
Z
Ω
φ

0
v

0
c þ

φ″

2
v

02
c þ α v″c; ðB:4aÞ

Es ¼
Z
Ω
φ

0
v

0
s þ

φ″

2
v

02
s þ αv ″

s; ðB:4bÞ

Ecs ¼ 2
Z
Ω

φ″

2
v

0
cv

0
s

� 	þ α v″cv
″
s

� 	
: ðB:4cÞ

Let us now compute the energy term by term:

Ec ¼
Z
Ω
φ

0
v

0
c þ

φ″
2

v
02
c þ αv″2c ¼ω

Γ L2

8π2α

Z
Ω
φ

0
sin nπ

x
L

� �
dx

þω2 Γ L2

8π2α

 !2 Z
Ω

φ″

2
sin nπ

x
L

� �2
þ α ω2 cos nπ

x
L

� �2� �
dx

¼ω2 Γ L2

8π2α

 !2
L
2
α

φ″

2α
þ ω2


 �
¼ 0

since we are studying the case ω2 ¼ �φ″=2α. Analogously

Es ¼
Z
Ω
φ

0
vs 0 þ φ″

2
v

02
s þ αv″2s ¼ω A2

Z
Ω
φ

0
cos nπ

x
L

� �
dx

þω2A2
2

Z
Ω

φ″

2
cos nπ

x
L

� �2
þ α ω2 sin nπ

x
L

� �2� �
dx

¼ω2A2
2
L
2
α

φ″

2α
þ ω2


 �
¼ 0;

and, at least

Ecs ¼
Z
Ω
2

φ″
2

v
0
cv

0
s

� 	þ α v″cv
″
s

� 	
 �
¼ 0

because of the orthogonality of the trigonometric functions.

Indeed v
0
s v

0
cpv″s v

″
cp sin ω̂ xð Þ cos ω̂ xð Þ, and since they are

orthogonal functions, the integral over a period is zero.
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Appendix C. Solution of a Fractional Ordinary
Differential Equation

As an example, let us solve the following Fractional Order
Differential Equation:

aDα
t hðtÞ þ b hðtÞ ¼ c; ðC:1Þ

and denote with h0 the initial condition. The Laplace Trans-
form of (C.1) takes the form:

apα þ b
� 	

H¼ c
p
þ a pα�1h0 ðC:2Þ

For the sake of convenience, we distinguish to contribution to
the transformed function H:

H1 ¼ c
a
p� 1

pαþb
a

H2 ¼ h0
a
a
p� 1

pαþb
a

:

8><
>: ðC:3Þ

Let us recall the Laplace Transform of the Mittag–Leffler function
(see (Podlubny, 1998, p. 21, Eq. (1.80))):

L tα
n kþβn �1EðknÞ

αn ;βn
7antα

n
� �

; t; p
n o

¼ kn! pα
n �βn

pαn 8an
� 	knþ1

; ðC:4Þ

and look for the Anti-transform of each term. For the first
term we get recognize that kn ¼ 0, αn�βn ¼ �1; αn ¼ α;an ¼ b=a,
then

h1 tð Þ ¼ c
a
tαEα;αþ1 � b

a
tα


 �
; ðC:5Þ

whereas for the second one kn ¼ 0, αn�βn ¼ α�1; αn ¼ α;

an ¼ b=a, then

h2 tð Þ ¼ h0t0Eα;1 � b
a
tα


 �
: ðC:6Þ

Finally, the sought solution takes the following form:

h tð Þ ¼ c
a
tαEα;αþ1 � b

a
tα


 �
þ h0Eα � b

a
tα


 �
: ðC:7Þ
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