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Convergence Analysis of Distributed
Set-Valued Information Systems

Adriano Fagiolini, Member, IEEE, Nevio Dubbini, Simone Martini, and Antonio Bicchi, Fellow, IEEE

Abstract—This paper focuses on the convergence of information
in distributed systems of agents communicating over a network.
The information on which the convergence is sought is not rep-
resented by real numbers, as often in the literature, rather by
sets. The dynamics of the evolution of information across the net-
work is accordingly described by set-valued iterative maps. While
the study of convergence of set-valued iterative maps is highly
complex in general, this paper focuses on Boolean maps, which
are comprised of arbitrary combinations of unions, intersections,
and complements of sets. For these important class of systems,
we provide tools to study both global and local convergence. A
distributed geographic information system, leading to successful
information reconstruction from partial and corrupted data, is
used to illustrate the applications of the proposed methods.

Index Terms—Binary encoding, boolean dynamic systems, con-
sensus algorithms, convergence, cooperative systems, distributed
information systems, set-valued dynamic maps.

I. INTRODUCTION

R ECENT years have witnessed a constant increase of in-
terests in applications involving many distributed agents

that interact in order to achieve a common goal. Most of the
problems attacked so far in the literature can be formulated
as consensus problems over continuous domains, where local
agents exchange data that consist of scalars (such as a tem-
perature or the concentration of a chemical) or vectors (e.g.,
positions or velocities). Models used differ mainly in the type
of rule each agent uses to combine its own information with the
one received from its neighbors in the communication graph. In
the simplest case, the evolution of the network of agents can be
described by a linear iterative rule

x(t+ 1) = Ax(t) +Bu(t)
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where x=(x1, . . . , xn) ∈ R
n is the system’s state, with the i-th

component xi belonging to the i-th agent, u ∈ R
m is an input

vector, andA is a weight matrix. More precisely, matrix A is de-
signed so as to comply with available communication topology
and ensure the convergence of the network to a unique decision,
i.e., x(∞) → α1, with α depending on the initial system’s state.
Moreover, the input vector u can be used to model a known bias
[1] or even an unknown disturbance signal [2]. Falling into this
linear framework are most of the key papers on consensus [1],
[3], [4]. By using more general nonlinear dynamical systems,
other important schemes for achieving consensus on more
complex functions of state variables can be accommodated for.
For instance, the distributed algorithm based on the centroidal
Voronoi tessellation proposed by [5] allows a collection of
mobile agents to be deployed within a given environment while
maximizing the network’s sensing ability.

However, new emerging issues in the field of distributed
control entail defining consensus algorithms on different rep-
resentations of the state of information (see e.g., [6]). As a first
example, consider the problem of averaging a set of initial mea-
sures taken by a collection of distributed sensors with limited
communication bandwidth, which can be solved via a con-
sensus system where agents’ state information is represented
by symbols obtained through a logarithmic quantizer [7]. As a
second example, consider the problem of estimating the value
of a logical decision task depending on binary input events by
a set of agents with limited visibility on the events, e.g., the
detection of malicious users in a networked computer system
by interaction of local observation monitors [8]. A solution to
the problem can be obtained through use of the so-called logical
consensus approach, according to which agents share binary
estimates of the events, combine them according to a suitable
logical iterative function, and finally reach an agreement on
their values. An interesting problem that is related to consensus
is that of studying how to disseminate information through a
network where nodes can only elaborate and share data over
finite fields [9].

Furthermore, other applications involve problems of increas-
ing complexity where the state of information takes value in
possibly infinite domains. For instance, consider the problem
of clock synchronization in distributed loosely-coupled systems
via message exchange, where each node has a confidence
interval on the true value of time, although the true value may
be outside this interval for some sources. Marzullo’s algorithm
[10], on which the ubiquitous Network Time Protocol (NTP)
[11] is based, is an agreement algorithm which estimates the
smallest interval consistent with the largest number of sources.
The problem of simultaneous localization and mapping by a
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Fig. 1. Simulation runs of three systems with n = 3 agents running different set-valued maps to update their states. From left to right, starting from the same
initial conditions, the three systems have a chaotic behavior, enter into a cycles, and reach an equilibrium point, respectively. In the formulas the terms C(Xi)
is the complement of Xi, Th

k (Xi) is a translation of Xi by the vector (h, k)T (mod 1), and the coefficients are a1 = 2, b1 = 7, a2 = 66, b2 = 12, a3 = 1,
b3 = 99, a4 = 77, b4 = 11, a5 = 56, b5 = 154.

set of mobile robotic agents is another example, where the
traditional approach of modeling each agent’s uncertainty on
the positions of visually extracted features as additive or mul-
tiplicative signals is possible but not natural. As it was shown
in [12], the problem can be solved by a consensus approach
where agents exchange data represented by confidence regions
containing the features’ real positions. Finally, the detection
of misbehavior in “societies” of robots comprised of agents
that are supposed to obey to cooperation rules, depending on
presence and absence of objects in their neighborhood, requires
that every robot compute a local estimate of the neighborhood
occupancy map of its neighbors and combine it with others’
estimates via a set-valued consensus algorithm [13].

All these problems, and indeed many others, require that
the information state of a network of n agents is a collection
X = (X1, . . . , Xn)

T of elements Xi, belonging to the power
set1 P(X) of a discrete or continuous, finite or infinite set
X, which is iteratively updated according to a set-valued map
F = (F1, . . . , Fn)

T , with Fi : P(X)n → P(X), i.e.,

X(t+ 1) = F (X(t)) . (1)

The evolution of such set-valued iterative systems can be ex-
tremely rich and complex in the general case. Consider e.g., the
three relatively simple set-valued systems described in Fig. 1,
where agents exchange and update their states Xi ⊆ Q, with

1Recall that given a set X, the power set P(X) is the set of all subsets of X,
including the empty set and X itself.

Q = [0, 1]× [0, 1]. The figure shows that, starting from the
same initial conditions, set-valued iterative maps can display
very different and interesting behaviors, ranging from chaotic
sequences to cycles and equilibria with or without consensus.
Although the study of these systems appears to be a formidable
task in its full generality, in many applications of practical
interest the set of rules used in the iterative map are limited
to specific classes, which render analysis more tractable. Of
particular relevance are certainly maps involving only Boolean
operations, such as the set union ∪, the intersection ∩, and
the complement C(·). Fortunately, it is possible to provide a
reasonably simple study and characterization of such systems.

The main intent of the paper is to show that information
convergence in every instance of a Boolean iterative system can
be studied in fundamentally the same way. This is achieved
by extending the notions of convergence, local convergence,
and contraction, already given in the binary domain [14], [15],
to algebras of sets, taken with the union, intersection, and
complement operations. The work presented here builds upon
earlier results by the authors [16], where global convergence of
Set-Valued Boolean Dynamic Systems (SVBDS)2 was studied,
and it provides also results on local convergence in terms of
properties of binary matrices for which analysis [14], [15] and
synthesis [8] results are available. These new results are mainly,
but not only, contained in the following theorems: Theorem 4.1

2The term “set-valued” is associated also with maps going from X to its
power set P(X) (see e.g., [17]); however we adopt it here to indicate that the
system is described by maps going from sets to sets.
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of Section IV, Lemma 5.1, Theorem 5.2, Theorem 5.2, and
Theorem 5.4 of Section V. By doing this, we believe that the
present work is a step toward the definition of a unified frame-
work for the convergence analysis of systems involving iterative
maps based on Boolean algebras, and for the design of Boolean
iterative systems producing consensus in such domains.

The paper is organized as follows. Section II recalls the
definition of a Boolean algebra and summarizes known results
on the convergence of maps defined over the simplest Boolean
algebra, i.e., the one involving a binary domain. These results
are extended in the following sections. Section III studies the
global behavior of SVBDS. By using the binary encoding of
a SVBDS that is presented in Section IV, conditions ensuring
the global convergence of a SVBDS and local attractiveness
of its equilibria are presented in Section V. In Section VI, the
presented theory is applied to a problem of robust estimation of
geographic information.

II. BOOLEAN DYNAMIC SYSTEMS

In this section and in the remainder of the paper, we focus on
a class of dynamic systems, namely Boolean Dynamic Systems
(BDS), to define which we need to recall the following well-
known notion (see e.g., [18]):

Definition 2.1: A Boolean Algebra is a sextuple (B̃,∧,∨,
¬, 0, 1), consisting of a domain set B̃, equipped with two binary
operations ∧ (called “meet” or “and”) and ∨ (called “join” or
“or”), a unary operation ¬ (called “complement” or “not”), and
two elements 0 (null) and 1 (unity) belonging to B̃, s.t. the
following axioms hold, for all elements a, b, c ∈ B̃:

1) a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c
(associativity);

2) a ∨ b = b ∨ a, a ∧ b = b ∧ a (commutativity);
3) a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a (absorption);
4) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨

(a ∧ c) (distributivity);
5) a ∨ ¬a = 1, a ∧ ¬a = 0 (complementarity). �
From the first three pairs of axioms above, it follows that,

for any two elements a, b ∈ B̃, it holds that a = a ∧ b if, and
only if, a ∨ b = b, which introduces a partial order relation ≤
among the elements of the domain. In particular, we will say
that a ≤ b, if, and only if, one of the two above equivalent
conditions hold. Moreover, 0 and 1 are the smallest and greatest
elements, respectively. Then, given any two elements a, b ∈ B̃,
the meet a ∧ b and the join a ∨ b coincide with their infimum or
supremum, respectively, w.r.t. ≤.

An element a ∈ B̃ is referred to as a scalar. Consider the
set B̃n of Boolean vectors and the set B̃n×n of square Boolean
matrices. We can give the following definitions that generalize
the notions presented in e.g., [19] and [14], which are valid only
when B̃ is the binary domain {0, 1}:

Definition 2.2: Given two vectors v = (v1, . . . , vn) and
w = (w1, . . . , wn), and two square matrices A = {ai,j} and

B = {bi,j}, define the scalar product as w · v def
=

∨n
i=1 vi ∧

wi ∈ B̃, the product Av as the vector whose i-th element
is the scalar product between the i-th row of A and the
vector v, and the product AB as the matrix whose (i, j)-th

element is the scalar product between the i-th row of A and
the j-th column of B. In other words products between a
matrix and a vector and between two matrices are computed
in the usual way, substituting + with ∨ and · with ∧. �

We denote with 0 the null scalar, vector, or matrix, according
to the context. The above described partial order relation ≤
between any two elements of B̃ can be extended to Boolean
vectors and matrices by assuming component-wise evaluation.

Definition 2.3 (Boolean Dynamic Systems (BDS)): Given a
Boolean algebra, a BDS is an iterative system of the form in
(1), whose state X is a vector in B̃

n and where F is a map
combining the elements of its input argument to produce a new
state vector, by using only the meet ∧, the join ∨, and the
complement ¬ operations of the Boolean algebra itself.

Definition 2.4 (Linear BDS): A BDS is linear if there exists a
set-valued matrix A ∈ B̃

n×n s.t., for all X ∈ B̃
n, F (X) = AX .

For the following study, we need to give the following
definitions:

Definition 2.5 (Canonical Basis): The set of the vectors e1,
e2, . . . , en, with ej ∈ B̃

n contains 1 in the j-th element and
zeros elsewhere, is called the canonical basis of B̃n.

Definition 2.6 (Eigenvalues and Eigenvectors): A scalar λ ∈
B̃ is an eigenvalue of a Boolean matrix A ∈ B̃

n×n if there exists
a vector x ∈ B̃

n, called eigenvector, s.t. Ax = λx.
Definition 2.7 (Incidence Matrix): The incidence matrix of

a Boolean map F is a Boolean binary matrix B(F ) = {bi,j},
with bi,j ∈ B̃ and where bi,j = 1 if, and only if, the i-th
component of F (x) depends on the j-th component of the input
vector x.

It is worth noting that, in the case of a distributed BDS,
similarly to what happens in the example of Section I, every
agent of the system share the value of its Boolean state by
sending a message to its neighbors, and the map F specifies
how these states need to be combined together in order to
accomplish a global computation task. The incidence matrix
B(F ) allows analyzing how the information flows from one
agent to another, and, as it is shown below, plays an important
role in the convergence study of the corresponding BDS.

III. SET-VALUED BOOLEAN DYNAMIC

SYSTEMS—GLOBAL CONVERGENCE

As it is known from Stone’s Representation Theorem [20],
every Boolean algebra is isomorphic (i.e., it possesses the same
structural properties) to a field of sets, which is, given a generic
set X, a subset Σ(X) ⊂ P(X) that is closed under finite set
unions, intersections, and complementations. For this reason,
we focus on the following class of systems:

Definition 3.1 (Set-Valued Boolean Dynamic Systems
(SVBDS)): A SVBDS is a BDS whose Boolean algebra is given
by the sextuple (Σ(X),∪,∩, C(·), ∅,X), where X is a possibly
infinite set called the unity, ∅ is the empty set, and the operators
∪, ∩, C(·) are the set union, intersection, and complement,
respectively. �

Remark 1: This class of SVBDM includes set-valued maps
also involving the set difference \ and the symmetric difference
S operations between any two sets Xi, Xj ∈ Σ(X) or between
a set Xi and a constant set A ∈ Σ(X). To show this, one
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can recall that both operations can be rewritten in terms of
the Boolean algebra’s basic operations: the former can be
expressed as X \ Y = {x ∈ X s.t. x /∈ Y } = {X ∩ C(Y )},
and the latter as

S : P(X)× Σ(X) → Σ(X)

(x, y) → (C(x) ∩ y) ∪ (x ∩ C(y)) . (2)

Moreover, if F involves operations with k constant sets,
A1, . . . , Ak, one can define an augmented state vector X̃ =
(X1, . . . , Xn, A1, . . . , Ak)

T and consider a system defined
through the following dynamic map involving only Boolean
operations on X̃:

F̃ (X̃) = (F1(X1, . . . , Xn, A1, . . . , Ak), . . . ,

Fn(X1, . . . , Xn, A1, . . . , Ak), A1, . . . , Ak)
T .

�
In the remainder of this section, we study under which

conditions these systems converge to a unique equilibrium. The
incidence matrix of a set-valued Boolean map F , as defined
in Definition 2.7, specializes to a matrix B(F ) ∈ {∅,X}n×n.
Following the steps of [14] for binary systems, we provide the
following:

Definition 3.2 (Boolean Vector Distance): Given any two
set-valued vectors X,Y ∈ Σ(X)n, the Boolean vector distance
between the two vectors is described by the following applica-
tion:

D : Σ(X)n × Σ(X)n → Σ(X)n

(X,Y ) → (S(X1, Y1), . . . , S(Xn, Yn))

where Xi, Yi are the i-th components of the vectors X and Y ,
respectively, and S is the symmetric difference in (2). �

Note that D satisfies the same formal properties of a metric:

1) D(X,Y ) = D(Y,X) for all X,Y (symmetry);
2) D(X,Y ) = ∅ if, and only if X = Y (identity);
3) D(X,Y ) ⊆ D(X,Z) ∪D(Z, Y ) (sub-additivity);

where the inclusion relation ⊆ is the partial order relation
introduced after Definition 2.1, as specialized to the Boolean
Algebra of the sets.

The following Proposition 3.1–3.5 are based on results that
were first presented in the conference paper [16].

Proposition 3.1: Given any set-valued map F , it holds, for
every X,Y ∈ Σ(X)n

D (F (X), F (Y )) ⊆ B(F )D(X,Y ). (3)

Proof: Consider a chain of adjacent vector states, i.e., a
sequence where any two successive states differ in exactly one
component, connecting X to Y . By using the sub-additivity
axiom, the i-th component of D(F (X), F (Y )) can be decom-
posed as follows:

S (Fi(X1, . . . , Xn), Fi(Y1, . . . , Yn)) ⊆
⊆ S (Fi(X1, . . . , Xn), Fi(Y1, X2, . . . , Xn))∪
∪ S (Fi(Y1, X2, . . . , Xn), Fi(Y1, Y2, X3, . . . , Xn))∪

· · ·
∪ S (Fi(Y1, . . . , Yn−1, Xn), Fi(Y1, . . . , Yn−1, Yn)) . (4)

Let X̃j = (X1, . . . , Xj−1, Xj, Yj+1, . . . , Yn)
T and Ỹ j =

(X1, . . . , Xj−1, Yj , Yj+1, . . . , Yn)
T be the j-th pair of consec-

utive state vectors in the chain. We want to prove that

S
(
Fi(X̃

j), Fi(Ỹ
j)
)
⊆ bi,jS(Xj, Yj) (5)

where bi,j are the elements ofB(F ). If bi,j = ∅, i.e., the map Fi

is independent of the j-th component of the state, (5) is trivially
satisfied, since its first member is the empty set. Let us thus
focus on the case with bi,j = X. Given the state vector X̃j , the
one-input argument function

F̃ j
i : Σ(X) → Σ(X)

Z → Fi(X1, . . . , Xj−1, Z, Yj+1, . . . , Yn)

allows rewriting (5) as

S
(
F̃ j
i (Xj), F̃

j
i (S(Xj, Sj))

)
⊆ Sj (6)

where Sj = S(Xj , Yj). Note that F̃ j
i may consist only of one

of the four applications: A ∩ Z , A ∩ C(Z), A ∪ Z , A ∪ C(Z),
where A ∈ Σ(X) is a set depending on the components of X̃j ,
except for the j-th one. Direct computation on the above four
cases shows that (6) holds for all Xj and all Sj , as it is shown
in the following. Indeed, we have

S (A ∩Xj, A ∩ S(Xj , Sj)) =

= (C(A) ∪ C(Xj)) ∩A ∩ S(Xj , Sj)∪

∪ A ∩Xj ∩ (C(A) ∪ C (S(Xj , Sj))) =

= A ∩ (C(Xj) ∩ S(Xj , Sj) ∪Xj ∩ C (S(Xj, Sj))) =

= A ∩ (C(Xj) ∪Xj) ∩ Sj = A ∩ Sj ⊆ Sj

S (A ∩ C(Xj), A ∩ C (S(Xj, Sj)))

= (C(A) ∪Xj) ∩ A ∩ C (S(Xj , Sj))∪

∪ A ∩ C(Xj) ∩ (C(A) ∪ S(Xj , Sj)) =

= A ∩ (Xj ∪ C(Xj)) ∩ Sj = A ∩ Sj ⊆ Sj

S (A ∪Xj, A ∪ S(Xj , Sj)) =

= C(A) ∩ C(Xj) ∩ (A ∪ S(Xj, Sj))∪

∪ (A ∪Xj) ∩ C(A) ∩ C (S(Xj , Sj)) =

= C(A) ∩ (C(Xj) ∩ S(Xj , Sj) ∪Xj ∩ C (S(Xj , Sj))) =

= C(A) ∩ (C(Xj) ∪Xj) ∩ Sj = C(A) ∩ Sj ⊆ Sj

S (A ∪ C(Xj), A ∪ C (S(Xj, Sj))) =

= C(A) ∩Xj ∩ (A ∪ C (S(Xj , Sj)))∪

∪ (A ∪ C(Xj)) ∩ C(A) ∩ S(Xj, Sj) =

= C(A) ∩ (Xj ∪ C(Xj)) ∩ Sj = C(A) ∩ Sj ⊆ Sj (7)

where we made use of (2) of De Morgan’s rules, C(M ∩N) =
C(M)∪C(N) and C(M∪N) = C(M) ∩ C(N) (see, e.g., [18]),
and of the properties M ∩ C(M) = ∅, M ∪ C(M) = X, for any
sets M,N ∈ Σ(X). Moreover, the second member of (4) is
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upper bounded by bi,1S(X1, Y1) ∪ bi,2S(X2, Y2) ∪ · · · ∪ bi,n
S(Xn, Yn) = BiD(X,Y ), where Bi = (bi,1, . . . , bi,n). The
thesis immediately follows by repeating the process for all i.

�
Proposition 3.2: A Boolean matrix M ∈ {∅,X}n×n, with

M = {mi,j}, satisfies the Boolean inequality

D (F (X), F (Y )) ⊆ MD(X,Y ) (8)

for all vectors X,Y ∈ Σ(X)n, if, and only if, B(F ) ⊆ M .
Proof: The sufficiency can be shown by observing that,

if M = B(F ) ∪ΔM , where ΔM is a nonempty matrix, the
right-hand side of the inequality in (8) can be lower bounded as
follows:

MD(X,Y ) =B(F )D(X,Y ) ∪ΔMD(X,Y ) ⊇
⊇B(F )D(X,Y ) ⊇ D (F (X), F (Y ))

where the result of Proposition 3.1 has been used.
To prove the necessity, we show that, if

M �⊇ B(F ) = {bi,j} (9)

then there exist two vectors X,Y s.t.

MD(X,Y ) �⊇ D (F (X), F (Y )) . (10)

Since both M and B(F ) belong to {∅,X}n×n, the inequality in
(9) implies that there exist i, j s.t. mi,j = ∅ and bi,j = X. Since
bi,j = X, there must exist two vectors

X =(C1, . . . , Cj−1, Xj, Cj+1, . . . , Cn)
T

Y =(C1, . . . , Cj−1, Yj , Cj+1, . . . , Cn)
T

where all Cs and Xj , Yj are sets in Σ(X), with Xj �= Yj , s.t.
Fi(X) �= Fi(Y ). This last condition implies that the right-hand
side of (10) must be nonempty. By expanding the i-th row of
left-hand side of (10), we obtain(

∪n
s=1,s�=jmi,sS(Cs, Cs)

)
∪mi,jS(Xj, Yj) = ∅

since each S(Cs, Cs) = ∅ and mi,j = ∅. Thus, we have ∅ =
MD(X,Y ) �⊇ D(F (X), F (Y )) �= ∅. �

Corollary 3.1: For any two set-valued mapsF,G : Σ(X)n →
Σ(X)n, the incidence matrix of the function composition
F (G(X)) satisfies the Boolean inequalityB(F (G))⊆B(F )B(G).

Proof: The proof trivially follows from above. Indeed, if
(F ◦G)i depends on Xj , then there exists k s.t. Fi depends on
Xk and Gk depends on Xj . Hence, B(F )i,k ∩B(G)k,j = X

which in turn implies that (B(F )B(G))i,j = X. �
Moreover, recalling the notions introduced in Definition 2.6,

we can provide the following:
Definition 3.3 (Boolean Spectrum): The Boolean spectrum

σ(·) of a Boolean matrix A ∈ Σ(X)n×n is set of the eigen-
values of A.

A first result about the spectrum of a Boolean map is the
following:

Proposition 3.3: A Boolean matrix A ∈ Σ(X)n×n, A =
{ai,j}, admits the Boolean eigenvalue λ = ∅ if, and only if, it
has at least one column for which the union of all its elements is
less than X, i.e., there exists j ∈ {1, . . . , n} s.t. ∪n

i=1ai,j ⊂ X.
Proof—(Sufficiency): Suppose that j satisfies the condi-

tion ∪n
i=1ai,j ⊂ X. We want to prove that λ = ∅ is a Boolean

eigenvalue of A, i.e., there exists X �= ∅ s.t. AX = ∅X = ∅.
Consider a vector whose components are empty sets except
for the j-th one. Then, we have AX = AjXj , where Ai is
the i-th column of A, which we want to be the vector of
empty sets. This last equation can be explicitly written as
ai,1 ∩Xj = ∅, ai,2 ∩Xj = ∅, ai,n ∩Xj = ∅, which hold if,
and only if, it also happens that (a1,j ∩Xj) ∪ (a2,j ∩Xj) ∪
· · · ∪ (an,j ∩Xj) = ∅, and, by the distributivity property, that
(a1,j ∪ a2,j ∪ · · · ∪ an,j) ∩Xj = ∅, and

⋃n
i=1 ai,j ∩Xj = ∅,

for which the two sets are disjoint. Moreover, the value X̄j =
X \ (

⋃n
i=1 ai,j) �= ∅ satisfies this condition and, due to the hy-

pothesis that ∪n
i=1ai,j ⊂ X, is different from ∅, which implies

that X = (∅, . . . , ∅, X̄j, ∅, . . . , ∅)T is an eigenvector of A.
(Necessity): Suppose that λ = ∅ is an eigenvalue of A.

This implies that there exists X �= ∅ s.t. AX = ∅. This means⋃n
i=1 ai,j ∩Xj = ∅, for all j. This condition is trivially satis-

fied for every null component of X . For every other component
of X that is different than ∅, the component itself must be
disjoint to the union of the sets composing the corresponding
column of A. This implies that their union can not cover the
entire set X, which gives the thesis. �

Remark 2: Note that, if λ if an eigenvalue of a Boolean A
with associated eigenvectorX , then every matrix A′ = PTAP ,
where P is a permutation matrix,3 has the same eigenvalue
with eigenvector PTX . To show this, left-multiply the equa-
tion AX = λX by PT and recall that PTP = I .4 This gives
(PTAP )(PTX) = λ(PTX), which proves the statement. �

The spectrum of a Boolean matrix may have a structure that
is impossible in R

n. The following example shows that the
same eigenvector may be associated with different eigenvalues,
or that the spectrum can be represented by the entire power set
Σ(X):

Example 3.1: Consider the entire real interval X =
(−∞,∞) and the two following matrices:

A1 =

(
∅ {13}

(17, 28] X

)
; A2 =

(
[3, 5) X

X {4}

)
.

A1 admits the eigenvalue λ = ∅ by Proposition 3.3, being
the union of its first column’s elements is less than X, with
associated eigenvectors Vλ = (X, ∅)T , where X is any set in
(−∞, 17] ∪ (28,∞). Moreover, A2 does not admit the eigen-
value λ = ∅ by Proposition 3.3, while any scalar λ ⊆ X \ ∅
is an eigenvalue of A2, with associated eigenvector Vλ =
(X,X)T , with X ⊆ λ. �

A complete characterization of the Boolean spectrum of a
generic map is complex (see, e.g., the work in [21]). However,
for a subclass of these maps, the two following results can be
stated:

3P is a permutation matrix in the classical sense, but where every 0 and 1 are
replaced with ∅ and X, respectively.

4I is the identify matrix with X on its diagonal and ∅ elsewhere.
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Proposition 3.4: A matrix A ∈ {∅,X}n×n admits the
Boolean eigenvalue λ = X if, and only if, there exist no per-
mutation bringing A in strictly lower or upper triangular form.

Proof (Sufficiency): Supposing the existence of a permu-

tation matrix P s.t. A′ def
= PTAP is strictly lower triangular, a

vectorX �= ∅ s.t. A′X = XX = X does not exist. This trivially
holds due to the form of matrix A′. Direct computation gives

∅ =X1

a′2,1 ∩X1 =X2

a′3,1 ∩X1 ∪ a′3,2 ∩X2 =X3

...

a′n,1 ∩X1 ∪ · · · ∪ a′n,n−1 ∩Xn−1 =Xn.

The value λ = X is not an eigenvalue of A since the only vector
solving the system is X = ∅.

(Necessity): We need to prove that, if λ = X is not an
eigenvalue of A, then there exists a permutation that brings A
in strictly lower triangular form. Note that X is an eigenvalue of
A if, and only if, A has a fixed point. So, let us start imposing
that the vector w = (X, . . . ,X)T is not a fixed point. Then, if
A has not an empty row, the scalar product between every row
of A and w is X, and therefore w would be a fixed point. Then
suppose that the i-th row of A is made of empty sets. We can
now apply to A a permutation that exchanges the i-th row with
the first one, and then exchanges the i-th with the first column.
In this way we obtain a matrix where the first row is empty. By
induction, suppose that there exists a permutation matrix P s.t.
PTAP has the for⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅ · · · ∅ ∅ · · · ∅
a′2,1 · · · ∅ ∅ · · · ∅

...
. . .

...
...

. . .
...

a′i,1 · · · a′i,i−1 ∅ · · · ∅
a′i+1,1 · · · a′i+1,n

...
. . .

...
a′n,1 · · · a′n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and consider the vector v = (∅, . . . , ∅,X, . . . ,X)T , where the
first i rows are null. v is not a fixed point of PTAP only
if there exists j > i s.t. the j-th row of PTAP has the form
(a′j,1, . . . , a

′
j,i, ∅, . . . , ∅). We can now apply to PTAP a per-

mutation that exchanges the j-th row with the i-th one, and then
exchanges the j-th with the i-th column. The inductive step is
complete since we obtain the following matrix:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅ · · · ∅ ∅ · · · ∅
a′2,1 · · · ∅ ∅ · · · ∅

...
. . .

...
...

. . .
...

a′i+1,1 · · · a′i+1,i ∅ · · · ∅
a′i+2,1 · · · a′i+2,n

...
. . .

...
a′n,1 · · · a′n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which concludes the proof. �

Proposition 3.5: If A ∈ {∅,X}n×n is s.t. X �∈ σ(A), then
σ(A) = Σ(X) \ X.

Proof: By Proposition 3.4, we can assume that A is
strictly lower triangular. Therefore, for every scalar λ ⊂ X, the
non-null vector v = (∅, . . . , ∅, C(λ))T is an eigenvector of A
associated with the eigenvalueλ, since it holds ∅=Av=λv=∅.

�
Corollary 3.2: For a matrix A ∈ {∅,X}n×n, the spectrum

σ(A) is given by either X or Σ(X) \ X.
Proof: The proof straightforwardly follows from

Propositions 3.4 and 3.5. �
Definition 3.4 (Contractive Map): A set-valued Boolean

map F : Σ(X)n → Σ(X)n is said to be contractive w.r.t. the
vector distance D, if there exists a matrix M ∈ {∅,X}n×n,
s.t. X �∈ σ(M)

D (F (X), F (Y )) ⊆ MD(X,Y ), for all X,Y ∈ Σ(X)n.

�
Remark 3: While Proposition 1 implies that, for every gener-

ic set-valued F , the distances D(X,Y ) and D(F (X), F (Y ))
are always comparable through the incidence matrix B(F ), it
is not ensured for F to satisfy the contractivity requirement of
Definition 3.4, which is one of the reasons why contractivity is
only sufficient for the global convergence of the corresponding
SVBDS. �

Proposition 3.6: A set-valued Boolean map F is contractive
if, and only if, X �∈ σ(B(F )).

Proof: The sufficiency is trivially satisfied by choosing
M = B(F ). The necessity can be proved as follows. Let M
be the Boolean matrix of Definition 3.4. Since X �∈ σ(M),
by Proposition 3.4, there exists a permutation P s.t. P TMP
is strictly triangular. Moreover, by Proposition 3.5, we have
that B(F ) ⊆ M , and thus that also the matrix PTB(F )P is
strictly triangular. Finally, by Proposition 3.5, we have that
σ(B(F )) = Σ(X) \ X, which gives the thesis. �

Definition 3.5 (Global Convergence): A SVBDS X(t+1)=
F (X(t)), with F : Σ(X)n → Σ(X)n, is globally convergent,
if there exist q ∈ N and a unique ξ ∈ Σ(X)n s.t. for all X ∈
Σ(X)n, it holds F t(X) = ξ for t ≥ q. �

A result characterizing the global convergence of a SVBDS
is the following:

Theorem 3.1: If the map F is contractive w.r.t. the vec-
tor distance D, the SVBDS X(t+ 1) = F (X(t)) is globally
convergent.

Proof: Since F is contractive, by Proposition 3.6, X �∈
σ(B(F )), and B(F ) is strictly lower or upper triangular, up
to a transformation PTB(F )P , with P a permutation matrix.
This implies the existence of a non-negative integer q ≤ n s.t.,
(B(F ))q = ∅. By Corollary 3.1, we have B(F q) = B(F · · ·
F )⊆B(F )· · ·B(F ) = (B(F ))q = ∅, which means that the ap-
plication F q is independent of X , i.e., there exists ξ∈Σ(X)n

s.t., for all X∈Σ(X)n, we have F q(X) = ξ. Moreover, it holds
that F q+1(ξ) = F q(F (ξ)) = ξ, being F q is constant, and that
F q+1(ξ) = F (F q(ξ)) = F (ξ), thus F (ξ) = ξ, i.e., ξ is a fixed
point of F . Suppose by absurdity that ξ is not unique, i.e., there
exists η ∈ Σ(X)n, η �= ξ s.t. F (η) = η. By Proposition 3.1,
we have D(ξ, η) = D(F (ξ), F (η)) ⊆ B(F )D(ξ, η), which
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repeated q times gives D(ξ, η) ⊆ (B(F ))qD(ξ, η) = ∅, since
(B(F ))q = ∅. Being D(ξ, η) = ∅ we have the contra-
diction ξ = η. �

Example 3.2: Consider a discrete-time dynamic system
X(t+ 1) = F (X(t)), where X = (X1, X2, X3)

T ∈ Σ(X)3,
F and thus its incidence matrix are

F (X)=

⎛
⎝ X1 ∪ (X2 ∩X3)

X1 ∪ C(X2)
C(X1) ∩ C(X2) ∩ C(X3)

⎞
⎠, B(F )=

⎛
⎝X X X

X X ∅
X X X

⎞
⎠.

(11)

By Proposition 3.4, σ(B(F )) contains the eigenvalue X, and
thus, by Proposition 3.6, F is not contractive. �

We can finally prove the following result establishing a con-
dition for global consensus convergence for a class of SVBDS:

Proposition 3.7 (Consensus of Linear SVBDS): A linear
SVBDS of the form X(t+ 1) = AX(t) possesses at least a
set-valued equilibrium point that is a consensus state if, and
only if

n⋂
i=1

ai,1 ∪ ai,2 ∪ · · · ∪ ai,n �= ∅.

Proof: The point 1nξ is a consensus equilibrium state
if, and only if, A1nξ = 1nξ, i.e., for all i = 1, . . . , n, (ai,1 ∪
ai,2 ∪ · · · ∪ ai,n)ξ = ξ. This holds if, and only if, the intersec-
tion of all matrix rows is not the emptyset. �

IV. BINARY ENCODING OF SET-VALUED

BOOLEAN DYNAMIC SYSTEMS

While the results in Section III are very promising, a com-
plete characterization of the spectrum of a general Boolean
matrix is still far. Such an analysis is much simpler in the
case of binary dynamic systems, which are BDS based on the
simplest Boolean algebra where B̃ = B = {0, 1} is the binary
domain, ∧ is the logical product (“and”) ·, ∨ is the logical sum
(“or”) +, and ¬ is the “not” operator. Local convergence for
binary dynamic systems has been addressed by introducing the
notion of a discrete derivative [15]. A possible generalization
of this notion for SVBDS is represented by the so-called
Boolean derivative, proposed in [22]. However, this formulation
of “derivative” gives rise to matrices containing not only the
empty set and the unity, for which results characterizing their
spectrum cannot be easily obtained.

For this reason, in the remainder of the paper, we pursue a
different approach, which applies to SVBDS and allows their
local convergence to be fully characterized. We show how
a SVBDS can be translated into a binary dynamic system
x(t+ 1) = f(x(t)), where x ∈ B

κ is binary state vector, and
f : Bκ → B

κ is a binary iterative map, and κ is a suitable
dimension [22]. We say that the above binary system encodes a
SVBDS (see Definition 3.1), in the sense that every execution
of the original system can be obtained by simulating the binary
one. To this purpose, we first need to give the following
definitions:

Definition 4.1 (Induced Unity Partition): Given a set-valued
vector X̄ = (X̄1, . . . , X̄n)

T , with each X̄i ∈ Σ(X), we call the

induced unity partition the following collection of sets:

Z̄1(X̄) = X̄1 ∩ X̄2 ∩ · · · ∩ X̄n−1 ∩ X̄n

Z̄2(X̄) = X̄1 ∩ X̄2 ∩ · · · ∩ X̄n−1 ∩ C(X̄n)

Z̄3(X̄) = X̄1 ∩ X̄2 ∩ · · · ∩ C(X̄n−1) ∩ X̄n

Z̄4(X̄) = C̄(X1) ∩ X̄2 ∩ · · · ∩ X̄n−1 ∩ X̄n

Z̄5(X̄) = C̄(X1) ∩ X̄2 ∩ · · · ∩ X̄n−1 ∩ C̄(Xn)

...

Z̄κ−1(X̄) = C(X̄1) ∩ · · · ∩ C(X̄n−1) ∩ X̄n

Z̄κ(X̄) = C(X̄1) ∩ · · · ∩ C(X̄n−1) ∩ C(X̄n)

where κ = 2n. �
It is straightforward to verify that the above sets form a

partition of X, i.e., Z̄i ∩ Z̄j = ∅, and Z̄1 ∪ · · · ∪ Z̄n = X. Let
Z(X̂) be the smallest collection of sets closed under set union
and including Z̄i, i = 1, . . . , κ.

Definition 4.2 (Binary Encoding): Given a unity partition
Z̄1, . . . , Z̄κ, a binary encoding is represented by a left-invertible
applicationL : Z(X̂) → B

κ, called the encoder map, that asso-
ciates any set Xi ∈ Z(X̂) with a κ-dimensional binary vector
xi whose h-th component is 1 if, and only if, Xi has non-null
overlapping with the set Z̄h, i.e., xi = L(Xi) where

L : Z(X̂) → B
κ

Xi → xi =
(
xi
1, . . . , x

i
κ

)T
, xi

h =

{
0 if Xi ∩ Z̄h = ∅
1 otherwise.

The left-inverse relation L† : Bκ → Z(X̂), referred to as the
decoder map, returns the set Xi originally associated with a
binary vector xi, i.e., Xi = L†(xi) where

L† : B
κ → Z(X̂)

xi → Xi =
⋃

h=1,...,κ,xi
h=1

Z̄h.

�
Definition 4.3: Given two Boolean Algebras with domain

sets B̃1 and B̃2, respectively, two functions Φ1 : B̃n
1 → B̃1 and

Φ2 : B̃n
2 → B̃2 are formally identical, if Φ1 can be obtained

from Φ2 by replacing the operations of the second algebra
involved in Φ2 with the corresponding one in the first algebra,
and vice-versa.

In the remainder of this section, by proving that all sets
that can be obtained from arbitrary combination of unions,
intersections, and complements of the sets X̄i, can be described
as suitable unions of the sets Z̄1, . . . , Z̄κ, we provide a method
to find a binary encoding of the set-valued Boolean map F . This
fact is formalized in the following main result:

Theorem 4.1 (Binary Encoding of SVBDS): Given a generic
set-valued Boolean map F : Σ(X)n → Σ(X)n and an initial
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set-valued vector state X0 ∈ Σ(X)n, the evolution X(t), for
t = 0, 1, . . ., of the SVBDS

X(t+ 1) =F (X(t))

X(0) =X0

can be computed as

X(t) = L† (x(t))

where L is the binary encoding associated with the unity
partition corresponding the sets X0

1 , . . .X
0
n, and x(t) ∈ B

n×κ,
for t = 0, 1, . . ., is the evolution of the binary dynamic system

(xi,1(t+ 1), . . . , xi,κ(t+ 1))

= (fi (x1,1(t), . . . , xn,1(t)) , . . . , fi (x1,κ(t), . . . , xn,κ(t)))

(xi,1(0), . . . , xi,κ(0)) = L
(
X0

i

)T
for i = 1, . . . , n, where each function fi : B

κ → B is formally
identical to the corresponding function Fi.

Proof: As a first step we need to prove that the inter-
section, the union, and the complement of any two sets X̄i

and X̄j can be computed by operating bitwise logical product,
sum, and complement, respectively, on the binary vectors x̄i =
L(X̄i) and x̄j = L(X̄j), and then projecting the results back
through the left-inverse map L†. First consider the following
set intersection:

X̄i ∩ X̄j =L†(x̄i) ∩ L†(x̄j) =

=

⎛
⎝ κ⋃

h=1,x̄i
h=1

Zh

⎞
⎠ ∩

⎛
⎝ κ⋃

l=1,x̄j
l=1

Zl

⎞
⎠

which can be expanded, by distributing the set intersection,
as the union of the sets given by the intersection of one Zh

with one Zl. As all Zi are disjoint, only those Zi appearing in
both the original sets, X̄i and X̄j , remain in the intersection.
Therefore, we can write

X̄i ∩ X̄j =

κ⋃
h=1,(x̄i

h=1)∧(x̄j
h=1)

Zh =

=

κ⋃
h=1,x̄h=1

Zh = L†(x̄)

where x̄ ∈ B
κ is obtained through the following bit-wise

operation on the vectors x̄i and x̄j :

x̄ = x̄ix̄j = (x̄i,1x̄j,1, . . . , x̄i,κx̄j,κ)

which proves the correspondence relation

X̄i ∩ X̄j
L�
L†

x̄ix̄j . (12)

Moreover, consider the following set union:

X̄i ∪ X̄j =L†(x̄i) ∪ L†(x̄j) =

=

⎛
⎝ κ⋃

h=1,x̄i
h=1

Zh

⎞
⎠ ∪

⎛
⎝ κ⋃

l=1,x̄j
l=1

Zl

⎞
⎠ =

=

κ⋃
h=1,(x̄i

h=1∨x̄j
h=1)

Zh =

κ⋃
h=1,x̄h=1

Zh =

=L†(x̄)

with

x̄ = x̄i + x̄j = (x̄i,1 + x̄j,1, . . . , x̄i,κ + x̄j,κ)

which proves the correspondence relation

X̄i ∪ X̄j
L�
L†

x̄i + x̄j . (14)

Finally, consider the following complementation of two sets:

C(X̄i) = C
(
L†(x̄i)

)
= C

⎛
⎝ κ⋃

h=1,x̄i
h=1

Zh

⎞
⎠ =

=

κ⋂
h=1,x̄i

h=1

C(Zh).

By definition C(Zh) is the set of points not belonging to Zh,
that can be obtained as the union of all the other partition sets

Z̄h = C(Zh) =

κ⋃
h′=1,h′ �=h

Z ′
h =

=Z1 ∪ Z2 ∪ · · · ∪ Zh−1 ∪ Zh+1 ∪ · · · ∪ Zκ =

=L†(z1) ∪ L†(z2) ∪ · · · ∪ L†(zh−1)∪

∪ L†(zh+1) ∪ · · · ∪ L†(zκ) =

=

κ⋃
l=1,αl,h=1

Zl

with αh=z1 + z2 + · · ·+ zh−1 + zh+1 + · · ·+ zκ. Easy com-
putation gives a logical vector αh = (1, . . . , 1, 0, 1, . . . , 1)T

containing all entries to 1 except for the h-th one. Finally,
intersection of all Z̄h yields

C(X̄i) =

κ⋂
h=1,x̄i

h=1

Z̄h =

=

κ⋂
h=1,αh=1

Zh, with α = α1α2, . . . , αr

where r is the number of x̄i’s non-null components. As all these
components are assigned with a logical vector αl containing
a null element at position l, and as all these components are
considered, the sets that remain in the intersection are those not
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belonging to X̄i, or in other words, for which x̄i
h = 0. Hence,

we have

C(X̄i) =

κ⋃
h=1,x̄i

h=0

Zh =

κ⋃
h=1,x̄i

h=1

Zh =

=L†(yi)

with

yi = ¬x̄i = (¬x̄i,1, . . . ,¬x̄i,κ)

which proves the correspondence relation

C(X̄i)
L�
L†

¬x̄i. (14)

The proof of the theorem can now be given as follows.
First assume the choice X̄ = (X̄1, . . . , X̄n) = X0. The generic
function Fi, involved in the application F , generates a new set
X̄ ′

i, by combining, according to a suitable order, pairs of the
elements of X̄ or of their combinations, via set intersection,
union, and complement. Based on the discussion above, it
follows that X̄ ′

i is a set that can be obtained by operating, with
the same order, all the corresponding bit-wise logical operations
on suitable logical vectors. More precisely, having denoted with
fi the binary function formally identical to Fi and given the
binary vectors x̄i = L(X̄i), we can write X̄ ′

i = L†(x̄′
i), where

x̄′
i =(x̄′

i,1, . . . , x̄
′
i,κ) =

= (fi(x̄1,1, . . . , x̄n,1), . . . , fi(x̄1,κ, . . . , x̄n,κ))

which proves the correspondence relation

Fi(X̄)
L�
L†

(fi(x̄1,1, . . . , x̄n,1), . . . , fi(x̄1,κ, . . . , x̄n,κ)) .

Repeating the same reasoning on the new state X̄ ′ = (X̄ ′
1,

. . . , X̄ ′
n)

T of the SVBDS yields to the state X̄ ′′, which can also
be expressed as a suitable union of the sets Z̄i. This fact also
shows that the same binary encoding can be used at every time
step t, which concludes the proof. �

Remark 4: Note that, although the binary encoding L de-
pends on the initial state X(0), the above theorem implies that
the same encoding can be used during the entire evolution of
the original SVBDS.

Remark 5: Reordering the binary state variables based on
their second index reveals that the evolution of a SVBDS can
be computed through that of the following κ decoupled binary
systems:

(x1,j(t+ 1), . . . , xn,j(t+ 1)) = φ (x1,j(t), . . . , xn,j(t))

for j = 1, . . . , κ, where

φ : Bn → B
n

⎛
⎜⎝y1

...
yn

⎞
⎟⎠ →

⎛
⎜⎝f1(y1, . . . , yn)

...
fn(y1, . . . , yn)

⎞
⎟⎠ . (15)

While each of these systems are initialized with a different state,
they share the same binary dynamic map φ.

Example 4.1: Consider again the system of Example 3.2,
where the unity is X = [0,∞) and system’s initial state is
X(0) = ([1, 5], [3, 7], [2, 3)∪ [4, 5] ∪ [6,∞))T . The first two
values of the system’s state can be obtained according to (11),
which yields

X(1) =

⎛
⎝ [1, 5] ∪ [6, 7]
[0, 5] ∪ (7,∞)

[0, 1)

⎞
⎠, X(2) =

⎛
⎝[0, 5] ∪ [6, 7]

[1, 7]
(5, 6)

⎞
⎠ . (16)

The same results can be obtained by using the binary encoding
of the system. We first need to consider the collection of sets

Z1 =X1 ∩X2 ∩X3 = [4, 5]

Z2 =X1 ∩X2 ∩ C(X3) = [3, 4)

Z3 =X1 ∩ C(X2) ∩X3 = [2, 3)

Z4 =X1 ∩ C(X2) ∩ C(X3) = [1, 2)

Z5 = C(X1) ∩X2 ∩X3 = [6, 7]

Z6 = C(X1) ∩X2 ∩ C(X3) = (5, 6)

Z7 = C(X1) ∩ C(X2) ∩X3 = (7,∞)

Z8 = C(X1) ∩ C(X2) ∩ C(X3) = [0, 1)

and then associate each state Xi with a binary vector xi ∈ B
8.

Based on Theorem 4.1, the original system can be simu-
lated by the binary dynamic system x(t+ 1) = f(x(t)), where

x = (xT
1 , x

T
2 , x

T
3 )

T
and

f(x) = (x1,1 + x2,1x3,1, . . . , x1,8 + x2,8x3,8,

x1,1¬x2,1, . . . , x1,8¬x2,8,

¬x1,1¬x2,1¬x3,1, . . . ,¬x1,8¬x2,8¬x3,8) (17)

with initial statex(0)=(xT
1 (0),x

T
2 (0),x3(0)

T )T , wherex1(0)=
L(X1(0))=(1, 1, 1, 1, 0, 0, 0, 0), x2(0)=L(X2(0)) = (1, 1, 0,
0, 1, 1, 0, 0), and x3(0)=L(X3(0))=(1, 0, 1, 0, 1, 0, 1, 0). The
first two values of the binary state are x(1) = (x1(1),

x2(1), x3(1))
T =f(x(0)) and x(2)=(x1(2), x2(2), x3(2))

T =
f(x(1)), with

x1(1) = (1, 1, 1, 1, 1, 0, 0, 0),
x2(1) = (1, 1, 1, 1, 0, 0, 1, 1),
x3(1) = (0, 0, 0, 0, 0, 0, 0, 1),

x1(2) = (1, 1, 1, 1, 1, 0, 0, 1)
x2(2) = (1, 1, 1, 1, 1, 1, 0, 0)
x3(2) = (0, 0, 0, 0, 0, 1, 0, 0)

which corresponds to the original system’s states

X(1) =L† (x(1)) =

⎛
⎝ Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5

Z1 ∪ Z2 ∪ Z3 ∪ Z4,∪Z7 ∪ Z8

Z8

⎞
⎠

X(2) =L† (x(2)) =

⎛
⎝Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5 ∪ Z8

Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5 ∪ Z6

Z6

⎞
⎠

being clearly equal to the values obtained in (16). �
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V. CONVERGENCE REVISITED AND COMPLETED

We first show how the encoding technique presented above
gives rise to the same global convergence conditions of
Section III. First recall from [14] the following notions and
result:

Definition 5.1 (Spectral Radius): Given a binary matrix
A ∈ B

m×m, its spectral radius ρ(A) is given by its biggest
eigenvalue in the sense of the partial order relation ≤.

Definition 5.2 (Binary Vector Distance): Given two binary
vectors x, y ∈ B

m, the binary vector distance between the two
vectors is represented by the application

d : B
m × B

m → B
m

(x, y) → (x1 ⊗ y1, . . . , xm ⊗ ym)

where ⊗ is the exclusive disjunction

⊗ : B× B → B

(xi, yi) → (¬xiyi) + (xi¬yi).

Note that the Boolean vector distance of Definition 3.2 special-
izes to the binary vector distance if the domain B̃ is binary.

Theorem 5.1: A map f : Bm → B
m is contractive w.r.t. the

binary vector distance d if, and only if, the following equivalent
conditions hold: 1) ρ(B(f)) = 0, 2) there exists a permutation
matrix P s.t. PTB(f)P is strictly lower or upper triangular;
3) B(f)q = 0, with 0 ≤ q ≤ m. Moreover, if f is contractive,
there exists a positive integer q ≤ m s.t. f q, the composition of
f with itself q times, is a constant map, i.e., it is independent of
the input vector. �

Consider a SVBDS characterized by a set-valued map F :
Σ(X)n → Σ(X)n and its corresponding binary dynamic system
characterized by the function f : Bm → B

m, with m = nκ. We
first want to show that the properties of global contractivity of F
can be investigated in the binary domain by studying the same
properties of f . To this purpose we can prove the following:

Lemma 5.1: Having denoted with B(f) the incidence matrix
of f , the following equivalence holds {B(F )}i,j = X if, and
only if, {B(f)}2n(i−1)+1:2n(i−1),2n(j−1)+1:2n(j−1) = I , where I
is the identity matrix and the notation Mi:j,k:l indicates a sub-
matrix of M obtained by extracting its rows from i to j and its
columns from k to l.

Proof: First rewrite the map F (X1, . . . , Xn) = (F1(X
1
i1
,

. . . , X1
ik1

), . . . , Fn(X
n
i1
, . . . , Xn

ikn
))T , where Xj

il
are the vari-

ables on which the j-th component of the image of F actually
depends. By the encoding map, we have that B(f) ∈ B

nκ×nκ

equals

⎛
⎜⎜⎜⎜⎜⎜⎝
0 . . . 0

i11︷︸︸︷
I 0 · · ·

i12︷︸︸︷
I · · ·

i1k1︷︸︸︷
I · · · 0

... · · · · · · · · · · · · · · · · · · · · · · · · · · ·
...

0 · · · I︸︷︷︸
in1

0 · · · I︸︷︷︸
in2

0 · · · I︸︷︷︸
inkn

· · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

where 0 and I are here the zero and identity matrices, respec-
tively. The thesis easily follows since the matrix B(F ), by
replacing 0 with ∅ and I with X, has exactly the same form:

⎛
⎜⎜⎜⎜⎜⎜⎝
0 . . . 0

X
1
1︷︸︸︷
X 0 · · ·

X
1
2︷︸︸︷
X · · ·

X
1
k1︷︸︸︷
X · · · 0

... · · · · · · · · · · · · · · · · · · · · · · · · · · ·
...

0 · · · X︸︷︷︸
X

n
1

0 . . . X︸︷︷︸
X

n
2

0 · · · X︸︷︷︸
X

n
kn

· · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

�
Theorem 5.2 (Global Convergence): The dynamic map F :

Σ(X)n → Σ(X)n of a SVBDS is contractive if, and only if, its
encoding L(F ) : Bnκ → B

nκ is contractive.
Proof: By Theorems 5.1 and 3.1, it is sufficient to prove

that X �∈ σ(B(F )) if, and only if, ρ(B(f)) = 0. We have that
X �∈ σ(B(F )) if, and only if, there exists a permutation matrix
P s.t. PTB(F )P is strictly lower or upper triangular, and
Theorem 5.1 assures that ρ(B(f)) = 0 if, and only if, there
exists a permutation matrix p s.t. pTB(f)p is strictly lower
triangular. By Lemma 5.1, it holds {B(F )}ij = X if, and only
if, {B(f)}2n(i−1)+1:2n(i−1),2n(j−1)+1:2n(j−1) = I , which imme-
diately implies that X �∈ σ(B(F )) if, and only if, ρ(B(f)) = 0.

�
Remark 6: It is worth remarking that, for some initial condi-

tions X(0), the induced unity partition Z̄i, for i = 1, . . . , κ, can
be degenerate, i.e., some sets in the collection can be emptysets.
For this specific initial condition the original SVBDS may
converge notwithstanding the fact that state components of
the encoded binary system associated with empty sets may
not converge. However, other initial conditions certainly exist
s.t. the same state components are not associated to empty
sets, hence the necessity that the encoded binary system global
convergence for the same property for the SVBDS.

Remark 7: ρ(B(f)) = 0 if, and only if, ρ(B̃(F )) = 0, where
B̃(F ) is the matrix obtained substituting 1 to X and 0 to ∅. This
can be easily seen by using the equivalent formulation in terms
of permutation matrices given by Theorem 5.1. �

Example 5.1 (Cont’d): Consider again the system of
Example 3.2. Following the derivation of the associated log-
ical system (17), the incidence matrix of the corresponding
binary dynamic system is B(f) = {Ci,j}, with Ci,j ∈ B

8×8

and Ci,j = I8 for i �= 2, j �= 3 and C2,3 = 08, where 08 and I8
are the null and identity matricies of dimension 8, respectively.
According to Theorem 5.2, the system of the Example 3.2 is
contractive if, and only if, its binary dynamic system is con-
tractive. Based on Theorem 5.1, this system is not contractive,
since B(f) cannot be put in a strictly triangular form by a
permutation matrix (there should be a zero row). Then, based on
Theorem 5.2, we can conclude that the system of Example 3.2
is not contractive, as we obtained in Section III by using
Theorem 3.1. �

We now move on to attack the study of local convergence of a
SVBDS, for which we recall from [15] the following definitions
and results on the local convergence of a binary map f about an
equilibrium point x s.t. f(x) = x.
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Definition 5.3 (Von-Neumann Neighborhood (VNN)): The
VNN of a point x ∈ B

m is the set V (x) of all points differing
from x in at most one component, i.e., V (x) = {x, x̃1, . . . ,
x̃m}, where x̃j = (x1, . . . , xj−1,¬xj , xj+1, . . . , xm)T .

Definition 5.4 (Discrete Derivative): The discrete derivative
of a binary map f : Bm → B

m at a point x ∈ B
m is a binary

matrix f ′(x) = {f ′
i,j}, s.t. f ′

i,j = 1 if, and only if, a variation
in the j-th component of x produces a variation in the i-th
component of f(x), i.e., f ′

i,j(x) = fi(x) ⊗ fi(x̃
j).

Definition 5.5: An equilibrium point x∗ ∈ B
m is attractive

in its VNN V (x∗) if, for all y ∈ V (x∗), the following relations
hold: 1) f(y) ∈ V (x∗) and 2) ∃m̄ ∈ N s.t., f m̄(y) = x∗.

Definition 5.6: A binary map f is said to be locally conver-
gent at an equilibrium point x∗ if x∗ is attractive in its VNN.

Theorem 5.3: An equilibrium point x∗ ∈ B
m is attractive

in its VNN if, and only if, the following two relations hold:
1) ρ(f ′(x∗)) = 0, and 2) f ′(x∗) contains at most one element
to 1 in each column. �

We can now focus on a generic SVBDS with an equilibrium
point given by X∗ = (X∗

1 , . . . , X
∗
n)

T ∈ Σ(X)n. The following
definitions and results extend the corresponding ones in [15]:

Definition 5.7 (Complemented Neighborhood (CN)): The CN
Ṽ (X∗) of a point X∗ ∈ Σ(X)n is the set of points differing
from it in at most one complemented component, i.e., Ṽ (X) =
{X, X̃1, . . . , X̃n}, with X̃j = (X∗

1 , . . . , X
∗
j−1, C(X∗

j ), X
∗
j+1,

. . . , X∗
n)

T . �
Note that, if X∗ ∈Σ(X)n, it also holds that Ṽ (X∗) ∈ Z(X∗).
Definition 5.8: An equilibrium point X∗ of F : Σ(X)n →

Σ(X)n is attractive in its CN if the following two relations hold:
1) F (Ṽ (X∗))⊂ Ṽ (X∗) and 2) Fn(Y )=X , for all Y ∈ Ṽ (X∗).

We can prove the following result:
Theorem 5.4 (Local Convergence of SVBDS): An equilib-

rium point X∗ of the generic set-valued map F : Σ(X)n →
Σ(X)n is attractive in its CN V (X∗) if, and only if, the bi-

nary equilibria y∗j = (x∗
1,j , . . . , x

∗
n,j)

T , for j = 1, . . . , κ, where
(x∗

1,1, . . . , x
∗
1,κ, . . . , x

∗
n,1, . . . , x

∗
n,κ)=L(X∗), are all attractive

in their VNN V (y∗j) for the binary map φ in (15).
Proof: By comparing Definition 5.3 and Definition 5.7,

we first obtain that F (Ṽ (X∗)) ∈ Ṽ (X∗) if, and only if,
φ(V (y∗j)) ∈ V (y∗j), for all y∗j . Moreover, we also obtain that

Fn(Y ) = X∗ for all Y ∈ Ṽ (X∗) if, and only if, φn(y) = y∗j
for all y ∈ V (y∗j) and all yj . Based on this, by Theorem 5.2, the
thesis is implied. �

Example 5.2 (Cont’d): Consider again the system of Ex-
ample 3.2, with a generic initial condition given by X(0) =
(A,B,C)T , whereA, B, and C are time-invariant sets in Σ(X).
As discussed above, the system is not contractive (the spectrum
of its incidence matrix B(F ) contains X, or equivalently the
spectral radius of the incidence matrix B(f) of its encoding
f is 1). Moreover, it is easy to verify that the state vector
obtained with A = B = X and C = ∅ is an equilibrium of the
system. The partition sets of the binary encoding are Z1 =
Z3 = · · · = Z8 = ∅ and Z2 = X. After reordering the unique
non-empty set, i.e., κ = 1, we obtain the partition set described
by Z1′ = X. The encoded binary vector state is x̄ = L(X̄) =

(xT
1 , x

T
2 , x

T
3 )

T
, with x1 = x2 = 1 and x3 = 0, which is attrac-

tive in its VNN for the encoded binary map f(x) = (x1,1 +

x2,1x3,1, x1,1x̄2,1, x̄1,1x̄2,1x̄3,1)
T . Therefore, by Theorem 5.4,

the equilibrium point X̄ is attractive in its CN for the original
system. �

VI. APPLICATION TO DISTRIBUTED CHART ESTIMATION

Consider a mosaicking application involving reconstruction
of a geographical chart, by using n balloon stations deployed
over the area. Let Q be the set of points on the Earth surface
with latitude and longitude comprised within 30◦ N and 75◦ N,
and 30◦ W and 50◦ E, respectively, roughly corresponding to
the European continent. By acquiring a spotlight-type image
of the underneath surface, each station Ai is able to produce
a local estimated chart Ii(0) ⊆ Q, composed of a collection
of connected sets representing the estimated emerged lands.
Moreover, let Vi(0) ⊆ Q be a region representing the field-of-
view of Ai, i.e., the set of points that can be “seen” by Ai.
For simplicity we model each Vi(0) as a circle centered at the
projection of Ai’s position on the Earth surface and having
radius given by a constant d. Within its field-of-view, each
Ai may incorrectly include portions of sea or neglect parts of
existing lands in Ii(0).

We assume a minimum measurement multiplicity constraint
requiring that each point in a subset Q′ ⊆ Q lays within the
intersection of at least r > 0 field-of-views; we further assume
a bounded detection error constraint requiring that, in every set
of r stations satisfying the measurement multiplicity constraint,
at most γ of these stations may perform an incorrect detection.
By assuming that each station is able to share data via com-
munication with other neighboring stations, we seek a solution
enabling an end-user on the ground, willing e.g., to use the chart
information for navigation purpose, to efficiently and promptly
poll its nearest station so as to retrieve a unique and consistent
chart of the continent’s surface.

A first solution can be found by following a centralized
approach. In this solution a central processor with high compu-
tation and memory capacities must receive the estimated charts
and visibility regions from all the stations, combine them into
a global geographical chart, and then send this chart back to all
stations. To cope with incorrect land detection, a well-known
result from fault-tolerance theory can be used [23], requiring
that, for every point q ∈ Q′, the central processor uses the
estimated charts received from at least r′ = 2γ + 1 different
stations including q in their field-of-view (thus it must hold
the condition r ≥ r′). Among these r′ estimated charts, if γ
is the maximum number of them that are possibly containing
detection errors at least γ + 1 charts—the majority—contain
correct information for that point. According to this approach,
the central process can reconstruct an estimated chart I∗ by
using the following formula:

I∗ =
⋃
q∈Q

⎛
⎝ ⋃

H∈Sγ+1(Kq)

( ⋂
h∈H

Ih(0)

)⎞
⎠ (18)

where Sα(A) returns the set of all sets of cardinality α com-
posed of elements in A, and

Kq = {i ∈ {1, . . . , n}|q ∈ Vi(0)} .



1488 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 6, JUNE 2016

Intuitively, the formula can be explained as follows. For every
point q ∈ Q, it is necessary to generate all possible agent index
r′-tuples and, for each tuple, to intersect the initially estimated
charts Ih(0) of the involved agents. Note that each Ih(0) may
include estimated lands that lie outside the initial confidence
region Vh(0); however these estimated lands are dropped out
from I∗ if they are not confirmed by a sufficient number of
agents. With the same reasoning, a region of global visibility
can be defined as follows, representing the region for which
the centralized process has received sufficient information to
perform high accuracy land detection:

V ∗ =
⋃
q∈Q

⎛
⎝ ⋃

H∈Sγ+1(Kq)

( ⋂
h∈H

Vh(0)

)⎞
⎠ . (19)

While it effectively solves the problem, this centralized so-
lution is unsatisfactory for at least three reasons: The first is
non-scalability, since the amount of data to be elaborated by the
processor requires computation and memory capacities increas-
ing super-linearly with the number n of stations; secondly, the
approach requires an explicit management of message routing
in order to allow every station to reach and be reached from
the central processor; third, it leads to the implementation of a
system that has a single-point of failure.

By bearing in mind the centralized solution as an indicator
of achievable performance, we seek a solution that is fully
distributed, i.e., no central processor is used, and that requires
no message routing, namely all stations must reach a consensus
on the continent chart by exchanging messages only with their
one-hop neighbors. We assume a minimum communication
connectivity constraint requiring that, for every point q ∈ Vi(0),
each Ai has at least 2γ + 1 communication neighbors whose
field-of-view comprises q. Let the set-valued variable Xi ⊆
Q×Q be the state of Ai, and Ci the index set of its com-
munication neighbors. A possible distributed solution can be
obtained by using a SVBDS, where Ai’s state is initialized with
the value

Xi(0) = (Ii(0), Vi(0))

and then iteratively updated according to the rule{
Ii(t+ 1) =

⋃
H∈Sγ+1(Ci)

⋂
h∈H (Vh(t) ∩ Ih(t))

Vi(t+ 1) =
⋃

H∈Sγ+1(Ci)

⋂
h∈H Vh(t).

(20)

We need to prove that, by means of the update rule in (20),
each state Xi converges to the state (I∗, V ∗). First note that,
having defined the set K = {1, . . . , n}, (18) and (19) can be
rewritten as{

I
∗
=

⋃
H∈Sγ+1(K)

⋂
h∈H (Vh(0) ∩ Ih(0))

V
∗
=

⋃
H∈Sγ+1(K)

⋂
h∈H Vh(0).

It is straightforward to verify that the state X∗ = 1n(I
∗, V ∗)

is an equilibrium for the above SVBDS. While the system is
not globally convergent to X∗, it is possible to show that such
an equilibrium is attractive in a region that is large enough to
tolerate up to γ incorrect land detections. Let us consider the
general case in which three assumptions hold: 1) I∗ �= ∅ and

Fig. 2. Deployment and connectivity of 135 stations over the European conti-
nent (from top to down, A8, A73 , A84 , and A112 are represented with bigger
circles).

V ∗ �= ∅, indicating that some land exists and is in the field-
of-view of at least 2γ + 1 stations; 2) a portion of sea, C(I∗),
is included in the global visibility region V ∗; and 3) V ∗ ⊂ Q,
indicating that a portion of the European continent is not in the
field-of-view of at least 2γ + 1 stations. The unity partition sets
described in Section IV are given by

Z1 = I1(0)∩· · ·∩In(0)∩V1(0)∩· · ·∩Vn(0) = I∗∩V ∗ = I∗

...

Zκ = C (I1(0))∩· · ·∩C (In(0))∩C (V1(0))∩· · ·∩C (Vn(0))=

= C(I∗)∩C(V ∗) = C(V ∗)

with κ = 22n. In the above equations the property I∗ ⊆ V ∗,
which can be deduced by simple reasoning on the definitions of
I∗ and V ∗, has been used. It is possible to provide physical in-
terpretations for the sets Z1, representing the emerged lands that
can be detected by using the information available from all sta-
tions, and Zκ, representing the region not included in the field-
of-view of at least 2γ + 1 stations. The original SVBDS can
be simulated by a binary dynamic system, where the (i, j)-th
update rule is{

ηi,j(t+ 1) =
∑

H∈Sγ+1(Ci)

∏
h∈H (vh,j(t)ηh,j(t))

vi,j(t+ 1) =
∑

H∈Sγ+1(Ci)

∏
h∈Hvh,j(t)

(21)

for i = 1, . . . , n, j = 1, . . . , κ, and the initial state is obtained
from the relations

xi(0)=(ηi,1(0), . . . , ηi,κ(0), vi,1(0), . . . , vi,κ(0))=L (Xi(0))

for i = 1, . . . , n. The corresponding equilibrium point is x∗ =
(η∗1, v

∗
1, . . . , η

∗
n, v

∗
n), with (η∗i , v

∗
i )=L((I∗, V ∗))=(1, 0, . . . , 0,

1, 0, . . . , 0). After reordering the state variables according to
Remark (5), i.e., (η∗1,1, v

∗
1,1, . . . , η

∗
1,κ, v

∗
1,κ, . . . , η

∗
n,1, v

∗
n,1, . . . ,

η∗n,κ, v
∗
n,κ)

T , and thus obtaining the corresponding map φ as
in (15), one can find that the spectral radii of the discrete
derivatives of φ, evaluated at the points y∗1 = (1, . . . , 1)T and
y∗2 = · · · = y∗κ = (0, . . . , 0)T , are all null. This implies by
Theorem 5.3 that each y∗j is attractive in its VNN V (y∗j), and
hence, by Theorem 5.4, that X∗ is attractive for the original
SVBDS at least in its CN. Furthermore, consider the region Γ
composed of the states that differ in at most γ components
from x∗. It is easy to verify that the value of the map in (21)
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Fig. 3. Simulation run with 135 balloon stations and maximum number of faults per pixel given by γ = 3. Only the evolutions of the charts estimated by
4 stations is reported for space reasons: from left to right, A8 is placed approximately at latitude 66◦ N and longitude 41◦ E, A73 at 48◦ N and 8◦ W, A84 at
45◦ N and 32◦ E, and A112 at 39◦ N, and 6◦ E. The network of stations effectively consents on a global map of the European continent with reduced noise.

remains constant for all states in Γ, i.e., for all x̃ ∈ Γ, it holds
f(x̃) = f(x∗) = x∗. This fact tells us that Γ is included in the
region of attractiveness of x∗. By projecting back Γ to the
original system domain, we can prove that X∗ is attractive
at least in the set L†(Γ), which is large enough to tolerate γ
incorrect land detections.

Remark 8: Based on the above discussion, the system in (20)
is guaranteed to converge in at most 2n steps. Moreover, it has
been established that, if the set-valued map F corresponding
to the update rule in (20) is commutative, associative, and
idempotent w.r.t. any pair of its input arguments, the system’s
convergence time is upper bounded by the diameter of the
communication graph [13]. In this respect, note first that the
second function of (20) is idempotent w.r.t. any pair of its
inputs. Note also that the function is commutative and asso-
ciative w.r.t. any pair of input argument set H ∈ Sγ+1(Ci).
To show this, define, for every index set H , a new fictitious
input argument as UH =

⋂
h∈H Vh(t). The set-valued function

can be written as Vi(t+ 1) =
⋃

H∈Sγ+1(Ci)
UH , which clearly

satisfies the above two properties w.r.t. the new input arguments

UH . By drawing a similar discussion about the first function in
(20), we can conclude that the communication graph’s diameter
is an upper bound for the system’s convergence time. The view
that is thus finally reconstructed and shared among the agents
is unique and consistent with all available measures. However,
the required land detection accuracy is guaranteed only within
the region Q′.

Remark 9: The binary encoding of (21) is only needed for
analysis purposes. Every station update its state by making
computations in the original set-valued domain, for which it is
only required to know who its neighbors are.

A more general case can be considered, where, due to noise
increasing with the distance and to local atmospheric condi-
tions, such as the presence of stratus clouds, each Ai can incor-
rectly detect points within its field-of-view with probability ε.
Each region Vi(0) can thus be interpreted as the initial region of
ε-confidence of Ai, i.e., the set of points where the probability
of land detection error is not greater than ε. Furthermore, we
require, for every point in Q, that the probability E of land
detection errors in the global chart is bounded as E ≤ Ē < 1.



1490 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 6, JUNE 2016

For each Ai, the probability of having more than γ land
detection errors in Vi(1) is

p(ε) = 1−
γ∑

k=0

(
r

k

)
εk(1− ε)r−k.

With the same reasoning, the probability of having more than
γ land detection errors in Vi(2) is p ◦ p(ε), and in Vi(t) is
sε(t) = p◦, . . . , ◦p(ε), i.e., the composition of p with itself t
times. Therefore, we need to chose a set of sensors with the
probability ε satisfying the constraint

sε(t) < Ē for all t ≥ 1. (22)

It is possible to show that, for ε < 1/2 and for all γ, p(ε) <
ε and the function sε(t) monotonically decreases for t ≥ 1.
Hence, for an admissible error probability Ē < 1/2, the con-
dition in (22) is implied by ε < Ē.

Let us finally consider a simulative example including n =
135 stations with the hypothesis of γ = 3, r = 7, ε = 0.05.
By placing the stations on a grid with mesh size δ, we sat-
isfy the measurement multiplicity constraint with r = �πd(d −
1)/δ�+ 1, as known from number theory [24]. Fig. 2 is a
depiction of the stations’ deployment and the available commu-
nication graph. The diameter of the communication graph, i.e.,
the maximum distance between any two nodes on the graph,
is 11. Let us consider a case in which E = 0.02. Fig. 3 shows
how the network of stations iteratively update their estimated
charts Ii by running an instance of the consensus algorithm
described in (20). The first row reports the initial estimated
charts of four stations obtained from processing of the images
taken by their onboard vision systems, while the last row reveals
that the stations have successfully converged to the centralized
estimated chart I∗. In the figures the visibility sets Vi are not
drawn for legibility purpose. Their borders roughly corresponds
to the transition zones from the regions with clear land contours
to the ones containing only noise. We can observe that, during
the estimation process, each Vi expands as the land contours
become clear and finally include the entire chart.

VII. CONCLUSION

This paper focused on the convergence towards consensus
on information in distributed systems, where agents share data
that is not represented by real numbers, rather by logical values
or sets. We showed that both types of information convergence
problems can indeed be attacked in a unified way in the frame-
work of Boolean distributed information systems. Based on a
notions of contractivity and local convergence for Boolean dy-
namical systems, a necessary and sufficient condition ensuring
the global and local convergence toward an equilibrium point
is presented. Application of achieved results to some examples
was finally shown. Future works will address the convergence
of more general set-valued maps.
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