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Summary

A better understanding about the mechanisms involved in the pathogenesis

of type 2 diabetes mellitus (T2D) showed that inflammatory cytokines such

as tumour necrosis factor (TNF) and interleukin (IL)-1b play a pivotal role,

mirroring data largely reported in rheumatoid arthritis (RA). IL-1b is

produced mainly by monocytes (MO), and hyperglycaemia may be able to

modulate, in the cytoplasm of these cells, the assembly of a nucleotide-

binding domain and leucine-rich repeat containing family pyrin (NLRP3)-

inflammosome, a cytosolic multi-protein platform where the inactive

pro-IL-1b is cleaved into active form, via caspase-1 activity. In this paper, we

evaluated the production of IL-1 b and TNF, in peripheral blood MO of

patients affected by RA or T2D or both diseases, in order to understand if an

alteration of the glucose metabolism may influence their proinflammatory

status. Our data showed, after 24 h of incubation with different glucose

concentrations, a significantly increased production of IL-1b and TNF in all

evaluated groups when compared with healthy controls. However, a

significant increase of IL-1b secretion by T2D/RA was observed when

compared with other groups. The analysis of relative mRNA expression

confirmed these data. After 24 h of incubation with different concentrations

of glucose, our results showed a significant increase in NLRP3 expression. In

this work, an increased production of IL-1b by MO obtained from patients

affected by both RA and T2D via NLRP3-inflammasome activation may

suggest a potential IL-1b targeted therapy in these patients.

Keywords: IL-1b, NLRP3-inflammasome, rheumatoid arthritis, type 2 dia-

betes mellitus

Introduction

Rheumatoid arthritis (RA) is a chronic and disabling dis-

ease characterized by persistent synovitis and systemic

inflammation, in which over-expression of tumour necro-

sis factor (TNF) and interleukin (IL)-1b drive both syno-

vial inflammation and joint destruction [1]. It is well

known that RA is associated with an increased mortality

rate due to the increased risk of cardiovascular (CV) events

when compared with the general population [2–5], and

related to the chronic inflammatory process, which is able

to modulate an accelerated atherosclerosis and CV disease

(CVD) [6]. Both atherosclerosis and RA share common

inflammatory pathways, mediated mainly by TNF and IL-

1b [7–9]. In fact, increased levels of TNF and IL-1b may

promote endothelial dysfunction, structural vessel abnor-

malities, oxidative stress and changes in lipid levels, thus

favouring the appearance of traditional CV risk factors

such as hypertension, insulin resistance and type 2 diabetes

(T2D) [2,10,11]. It is well known that patients affected by

T2D show a higher CV morbidity and mortality when

compared with non-diabetic subjects [12]. In addition, the

diabetic vascular alterations may be responsible for both

diffuse coronary artery disease and stroke, which are

increased significantly in T2D patients, and the risk for the

occurrence of a CV event in these patients, without a pre-

vious history of CVD, mirrors the CV risk observed in

patients with a history of previous myocardial infarction

[13,14]. On this basis, we understand why patients affected

by both RA and T2D displayed the highest risk for CVD

and related mortality [15,16], as suggested by a prospective
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cohort study, conducted in the setting of the CORRONA

registry (Comparative Effectiveness of Biologic and Oral

Agents for the Treatment of Rheumatoid Arthritis), aimed

at investigating the association between CVD and RA

showing that both T2D and RA may contribute to increas-

ing the severity of CVD and in predicting the risk of fatal

CV events [17]. At present, a growing body of evidence

shows the positive association between RA and T2D: dif-

ferent databases, from clinical studies and from national

registers, confirmed that RA patients displayed a double

risk of developing T2D when compared with the general

population [18–20], and epidemiological data strongly

support the association between RA and insulin resistance

[21,22].

In recent years, many papers have supported the role of

inflammatory mechanisms in the pathogenesis of T2D [23]

and recently, as already described for type 1 diabetes melli-

tus (T1D), the pathogenetic role of insulitis in T2D has

been proposed [23–26]. Although the precise aetiology of

the insulitis in both types of diabetes remains to be under-

stood fully, some specific differences have been described.

At present we know that the T1D insulitis is driven by an

autoimmune process, whereas in T2D it is linked to an

autoinflammatory process, involving the IL-1b pathway

[23,24].

Although different cell types may produce IL-1b, this

cytokine is produced mainly by monocytes which, as

shown by preclinical and clinical studies, may be involved

in the pathogenesis of both these diseases [27,28]. Different

pathological stimuli are able to modulate the assembly of a

cytosolic platform, the inflammasome, composed of at least

five different protein components integral to this complex,

including nucleotide-binding domain and leucine-rich

repeat containing family pyrin 3(NLRP3), caspase recruit-

ment domain containing protein 8 (CARD8), pyrin,

apoptosis-associated speck-like protein containing CARD

(ASC) and pro-caspase-1, which is involved mainly in host

defence against microbes and where the inactive pro-IL-1b

is cleaved into a small, mature, active form [29,30].

NLRP3-inflammasome is also activated by host-derived

metabolites, such as monosodium urate crystals, choles-

terol crystals and free fatty acids, and involved in the devel-

opment of some inflammatory diseases such as gout,

atherosclerosis and T2D [23–30].

Of interest, it must be pointed out that recently, in RA

patients, a significantly higher gene expression of ASC,

NLRP3 and CASP1, associated with an increase of caspase-

1 and IL-18 levels, was observed, suggesting that this up-

regulation of NLRP3-inflammasome-related transcripts

may reflect an increased inflammasome activity [31], and

supports the hypothesis that autoinflammatory pathways

may play a pathogenetic role in both diseases.

In this study, we evaluated the production of IL-1b,

TNF, and NLRP3 expression in peripheral blood mono-

cytes (MO) of patients affected by both RA and T2D, after

exposure to different glucose concentrations, to assess the

influence of altered glucose metabolism on their proinflam-

matory status.

Patients and methods

Patients

Between January 2010 and December 2014 we enrolled 10

RA patients, 10 T2D patients and 10 patients affected by

both diseases (T2D/RA patients), according to standard

criteria [32,33], and five healthy controls (HC). Demo-

graphic and clinical features were summarized in Table 1.

T2D patients were eligible if the disease duration was more

than 3 months but less than 1 year, the glycated haemoglo-

bin value between >7�0 and< 9�0% at screening time and

no changes in diabetes medications within the last 3

months. RA patients were eligible if their disease duration

was diagnosed from more than 3 months and receiving

only symptomatic therapy [non-steroidal anti-

inflammatory drugs (NSAIDs)]. At the time of enrolment

no patient showed signs and/or symptoms of early

atherosclerosis or CVD, as assessed by flow-mediated dila-

tion of the brachial artery and by intimamedia thickness,

transthoracic Doppler and tissue Doppler echocardiogra-

phy, aortic root echocardiography and pulse-wave velocity

and colour Doppler ultrasounds of the neck vessels. Fur-

thermore, no patient showed clinical and laboratory

parameters compatible with the diagnoses of metabolic

syndrome, essential hypertension, hypercholesterolaemia

or hypertriglyceridaemia. Finally, no patient had smoking

and alcohol habits.

An independent ethics committee approved the study

and all subjects provided written informed consent before

participation; the protocol was according to the Declara-

tion of Helsinki.

Monocyte preparations

Human peripheral blood mononuclear cells (PBMCs) were

isolated from heparinized blood using Ficoll-Hypaque gra-

dients (Histopaque-1077; Sigma, St Louis, MO, USA). MO

were isolated from PBMCs either by positive selection using

magnetic CD14 MicroBeads (human; Miltenyi Biotech,

Bergisch Gladbach, Germany), according to the manufac-

turer’s instructions. Following isolation, MO from our

patients and controls were washed three times in phosphate-

buffered saline, suspended in RPMI-1640 medium (GIBCO/

BRL, Grand Island, NY, USA) containing 10% heat-

inactivated autoserum, 1 3 105 IU/1 penicillin (GIBCO/BRL),

100 mg/1 streptomycin (GIBCO/BRL) and 1000 p-mol/

1 L-glutamine (GIBCO/BRL) and seeded into autoserum-

coated culture plates (Nunclon; Nunc, Roskilde, Denmark).

Aliquots of 1 3 106 MO were suspended in 1 ml of complete

medium seeded into 24-well culture dishes (Falcon 3047;
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Becton Dickinson, Parsippany, NJ, USA) and incubated with

11 mmol/1 glucose (11G) and 33 mmol/1 glucose (33G) for

24 h in a humidified 5% CO2 incubator at 378C. The choice

of 11G was suggested by the observation that, in humans,

glucose is degraded continuously and formed in order to

maintain a stable concentration of 5 mmol/1 in the blood-

stream. However, in our cell cultures, where glucose is

metabolized but not replaced, cells incubated with a concen-

tration of 5 mmol/1 glucose for 24 h metabolized this mole-

cule strongly, lowering the concentration to less than

2 mmol/1. For this reason, we chose a concentration of 11G,

as in our experience a glucose concentration of 11G does

not lead to glucose deficiency after 24 h of incubation. In

high glucose studies, cells were exposed to a high glucose

concentration of 33G. Many previous studies have reported

that glucose concentrations as high as 50 mmol/1 have been

found in the blood of patients with uncontrolled diabetes

[34,35]. It is true that blood glucose levels in patients are not

likely to remain as high as 33G for 24 h. However, tissue

damage in diabetic patients occurs over many years of

countless hyperglycaemic episodes. Thus, the glucose con-

centration of 33G used in this cell culture study does not

seem unreasonable, as observed in previous work [35].

Lipopolysaccharide (2 ng/ml) was used to stimulate the

secretion of cytokines in cell culture. Media were collected

and stored after 24 h of incubation for the IL-1b and TNF

using a specific enzyme-linked immunosorbent assay

(ELISA).

Measurement of IL-1b and TNF levels by ELISA

The amounts of IL-1b and TNF released in the superna-

tants were determined by using specific Quantikine Human

Immunoassay ELISA kits (all by R&D Systems, Minneapo-

lis, MN, USA), according to the manufacturer’s protocol.

Our results were expressed as median (range). For circulat-

ing levels of IL-1b and TNF, sera were collected from

patients and HC and tested by the same ELISA assays used

for MO culture.

qRT–PCR analysis

RNA were extracted from collected MO using Trizol

(Sigma, St Louis, MO, USA) and reverse-transcribed into

complementary DNA (cDNA) with the ThermoScript

reverse transcription–PCR system (Invitrogen, Carlsbad,

CA, USA). Results were analysed after 40 cycles of

amplification using the ABI 7500 Fast Real Time PCR

System. IL-1b, TNF and NLRP3 gene expression were

assessed by commercial TaqMan gene expression assay

(Hs01555410_m1, Hs01113624_g1 and Hs00918082_m1,

respectively). All gene expression data were normalized to

those for glyceraldehyde 3-phosphate dehydrogenase

(GAPDH).

Western blot

Human MO were washed three times with cold Ca21-free

and Mg-free phosphate-buffered saline (PBS) and lysed by

NP-40 lysis buffer (Boston Biosciences, Ashland, MA,

USA) containing 150 mM phenylmethanesulphonylfluoride

(PMSF) (Fluka Biochemika-Sigma Aldrich, St Louis, MO,

USA) and 1% protease inhibitor cocktail [dissolved in

dimethylsulphoxide (DMSO), Sigma Aldrich]. Lysates were

centrifuged and protein concentrations in supernatants

were determined using the bicinchoninic acid (BCA) assay

(Pierce, Rockford, IL, USA). Equal amounts of protein

were added to the sodium dodecyl sulphide (SDS) sample

buffer containing 2-mercaptoethanol (without boiling),

and electrophoresed on SDS–polyacrylamide gels.

Gels were blotted on nitrocellulose membrane (Invitro-

gen). Blots were blocked overnight in TTBS (TBS-buffer

containing 5% milk powder and 0.05% Tween-20). Blots

were incubated with primary antibodies [room tempera-

ture (RT), 1 h, TTBS], washed three times with TTBS and

then probed with secondary horseradish peroxidase

(HRP)-linked antibodies (RT, 1 h, TTBS; GE Healthcare,

Piscataway, NJ, USA). After repeated washes, blots were

developed by chemiluminescence using the Lumigen DS

detection kit (GE Healthcare). The primary antibodies

used were: NLRP3 (R&D Systems). All the signals were

Table 1. Demographic and clinical features.

HC T2D RA T2D/RA

Patients 5 10 10 10

Female (male) 3 (2) 5 (5) 6 (4) 6 (4)

Age (years), median (range) 48 (40; 50) 46 (40; 62) 44 (39; 58) 45 (41; 58)

Disease duration (years), median (range) 0�6 (0�5; 1) 5�1 (1�2; 6�3) T2D 0�6 (0�5; 1)

RA 5�2 (2�7; 7�2)

Fasting blood glucose (mg/dl) 80 (70; 90) 126 (100; 164) 90 (70; 105) 129 (105; 156)

Glycated haemoglobin (%) 5�2 (4�8; 5�3) 7�4 (7�1; 7�8) 5�4 (4�9; 5�8) 7�5 ( 7�2; 7�8)

Erythrocytes sedimentation rate (mm/h) 4 (0; 8) 8 (4; 12) 18 (10; 25) 16 (8; 30)

C reactive protein (mg/l) 1�2 (0�1; 3�4) 4�4 (1�8; 6�2) 4�2 (2�8; 5�2) 4�4 (1�8; 6�2)

Metformin (dosage, mg/daily) median (range) None 1500 (1000; 2000) None 1500 (1000; 2000)

HC 5 healthy control; T2D 5 type 2 diabetes mellitus; RA 5 rheumatoid arthritis.

T2D/RA monocytes and IL-1b production
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quantified by normalizing to the tubulin signal (Abcam,

Cambridge, MA, USA). Immunoreactive bands were quan-

tified with densitometry using ImageJ software (NIH,

Bethesda, MD, USA).

Statistical analysis

GraphPad Prism version 5�0 software was used for statisti-

cal analyses. Results are expressed as median (range). Due

to the non-parametric distribution of our data the Mann–

Whitney U-test was used as appropriate for analyses.

Despite the small numbers of patients enrolled into each

studied group, the strong a priori evidence of an increased

NLPR3 activation associated with both RA and T2D

[24,29,31] allowed us to not apply Bonferroni’s correction

in our statistical analyses. Statistical significance was

expressed by a P-value< 0�05.

Results

Increased secretion of IL-1b after high concentration
glucose stimulation in supernatants of cultured cells

Our data showed that, after 24 h of incubation with 11G, a

significant increase of IL-1b levels was shown when T2D,

RA and T2D/RA patients were compared with HC [HC:

4�5 (4�1; 5�8) pg/ml; T2D: 48�0 (20�1; 63�6) pg/ml; RA: 55�0
(34�5; 105�2); T2D/RA: 54�5 (32�5; 102�4) pg/ml; P < 0�01

for each comparison]. Furthermore, no significant differen-

ces in IL-1b levels were observed among patient groups.

On the contrary, after 24 h of incubation with 33G a signif-

icant increase in IL-1b levels were observed in the superna-

tants of T2D/RA patients when compared with HC and

among other evaluated groups [HC: 135�3 (108�1; 256�8)

pg/ml; T2D: 208�2 (123�1; 300�6) pg/ml; RA: 201�0
(168�5; 208�2) pg/ml; T2D/RA 352�5 (257�5; 711�9) pg/ml;

P < 0.01 for each comparison]. No significant differences

were observed when we compared RA patients and T2D

patients with HC.

Our results showed that, after 24 h of incubation with

11G, a significant increase in TNF levels was shown when

T2D, RA and T2D/RA patients were compared with HC

[HC: 21�4 (20�2; 23�6) pg/ml; T2D: 356�1 (234�1; 695�3)

pg/ml; RA: 437�5 (356�5; 970�2) pg/ml; T2D/RA: 496�2
(426�7; 770�5) pg/ml in T2D/RA patients; P < 0.01 for each

comparison].No significant differences in TNF levels were

observed among patient groups. Our data showed that,

after 24 h of incubation with 33G, a significant increase in

TNF levels was shown when T2D, RA and T2D/RA patients

were compared with HC [HC: 135�4 (108�2; 256�3) pg/ml;

T2D: 733�5 (500�2; 1008�1) pg/ml; RA: 778�5 (570�1;

1007�0) pg/ml; T2D/RA: 800�4 (437�1; 1130�6) pg/ml; P <

0.01 for each comparison]. No significant differences in

TNF levels were observed among patient groups. These

results are summarized in Fig. 1.

Increased expression of IL-1b after high
concentration glucose stimulation

Our data showed that, after 24 h of incubation with 11G, a

significant increase in relative IL-1b mRNA expression was

reported when T2D, RA, and T2D/RA patients were com-

pared with HC [HC: 1�5 (1�0; 2�0); T2D: 5�2 (4�5; 6�9); RA:

4�8 (3�2; 6�2); T2D/RA 5�7 (4�5; 6�9) patients; P < 0�01 for

each comparison]. No significant differences in relative IL-

1b mRNA expression were observed among patient groups.

However, after 24 h of incubation with 33G a significant

increase in relative IL-1b mRNA expression was observed

in the supernatants of T2D/RA patients when compared

with HC and among other evaluated groups [HC: 3�2 (2�0;

5�7); T2D: 14�5 (12�0; 18�0); RA: 15�8 (14�2; 19�4); T2D/

RA: 24�3 (20�0; 27�2); P < 0�001 for each comparison]. Sig-

nificant differences were observed when we compared both

RA patients and T2D patients with HC (P < 0.01 for each

comparison).

Our results showed that, after 24 h of incubation with

11G, a significant increase of relative TNF mRNA expres-

sion was shown when T2D, RA and T2D/RA patients were

compared with HC [HC: 1�2 (1�0; 2�2); T2D: 5�7 (4�5; 6�8);

RA: 6�2 (4�8; 9�0); T2D/RA: 5�8 (4�5; 7�6); P < 0�001 for

each comparison]. Our work showed that, after 24 h of

incubation with 33G, a significant increase of relative TNF

mRNA expression was shown when T2D, RA and T2D/RA

patients were compared with HC [HC: 6�2 (6�0; 7�2); T2D:

14�7 (14�1; 18�2);RA: 15�8 (14�0; 18�0); T2D/RA: 15�5 (14�8;

18�6); P < 0�01 for each comparison]. No significant differ-

ences in TNF levels were observed among patient groups.

All these data are reported in Fig. 2.

Increased expression of NLRP3-inflammosome
in T2D/RA patients

After 24 h of incubation to 11G our results showed a signif-

icant increase in relative NLRP3 mRNA expression of T2D/

RA patients when compared with other groups [HC: 1�2
(1�0; 2�0); T2D: 5�1 (4�5; 7�9); RA: 3�6 (3�2; 5�9); T2D/RA:

7�5 (6�9; 10�9); P < 0�001 for each comparison]. In addi-

tion, we reported a significantly higher relative NLRP3

mRNA expression when compared T2D and RA patients

with HC (P < 0�01 for each comparison). A significantly

higher relative NLRP3 mRNA expression in T2D patients

with respect to RA patients was shown (P < 0�01) at the

same glucose concentration. After 24 h of incubation with

33G our results showed a significant increase in relative

NLRP3 mRNA expression when we compared T2D/RA

patients to other groups [HC: 4�2 (2�0; 5�0); T2D: 16�4
(15�4; 18�8); RA: 13�8 (10�0; 18�0); T2D/RA: 22�8 (20�9;

27�0); P < 0�001 for each comparison]. We described a sig-

nificantly higher relative NLRP3 mRNA expression when

we compared T2D and RA patients with HC (P < 0�01 for

each comparison). A significantly higher relative NLRP3

mRNA expression in T2D patients in respect to RA patients
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was shown (P < 0�01) at the same glucose concentration.

These data were confirmed by Western blot analyses. This

analysis mirrored the results obtained by evaluation of

NLRP3 mRNA expression; Fig. 3 shows these findings.

No differences in circulating levels of IL-1b and TNF
were observed

When we analysed the circulating levels of IL-1b among

enrolled patients we did not find significant differences

[HC: 1�5 (1�1; 1�8) pg/ml; T2D: 1�1 (1�2; 1�8) pg/ml; RA:

5�9 (1�5; 2�8) pg/ml; T2D/RA: 1,9 (1�5;2�3) pg/ml]. Simi-

larly, the analysis of the circulating levels of TNF among

enrolled patients did not show significant differences [HC:

2�9 (0�2; 3�6) pg/ml; T2D: 2�8 (1�2; 3�9) pg/ml; RA: 2�7
(0�5; 4�1) pg/ml; T2D/RA: 3�1 (0�4; 4�6) pg/ml].

Discussion

In recent years, the involvement of innate immunity has

been suggested in the pathogenesis of T2D [23–30], and

several studies have described elevated circulating levels of

acute-phase proteins, cytokines and chemokines in patients

with T2D, and elevated levels of IL-1b, IL-6 and C-reactive

protein have been suggested as predictive factors of T2D

development [36–39]. In addition, an immune cell infiltra-

tion surrounding the pancreatic islets in human T2D, char-

acterized largely by MO, may be observed [39]. On this

basis, a better knowledge of the metabolically driven

inflammation observed in T2D may open future perspec-

tives, identifying new potential biomarkers and/or new

therapeutic targets [23–30]. In this regard, several papers

have suggested, both in experimental models and in

humans, the usefulness of cytokine antagonism therapies

Fig. 2. Increased relative expression of interleukin (IL)-1b (a) and tumour necrosis factor (TNF) (b) after glucose stimulation in cultured cells.

Monocytes were incubated with 11 mmol/1 glucose (11G) and 33 mmol/1 glucose (33G) for 24 h. Our data showed that, after 24 h of

incubation with 11G, a significant increase of relative IL-1b and TNF mRNA expressions were reported when type 2 diabetes (T2D), rheumatoid

arthritis (RA) and T2D/RA patients were compared with healthy controls (HC) (P < 0�001 for each comparison). However, after 24 h of

incubation with 33G a significant increase in relative IL-1b mRNA expression was observed in the supernatants of T2D/RA patients when

compared with HC and among other evaluated groups (P < 0�01 for each comparison) (***P < 0�001).

Fig. 1. Increased secretion of interleukin (IL)-1b (a) and tumour necrosis factor (TNF) (b) after glucose stimulation in supernatants of cultured

cells. Monocytes were incubated with 11 mmol/1 glucose (11G) and 33 mmol/1 glucose (33G) for 24 h. Our data showed that, after 24 h of

incubation with 11G, a significant increase of IL-1b and TNF levels were shown when type 2 diabetes (T2D), rheumatoid arthritis (RA) and

T2D/RA patients were compared with healthy controls (HC) (P < 0�01 for each comparison). After 24 h of incubation with 33G, a significant

increase in IL-1b levels were observed in the supernatants of T2D/RA patients when compared with all evaluated groups (P < 0�01 for each

comparison) (**P < 0�01).

T2D/RA monocytes and IL-1b production
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in T2D, mirroring what has been suggested for RA and

other inflammatory arthritis [23,24].

In this paper, we show that increased concentrations of

glucose strongly influence the proinflammatory status of

MO derived from patients affected by RA and concomitant

T2D, suggesting that the altered glucose metabolism,

increasing the production of inflammatory cytokines, may

affect the clinical picture of RA and influences the response

to targeted therapies [1,2,5,8–10].

After incubation of MO with different glucose concen-

trations, we observed an increased production of IL-1b in

any studied subset correlating directly with glucose concen-

trations, the highest levels observed in patients affected by

both diseases. It is well known that hyperglycaemia levels

may up-regulate the expression of different transcription

factors of many proinflammatory cytokine genes [40–42].

Among them, the transcription factor nuclear factor

(NF)-jB may mediate the increased IL-1b secretion from

MO exposed to hyperglycaemic conditions [43,44]. Analy-

ses of IL-1b mRNA confirmed these results, showing a sig-

nificant increase of its expression in T2D/RA patients when

compared with other groups.

It is well known that, during T2D, the polarity of islet-

infiltrating MO is shifted towards the activated proinflam-

matory M1-type, releasing higher concentrations of IL-1b

[45]. Experimental models of T2D showed that during

euglycaemic conditions MO exhibit a M2-type phenotype,

promoting wound healing and modulating immune

responses. Conversely, under the influence of hyperglycae-

mia, these M2-type MO shift to a M1-type phenotype,

starting the production of inflammatory cytokines such as

IL-1b, and leading to a fibrotic degeneration associated

with amyloid deposits of Langerhans islets [27,45]. In this

setting, the higher levels of IL-1b have been shown to drive

the progressive failure of insulin production and apoptosis

of b cells [46,47]. Furthermore, glucose-induced IL-1b

production by MO involved up-regulation of the NLRP3-

inflammasome [48]. Higher concentrations of glucose may

induce the dissociation of thioredoxin-interacting protein

(TXNIP) from thioredoxin, under the influence of reactive

oxygen species, allowing the binding of TXNIP to the

NLRP3-inflammasome. This event leads to the activation

of caspase-1 and subsequent release of mature IL-1b from

inactive pro-IL-1b [49]. Interestingly, confirming the

results concerning IL-1b production, a significantly higher

expression of NLRP3-inflammasome was observed after

incubation with different glucose concentrations in T2D/

RA patients when compared with the other groups.

Regarding the role of NLRP3-inflammasome in glucose

and insulin homeostasis, several preclinical studies showed

that the genetic deletion of NLRP3 in high-fat diet-fed

mice improved glucose tolerance and enhanced insulin sen-

sitivity [50,51]. These data were confirmed in NLRP32/2

knock-out animals, where the IL-1b levels in the adipose

tissue decreased significantly; this reduction is associated

with lower levels of caspase-1 activity [51]. Furthermore,

inhibition of NLRP3-inflammasome is associated with

improved insulin signalling in adipose tissue, liver and skel-

etal muscles, which are considered insulin-sensitive tissue,

and with increased insulin secretion from b islets [50–53].

Our data also showed increased production of TNF

from MO obtained from T2D/RA, T2D and RA patients

after exposure to different glucose concentrations when

compared to HC, although no significant difference was

observed among the studied subsets. The available litera-

ture reports that the expression of TNF in adipose tissue

was increased in multiple rodent obesity models, and this

cytokine may decrease insulin signalling in insulin-sensitive

tissues [54–56]. Furthermore, in these experimental mod-

els, weight loss may induce an improvement in insulin sen-

sitivity that has been associated with a reduction in TNF

expression [54–57]. According to these experimental

Fig. 3. Increased relative expression of nucleotide-binding domain and leucine-rich repeat containing family pyrin (NLRP3) (a) after glucose

stimulation and Western blot analyses (b). Monocytes were incubated with 11 mmol/1 glucose (G11), 33 mmol/1 glucose (G33). The expression

levels of healthy controls (HC) incubated with 11 mmol/1 glucose (G11) were set to 100%, and the results were normalized to this value.

Tubulin was measured as a loading control for normalization. After 24 h of incubation to 11G our results showed a significant increase in

relative NLRP3 mRNA expression in type 2 diabetes/rheumatoid arthritis (T2D/RA) patients when compared with other groups (P < 0�001 for

each comparison). After 24 h of incubation to 33G the results showed a significant increase in relative NLRP3 mRNA expression when we

compared T2D/RA patients to other groups (P < 0�001 for each comparison). This analysis mirrored the results obtained by evaluation of

NLRP3 mRNA expression by Western blot (**P < 0�01; ***P < 0�001, respectively).
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findings, studies using TNF2/2 knock-out mice, or alterna-

tively neutralizing TNF activity by specific antibodies,

showed an improvement in glycaemia levels, suggesting

TNF as potential therapeutic target for T2D [54–57].

Despite the experimental evidence supporting a role for

TNF in regulating insulin production and function, the

translation from basic researches to the clinical setting by

using TNF inhibitors in the treatment of human diabetes

showed disappointing results [58–60]. Although further

studies are needed to understand more clearly the failure of

TNF inhibition in human diabetes, it must be pointed out

that the intracellular TNF concentration is responsible for

insulin resistance via paracrine effects, and this intracellular

cytokine cannot be blocked by TNF inhibitors [61].

In contrast, several published studies suggest the possible

therapeutic role of IL-1 antagonism in T2D [62,63]. In this

context, 70 T2D patients, assigned randomly to receive

100 mg of anakinra, an IL-1 receptor antagonist licensed for

RA or placebo, showed a significant decrease in the glycated

haemoglobin level and an increase of C-peptide secretion

after 13 weeks of treatment [64]. The follow-up of these

patients showed that this improvement was still detectable

39 weeks after discontinuation of anakinra [65]. Further-

more, the results of a 1-year prospective observational study

enrolling 470 RA patients treated with anakinra showed that

RA patients with concomitant T2D displayed a better

response to this drug [66]. These data suggest that T2D co-

morbidity in RA patients predicts those patients with a bet-

ter response to IL-1 inhibition. In addition, different papers

suggest that IL-1 blockade may be helpful in patients with

T2D and inflammatory rheumatic diseases [67,68]. On this

basis, an open, randomized, controlled, double-armed,

multi-centre study, whose primary end-point is the efficacy

of anakinra in controlling signs and symptoms of T2D in

RA patients and T2D co-morbidity, is ongoing (TRACK

study, NCT02236481, www.clinicaltrial.gov).

It is well known that both T2D and RA are independent

factors increasing the risk of CV events in affected patients

and these data are related to the chronic inflammatory

activity observed in both diseases, mediated by the over-

production of inflammatory cytokines [16,17,23,24,28]. In

addition, a large body of preclinical data showed that IL-1b

is involved strongly in the progression of atherosclerosis

[69,70]. During the inflammatory process occurring in RA,

it has been shown that TNF may contribute to endothelial

dysfunction [71]. However, conflicting results have been

published concerning the possibility that an anti-TNF ther-

apy might restore normal endothelial function [72,73].

Furthermore, it has been shown recently that the decrease

of inflammatory markers, after anti-TNF treatment, were

not associated with an improvement in vascular function

[74,75]. On the contrary, different works suggest that the

IL-1 inhibition may be associated with a greater improve-

ment of endothelial function in RA patients [76,77]. Heart

failure is a common evolution of atherosclerosis, and sev-

eral studies have shown the safety and the usefulness of

anti-IL-1 treatment in this condition, a clinical setting in

which anti-TNF treatment is contraindicated [78–81]. It is

well known that the incidence of impaired cardiac function

is increased strongly both in RA and T2D, leading to a

poor prognosis [82,83]. In this context, our experimental

data, showing a strong up-regulation of IL-1b MO derived

from patients with both RA and T2D, may support the

hypothesis that blocking IL-1b may be considered the best

therapeutic strategy to treat these patients, due to the up-

regulation of this cytokine in these patients and to the

safety shown during chronic heart failure. On this basis,

the scientific community is still waiting for the results of

the CANTOS (Canakinumab Anti-inflammatory Throm-

bosis Outcome Study) trial, a study planned to test the

hypothesis that the inhibition of IL-1b by Canakinumab, a

human IL-1b blocking monoclonal antibody, might reduce

CV events in T2D [84,85].

IL-1 blocking agents are generally considered safe drugs.

Although the occurrence of upper-airway infections may

increase in patients receiving anti-IL-1 therapy, as observed

with the other biological agents, the lack of opportunistic

and tuberculosis infections confirms their safety profile

[86,87].

In conclusion, although further studies are needed to

understand fully the complex interplay between inflamma-

tion and metabolic disorders and consequent therapeutic

implications, our study, showing an increased production of

IL-1b by MO obtained from patients affected by both RA

and T2D via NLRP3-inflammasome activation, supports the

potential role of IL-1b-targeted therapy in these patients.
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