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Abstract—Balancing energy demand and production is be-
coming a more and more challenging task for energy utilities.
This is due to a number of different reasons among which the
larger penetration of renewable energies which are more difficult
to predict and the meagre availability of financial resources to
upgrade the existing power grid. While the traditional solution
is to dynamically adapt energy production to follow the time-
varying demand, a new trend is to drive the demand itself by
means of Direct Load Control (DLC).

In this paper we consider a scenario where DLC functionalities
are deployed at a large set of small deferrable energy loads,
like appliances of residential users. The required additional
intelligence and communication capabilities may be introduced
through smart plugs, without the need to replace older “dumb”
appliances. Smart plugs are inserted between the appliances
plugs and the power sockets and directly connected to the
Internet. An open software architecture allows to abstract the
hardware sensors and actuators integrated in the plug and to
easily program different load control applications.

I. INTRODUCTION

Load control in modern power grids is becoming more and
more important for maintaining a balance between energy
supply and demand. Traditionally, the demand was much more
variable and less controllable than supply, so that the energy
balance was achieved by adapting dynamically generation
levels to match the consumption. The increasing penetration
of renewable energies has radically changed the scenario, due
to their lower predictability. The possibility to control power
demand is then becoming more appealing for several actors,
such as the energy utilities (that can better plan the production)
and the end customers (that can actively participate to the
energy market). Two main approaches are envisioned: demand-
response and Direct Load Control (DLC). The first expression
refers to end users changing their normal consumption pattern
in response to a dynamic price signal. DLC denotes the
possibility for the electric utility (or some third-party entities)
to directly control remote electric loads.

However, despite the many proposals in the literature for
demand response approaches [1] or direct load control [2],
[3], the control of residential users’ energy demand (which
significantly affect the overall energy load variability [4]) is
still limited to pilot projects [5], [6] with little penetration
perspective in the near future. The reason is that the implemen-

tation of these mechanisms requires investments (for updating
user appliances and communication infrastructures) which are
not clearly justified for the end users.

Recently, in [7],[8] it has been proposed a realistic deploy-
ment and low-cost path for large scale direct control of in-
elastic home appliances whose activation can be deferred. The
idea is to exploit 1) the Internet connections of customers for
transporting the admission control requests and 2) some simple
actuators to be placed on the electric plugs for connecting
or disconnecting non-smart appliances. Admission control of
electric loads is performed deterministically [7] by a central
server processing all the activation requests originated into a
given control area, or probabilistically [8] by a local controller
programmed by the central server. These previous studies have
been focused on the theoretical analysis of the admission
control policies for guaranteeing a maximum activation delay
under a given limit on the power consumed by a group of
users, by assuming that plug control devices are available.

In this paper we focus on the design of the devices to be
inserted between the appliances’ plug and the power socket.
These devices are usually called smart plugs and are already
produced by some vendors [9] with proprietary applications
(mainly for monitoring purposes). Our idea is designing a
smart plug able to be easily connected to the Internet according
to the M2M communication paradigm and to run customized
applications, including the interruption and reactivation of
the current flow as a response to a control protocol. The
application can be defined and installed by the end users, by
the energy utility itself or by some other entities like an energy
aggregator [10], [11], [12]. It generally requires to interact
with a remote server controlling a number of aggregated
households or direclty with other households. The connection
to the Internet can be provided by an home gateway (a PC, an
ADLS box or even a smartphone), while the communication
between the smart plug and the gateway is based on local
communication technology, such as WiFi.

After a brief introduction on the envisioned control archi-
tecture and mechanisms (section II), we describe the smart
plug hardware and software architecture (section III) and the
abstractions used for defining simple plug programs (section
IV). Some final remarks are drawn in section V.978-1-4799-0959-9/14/$31.00 c© 2014 IEEE
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Fig. 1. Load control deployment in the local and network domain and
mapping to the M2M high level architecture.

II. DOMESTIC LOAD CONTROL

DLC mechanisms are currently employed by large com-
mercial and industrial customers, whose power demand has a
significant impact on the aggregated demand of a power zone.
The control is often performed by interacting with human
operators and by exploiting the traditional phone network as
a signaling network. In order to perform DLC on residential
users, it is necessary to interact with a much higher number
of customers, being the single power demand negligible in
comparison with the industrial one. Moreover, residential users
cannot be directly involved in the control decisions apart from
the specification of a control profile, such as the selection of
the appliances that can be deferred or the maximum tolerable
delay. To easily reach a large scale number of users and
support autonomous control mechanisms, as proposed in [7],
we assume that the signaling messages are transported over
the Internet and that machine-to-machine (M2M) applications
run over the electric plugs to control the appliance activation.

A. Network Architecture

Figure 1 shows the envisioned architecture for implementing
domestic load control: in each household, called local do-
main, control applications runs on a number of smart plugs
connected to the Internet by means of a gateway; at the
network domain, the admission control server (or equivalently
an overlay peer-to-peer network) exchanges messages with
different groups of households by means of Internet. The
architecture is based on the reasonable assumption that an
Internet connection is already active in almost all households,
thus avoiding to deploy a dedicated data network. The home
gateway can be a normal PC, an ADSL box or smart phone
with a 3G data connection. The smart plugs, described in the
next section, are embedded smart devices equipped with a
local network technology, a power meter devised to detect
(and/or to measure) the energy required by the connected
appliance, and a processor able to run control and monitoring
applications. The figure also highlights the mapping to the
M2M high level architecture [13], which allows to simplify the
development of the control application by using some manage-

ment functionalities (such as service discovery, authentication,
association, etc.) already available as M2M service capabilities
[14].

In the network domain, the client-side application (running
on the home gateways and on the plugs) is responsible
of joining the application server (or the overlay network)
and controlling its grid segment. The server-side application
implements an admission control logic which depends on the
aggregation level of end customers. By tracking the current
state of the controlled power grid, the server sends the control
commands to the clients in order to provide deterministic or
probabilistic guarantees that the total energy demand of a
group of customers does not overcome a given (time-varying)
threshold. To this purpose, the server continuously interact
with the clients for collecting activation requests of new
appliances, as well as notifications of successful activation and
deactivation of the admitted appliances. Since all these mes-
sages are delivered through the Internet, no delay guarantees
can be assured between an activation request and response.
This makes the architecture suitable for admission control
logics pursuing an energy peak shaving or price control, while
it is less reliable for reacting to emergency grid conditions.

In the local domain, the home gateway interacts with
the smart plugs for collecting the activation requests, the
activation/deactivation notifications, and other (more complex)
data, such as the energy consumption of the plugs, when
available. According to the programmed admission control
logic, the activation requests are immediately forwarded to
the application server [7] or processed locally for probabilis-
tic decisions programmed by the server [8]. The messages
exchanged between the home gateway and the smart plugs are
typically sent through a wireless local area network working
on unlicensed ISM bands (e.g. ZigBee and WiFi), where
transmission reliability can vary significantly according to the
experienced interference conditions.

B. Shaping of Aggregated Power Demand

Load control works by shaping the aggregated power de-
mand of a number of users as conceptually shown in Figure 2,
where the red curve represents the expected power demand and
the blue curve is the actual demand under admission control.
Note that load control does not change the total energy demand
(the area below the curve) on a long time interval, but it
can shape the instantaneous power demand by postponing the
operation time of some appliances, for example with the goal
to satisfy a power cap Pg . The power demand exceeding Pg is
then shifted to a subsequent time interval. The power cap may
be originated by power transmission constraints, by production
constraints or by too high production costs the utility would
incur to generate energy during the peak time.

Shaping the aggregated power profile can bring significant
savings to the energy utility. Hence, customers installing a load
control application may be motivated to accept the deferral of
their appliances by some economic incentives. If load control
managed by the energy utility itself, then these incentives may
be in the form of some reduction of the users’ electricity
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Fig. 2. Effects of load control on the expected power demand.

bill. Although we are not analyzing the most effective revenue
sharing mechanism (e.g. uniform sharing, random extraction
of selected users, etc.), we assume that customers perceive
a reward proportional to the deferral time of their load re-
quests (i.e. proportional to their discomfort) and to the energy
consumed by the deferred loads after their admission. Such
a solution disincetivizes customers from removing the smart
plugs or implementing other misbehaviors.

C. Load Control Applications

Load control applications can be implemented by consider-
ing deterministic or probabilistic guarantees on the aggregate
power demand or by mixing the two previous approaches.

Deterministic Approach [7]. It is assumed that the supplier
communicates with an adequate advance to the aggregation
server its demand expressed by a cap on the maximum
absorbed power to be enforced during a specific time interval.
The aggregation server is able to keep the total demand
state of the controlled households and enforce the supplier’s
demand by disconnecting a subset of the plugs (postponing
the load of the corresponding appliances). The plug con-
trol is performed only upon a novel activation request, thus
avoiding to disconnect already on appliances. The continuous
monitoring allows the aggregation server to reconnect some
plugs if the instantaneous power demand is below the cap
during the controlled period. The approach allows to achieve
the maximum efficiency under the required power constraint,
at the expense of high communication costs (being all the
activation requests forwarded and processed by the central
server).

Probabilistic Approach [8]. It is assumed that the supplier
demand is expressed by specifying that the instantaneous
power demand can exceed a given bound with a probability
smaller that ε. To satisfy the demand, the aggregation server
characterizes stochastically the power demand of the house-
holds and periodically broadcasts an activation probability
function for each appliance in different hours of the day.
Control decisions are open-loop, because they are taken locally
without further interacting with the server. This allows to avoid
disclosing private information of the users (about the time
instants in which they desire to active the appliances), but it
achieves an average lower utilization of the resources because
it cannot rely on the exact knowledge of the aggregated power
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Fig. 3. Deterministic, probabilistic and mixed load control.

demand.
Mixed Approach. In case of probabilistic supplier demands

(equal to the ones considered in the previous case), an alterna-
tive solution is combining the deterministic and probabilistic
approaches, by forwarding the appliance activation request to
the aggregation server with a given probability q, and by
locally processing the request with probability 1 − q. The
parameter q can be tuned in order to achieve the wished trade-
off among resources’ usage, control overhead and privacy
leakage.

Figure 3 depicts the work-flow of the mixed approach as a
combination of the deterministic approach (based on queries to
the aggregation server) and probabilistic approach (based on
random local decisions). Although all the previous schemes
have been described according to a centralized architecture,
i.e. by assuming that a central aggregation server is available
for processing the requests, monitoring the power demand or
broadcasting the probabilistic activation profiles of the loads,
it is also possible to consider distributed implementations, in
which the information and decisions about the power demand
of a number of households to be aggregated are managed by
an overlay peer-to-peer network.

III. SMART PLUG DESIGN

Most of commercial smart plugs have a very limited pro-
grammability of sensing and controlling functionalities and
can interact only with proprietary applications provided by the
vendors. Our design has been inspired by these limitations for
achieving ease of programming on an open software platform,
with advanced communication and processing capabilities, and
supporting heterogeneous hardware sensors and actuators, with
a cost comparable with current commercial solutions (about
50$). To accomplish these goals, we chose to work on an
embedded system, running an operating system with a M2M
stack directly on the plug, and to provide some basic primitives
that can be opportunistically exploited by third parties for
defining different control applications.

A. Hardware Architecture

The envisioned hardware architecture includes four main
sub-systems:



Fig. 4. Hardware components of the Smart Plug.

• Processing Unit. It represents the core of the device,
responsible of orchestrating the interactions between sen-
sors, actuators, communication modules and programs.
We chose to use a System on Module component by
Acme Systems, called ARIA G25, which provides an
ARM926EJ-S processor at 400 MHz, 128 or 256 MB
of memory, USB ports, and several I/O interfaces such
as I2C, SPI, GPIO, etc. An SD card is required as a
non-volatile memory. The choice has been motivated by
the very compact size of the module and by its excellent
cost/performance tradeoff.

• Network Unit. It is responsible of providing the physical
connectivity to the network infrastructure for interacting
with the remote controller and the other network nodes
involved in the programmed control application. In our
design, the system is based on a WiFi interface supporting
connectivity to a local gateway. The specific component
used in the prototype is the OEM WiFi USB module
based on the Ralink chipset RTS5370N IEEE 802.11b/g/n
compatible.

• Power Meter. It allows to sample the energy consumption
of the appliances connected to the plug according to
the accuracy and time granularity programmed by the
application. The system design allows to easily integrate
meters based on different technologies and communica-
tion interfaces. In the prototype we used the ADE7753
power meter by Analog Devices, which includes two 16-
bits sigma-delta converters, a thermal sensor, a frequency
meter, and an evaluator of RMS voltage and current
values. The communication interface is SPI.

• Power Switch. It is the actuator responsible of turning
the appliances on and off. The system is implemented by
means of a power switch controlled by the application.

Figure 4 summarizes the hardware elements of the smart
plug. The figure does not explicitly shows the power supply
module, whose design does not require special attention (being
the plug connected to the power wires).

B. Software Architecture

As most of M2M applications, we assume that smart plug
applications are targeted to monitoring and control: they col-
lect the data provided by the sensors, filter and aggregate the
data in order to detect specific events, and react to the events
by driving the actuators. We chose the Mihini framework as
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Fig. 5. Communication model between data producers and data consumers
in smart plug applications.

an open source project providing these functionalities and the
programming language Lua for defining some reference appli-
cations. More into details, the main features of the software
components used in the project are:
• M2M Libraries. Mihini allows to easily distinguish

between general functions to be integrated in any M2M
application (send data, receive commands) and specific
functions which depend on a particular application (pro-
cess data, react to events). The first set of functionalities
is managed by an autonomous Mihini agent, while the
second set is specified by the programmer in the ap-
plication container. The Mihini agent is responsible of
the application time life, configuration, data structures,
and communication protocols. The container provides
the libraries for I/O operations based on most industrial
protocols, data storage, assignment of task priorities and
scheduling policies, definitions of event reactions func-
tions.

• Lua Language. Lua is a very simple language, specif-
ically defined for M2M applications on embedded sys-
tems, with a very powerful expressiveness which results
in compact and efficient code. It has also been shown
that the language is very robust to programming errors,
especially in the management of complex data and con-
flicts due to parallel threads. It is also possible to easily
interface Lua programs with C routines.

C. Communication Protocols

Figure 5 shows the main hardware and software components
used in the smart plug design and the relevant communi-
cation protocols. The figure distinguishes between the data
production sub-system (i.e. the power meter) from the data
consumption sub-system (i.e. the application), that may be run
by the home gateway, a remote server or the smart plug itself
according to the specific application. While the communication
between the sensor and the processing unit is conceptually
very simple (e.g. a serial interface managed by vendor-specific



protocol), the communication between the unit and all the
control applications may require to interact with a potentially
large number of nodes, such as all the domestic plugs or all
the plugs of a given neighborhood.

The solution adopted in our design for allowing an asyn-
chronous communication between multiple sensors and dis-
tributed applications is using a broker for decoupling the data
production and data consumption systems. The solution is
adopted in several other M2M applications: data generated in a
given context (called topic) are published (i.e. made available)
to all the applications that declared to be interested to the
context (i.e. subscribed a given topic). The broker tracks all
the subscriptions and publication records and forwards the data
received by each sensor to all the relevant subscribers.

The implementation details of our prototype are summarized
in what follows.

• Mosquitto Broker. The Mosquitto broker is an open
source broker for M2M applications, that can be run by
the home gateway in case of deterministic (centralized)
load control or by the plug in case of probabilistic load
control.

• MQTT Protocol. MQTT has been explicitly designed for
networks of simple sensors and actuators. The protocol
is message oriented, with a fixed header, variable fields,
and a minimum size of two bytes only. Bidirectional
communications are established between the sensors and
the server, the server and the subscribers, by specifying
quality of service parameters for data delivery. The pro-
tocol has been shown to significantly reduce the network
traffic and latencies in comparison with other protocols
under a push/push data communication model.

IV. DEVELOPING SMART PLUG APPLICATIONS

The smart plug design allows to easily develop monitoring
and control applications for domestic load control. The overall
implementation of load control policies requires the design of a
distributed application which involves, as described in section
II, different network nodes (plugs of multiple users, home
gateways, servers). An important component is the application
running on the plug itself, that can be written in Lua by also
exploiting some simple functionalities developed within our
project. In order to show the effectiveness of Lua abstractions
for defining compact and robust code, we discuss some simple
programming examples.

Power Sampling. Being the primitive readPower available
for measuring the active power consumed by the appliance
connected to the plug, different sampling schemes can be
programmed by simply specifying the scheduling policies of
consecutive readings. The scheduling can be periodic or event-
based. For example, the following code implements a periodic
reading performed every second:

w h i l e t r u e do
l o c a l power = readPower ( )
m q t t C l i e n t : p u b l i s h (MQTT DATA PATH . . ” Power ” , power )
sched . w a i t ( 1 )

end

Fig. 6. An example of power demand trace of an air conditioner monitored
with the above Lua code.

where the function mqttClient:publish is natively provided
by the Mihini libraries for publishing the reading result to the
broker by using the MQTT protocol. The periodic sampling
application can be used for characterizing the time-varying
power demand of different electric appliances. An example
of resulting power trace is shown in figure 6, where the
active power of an air conditioner placed in our lab has been
monitored for 60 minutes. The figure clearly shows that the air-
conditioner has some activity cycles that can be exploited for
introduce some flexibility in the power demand (for example,
by slightly delaying the starting of an activation cycle).

Local Power Control. The previous example can be easily
extended for implementing a simple plug control based on the
instantaneous power demand. The programmer could specify
the maximum demand power admissible from a given plug
and the reactivation policy in case the plug is switched off as
follows:
w h i l e t r u e do

l o c a l power = readPower ( )
m q t t C l i e n t : p u b l i s h (MQTT DATA PATH . . ” Power ” , power )
i f power > 250 t h e n

s w i t c h O f f ( ) −− Swi tch o f f t h e a p p l i a n c e
sched . w a i t ( 1 0 ) −− Wait 10 s e c o n d s
swi tchOn ( ) −− Swi tch on t h e a p p l i a n c e

end
sched . w a i t ( 1 )

end

where switchOn e switchOff are the primitives responsible of
power switching control, and the reactivation policy is based
on a fixed delay of 10 seconds. Figure 7 shows a log example
of previous application.

Message Parsing. MQTT messages can be easily extended

Fig. 7. An example of application log in case of plug switch off.



with customized fields in order to support the signaling
messages required by the distributed load control application.
For example, power samples could be notified to a remote
controller or control commands could be received from the
remote controller. The following example shows how to pro-
gram a message parser and a reaction mechanism to a Switch
message sent by the broker.

−−− U t i l i t y f u n c t i o n t o p a r s e t h e message
l o c a l f u n c t i o n S p l i t ( pa th , sep )

l o c a l t = { }
f o r w i n s t r i n g . g f i n d ( pa th , ” [ ˆ ” . . sep . . ” ] + ” ) do

t a b l e . i n s e r t ( t , w)
end
r e t u r n t

end

−−− R e a c t i o n t o MQTT messages
l o c a l f u n c t i o n p r o c e s s m q t t ( t o p i c , v a l u e )

l o c a l d a t a = S p l i t ( t o p i c , ” / ” ) [ 3 ]
i f d a t a == ” Swi tch ” t h e n

i f v a l u e == ”0” t h e n
s w i t c h O f f ( )

e l s e
swi tchOn ( )

end
end

end

where the plug disactivation (or activation) is performed
according to the message parameters.

Admission Control. Admission control of appliances can
be programmed by exploiting the publish/subscribe communi-
cation model. When a power consumption different from zero
is revealed by the meter, an admission request can be sent to
the broker. The broker can forward the request to the remote
controller or can probabilistically decide if admitting or not the
appliance. In case the appliance is not admitted, the request
can be rescheduled after a fixed time interval. This mechanism
can be programmed as follows:

l o c a l s econdsToKeepApp l i anceSwi t chedOf f = 0

−−− R e a c t i o n t o MQTT messages
l o c a l f u n c t i o n p r o c e s s m q t t ( t o p i c , v a l u e )

l o c a l d a t a = S p l i t ( t o p i c , ” / ” ) [ 3 ]
i f d a t a == ” LoadAdmiss ionCont ro lCheck ” t h e n

secondsToKeepApp l i anceSwi t chedOf f = tonumber ( v a l u e )
end

end

w h i l e t r u e do
l o c a l power = readPower ( )
m q t t C l i e n t : p u b l i s h (MQTT DATA PATH . . ” Power ” , power )
i f power > 10 t h e n

m q t t C l i e n t : p u b l i s h (MQTT DATA PATH . . ”
LoadAdmiss ionCont ro lCheck ” , power ) −− P u b l i s h an
a d m i s s i o n c o n t r o l check r e q u e s t

end
i f s econdsToKeepApp l i anceSwi t chedOf f == 0

swi tchOn ( )
e l s e

s w i t c h O f f ( )
s econdsToKeepApp l i anceSwi t chedOf f =

secondsToKeepApp l i anceSwi t chedOf f − 1
end
sched . w a i t ( 1 )

end

where the admission control is performed as soon as the power
demand is higher than 10W.

V. FINAL REMARKS

The role of direct load control in modern power grids has
been shown to be beneficial for several applications. However,
in the case of small individual energy loads, these benefits can
be appreciable only if a large number of users are involved in
the control process.

The main contribution of this paper is proposing a so-
lution for implementing load control mechanisms without
using novel smart appliances, thus allowing a prompt user
penetration. We present the design of a smart plug equipped
with a local network technology, a power sensor devised
to detect (and/or to measure) the energy required by the
connected appliance, and a microprocessor able to run simple
applications. The envisioned architecture is M2M compliant
(thus avoiding any user interaction for expressing the energy
demand ahead of time) and completely open to third party
programmers. Security aspects dealing with the identification
of authorized programs to be run by the plug are currently
under investigation.
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