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Abstract. The diusion-based growth of islands composed of clusters of metal 
atoms on a substrate is considered in the aggregation regime. A stochastic 
approach is proposed to describe the dynamics of island growth based on a 
Langevin equation with multiplicative noise. The distribution of island sizes, 
obtained as a solution of the corresponding Fokker–Planck equation, is derived. 
The time-dependence of island growth on its fractal dimension is analysed. 
The eect of mobility of the small islands on the growth of large islands is 
considered. Numerical simulations are in a good agreement with theoretical 
results.
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1. Introduction

Modern technologies make possible the production of nanostructures on a substrate 
from preformed mass-selected clusters. Homogeneous nucleation and growth of islands 
from metal atoms during the initial submonolayer stage of film growth have been stud-
ied intensively for decades [1–5], although it is only recently that metal clusters became 
widely used in the formation of nanostructures [2, 6–9]. Specifically, clusters contain 
from several hundreds to several thousands of atoms and can be considered as clas-
sical particles. Within the context of nanotechnologies, production of nanostructures 
by diusion is a subject largely investigated [10–12]. Moreover, during the last fifteen 
years, experimental techniques have allowed for the deposition of mass-selected clus-
ters on surfaces [13–15]. Here, we are interested in cases when very low-energy neutral 
clusters produced in inert gas condensation sources [6] are mass-selected and deposited 
on a substrate.

Two-dimensional islands can be used for the fabrication of quantum dots [16]. 
Moreover, islands can form porous structures that are useful in the production of the 
chemical catalysts and sensors for the detection of chemical elements or viruses [17]. 
Each of these applications requires definite island shape, size, and density.

The density of islands and their sizes are determined by the relation between the 
diusion coecient and cluster flux. Clusters are deposited on a substrate and start to 
diuse. They can stick together and form an island. The shape of the island depends on 
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the chemical properties of cluster and substrate, and can vary from dendritic to com-
pact, being connected with the fractal dimension of the island. At a relatively low flux 
or high diusion coecient a cluster may join an existing island before being trapped 
by another single cluster. Islands are nucleated predominantly at surface defects. Such 
a process is known as heterogeneous nucleation [18], and in this case large islands form 
on the surface. An increase in the flux or a decrease in diusion can lead to an increase 
in the probability of several clusters sticking together and forming a new island rather 
than joining existing islands. Therefore, the number of islands grows, and the size of 
each island is small. Such a process is homogeneous [18, 19]. In this work we are inter-
ested in structure formation on highly oriented pyrolytic graphite (HOPG) surfaces  
[6, 18, 20, 21], where diusion is high and large branching islands grow. Since these 
structures are composed of metal clusters, we consider heteroepitaxial growth.

The two most common classes of method of description of epitaxial growth are (1) 
the analytic-based method, i.e. homogeneous rate equations (RE) [1, 22, 23] and con-
tinuum models [24, 25], and (2) numerical atomistic models, such as molecular dynam-
ics (MD) and kinetic Monte Carlo (KMC) techniques [26]. The standard RE approach 
is mostly based on mean field (MF) theory, but in general it does not lead to realistic 
island size distributions. This failure can be traced to the fact that the usual MF theory 
does not include correlations between the size of an island and its local environment  
[5, 27–31]. Such correlations are especially important in two dimensions, as in the 
island growth on surfaces. Several models addressed the description of non-MF behav-
iour and the propensity for an island to capture a diusing cluster (i.e. capture number) 
based on modified RE [32] and RE for the joint probability distribution for island size  
[28, 33, 34]. The geometry-based simulation approach for submonolayer film growth 
[35] has to be mentioned, and also that the model of island dynamics for epitaxial 
growth is based on the level-set method [36–38]. Recently, a review of basic theoretical 
concepts to describe monolayer growth kinetics under non-equilibrium conditions was 
given in [9]. Features of the island distribution on a surface are considered in [39–41].

Note also that several attempts to obtain analytical expressions for the size-distri-
bution of islands consisting of adatoms were pursued in [5, 42–44]. There are several 
examples of the application of the Fokker–Planck equation to describe the growth of 
nanostructures in the 3D case [8, 45, 46]. However, certain problems with the descrip-
tion of the nucleation process by the Fokker–Planck equation are noticed [47]. The 
coverage-dependent mean island size has a power-law dependence on coverage over 
much of the aggregation regime [48, 49]. More exact models show that such a power-
law dependence is only true approximately in the large coverage limit [42, 50], but 
that these time dependencies are qualitative. However, dynamic scaling of the island 
size-distribution in submonolayer epitaxial growth has been theoretically investigated 
in [4], and the coarsening eect on island-size scaling in adatoms was experimentally 
analysed in [51].

Cluster diusion and aggregation of islands were studied using MD [52, 53], but this 
approach becomes time-consuming when applied to structures consisting of thousands 
of clusters. However, KMC simulations look more favourable [17, 54].

At the beginning of structure formation all islands grow by capturing clusters, and 
the number of islands also increases. At higher coverage the aggregation of islands 
starts, and the number of islands is stabilized. The probability of aggregation of two 
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islands is defined by two processes. The first is the movement of the boundary of the 
growing large island that reaches unmoving small islands. The second is the arrival 
of small islands to the boundary of large ones. The influence of the mobility of small 
islands on the island size distribution can be neglected for adatoms [55] but not for 
large clusters on HOPG. High lubricity is typical for a HOPG surface, so it is neces-
sary to analyse the diusion of small islands while describing the island growth on this 
surface. Such mesoscopic objects as graphite flakes [56] and conglomerates of clusters 
[57] participate in thermal motion. They can demonstrate ballistic friction at high 
speed with complicated interplay of rotations and translations [58]. While describing 
the island growth, we neglect the internal structure of a small island and consider it as 
a structureless classical particle. As a result, in this paper we use the term ‘particles’ 
to characterize both captured islands and clusters.

Although much work has been done in this general area of investigation of epitaxial 
growth of two-dimensional islands in submonolayers, there is a lack of investigation 
into the eect of noise due to the diusion capture. In fact, the diusion-based capture 
of particles by islands is a stochastic process. In this paper, we analytically consider 
island size as a non-stationary random value. The mechanism for island growth is the 
Smoluchowski ripening. In particular, islands are allowed to diuse, and they irrevers-
ibly grow upon collision [59–61]. We do not consider the nucleation regime. The surface 
density of islands reaches a maximum and remains almost constant for some ranges of 
coverage (e.g. a coverage around 15% is mentioned in [44]). We are interested in the 
aggregation regime, before coalescence and percolation, after the number density of 
islands has reached a saturation value, when islands grow both by the joining of small 
islands and clusters. The growth of large islands, due to the capturing of small islands 
by large ones, can be eectively described as a stochastic process. Specifically, the vari-
ation in the number of particles in a large island is described by a Langevin equation.

We analyse the influence of the noise properties on the probability distribution 
of island size using dierent kinds of noise source. This allows us to also consider the 
eect of rare but large fluctuations, which are important for the considered dynamics of 
island growth [9]. We obtain analytical expressions for the island size distribution and 
the mean island size from the corresponding Fokker–Planck equation. We find a good 
agreement between numerical simulations and theoretical results.

2. The diusion model of island growth

2.1. Langevin equation for island size

To describe an island size we use the number of clusters in the island N(t). We assume 
that, after joining a two-dimensional island, a particle is embedded in the island struc-
ture and cannot leave it. In addition, we disregard partial dissociation of the island. 
Moreover, the motion of the large island is not considered (see [20] for an experimental 
justification). We focus on the stage of the structure growth when islands are large and 
branching. The nucleation process is not considered. We assume that, if the particle is 
deposited on the island, it will diuse to the boundary and fall over the edge to increase 
the size of the island.

http://dx.doi.org/10.1088/1742-5468/2016/03/033211
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The island growth is caused by the total particle flux through its boundary 

( )= ΠN N t˙ , . In [1, 43, 44, 62–64] authors considered a single, motionless circular 
island, which grows by absorption of diusing particles on a 2D substrate. A quasistatic 
approximation is used for the analysis of the particle concentration since the change of 
island boundary is negligible at mean time of particle diusion. The mean total flux of 
particles through the island boundary can be written as

( )
( )π τΠ = τ

τ

RJ D
K

K
2 ,

R

D

R

D

1

0

 (1)

where D is the diusion coecient, J is the incident particle flux, R is the island radius 
(which is proportional to N), τ is the mean time of particle motion, and ( )νK z  is the 
modified Bessel function. We can simplify equation (1) under the condition that clus-
ter displacements are much shorter than the island radius τ�R D . This condition is 
settled in the case of high coverage with large branching islands. Then, we have

τΠ = PJ D , (2)

where P is the island perimeter. In general, τ is time-dependent, but we assume that it 
depends weakly on time, and we consider τ as a constant value.

For non-circular islands, it is sucient to replace the radius R in equation (1) with 
an eective one, appropriate to the island morphology [43]. At low temperatures (or 
no edge diusion), when the islands are ramified, the eective radius has a power-law 
dependence on the island area s given by

∼ ∼γ γR s N ,eff (3)

which is proportional to the island perimeter. Here, the exponent [ )γ∈ 1/2, 1  charac-
terizes branching. If →γ 1/2, the island is compact. If →γ 1, the dendritic structure 
has thin branches, and the thickness of each branch approaches the width of a single 

cluster. Note that γ−1 gives a measure of the fractal dimension.
Thus, the island growth depends on its boundary length since particles stick only to 

the boundary of an island and we write, finally

τΠ ∼ γN J D . (4)

In general, the growth rate dependence on the island size is more complicated than 
a simple proportionality to the perimeter. Also, we assume that, at the considered stage 
of growth, γ is constant. For a dendritic structure, this means that the mean thickness 
of branches grows together with the island. Therefore, a stochastic dierential equa-
tion for the island size is written as

( )ξ= γN N t˙ , (5)

where ( )ξ t  is a noise source determined by the particle flux and the diusion coecient 
of a particle on the substrate. Since we consider irreversible growth, the variation of the 
island size can not be negative. Therefore, we use a non-negative noise source [65–67]. 
Below we interpret equation (5) in the Stratonovich sense [68, 69].

http://dx.doi.org/10.1088/1742-5468/2016/03/033211
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2.2. Fokker–Planck equation for island size distribution

Let us consider the following Langevin equation:

( )ξ= ∈γ +Rx x t x˙ , , (6)
where ( )ξ t  is the stationary Gaussian white noise with ⟨ ( )⟩ξ = >t a 0 and 
⟨ ( ) ( )⟩ ( )ξ ξ τ δ τ+ =t t K2 .

The corresponding Fokker–Planck equation for the probability density function 
(PDF) w(x, t) can be written as [68]

( )γ
∂
∂
= −

∂
∂

+ +
∂
∂

γ γ γ−w

t x
ax K x w K

x
x w.2 1

2

2
2 (7)

The function w(x, t) satisfies the initial and boundary conditions

ψ

γ

γ

=

− −
∂
∂

=

− −
∂
∂

=

γ γ γ

γ γ γ

−

=

∞

−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

w x x

ax K x w Kx
w

x

ax K x w Kx
w

x

, 0 ,

0,

lim 0.

x

x

2 1 2

0

2 1 2

( ) ( )

( )

( )
→

 

(8)

Here, ( )ψ x  is a non-negative function that satisfies the normalization condition and 
provides consistency of the initial and boundary conditions. In accordance with the 
boundary conditions, the probability current vanishes at the boundaries x  =  0 and 
= ∞x .

Using the change of variable ( )η γ= −γ−x / 11 , we reduce equation (7) to

η η
∂
∂
= −

∂
∂
+
∂
∂

w

t
a

w
K

w
.

2

2 (9)

The corresponding initial and boundary conditions are given by

( ) ( ) ( ( ))[( ) ]

→

η χ η ψ η γ η

η

η

= ≡ −

∂
∂
− =

∂
∂
− =

γ
γ

η

η

−

=

∞

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

w x

w aw

K

w aw

K

, 0 1 ,

0,

lim 0.

1

0 

(10)

A solution to the Robin boundary-value problem for parabolic equation (9) with con-
ditions (10) can be obtained using the Laplace transform [70]. Changing the variable 
back to x, we obtain the solution to equation (7):

( )

( )
( )

( )

( )
( )

( )
( )

( )
( )

( )

∫ π

γ ζ

γ
ψ ζ ζ

= +

−
− + +

−

γ
ζ
γ

ζ
γ

ζ
γ

γ
γ γ

−
∞ − +

−
−

−
−
−

−
+
−

−
− −

γ γ γ γ γ γ

γ

− − − − − −

−

⎡
⎣⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤
⎦⎥

w x t x
Kt

a

K

a t x

K t

,
1

4
e e e

2
e erfc

1

4 1
d .

a t
K

a x
K

x

K t

x

K t

ax
K

0

4 2 1 4 1 4 1

1
1 1

2

2 1 1 1 1 2

2

1 1 2

2

1

 

(11)
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Let us derive an analytical expression for the moments of x. Integration with respect 
to x of the product of the power function and the first two terms of the integrand of the 
PDF (11) can be easily performed [71]. We integrate the third term of the integrand by 
parts using expansion of the incomplete gamma function [72]

∫

∑

π
γ

γ

γ ζ

γ

γ ζ

γ
ψ ζ ζ

= − Γ
−
+

× −
− +

−

+

× − −
− −

−

γ

γ ζ
γ

γ

γ

γ ζ
γ

ζ
γ

γ

γ

−

∞ −
− +
− − − −

−

−
− −
−

− −

=

∞

− − − −

−

γ

γ γ

−

− −

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤

⎦
⎥
⎥

M t K t
n

D
a t

K t

at

Kt
D

a t

K t

1

2
2 1

1
1

e
1

2 1

e

2

2

1

2 1
d ,

n

n

a t

K t n

a t

K t

a
K

k

k

n k

2 2 2

0

1

8 1
1

1

1

2

1

8 1 1

0
1

1

1

2

1 2

2

1 2

2

1

( ) [ ( ) ]

( )
( )

( )
( )

( )

( ( ) )
( )

( ( ) )
( ) ( )

 

(12)

where ( )νD z  is the parabolic cylinder function. We assume that the initial distribution 

is such that integrals (11) and (12) converge (e.g. ( ) ( )ψ ∈ +Rx L2 ).
If the initial condition is a delta function ( ) ( )δ= −w x x x, 0 0 , the PDF (11) is trans-

formed into

( ) ( )
( )

( )

( )

( ( ) ) ( )
( )

( )

π γ

γ

γ

=
−

−
− + +

−

γ γ
γ

γ

γ
γ

γ γ

− −
− − + +

−
−

−
−

− −

γ γ γ

γ

− − −

−

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

w x t
x

Kt

xx

K t

ax

K

a t x x

K t

, e cosh
2 1

2
e erfc

1

4 1

a t x x xx

K t

ax
K

1 2

4 1 0
1

2

1

1
0
1

2

1
0
1 2

0
1

2

1
 

(13)

and coincides with the distribution obtained in [73] for a  =  0. Then, the expression of 
the mean of x(t) is

( ) [ ( ) ]

( )

( )

( )

( )

( ( ) )
( )

( ( ) )
( ) ( )∑

π
γ

γ
γ

γ

γ

γ

γ

= − Γ
−
−

× −
− +

−

+ − −
− −

−

γ

γ
γ γ

γ

γ

γ
γ γ γ

γ

γ

−

−
− +
− −

−

−

−
− −
−

− −

=

∞

−
− −

−

γ

γ γ

−

− −

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤

⎦
⎥
⎥

x t K t

D
a t x

K t

at

Kt
D

a t x

K t

1

2
2 1

2

1

e
1

2 1

e
2

2

1

2 1
.

a t x

K t

a t x

K t

ax

K

k

k

k

2
1

2 2

1

8 1 2
1

0
1

2

1

8 1 1

0

2
1

0
1

2

0
1 2

2

0
1 2

2
0
1

 

(14)

For large time 
( )γ−

γ−

�t x

a 1
0
1

, the information about the initial distribution is lost, and 

the PDF tends to

( )
( ( ) )

( )
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥

π
= −

γ γ
γ

− −
− −
−

−γ−

w x t
x

Kt

at

Kt
,

4
e 1

1

2
erfc

4
.

x a t

K t

1

4 1

11 2

2 (15)

Then, the asymptotic expressions of the mean and variance are respectively
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( ) [ ( ) ]γ= − γ−x t a t1 ,
1

1 (16)

and

( )
( )

[ ( ) ]σ
γ

γ=
−

−
γ
γ
+
−t

K

a
a t

2

1
1 .2

1
1 (17)

If the initial distribution is localized at relatively small x, expression (11) is trans-
formed into formula (15) for suciently large times.

If the island size N is suciently large, the relative variation of γN  per unit step is 
small. As a consequence, the discrete process, the dynamics of which are described by 
the stochastic dierential equation (5), can be approximated by the continuous one of 
equation (6).

3. Small island capture

Let a small island consisting of several clusters join the large island at time ti. This 
process can be modelled as a pulse noise

( ) ( )∑ϑ δ= −t f t t .
i

i i (18)

Each pulse corresponds to the capturing of a particle (a cluster or a small island), 
the amplitude of the i-th pulse fi is proportional to the number of clusters in a particle; 

therefore, ( )ϑ=N t˙ . This pulse noise is a Poisson process, and the distance between pulses 
is determined by the probability per unit of time of a particle appearance. This process 
is not stationary since the probability depends on the perimeter of the large island and, 
consequently, on island size in accordance with equation (4), and increases as ν γN , where 
ν is constant. Since pulse process is delta-correlated, it is defined by two parameters: 

the mean value ⟨ ⟩ ⟨ ⟩ϑ ν= γf N  and the constant spectral density ⟨ ⟩ν=ϑ γS f N2 . Both 

these parameters are proportional to γN . Hence, we can replace additive non-stationary 

noise with multiplicative stationary noise ( ) ( )ϑ ξ= γt N t  with parameters ⟨ ⟩ ⟨ ⟩ξ ν= f  and 

⟨ ⟩ν=ξS f 2 , and obtain equation (5). Mean time between pulses is denoted by T.
We take into account diusion of small islands containing n clusters. Let the size 

of the island, which is able to diuse, be limited by the number N . To analyse the 
eect of the mobility of small islands on the growth of the large island we consider that 
islands diuse as clusters. The eects of cluster diusion on the island size distribu-
tion have been reviewed for the case of irreversible growth of compact islands on a 2D 
substrate, and several mechanisms for the diusion of large particles on solid surfaces 
were proposed [74–79]. In most cases, scaling arguments predict that the coecient of 
particle diusion decays as a power law with particle sizes n∼ µ−D . In particular, three 
dierent limiting cases were considered: (1) diusion due to uncorrelated evaporation 
condensation (µ = 1/2), which corresponds to the Brownian diusion in two dimen-
sions, (2) diusion due to correlated evaporation condensation (µ = 1), and (3) diusion 
due to periphery diusion (µ = 3/2). In a molecular dynamics study, Deltour et al found 
µ = 2/3 [80]. The model of Brownian diusion is also suitable for the description of the 
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motion of islands composed of clusters. In our model we consider two main processes for 
the growth of islands. The first one is the motion of the boundary of large islands. The 
probability of this kind of capturing of a particle is proportional to a certain parameter 
c (see below). The second one is the diusion of small islands arriving to the boundary 
of large ones. In accordance with the scaling power law mentioned above and equa-
tion (4), the probability of this kind of capturing of a particle is proportional to n µ− /2. 
Summarizing, we have stationary pulse noise

( ) ( )n∑ξ δ= −t f t t ,
i

i i0 (19)

where the probability distribution of pulse amplitudes ni is

( ) ( )
( )

n n=
+

+
µ

µ−

N N

P
c H

c
1

.
/2

/2
 (20)

Here, ( )( )+ µ −
N Nc H /2 1

 is a normalization factor, ( ) = ∑ν ν
=

−
N

NH kk 1  is the generalized har-

monic number [81], and ⩽n N . A sample of pulse random process ξ(t) of equation (19) is  

shown in figure 1.
At the same time, the probability of meeting a small island close to the boundary 

of large branching islands decreases with the increase in the size of the small island 
not only due to a decrease in mobility, but also because of competition. Moreover, in 
the work [82] another mechanism is discussed: ‘The comparison between several kinetic 
models indicates that the correlation between the locations of the islands aects the 
coalescence rate. The fact that the islands “avoid” each other during the nucleation pro-
cess lowers the rate of coalescence when the coverage is low. The onset of coalescence is 
pushed to higher coverage, and when the process finally begins, it will occur at a higher 
rate than in the case when the correlations are absent’. In this work, to model these 
correlations, which are actually anti-correlations, we use also the geometric probability 
distribution for the size of captured particles

( ) ( )n n= − −P p p1 .1 (21)

This distribution corresponds to a faster decrease in the probability with size.

4. Numerical results

Here, we present results obtained by numerical integration of equation (5), using the 
pulse noise (19) with the two dierent amplitude distributions given in equations (20) 
and (21). The Mersenne twister [83] is used as a pseudo-random number generator. 
The averaging is performed over 106 stochastic realizations in each analysed case. As 
the initial distribution, we use the generalized gamma distribution (see [4]) with critical 
island size i. In all subsequent calculations the mean pulse distance is T  =  1 and the 
pulse scale factor f0  =  0.001. The pulse noise with a probability of 20 is characterized 
by the maximum number N  of clusters in the captured island and exponent μ. The 
value of c is chosen in such a way that the probability is equal for two events: (a) the 
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capturing of a small island, consisting of three clusters, due to the moving boundary of 
a large island; (b) the capturing of this small island due to its movement towards the 
boundary of the large one.

The mean value in figure 2 and the variance in figure 3 were obtained for initial dis-
tributions (see [4]) with mean initial size N0  =  1000, γ = 0.6, noise parameters =N 5, 
and µ = 2/3, and dierent critical sizes i  =  1, 2, 3. We note that the overlap of the three 
curves of figure 2 and the non-overlap of the three curves of figure 3 can be explained 
noting that, as i varies, the mean value of the initial distribution keeps constant, while 
the corresponding standard deviation changes. In other words, the value of i does not 
influence the dynamics of the mean size, but aects the variance.

Figure 1. Sample of pulse random process ( )ξ t  with amplitude pmf (20) (T  =  1, 
f0  =  1, =N 5, µ = 2/3, = −c 3

1
3).

Figure 2. Plot of the mean island size versus time for dierent values of initial 
critical island size i (γ = 0.6, N0  =  1000, =N 5, µ = 2/3): results of analytical 
calculations (solid line) and numerical calculations (symbols) from equation (12) 
and equation (5), respectively.
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We analyse the influence of change of noise parameters on the mean island size. 
In particular, figure 4 shows the eect of the number N  on the island growth. We 
carried out the calculation for =N 5, 10, 15. The values of the other parameters are 
γ = 0.6, µ = 2/3. Moreover, the initial distribution [4] with N0  =  1000 and i  =  1. We 
see in figure 4 how the rate of growth of the mean value increases with N . The result 
can be easily explained since N  corresponds to the maximum size of a small island 
that joins the big island, and the increase of N  allows the big island to capture larger 
particles.

Figure 3. Plot of the variance of island size versus time for dierent values of 
initial critical island size i (γ = 0.6, N0  =  1000, =N 5, µ = 2/3): results of analytical 
calculations (solid lines) and numerical calculations (dots) (from equation (12) and 
equation (5), respectively).

Figure 4. Plot of the mean island size versus time for dierent values of N  (γ = 0.6, 
µ = 2/3, and initial distribution [4] with parameters N0  =  1000 and i  =  1): results 
of analytical calculations (solid lines) and numerical calculations (dots) from 
equation (12) and equation (5), respectively.
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In figure 5 we present the time dynamics of the mean island size for the noise with 
distribution of amplitude presented in equation (20) (the value of exponent μ, namely, 
µ = 0.5, µ = 1, and µ = 1.5). The values of the other parameters are γ = 0.6, N = 5, 
and initial distribution [4] with N0  =  1000 and i  =  1. Here, the mean value of island 
size grows faster with decreasing μ and, consequently, with the increase of the prob-
ability of larger islands joining. This result can be also predicted noting that, since the 
diusion coecient increases with the decrease of μ, the mean value of noise and, as 
a consequence, the growth rate are expected to increase. In the same figure we show 
results for pulse noise with geometric distribution of amplitude presented in equa-
tion (21), with parameters p  =  0.2, p  =  0.3, p  =  0.5 and p  =  0.9. Note that the increase 
of p leads to the decrease in the growth rate of the island. This can be seen both from 
the numerical simulation and from the fact that with the increase of p, the mean value 
of noise, that is 1/p, decreases, thus, leading to the slowing of island growth.

Figure 6 illustrates the dependence of island growth on the degree of branching γ 
of the island. We note that the island growth rate is much faster for large values of γ. 
Other parameters are =N 5, µ = 2/3, and initial distribution [4] with N0  =  1000 and 
i  =  1. We can see that with the increase of branching of the island the rate of island 
growth also increases.

Figure 7 shows the time evolution of the island size distribution obtained from 
equation (11). Parameters of the simulation are γ = 0.6, =N 5, µ = 2/3, and initial 
distribution [4] with N0  =  1000 and i  =  1. The expected result was obtained: if we fol-
low the time evolution of distribution of island size, we can see that the maximum of 
distribution shifts, and the distribution broadens.

We note that the analytical and numerical results are in a very good agreement.

Figure 5. Plot of the mean island size versus time for dierent distributions of noise 
pulse amplitude (γ = 0.6, and initial distribution [4] with N0  =  1000 and i  =  1): 
results of analytical calculations (lines) and numerical calculations (symbols) from 
equation (12) and equation (5), respectively. There are probability distribution 
equation (20) with =N 5 and µ = 1/2, 1, 3/2 (solid lines/dots); geometric 
probability distribution equation (21) with values of the parameter p = 0.2, 0.3, 
0.5, 0.9 (dash lines/diamonds)
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5. Further generalization

In this section, we can take into account several time-dependent factors (considered 
as constant parameters in previous sections) influencing island growth. In particular, 
these time-dependent factors are: the flux or temperature, the number of surrounding 
islands, and the growing nanostructures deforming the substrate. Here, we consider a 
more general Langevin equation:

Figure 6. Plot of the mean island size versus time for dierent values of γ ( =N 5, 
µ = 2/3, and initial distribution [4] with N0  =  1000 and i  =  1): results of analytical 
calculations (solid lines) and numerical calculations (dots) from equation (12) and 
equation (5), respectively.

Figure 7. Time evolution of the island size distribution (γ = 0.6, =N 5, 
µ = 2/3, and initial distribution [4] with N0  =  1000 and i  =  1): results of analytical 
calculations (solid lines) and numerical calculations (symbols) from equation (11) 
and equation (5), respectively.
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( )
( )

( )
α
ξ= ∈ +P Rx

x

t
t x˙ , , (22)

where ( )ξ t  is the stationary Gaussian white noise with ⟨ ( )⟩ξ = >t a 0 and 
⟨ ( ) ( )⟩ ( )ξ ξ τ δ τ+ =t t K2 , ( )P x  is a general function of the geometric factors of the system 
investigated, and ( )α t  is a parameter which takes into account all of the time depending 
factors mentioned above.

For variable ( )∫η = −P x xd1 , we get the Fokker–Planck equation
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∂
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The corresponding initial and boundary conditions are given by
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The solution to the Robin boundary-value problem with time-dependent coecient 
for parabolic equation (23) and conditions (24) can be obtained using the single-layer 
potential [84]. The fundamental solution of equation (23) can be written as

∫
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(25)

Then, we have

( ) ( ) ( ) ( ) ( )∫ ∫η η λ χ λ λ η τ φ τ τ= +
∞
E Ew t t t, , , , 0 d , 0, , d ,

t

0 0
 (26)

where the second term is the single-layer potential with density ( )φ t . The unknown 
function ( )φ t  is the solution of the Volterra integral equation of the second kind

( ) ( ) ( ) ( )K∫φ τ φ τ τ= +t t f t, d ,
t

0
 (27)

where the kernel ( )K τt,  and inhomogeneity f(t) are given by
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Here, we use the notation ( ) ( )θ θ≡t t, 0n n . The kernel (28) is weakly singular and, there-
fore, the solution of equation (27) may be obtained by a successive approximation (see 
[70]). The uniqueness of the solution is discussed in [84].

The solution of equation (23) is too cumbersome. However, we can determine an 
approximate solution for relatively large t. We assume that

( )
( )→

θ
θ

= ∞
∞

t

t
lim .
t

1
2

2
 (30)

Then, the component of the probability current that corresponds to the first term 
of equation (26) tends to zero owing to the exponential function. Keeping in mind the 
normalization condition, we get expressions for the PDF
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For significantly large times, which depend on the function ( )α t , the information on the 
initial distribution is lost, and the PDF tends to
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Below we consider several kinds of function ( )P x , which may be useful in the analy-
sis of island growth.

5.1. ( ) = γP x x

This case corresponds to the system investigated in previous sections, when the growth 
rate is proportional to the island perimeter. As mentioned above, in this case we have 

( )η γ= −γ−x / 11 . Then, for the PDF we get
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and the moments
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For significantly large times the PDF tends to
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Similarly to equations (16) and (17), we derive the asymptotic expressions for mean 
and variance
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5.2. ( ) ( )
( )

= κ
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This kind of function ( )P x  arises from the mean field approximation of quasistatic 
growth of a circular island, when the cluster flux through the island boundary is
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Then, the steady-state PDF is
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(39)

Figure 8 shows scaled steady-state PDF for dierent values of κ. The values of the 
parameters are a  =  10−3, K  =  10−4, and t  =  105. Here, we use the function ( )α =t 1 and 

( )θ =t tn .

5.3. ( ) λ= +β γP x x x , β γ≠

The case β = 1 corresponds to a beyond-mean-field approximation, when island growth 
is proportional to island area. When β = 0, equation (22) describes island formation 
around a defect of the surface, and the size of the defect is not negligible.
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(40)

If β = 1, we get

Figure 8. Plot of scaled island size distribution for dierent values of κ, obtained 
from equation (39) (a  =  10−3, K  =  10−4, t  =  105).

Figure 9. Plot of scaled island size distribution for dierent values of β, obtained 
from equations (40) and (41) (γ = 0.8, λ = 1, a  =  10−3, K  =  10−4, t  =  105).
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Figure 9 demonstrates scaled steady PDF for dierent values of β. The values of the 
parameters are γ = 0.8, λ = 1, a  =  10−3, K  =  10−4, and t  =  105. Here, we use again the 
function ( )α =t 1, and ( )θ =t tn .

6. Summary

A semi-phenomenological model of island growth is developed to describe the aggre-
gation regime, which is appropriate mainly at a large timescale. The Langevin equa-
tion with multiplicative noise is used to describe the growth of islands that are formed 
on the substrate by metal particles. The results of numerical simulation of the Langevin 
equation are in a good agreement with the analytical solution of the Fokker–Planck 
equation. The analytical solutions can be used in the analysis of surfaces. For example, 
the quality of surface can be evaluated using the dynamics of island growth. Note 
that some of processes considered in the KMC method are disregarded in our model. 
However, the proposed approach makes it possible to obtain an analytical expression 
for the island size distribution and the mean island size as a function of time.

We showed that the island growth is mainly defined by the fractal dimension of the 
island. At the same time, the properties of the captured particles also determine the 
dynamics of island growth.
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