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Abstract.  The spatio-temporal behaviour of total chlorophyll concentration 
is investigated in the middle of the Tyrrhenian Sea by using a stochastic 
approach. The study is based on a reaction–diusion–taxis model, which is used 
to analyse the dynamics of five phytoplankton groups, responsible for about 
80% of the total chlorophyll a inside the euphotic zone of the water column. 
The analysis is performed by considering: (i) the intraspecific competition 
of the phytoplanktonic groups for limiting factors, i.e. light intensity and 
nutrient concentration, (ii) the seasonal changes of environmental variables, 
and (iii) the random fluctuations of the components of the velocity field and 
temperature. Specifically, we investigate the eects of external perturbations, 
both deterministic and random, on the dynamics of phytoplankton populations, 
by inserting a term of multiplicative noise into the dierential equation of the 
nutrient dynamics. The theoretical results of the phytoplankton abundances 
obtained by the stochastic model are converted in chlorophyll a concentrations, 
and compared with the experimental findings. The statistical checks, based on 
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the chi-square test, show that the vertical distributions of total chlorophyll 
concentration are in a good agreement with the experimental data. Finally, we 
observe that the high intensity of environmental noise strongly modifies the 
steady spatial distributions of two phytoplankton groups usually localized in 
deeper layers, causing algal blooms in surface water.

Keywords: stochastic particle dynamics (theory), hydrodynamic fluctuations, 
turbulence, stochastic processes (theory)
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1.  Introduction

The analysis of the spatio-temporal behaviour of phytoplankton abundance in recent 
decades has assumed a role of fundamental importance in predicting and understand-
ing the eects induced by global climate change over biomass primary production in 
marine ecosystems [1–4]. In particular, field observations indicated that the reduction 
of algal production is closely connected to the decrease in the chlorophyll concentra-
tion, which depends on the composition and abundance of phytoplankton populations 
[1, 3–13]. Moreover, it has been shown that the reduced algal production aects bio-
mass production for higher trophic levels, causing a consequent decrease in fish species 
in the Mediterranean Sea [1–3, 14–16].

In this work, we analyse the complex mechanism responsible for the phytoplankton 
group displacements along the water column in order to predict the combined eects 
of the deterministic fluctuations of the physical variables and the random perturba-
tions caused by unpredictable climate change. In particular, we focus our study on the 
role of the randomly fluctuating components of physical variables, which can cause 
unexpected algal blooms in the surface layer, characterized in the Tyrrhenian Sea by 
very low nutrient concentration (oligotrophic water). Indeed, although algal blooms are 
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often observed in the surface water of marine ecosystems during the winter season, this 
phenomenon has not been well investigated yet.

During recent years, it has been shown that seasonal changes in environmental 
variables can modify the vertical distributions of phytoplankton abundance in such 
a way to cause a passage from a stability condition with a deep chlorophyll maximum 
(DCM) to another stability condition with an upper chlorophyll maximum (UCM), 
and vice-versa [3, 4, 15–19]. In general, this passage can be explained by the nature 
of marine ecosystems, which are open systems characterized by nonlinear interactions 
between their parts and external perturbations, both deterministic and random, gener-
ated by hydrological and physical variables [4, 16, 17, 19], as often occurs in biological 
and complex systems [20–33]. Accordingly, in this paper we study the spatio-temporal 
behaviour of phytoplankton populations by using a stochastic model. This allows the 
reproduction of the experimental profiles of the chlorophyll a concentration collected 
during dierent oceanographic surveys [3, 4, 15, 17–19].

In our model, the photosynthesis process within phytoplankton cells is described by 
a reaction term, in which are considered the nonlinear interactions between the growth 
of phytoplankton abundance and the two limiting factors [34–38], i.e. light intensity and 
nutrient concentration. In particular, the decrease in the light intensity as a function 
of depth, associated with an opposite gradient of nutrients, guarantees a positive net 
growth rate within the production layer of each phytoplankton population [3, 16, 19].  
In this way, the position and the magnitude of the chlorophyll peak is closely connected 
with the vertical distribution of the limiting factors [3, 37, 39, 40], which, however, 
depend on the spatio-temporal behaviour of hydrological and physical variables.

Therefore, it is necessary to take into account the eects of the deterministic pertur-
bations of the environmental variables on the dynamics of phytoplankton populations, 
according to previous works [3, 4]. Specifically, in our model, the vertical profiles of 
chlorophyll concentration are reproduced by considering the spatio-temporal behaviour 
of light intensity and vertical turbulent diusivity. Moreover, we take into account the 
seasonal changes of the depth of the thermocline, which is the thin layer of the water 
column where the absolute value of the temperature gradient assumes the maximum 
magnitude. We also study the role of random fluctuations of the environmental variable 
on the phytoplankton dynamics. Regarding this, we recall that the mechanism respon-
sible for the passive movement of phytoplankton groups within the random eddies along 
the water column is always reproduced by a diusion term. This term includes the ver-
tical turbulent diusivity, which is a function of the Richardson number, which also 
depends on the randomly fluctuating components of the velocity field and temperature 
[41–43]. Since the measures of these components are not usually available in the analy-
ses of phytoplankton dynamics, several authors have recently estimated the vertical 
turbulent diusivity by using measurable average parameters, instead of the randomly 
fluctuating components of environmental variables [3, 41, 42]. This choice increased the 
error in the estimation of the vertical turbulent diusivity and, as a consequence, in 
the vertical distributions of phytoplankton abundance. Therefore, in order to consider 
the eects of the random fluctuations of environmental variables on phytoplankton 
dynamics, we insert a term of multiplicative Gaussian white noise into the dierential 
equation for nutrient dynamics, obtaining a stochastic reaction–diusion–taxis model. 
The results obtained are converted into chlorophyll concentration and compared with 
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the vertical distributions of total chlorophyll a concentration collected in a marine site 
in the Tyrrhenian Sea, during four dierent samplings taken between 24 November 
2006 and 9 June 2007. The environmental variables guarantees oligotrophic conditions 
in the geographical area during the whole year, and phosphorus is the nutrient comp
onent playing the role of limiting factor for the growth of the phytoplankton groups  
[3, 4, 15, 19, 44, 45].

In more detail, the stochastic model is used to reproduce, under suitable environ
mental conditions, the spatio-temporal behaviour of five planktonic populations belong-
ing to the smaller size fraction (less than 3 μm), which takes in account, on average, 
about 80% of the total chlorophyll a (chl a) and divinyl chlorophyll a (Dvchl a) in the 
Mediterranean Sea. This fraction consists in picophytoplankton groups belonging to 
two dierent domains [46–48], i.e. picoprokaryotes and picoeukaryotes. Specifically, the 
picoprokaryote domain is composed of two genera of cyanobacteria, i.e. Synechococcus 
and Prochlorococcus (HL-ecotype and LL-ecotype), while the picoeukaryote domain is 
mainly represented by Haptophytes and Pelagophytes [49–53].

The dynamics of phytoplankton populations is modelled by considering two dierent 
conditions for the noise intensity. As a first step, we solve the equations of the stochastic 
model by fixing the noise intensity at a constant value during the whole period inves-
tigated, according to the procedure followed in previous works [4, 15–18]. Afterwards, 
we analyse the eects of environmental noise on the phytoplankton dynamics in the 
presence of a periodical behaviour of the noise intensity, which mimics the seasonal 
oscillations of the random perturbations. Finally, in both cases studied, we convert the 
phytoplankton abundance, expressed in cells/m3, into chl a and Dvchl a concentrations, 
expressed in μg/ md 3, by using the experimental cellular content measured by Morel 
and the conversion curves obtained by Brunet et al [50, 54]. The theoretical chlorophyll 
distributions are therefore compared with the corresponding experimental profiles col-

lected during oceanographic surveys, performing statistical checks based on the χ2 test.
The rest of the paper is organized as follows. In section 2, a description of the equa-

tions of the stochastic reaction–diusion–taxis model is presented in the two cases stud-
ied. In section 3, the dynamics of the phytoplankton groups obtained by the model is 
analysed and compared to the experimental findings acquired in four dierent seasons 
of the year. Finally, the conclusions are drawn in section 4.

2. The stochastic model

In this section the spatio-temporal behaviour of the five picophytoplankton populations 
is analysed by using a stochastic reaction–diusion–taxis model [3, 15–19, 34, 35, 55], 
consisting of a system of partial dierential equations. In particular, the model describes 
the dynamics of populations along the one-dimensional spatial domain (z-direction) of 
the Modified Atlantic Water (MAW), i.e. the upper layer of the water column of the 
Mediterranean Sea (from the surface down to 200 m). The domain chosen corresponds 
approximately to the euphotic zone, namely the layer of the water column where the 
magnitude of light intensity is enough to guarantee the survival of all phytoplankton 
groups.

http://dx.doi.org/10.1088/1742-5468/2016/05/054044
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The spatio-temporal behaviour of the picophytoplankton abundance is modelled 
considering three processes [34, 35]: net growth (reaction term), active movement (taxis 
term) and passive movement (diusion term). The reaction term describes the limiting 
resources, i.e. light intensity and nutrient concentration, influencing the phytoplankton 
growth rates [34, 36, 55–57, 59, 60]. The taxis term provides a realistic description of 
motility skills of the planktonic groups, which tend to be located inside the respective 
production layers. Finally, the diusion term reproduces the eect of the turbulence on 
the vertical profiles of the phytoplankton groups through vertical turbulent diusivity, 
which changes as a function of both the time, due to the seasonality, and depth, accord-
ing to the generalized Fermi function [3, 55].

Moreover, the stochastic model takes into account: (i) the nonlinear interactions 
within the ecosystem due to the intraspecific competition of the phytoplanktonic groups 
for limiting factors; (ii) the external deterministic perturbations triggered by the sea-
sonal changes of vertical turbulent diusivity and light intensity; (iii) the randomly 
fluctuating components of the environmental variables. Therefore, the stochastic five-
population (i  =  1, ..., 5) model is defined by the following equations
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where b1(z, t), b2(z, t), b3(z, t), b4(z, t), and b5(z, t) indicate the cell concentrations of 
the five populations considered, i.e. Synechococcus, Haptophytes, Prochlorococcus HL, 
Pelagophytes and Prochlorococcus LL, respectively, R(z, t) represents the phosphorus 
(nutrient) concentration and I(z, t) is the light intensity.

In equation (1), we consider the limiting eect of light intensity and nutrient con-
centration on the phytoplankton growth rates [34, 36, 56, 57], according to the Monod 
kinetics [58]. Specifically, we estimate the net phytoplankton growth rates per capita 
as follows

( ) ( ( ( )) ( ( )))= −G z t f R z t f I z t m, min , , , .i R I ii i� (4)

Here, mi is the specific loss rate of the ith picophytoplankton population [34, 35, 55], 
while ( )f IIi  and ( )f RRi

 are obtained by the Michaelis–Menten formulas

( ) ( )= +f I r I I K/ ,I i Ii i� (5)

( ) ( )= +f R r R R K/ ,R i Ri i� (6)
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in which ri is the maximum growth rate, KIi and KRi are the half-saturation constants 
for light intensity and nutrient concentration, respectively, of the ith picophytoplank-
ton group.

In our model, the diusion terms (see equations (1) and (2)) depend on the vertical 
turbulent diusivity, D(z, t), which describes the magnitude of the mixing within the 
euphotic zone as a function of the depth and time. Specifically, the vertical turbulent 
diusivity is characterized by a larger magnitude DU (t) in the upper layer and a smaller 
magnitude DD(t) in the deeper layers. Since the behaviour of DU (t) and DD (t) is closely 
connected to seasonal changes, we assume the vertical turbulent diusivity to be a 
periodical function which oscillates over a period of one year. Moreover, the gradual 
transition from the upper mixed layer to deeper layers is given by the following gener-
alized Fermi function [3, 55]

( ) ( ) ( ) ( )
( )= +

−

+
−D z t D t

D t D t
,

1 e
,D

U D
z ZU t

w
� (7)

where ZU (t) is the thickness of the upper mixed layer varying with time, and the 
parameter w is the width of the transient layer.

In this study, we also consider the active movement of the single planktonic cell 
by inserting a taxis term in each dierential equation  for phytoplankton dynamics 
(see equation  (1)). Here, the swimming velocity vi of each group depends on a step 
function of the gradient of the net phytoplankton growth rate, ( )∂ ∂G z t z, /i  [3, 34]. In 
particular, the swimming velocity is defined as = +v vi i

s if ( )∂ ∂ >G z t z, / 0i , = −v vi i
s if 

( )∂ ∂ <G z t z, / 0i , and vi  =  0 if ( )∂ ∂ =G z t z, / 0i , where vi
s is a constant parameter, whose 

value (positive) is calculated for each group by using the same formula adopted by 
Raven [70].

By using equation (2) we reproduce the spatio-temporal dynamics of the phospho-
rus concentration which, apart the diusion along the water column, depends on the 
nutrient uptake necessary to support the phytoplankton metabolism, and the nutrient 
recycling coming from dead phytoplankton. These two processes are taken into account 
through the first and last terms, respectively, of equation (2), where 1/Yi is the nutri-
ent content and εi is the phosphorus recycling coecient of the ith picophytoplankton 
population.

Finally, we use Lambert–Beer’s law to reproduce the spatio-temporal behaviour of 
the light intensity [3, 37, 61, 62]. In particular, this is assumed to decrease exponentially 
with the depth z, due to the shading produced by the chlorophyll molecules present 
within phytoplankton cells and the marine water turbidity, according to equation (3). 
Here, ( )chl a z t,i  and ai are the chlorophyll concentration and the chl a-normalized aver-
age absorption coecient of the ith picophytoplankton population, respectively, abg is 
the background turbidity and ( )I tin  is the incident light intensity at the water surface, 
which oscillates over a period of one year.

The environmental random fluctuations are taken into account in the model 
by inserting a term of spatially uncorrelated noise into the dierential equation  for 
the nutrient dynamics. In particular, we use a source of multiplicative Gaussian 
noise ( )ξ z t,R  with intensity σR and statistical properties given by ⟨ ( )⟩ξ =z t, 0R  and 
⟨ ( ) ( )⟩ ( ) ( )ξ ξ σ δ δ= − −′ ′ ′ ′z t z t z z t t, ,R R R . More specifically, we investigate the eects of 
the noise source on the phytoplankton dynamics in two cases.

http://dx.doi.org/10.1088/1742-5468/2016/05/054044
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Case 1. The noise intensity is kept constant during the whole period investigated 
( ( )σ =t constR ).
Case 2. The noise intensity varies according to the following equation

( ) ( )σ σ ω= ⋅ +t t1.0 cos ,R R
av

� (8)

where σR
av is the yearly average of the noise intensity fixed along the water column, 

and ω is the angular frequency with a period equal to one year. This choice allows us 
to take into account the periodical behaviour of the noise intensity connected to sea-
sonal changes. In particular, in our analysis the noise intensity takes on the minimum 
value at the end of the summer (1st September), when the magnitude of the fluctuating 
components of the velocity field is greatly reduced due to a strong stratification of 
the water masses and limited wind speed. Conversely, the noise intensity assumes the 
maximum value at the beginning of March, when the wind stress causes an increase in 
the fluctuating horizontal velocity components of the marine currents.

Finally, we set the boundary conditions according to those fixed in previous stud-
ies [3, 16, 19, 35, 55, 60]. The boundary conditions for the cell concentration of the ith 
picophytoplankton population have to describe the absence of biomass flux through 
both the surface layer (z  =  0) and the deepest layer of the MAW (z  =  zb):
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Moreover, the boundary conditions for the nutrient have to describe the absence of 
nutrient flux from the water surface (z  =  0), and fix the phosphorus concentration at 
the bottom of the MAW (z  =  zb) equal to the average value measured R in:

  ( )∂
∂

= =
=

R

z
R z R0, .

z
b

0
in� (10)

Equations (1)–(10) form the stochastic reaction–diusion–taxis model used in this work. 
By solving them, it is possible to obtain the spatio-temporal dynamics of the phyto-
plankton abundance, which allows for the reproduction of the seasonal changes of total 
chlorophyll concentration in the Tyrrhenian Sea.

3. Results and discussion

In this section  we analyse the behaviour of the phytoplankton abundance, numer
ically solving the stochastic partial dierential equations  (1)–(10), considered in the 
Ito sense. The study is performed by using a numerical method based on an explicit 
finite dierence scheme, whose computer implementation consists in a C++ program. 
Specifically, we integrate the dierential equations  by implementing a centered-in-
space dierencing for the diusion term and an upwind dierencing for the taxis term. 
Moreover, in order to get the stability conditions for both dierencing terms [63–68], 
we set the increment of the spatial variable and the time step at 0.5 m and 0.05 h, 
respectively. The values chosen also guarantee the convergence of the finite dierence 
equations [64, 67, 68].

http://dx.doi.org/10.1088/1742-5468/2016/05/054044
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In general, the stability conditions depend on the biological and environmental 
parameters [63–65], whose numerical values are given in table 1. The biological para
meters have been fixed within specific ranges of values, according to the theoretical and 
experimental results reported in previous works [37, 49, 50, 54, 69–79]. In the present 
study, we intend to choose the values of the parameters within these ranges in such a 
way as to guarantee the coexistence of all picophytoplankton populations [15, 19, 35, 
55, 59] along the water column with the environmental conditions observed during 
the whole period investigated. For this purpose, we perform a preliminary analysis 
(results here not reported), which indicates that the dierent values of half-saturation 
constants, KRi and KIi, and nutrient contents, 1/Yi, cause significant modifications in 
the stationary distributions of the phytoplankton cell concentrations. Specifically, we 
observe that small variations in the half-saturation constants for nutrient concentra-
tion, KRi, strongly modify the shape of the vertical profiles of phytoplankton abun-
dance. Therefore, the values of the half-saturation constants and nutrient contents for 
the five phytoplankton groups are chosen in such a way that, not only the coexistence 
of all the picophytoplankton populations is guaranteed, but also the production layers 
and the peaks of abundance are placed at depths compatible with the experimental 
data.

The environmental parameters have been estimated by using the experimental 
data acquired at the sampling site in the Tyrrhenian Sea in all seasons of the year. 
Specifically, the spatio-temporal behaviour of the vertical turbulent diusivity is repro-
duced according to the methods used by other authors [3, 41, 43, 80–83], using the 
experimental profiles of density and temperature collected in seven dierent oceano-
graphic surveys. The behaviour of the incident light intensity at the water surface, 

( )I tin , is estimated for all days of the year by using the remote sensing data (see the 
NASA website http://eosweb.larc.nasa.gov/sse/RETScreen/), while the yearly average 
value of phosphorus concentration at the bottom of the MAW ( =R 0.204in  mmol m−3) 
is fixed on the basis of the analysis performed on the bottle samples (containing sea 
water collected at the same depth at dierent periods of the year).

In accordance with previous works [3, 55], as initial conditions, we set for each 
picophytoplankton group a small cell concentration uniformly distributed along the 
euphotic zone, while the phosphorus concentration is fixed equal to zero from the water 
surface to the thermocline, with a linear increase below this point up to the ending of 
the MAW.

Using values of the biological and environmental parameters in agreement with 
experimental observations (see table 1), steady seasonal driven oscillations of picophy-
toplankton abundance are obtained at ≈ ⋅t 9 104 h. Therefore, we integrate numerically 
the system (1)–(10) by fixing as a maximum time =t 10max

5 h. On this basis, the spa-
tio-temporal dynamics of five phytoplankton populations are reproduced for dierent 
values of noise intensity by averaging over 1000 realizations [26, 84].

In both cases studied (see section 2), to compare the theoretical results with the exper
imental data, the numerical abundance obtained by the stochastic model is converted 
into chl a and Dvchl a concentrations, fixing the cellular content of Synechococcus equal 
to 2 fg chl a cell−1, according to the value measured by Morel [54], and using the two 
curves of mean vertical profile introduced by Brunet et al [49, 50] for Prochlorococcus 
and picoeukaryotes (Haptophytes and Pelagophytes). Moreover, we add to these 

http://dx.doi.org/10.1088/1742-5468/2016/05/054044
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converted theoretical results the contribute of chlorophyll concentration, ( )∆b Dv chl a, 
due to the presence of nano and micro-phytoplankton (>3 μm), which is uniformly 
distributed along the water column and accounts about for 20% of the total quantity 
of chl a and Dvchl a. In this way, we obtain the spatio-temporal behaviour of the total 
chl a and Dvchl a concentration for dierent values of noise intensity.

Table 1.  Parameters used in the stochastic model.

Symbol Interpretation Units Value

abg Background turbidity m−1 0.060
a1 Average absorption coefficient of Synechococcus m2 mg chl-a −1 0.025
a2 = a4 Average absorption coefficient of picoeukaryotes m2 mg chl-a −1 0.012
a3 Average absorption coefficient of Prochlorococcus HL m2 mg chl-a −1 0.016
a5 Average absorption coefficient of Prochlorococcus LL m2 mg chl-a −1 0.027
a6 Average absorption coefficient of phytoplankton > 3µm m2 mg chl-a −1 0.020
r1 Maximum specific growth rate of Synechococcus h−1 0.058
r2 Maximum specific growth rate of Haptophytes h−1 0.079
r3 Maximum specific growth rate of Prochlorococcus HL h−1 0.088
r4 Maximum specific growth rate of Pelagophytes h−1 0.096
r5 Maximum specific growth rate of Prochlorococcus LL h−1 0.031
KI1 Half-saturation constant of light-limited growth of Synechococcus µmol photons m−2 s−1 70.00
KI2 Half-saturation constant of light-limited growth of Haptophytes µmol photons m−2 s−1 90.00
KI3 Half-saturation constant of light-limited growth of Prochlorococcus HL µmol photons m−2 s−1 40.00
KI4 Half-saturation constant of light-limited growth of Pelagophytes µmol photons m−2 s−1 35.00
KI5 Half-saturation constant of light-limited growth of Prochlorococcus LL µmol photons m−2 s−1 6.00
KR1 Half-saturation constant of nutrient-limited growth of Synechococcus mmol phosphorus m−3 0.00001
KR2 Half-saturation constant of nutrient-limited growth of Haptophytes mmol phosphorus m−3 0.00004
KR3 = KR5 Half-saturation constant of nutrient-limited growth of Prochlorococcus HL mmol phosphorus m−3 0.00200
KR4 Half-saturation constant of nutrient-limited growth of Pelagophytes mmol phosphorus m−3 0.01190
m1 Specific loss rate of Synechococcus h−1 0.014
m2 = m4 Specific loss rate of picoeukaryotes h−1 0.010
m3 = m5 Specific loss rate of Prochlorococcus h−1 0.011
1/Y1 Nutrient content of Synechococcus mmol phosphorus cell−1 2.86 × 10−14

1/Y2 = 1/Y4 Nutrient content of picoeukaryotes mmol phosphorus cell−1 2.00 × 10−12

1/Y3 = 1/Y5 Nutrient content of Prochlorococcus mmol phosphorus cell−1 1.33 × 10−13

ε1 Nutrient recycling coefficient of Synechococcus dimensionless 0.51
ε2 = ε4 Nutrient recycling coefficient of picoeukaryotes dimensionless 0.52
ε3 = ε5 Nutrient recycling coefficient of Prochlorococcus dimensionless 0.52
vs
1 Magnitude of swimming velocity of Synechococcus m h−1 0.000088

vs
2 = vs

4 Magnitude of swimming velocity of picoeukaryotes m h−1 0.000098
vs
3 = vs

5 Magnitude of swimming velocity of Prochlorococcus m h−1 0.000039
c1 Chl-a cellular content of Synechococcus fg chl-a cell−1 2.00
c2 = c4 Chl-a cellular content of picoeukaryotes (as a function of depth) fg chl-a cell−1 10.00 − 660.00
c3 = c5 Dvchl-a cellular content of Prochlorococcus (as a function of depth) fg Dvchl-a cell−1 0.25 − 2.20
DU Vertical turbulent diffusivity in UML (as a function of time) cm2 s−1 4.75 − 28.84
DD Vertical turbulent diffusivity below the thermocline (as a function of time) cm2 s−1 1.25 − 5.75
Iin Incident light intensity (as a function of time) µmol photons m−2 s−1 314.36 - 1638.72
Rin Nutrient concentration at zb mmol phosphorus m−3 0.204
zb Depth of the MAW m 200
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Specifically, the role of the environmental fluctuations is analysed in two dierent 
cases: first we include a term of multiplicative noise, in which the noise intensity is 
kept constant during the whole period investigated; afterwards the noise intensity itself 
is considered as a seasonal variable, characterized by an oscillating behaviour with a 
period equal to one year.

Case 1. In figure 1 we show the spatio-temporal behaviour of the (Dv)chl a con-
centration of each picophytoplankton group and the total concentration of chl a and 
Dvchl a, obtained for a fixed noise intensity (σ = 0.0150R ). The numerical results indi-
cate that the production layers of Haptophytes, Prochlorococcus HL and Pelagophytes 
are localized in intermediate layers of the euphotic zone, causing the presence of a 
peak of total chlorophyll concentration in correspondence with the experimental DCM 
during the whole period investigated. Moreover, we observe that the chlorophyll peak 
for Synechococcus is always localized in shallower layers of the water column, where 
it reaches the maximum magnitude in the winter season, when high values of vertical 
turbulent diusivity determine the nutrient upwelling from the deeper layers. Finally, 
the map of Prochlorococcus LL shows a reduced chlorophyll concentration localized in 
the bottom of the MAW during the whole year, in agreement with previous analyses 
performed in the Tyrrhenian Sea [3, 51, 52].

In order to perform a quantitative comparison between theoretical and experimental 
distributions, we extract the vertical profiles of the total chl a and Dvchl a concentration 
from the contour maps obtained by the model for dierent noise intensities. The results 
shown in figure 2 indicate that the stochastic model well reproduces the experimental 

profiles of chlorophyll a concentration during all seasons of the year. Performing the 

goodness-of-fit test χ2, we note that the stochastic model for a suitable noise intensity 
(σ = 0.0150R ) reproduces, in all seasons, the experimental profiles better than the deter-
ministic model (σ = 0R ). In more detail, we observe that the best value of the reduced 
chi-square is obtained, depending on the season considered (see table 2), for a dierent 

value of noise intensity. Indeed, the best result of the reduced chi-square is obtained 

in late fall (χ̃ = 0.005 892 ) for σ = 0.0010R , in winter (χ̃ = 0.001 302 ) for σ = 0.0050R , 

in early spring (χ̃ = 0.006 642 ) for σ = 0.0125R , and in late spring (χ̃ = 0.005 492 ) for 

σ = 0.0200R . These results suggest the constant noise intensity should be replaced with 
a seasonal driven oscillating function (case 2), in view of improving the agreement 
between the theoretical and experimental profiles.

To better investigate and understand the eects of random fluctuations on the chlo-
rophyll distributions in all the sampling periods, we analyse the theoretical values of 
the magnitude, depth and width of the DCM for dierent noise intensities. The results, 
shown in figure 3, indicate a nonmonotonic behaviour of the magnitude of DCM as a 
function of the noise intensity in all seasons of the year. In particular, we observe a 
peak of total chlorophyll concentration in November, April and June (see panels (a), (g) 
and ( j) in figure 3) for σ = 0.0050R . Conversely, in the winter season the magnitude of 
the DCM takes on a minimum value for σ = 0.0050R  (see panel (d)), while it increases 
for higher values of noise intensity. Unlike other analyses performed on stochastic mod-
els [15, 17–19], in this study we do not observe a connection between the magnitude 
and width of the DCM. Indeed, the latter reached a maximum value for σ = 0.0050R  in 
November and February (see panels (c) and (f)), while remaining almost constant for all 
noise intensities in April and June (see panels (i) and (l)). Finally, in accordance with 
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previous works [4, 19], we also observe that the depth of the DCM remains constant 
for all values of noise intensity considered and in all the sampling periods (see panels 
(b), (e), (h) and (k)).

Case 2. According to the procedure followed in case 1, we get the average theor
etical distributions during all the sampling periods under the hypothesis that the noise 
intensity, due to seasonality, follows an oscillating behaviour (see section 2). Thus, the 
model is modified, assuming that the intensity of the environmental random fluctuations 
is driven by the same periodical behaviour which characterizes the vertical turbulent 
diusivity. As a consequence, we set the periodical function in such a way that the maxi-
mum value of the noise intensity is obtained in late winter, while the minimum value is 
reached at the end of the summer season. The results are shown in figure 4.

In this case, the χ2 goodness-of-fit test (see table 3) exhibits, for σ = 0.0150R
av , very low 

values of the reduced  χ2 in February (χ̃ = 0.001 152 ) and in June (χ̃ = 0.005 342 ), improv-

ing the results previously obtained from the stochastic model in case 1. Conversely, 

the χ2 test provides, with respect to case 1, worse results in the other two sam-

pling periods. In particular, we observe that the best chi-square values are obtained 

in late fall (χ̃ = 0.005 952 ) for σ = 0R  (deterministic analysis) and in early spring 

(χ̃ = 0.006 722 ) for σ = 0.0100R . Considering these results globally, they indicate that 

the spatio-temporal behaviour of the total chl a and Dvchl a concentration depends 

on the intensity of the random fluctuations, which appears closely connected to the 

magnitude of the deterministic fluctuations. Indeed, the best values for the χ2 test 
are obtained when the noise intensity and the vertical turbulent diusivity take on 
simultaneously high (February) or low (June) values. This link between the random 

Figure 1.  Spatio-temporal behaviour of chl a and Dvchl a concentrations obtained 
by the stochastic model in case 1. The contour maps show the content of chlorophyll 
for (a) Synechococcus, (b) Haptophytes, (c) Prochlorococcus HL, (d) Pelagophytes, 
(e) Prochlorococcus LL, and (f) all the phytoplankton groups at the sampling site 
(39° ′30 .00 N, 13° ′30 .00 E). The values of the parameters used in the model are 
those shown in table 1. The noise intensity is σ = 0.0150R .
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and deterministic perturbations has been confirmed by other authors [41–43, 85], 
who proved that the behaviour of the vertical turbulent diusivity also depends on 
the fluctuating components of the velocity field and temperature.

Moreover, it is worth stressing the role of environmental noise in the displacement of 
the peak of the theoretical chlorophyll distributions at the steady state. In particular, for 
suitable values of noise intensity ( ⩾σ 0.0175R

av ) and after a long transient ( ≈ ⋅t 5 104 h),  
we observe a change in the spatio-temporal behaviour of two phytoplankton groups, i.e. 
Pelagophytes and Prochlorococcus LL, whose production layers are usually localized at 
the bottom of the MAW, close to the nutrient source (see figure 1). More specifically, 
the presence of environmental noise aects the vertical distribution of nutrients in the 
stationary regime, increasing the phosphorus concentration in shallower layers of the 
water column. In this way, the growth of Pelagophytes and Prochlorococcus LL is also 
allowed at the top of the MAW, causing an increase in the total chl a and Dvchl a 
concentration in the water surface (see figure 5). In general, the results of our analysis 
indicate that the random perturbations of environmental variables could modify the 
position, shape and magnitude of the chlorophyll maximum during all seasons, causing 
very marked changes in the biomass primary production, until the equilibrium of the 
food chain in the marine ecosystem is upset.

Figure 2.  Theoretical distributions (red line) and experimental profiles (green line) 
of the total chl a and Dvchl a concentration. The numerical results, obtained by the 
stochastic model (case 1) for σ = 0.0150R , are compared with the experimental data 
collected at the sampling site (39° ′30 .00 N, 13° ′30 .00 E), during the oceanographic 
surveys: VECTOR-TM1, 24 November 2006 (panel (a)); VECTOR-TM2, 3 
February 2007 (panel (b)); VECTOR-TM3, 22 April 2007 (panel (c)); VECTOR-
TM4, 9 June 2007 (panel (d)).
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By following the same procedure as in case 1, we study the eects of random 
fluctuations on the phytoplankton dynamics by analysing the behaviour of the magni-
tude, depth and width of the chlorophyll maximum as a function of the noise intensity 
during all the sampling periods (see figure 6).

The numerical results show that, for intermediate values of the average noise inten-
sity ( ⩽σ 0.0150R

av ), in November and February the magnitude of the chlorophyll maxi-
mum remains almost constant, while a strong increase is observed for higher noise 
intensities (see panels (a) and (d) in figure  6). Analogously, in April and June, we 

observe a slight decrease in magnitude for ⩽σ 0.0175R
av  followed by a maximum of chlo-

rophyll concentration at σ = 0.0200R
av  (see panels (g) and ( j) in figure 6).

In all the sampling periods the depth of the chlorophyll maximum remains almost 
constant as a function of the average noise intensity for ⩽σ 0.0175R

av , while a displace-
ment of the peak of chlorophyll concentration towards the water surface is always 
observed for higher average noise intensities, except during the winter season (see pan-
els (b), (e), (h) and (k) in figure 6). In accordance with previous results, this behaviour 
can be explained as an eect of the randomly fluctuating environmental variables, 
which cause mixing in the shallower layers of the MAW, triggering the upwelling of 
nutrients when the average noise intensity takes on high values. In these conditions, 
for suitable values of the environmental parameters, the vertical spatial distributions of 
the two phytoplankton groups, i.e. Pelagophytes and Prochlorococcus LL, can become 
unstable, switching from the deep chlorophyll maximum (DCM) to the upper chlorophyll 
maximum (UCM) configuration [18, 55, 60]. As a consequence, a significant change in 
the shape of the vertical profile of the total chlorophyll concentration can be induced 
during the whole year.

Finally, in all seasons we observe nonmonotonic behaviour in the width of the chlo-
rophyll maximum (see panels (c), (f ), (i) and (l) in figure 6), which does not appear to be 

Table 2.  Results of χ2 and reduced chi-square (χ̃2) goodness-of-fit tests for dierent 
values of σR.

24 Novemb. 2006 3 February 2007 22 April 2007 9 June 2007

σR χ2 χ̃2 χ2 χ̃2 χ2 χ̃2 χ2 χ̃2

0.0000 1.167 0.00595 0.282 0.00144 1.323 0.00675 1.312 0.00669
0.0010 1.154 0.00589 0.268 0.00137 1.314 0.00671 1.365 0.00697
0.0025 1.154 0.00589 0.272 0.00139 1.312 0.00669 1.411 0.00720
0.0050 1.267 0.00646 0.254 0.00129 1.307 0.00667 1.776 0.00906
0.0075 1.226 0.00625 0.255 0.00130 1.305 0.00666 1.633 0.00833
0.0100 1.188 0.00606 0.256 0.00130 1.302 0.00664 1.476 0.00753
0.0125 1.164 0.00594 0.256 0.00131 1.301 0.00664 1.324 0.00675
0.0150 1.159 0.00591 0.257 0.00131 1.306 0.00666 1.199 0.00612
0.0175 1.170 0.00600 0.258 0.00131 1.315 0.00671 1.117 0.00570
0.0200 1.195 0.00610 0.259 0.00132 1.328 0.00678 1.075 0.00549

Note: The numerical results obtained by the stochastic model in case 1 are compared 
with the experimental data collected at the sampling site (39° ′30 .00 N, 13° ′30 .00 E) 
during the oceanographic surveys: VECTOR-TM1, 24 November 2006; VECTOR-TM2, 
3 February 2007; VECTOR-TM3, 22 April 2007; VECTOR-TM4, 9 June 2007. The 
number of samples (distance of 1 m) used for the tests is n  =  200, corresponding to 
considering the first 200 m of depth from the surface.
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correlated to those of the magnitude and depth. Specifically, in most cases (three sea-
sons over four) the theoretical results, in correspondence with the transition from DCM 
to UCM configuration, show an increase in the width of the chlorophyll maximum for 

Figure 3.  Magnitude, depth, and width of the DCM as a function of σR (case 1 
of the stochastic model). The values obtained by the theoretical distributions at 
the steady state allow us to reproduce the behaviour of the DCM at the site in 
the Tyrrhenian Sea (39° ′30 .00 N, 13° ′30 .00 E) during the four dierent sampling 
periods: 24 November 2006 (panels (a)–(c)), 3 February 2007 (panels (d)–(f)), 22 
April 2007 (panels (g)–(i)), and 9 June 2007 (panels ( j)–(l)).
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Figure 4.  Theoretical distributions for case 1 (red line) and case 2 (blue line), and 
the experimental profiles (green line) of the total chl a and Dvchl a concentration. 
The numerical results, obtained by the stochastic model for σ = 0.0150R  (case 1) 
and σ = 0.0150R

av  (case 2), are compared with the experimental data collected at 
the sampling site (39° ′30 .00 N, 13° ′30 .00 E) during the oceanographic surveys: 
VECTOR-TM1, 24 November 2006 (panel (a)); VECTOR-TM2, 3 February 2007 
(panel (b)); VECTOR-TM3, 22 April 2007 (panel (c)); VECTOR-TM4, 9 June 
2007 (panel (d)).
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Table 3.  Results of χ2 and reduced chi-square (χ̃2) goodness-of-fit tests for dierent 
values of σR

av.

24 Novemb. 2006 3 February 2007 22 April 2007 9 June 2007

σav
R χ2 χ̃2 χ2 χ̃2 χ2 χ̃2 χ2 χ̃2

0.0000 1.167 0.00595 0.282 0.00144 1.323 0.00675 1.312 0.00669
0.0100 1.181 0.00603 0.232 0.00118 1.316 0.00672 1.268 0.00646
0.0125 1.204 0.00614 0.228 0.00116 1.339 0.00683 1.129 0.00576
0.0150 1.245 0.00635 0.225 0.00115 1.370 0.00699 1.047 0.00534
0.0175 2.414 0.01232 8.959 0.04571 4.140 0.02112 3.749 0.01913
0.0200 6.298 0.03213 21.931 0.11189 8.237 0.04203 8.715 0.04446

Note: The numerical results obtained by the stochastic model in case 2 are compared 
with the experimental data collected in the sampling site (39° ′30 .00 N, 13° ′30 .00 E) 
during the oceanographic surveys: VECTOR-TM1, 24 November 2006; VECTOR-TM2, 
3 February 2007; VECTOR-TM3, 22 April 2007; VECTOR-TM4, 9 June 2007. The 
number of samples (distance of 1 m) used for the tests is n  =  200, corresponding to 
considering the first 200 m of depth from the surface.

http://dx.doi.org/10.1088/1742-5468/2016/05/054044


The role of noise on the steady state distributions of phytoplankton populations

16doi:10.1088/1742-5468/2016/05/054044

J. S
tat. M

ech. (2016) 054044

high values of the average noise intensity, with a subsequent strong decrease in the 
thickness of the upper chlorophyll layer formed.

In conclusion, the analysis performed in this section shows that, in the absence of 
measured values for randomly fluctuating components of the velocity field and temper
ature, the stochastic model can reproduce the experimental profiles of the chlorophyll 
a concentration better than the deterministic ones, in accordance with the results 
obtained in previous works [4, 15, 17–19]. In particular, the stochastic model provides 
a more realistic description of the dynamics of the phytoplankton populations because 
it considers simultaneously both deterministic and random perturbations, which can 
give rise to two interesting processes: (i) the increase in the total chlorophyll concentra-
tion in the upper mixed layer; (ii) the transition from the DCM–UCM configuration. 
Therefore, this analysis can be extended to other marine ecosystems, to investigate the 
eects of sudden climate change on phytoplankton populations, which represent the 
food resource for higher trophic levels [3, 11, 16, 19].

4. Conclusions

In recent decades, climate change has caused alterations in the global temperature, 
hydrological cycles, and flux of nutrients in aquatic ecosystems, which are all essen-
tial factors for the growth of the phytoplankton groups [86, 87]. In particular, an 
increase in nutrient concentration in deeper layers of the euphotic zone, together with a 

Figure 5.  Spatio-temporal behaviour of chl a and Dvchl a concentrations obtained 
by the stochastic model in case 2. The contour maps show the content of chlorophyll 
for (a) Synechococcus, (b) Haptophytes, (c) Prochlorococcus HL, (d) Pelagophytes, 
(e) Prochlorococcus LL, and (f) all the phytoplankton groups at the sampling site 
(39° ′30 .00 N, 13° ′30 .00 E). The values of the parameters used in the model are 
those shown in table 1. The noise intensity is σ = 0.0175R

av .
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strengthened stratification of the water column, due to the increase in the surface water 
temperature, has been observed in the Mediterranean Sea [1, 14, 88, 89]. Here, at the 
same time, global climate change has also triggered more frequent and severe tropical 

Figure 6.  Magnitude, depth, and width of the chlorophyll maximum as a function 
of σR

av (case 2 of the stochastic model). The values, obtained by the theoretical 
distributions at the steady state, allow us to reproduce the behaviour of the DCM 
at the site in the Tyrrhenian Sea (39° ′30 .00 N, 13° ′30 .00 E) during the four 
dierent sampling periods: 24 November 2006 (panels (a)–(c)), 3 February 2007 
(panels (d)–(f )), 22 April 2007 (panels (g)–(i)), and 9 June 2007 (panels ( j)–(l)).
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storms, which can support the breaking of the stratification of the water column in an 
unpredictable way. Since these phenomena could modify the dynamics of the plank-
tonic groups, also causing unexpected algal blooms in oligotrophic waters [55, 60, 90],  
in this work we performed an innovative analysis of the potential risks for aquatic eco-
systems caused by global climate change.

Specifically, we presented a theoretical study based on a stochastic advection–
diusion–reaction model, in order to reproduce the spatio-temporal behaviour of the 
total chlorophyll concentration observed at a site in the Tyrrhenian Sea during the 
sampling period from 24 November 2006 to 9 June 2007. Since the chlorophyll concen-
tration is a marker of the planktonic groups in aquatic ecosystems, the analysis focused 
on the dynamics of five picophytoplankton populations belonging to two dierent 
domains, i.e. picoeukaryotes and picoprokaryotes, which account for about 80% of the 
average value of the total chlorophyll a in the Mediterranean Sea.

The spatio-temporal dynamics of the five picoplanktonic groups was studied by 
solving the stochastic model, taking into account the biological features of each popula-
tion and the real environmental conditions. Afterwards, in order to compare the theor
etical results and experimental profiles of chlorophyll concentration, we converted the 
theoretical distributions of cell concentration into chl a and Dvchl a concentrations by 
using the conversion rates obtained in previous works [50, 54]. Finally, we evaluated 
the agreement between the theoretical chlorophyll distributions and the experimental 

profiles collected during four dierent periods of the year, performing a χ2 test.
We recall that the study was carried out considering the external perturbations, 

both deterministic and random, induced by the mean component and the randomly 
fluctuating component of the environmental variables, respectively.

Initially, a preliminary deterministic analysis (here not reported) was performed, 
reproducing the spatio-temporal behaviour of the vertical turbulent diusivity and 
light intensity, and analysing their eects on the phytoplankton dynamics in stationary 
conditions [3]. In this case, the theoretical results indicated the presence of a strong 
correlation between the vertical profiles of total chl a and Dvchl a concentration and the 
seasonal deterministic fluctuations of the environmental variables for the whole period 
investigated. This assumption was confirmed by the quantitative comparison between 
the theoretical results and experimental findings, performed for all the sampling periods 

by using the χ2 test.
Afterwards, we modified the deterministic model to show that random fluctuations 

of environmental variables can significantly influence the vertical profiles of the chloro-
phyll a concentration in the marine ecosystem investigated.

As a first step, we analysed the results obtained by a stochastic model in which the 
noise intensity assumes a constant value during the whole period investigated (case 1). 
Here, we observed that during autumn and winter the upwelling of nutrients is mainly 
supported by an increase in the vertical turbulent diusivity in the UML, even if the 
presence of environmental noise causes a further increase in nutrient concentration in 
the shallower layers with respect to the deterministic case. This process guarantees 
a weak increase in the total chl a and Dvchl a concentration in the UML, due to the 
growth of Synechococcus and Haptophytes [3, 4]. Conversely, during spring and sum-
mer, the weak flux of nutrients is mainly supported by the random fluctuations of the 
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environmental variables, which do not significantly change the vertical profiles of nutri-
ent concentration.

From a quantitative point of view, the χ2 test showed that the stochastic model 
(case 1) for suitable noise intensity reproduces the experimental data better than the 
deterministic model during all the sampling periods.

As a second step, we modified the stochastic model by replacing the constant noise 
intensity with a seasonal oscillating function (case 2). In particular, we assumed that 
the magnitude of the noise intensity is strictly correlated to that of the vertical turbu-
lent diusivity.

From a qualitative point of view, in this case we observed that the presence of 
random fluctuations for high average noise intensity triggers a strong increase in the 
nutrient concentration in the upper mixed layer. Here, as a consequence, the best life 
conditions are guaranteed for all five picophytoplanktonic groups, and the upwelling 
process generates a strong increase in the total chl a and Dvchl a concentration in the 
water surface, causing a passage from a stability condition with a deep chlorophyll maxi-
mum (DCM) to another stability condition characterized by an upper chlorophyll maxi-
mum (UCM) [3, 4, 15–19]. These results confirm the crucial role of the environmental 
noise for the stability of the population dynamics in aquatic ecosystems.

From a quantitative point of view, in case 2 the χ2 test showed that the stochastic 
model reproduces the experimental data better than the deterministic one only in three 
seasons out of four, even if, for an intermediate average noise intensity, the reduced chi-
square values obtained in winter and late spring were much better than those obtained 
in case 1. This result confirms the connection between deterministic perturbations and 
random fluctuations.

In conclusion, the model presented in this work seems to be not only an eective 
tool to describe and reproduce the phytoplankton dynamics considered here, but also 
a good candidate to predict in general how global climate change is modifying vertical 
chlorophyll distributions in marine ecosystems.
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