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Abstract: Silica nanoparticles were produced from germanosilicate glasses 
by KrF laser irradiation. The samples were investigated by 
cathodoluminescence and scanning electron microscopy, providing the 
presence of nanoparticles with size from tens up to hundreds of nanometers. 
The emission of the Germanium lone pair center is preserved in the 
nanoparticles and atomic force microscopy revealed the presence of no 
spherical particles with a size smaller than ~4 nm. The absorption 
coefficient enhancement induced by Ge doping is reputed fundamental to 
facilitate the nanoparticles production. This procedure can be applied to 
other co-doped silica materials to tune the nanoparticles features. 
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1. Introduction 

Nanotechnology is a large interdisciplinary domain of material science research involving 
physic, chemistry, biology, medicine, sustainable development. The great interest in 
nanomaterials is related to the desire of considerably decrease the size of optical and 
electronic devices and in view of peculiar properties of the nano-sized materials with respect 
to their bulk counterpart [1]. A fundamental reason of interest to study and to produce 
nanoparticles is constituted by their applications in biosensing, drug and biomolecular 
delivery and bioimaging [2], applications which are strictly related to medical field. Nano-
silica systems were employed in such biological fields [3,4] but also in other cases such as 
production of solid polymer electrolyte [5], nanolaser [6] and various nanocomposite systems 
[7–11]. The use of lasers to process materials is a diffused technique [12–17]. As reported 
[12,14] material removal during ablation is a consequence of the high energy absorption of 
the materials from the laser source. This phenomenon can take place even if the absorption 
coefficient at the laser wavelength is low and it can be enhanced by adding dopants [14]. The 
absorption of light from the target can be due to linear or nonlinear processes [12], whereby 
the energy absorption mechanisms depend on the material optical properties and on the 
features (wavelength, duration, power…) of the employed laser pulse. Linear absorption is 
dominant for opaque materials especially for low intensity and/or pulses of relatively long 
durations (ns or longer), whereas the nonlinear processes are responsible for the absorption in 
transparent (at the wavelength of the laser) materials, which generates the laser-induced 
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optical break-down. Such nonlinear processes are usually observed for ultrashort (sub-
picosecond) laser pulses having high intensity [12]. 

Laser ablation of pure silica was studied employing different wavelengths and pulse 
durations (from tens of nanoseconds down to hundreds of femtoseconds) [14], but this 
investigation was focused on the modifications induced at surface, without testing the 
possibility to generate nanoparticles. Laser-induced break-down of silica was also 
investigated in [18,19], evidencing the dependence on the laser pulse duration and, the need 
of high intensity to observe it on the target surface. In [20] Stuart et al. reported an 
experimental and theoretical investigation on the laser-induced break-down considering pulse 
widths ranging from the nanosecond to the femtosecond. This investigation indicates that 
very short and intense pulses induce multiphoton ionization. The measured damage was 
attributed to melting, boiling or fracture of the sample surface for laser pulses longer than 50 
ps, and to ablation for those with duration shorter than 10 ps. In these cases the production of 
nanoparticles from the target was not investigated. As above mentioned, the presence of 
dopant can increase the optical absorption of the materials and this can be employed to 
facilitate the material removal of from the target. The presence of defects or impurities can 
play a significant role in the material’s response when submitted to lengthy duration laser 
pulses since they can provide electrons [12,20] acting as starting “seed” electrons for 
avalanche ionization [12]. 

Some relevant aspects regarding Ge-doped silica need to be highlighted. First of all, the 
Ge atoms are linked, as substitutional atoms, to the silica matrix, rather than being hosted as 
interstitial atoms. Then, Ge doping usually introduces Ge related defects called GLPC 
(Germanium lone pair center), having an absorption band ~5.1 eV (~240 nm) [21–23] and 
emission at ~3.2 eV (~390 nm) and ~4.3 eV (290 nm). This defect is considered as one of the 
main causes of the photosensitivity of the Ge doped silica under both ionizing and laser 
irradiations [24–26]. This process is used for the photo-inscription of Fiber Bragg grating 
[27–29] into waveguides and it can induce significant matrix modification [29]. Then, it 
should be reminded that the Ge-doped silica used for the drawing of optical fibers are 
typically rich of GLPC [24] and that the Ge doping decreases the silica band gap [30]. All 
these features are of particular concern for the application of Ge-doped silica for 
nanoparticles production by laser ablation. Notwithstanding, few works considered these 
potentialities. 

In this manuscript we report evidences of the production of Ge-doped silica nanoparticles 
from standard glasses. These glasses were irradiated with a KrF laser while they were 
immersed in distilled water. The samples were characterized by SEM, AFM, EDX and 
cathodoluminescence techniques. Although the production process will still be improved to 
avoid the micro-particles formation and to achieve a better control of the nanoparticles sizes, 
it represents an innovative, quite easy production technique of emitting nanoparticles. 

2. Experimental 

We employed two different Ge-doped silica glasses. They were manufactured by standard 
procedures used for the production of optical fibers preforms. The sample named Ge20 was 
obtained by Plasma-activated Chemical Vapor Deposition (PCVD). It contains a Ge doping 
level of 20 weight percent (wt%). The sample named Ge8 contains a maximum Ge doping 
level of 8 wt%. It was obtained by using the MCVD (modified chemical vapor deposition) 
process. The two samples were immersed in distilled water when exposed to the focused (spot 
size ~1 mm) 248 nm light of a KrF pulsed (pulse duration 30 ns, repetition 10 Hz) laser 
(COMPex 110 from Lambda Physik), having an energy of 140 mJ per pulse. 

The samples were moved after few laser pulses along the plan orthogonal to the laser 
beam and the laser focus along the vertical was also adjusted. This procedure was applied to 
keep the laser beam focused on the surfaces. In fact, few pulses were efficient to destroy the 
samples in the irradiated region or to remove a relevant amount of material. 

Scanning electron microscopy images of the powders obtained after the evaporation of the 
water and their deposition on a carbon tape substrate were acquired with field-emission SEM 
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(JSM 7100F, JEOL) with electron energy of 15 keV and current 10-15 nA. No conductive 
coating was applied on the samples. The same apparatus is equipped with EDX (energy 
dispersive X-ray spectroscopy) detector (X-Max 80 OXFORD) and with a 
cathodoluminescence (CL) spectroscopy and mapping apparatus (MONOCL4, GATAN) 
working in the spectral range 300-750 nm (1.7 - 4 eV), which were employed to perform CL 
and EDX measurements. 

EDX, CL image and spectra were acquired with a probe current of 10-15 nA and electron 
energy of 15 keV. In the employed experimental conditions, the particle substrate (carbon 
tape) does not emit a detectable CL signal in the investigated spectral domain. 

Atomic Force Microscopy (AFM) measurements were done in air by a Bruker FAST-
SCAN microscope working in soft tapping mode and using a FAST-SCAN-A probe (27 µm 
long triangular Silicon Nitride cantilever) with the following characteristics: 1400 kHz 
resonant frequency, 17 N/m force constant and about 5 nm apical radius. For AFM image, to 
facilitate the detection of isolated small particles, the powder samples were further diluted in 
distilled water and some drops of the solution were allowed to dry on a mica substrate. 

VUV absorption spectra were acquired with an ACTON single-beam spectrophotometer 
(mod.SP150), working in N2 flux, equipped with a D2 lamp (30 W) and with two identical 
monochromators (1200 lines/mm). Measurements were performed with a bandwidth of 0.5 
nm. All the measurements were performed at room temperature. 

3. Result 

In Fig. 1(a) we report the SEM image recorded on the nano-powder produced from Ge8 
sample. In this image we observe the presence of big particles, having sizes of hundreds of 
nanometers, and the presence of different groups of smaller particles, having size of ten or 
few tens of nanometers. To better characterize these nanoparticles, we recorded CL images, 
CL and EDX measurements. These data are reported in the Figs. 1(b), 1(c) and 1(d), 
respectively. By comparing CL image and SEM image we observe a strict correspondence 
between the presence of CL signal and the morphological characteristic observed by the 
SEM. We detected not only very large particles or groups of particles, but also small groups 
of particles, as it can be seen from the central and the superior part of the zone highlighted by 
the red square of Fig. 1(b). The origin of this emission is clarified by the spectrum (recorded 
in the central part of the red square of Fig. 1(b)) reported in Fig. 1(c), in which the presence of 
an emission band at ~400 nm is clear. This band is a well-known emission band and it is 
attributed to the GLPC (structural model reported in Fig. 1(c)) [21–23]. 

Figure 1(d) illustrates the EDX image obtained by monitoring the signal of the Si line. 
The image was acquired in the same region of the red square pictured in Fig. 1(b). In this 
image we clearly recognize the main features previously detected in SEM and CL images. In 
the upper and in the central part of Fig. 1(d) small groups of nanoparticles are detected even if 
the signal only slightly overcomes the detection limit. As a consequence of the small particles 
size and the doping level, the amount of Ge was not high enough to allow to perform an EDX 
map comparable to those obtained for the Si signal. 

In Fig. 2 we report the SEM and CL images (Figs. 2(a) and 2(b), respectively) recorded 
for the powder of the Ge20 sample. As for the previous sample we observe a relevant 
correspondence between the morphological and the CL images. These images illustrate the 
presence of several agglomerates/aggregates of nanoparticles with sizes of tens and hundreds 
of nanometers. Furthermore, the CL signal (reported in Fig. 2(c) together with the zoom of 
the region where the signal was acquired) consists of a peak at ~410 nm and a shoulder at 
higher wavelengths. This latter can be attributed to the ~460 nm (2.7 eV) emission of the 
ODC(II). This defect consists in a twofold coordinated Si having an electron lone pair [21]. 
The 410 nm peak can be attributed to the GLPC and the shift of the maximum could be due to 
the overlap with the emission at higher wavelengths, or to a slight charging of the sample 
during the spectrum acquisition. In this case, the low amplitude of the ODC(II) emission and 
the overlap with the GLPC activity prevent the precise estimation of its peak and the 
detection of possible shifts. 
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Fig. 1. a) SEM image (~2.4 × 1.8 µm) of the Ge8powder; b) panchromatic CL image (~2.4 × 
1.8 µm) of the same zone illustrated in panel a, the red square highlights the region were we 
performed the Si signal EDX image of panel d; c) (▬) CL spectrum acquired in the center of 
the red square of panel b and (▬) GLPC spectrum recorded in a Ge doped optical fiber; d) Si 
EDX map acquired in the area marked in red in b). 

In Fig. 2(d) we report the SEM image of agglomerates/aggregates and of particles. The 
inset in the upper part of the figure illustrates the Si signal EDX image, whereas the other 
inset illustrates the EDX image of the Ge signal. As for the previous sample, in the Si EDX 
image we recognize the signal originating from agglomerates/aggregates and particles with 
sizes some hundreds of nanometers or larger. The Ge signal, by contrast, is still hardly 
detectable and it seems to be above the noise threshold only in the central part of the image. 

To investigate the presence of small nanoparticles, we acquired AFM images. In both 
samples we detected the presence of some isolated nanoparticles. Some of the data recorded 
for both samples are reported in Fig. 3(a) and 3(b) illustrate the image recorded for the sample 
Ge8 and Ge20 respectively. By evaluating the size of the particles in the xy plane and in the 
vertical direction we noted that these nanoparticles are not spherical, having a vertical size of 
few nanometers but at least one size in the xy plane of the order of few tens of nanometers. 
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Fig. 2. a) SEM image (~6.9 × 5.2 µm) of the Ge20 powder; b) panchromatic CL image  
(~7 × 5.2 µm) of the same; c) CL spectrum of the Ge20 sample and SEM image of the zone 
(~1.8 × 1.3 µm) where the spectrum was recorded (scale bar 100 nm); d) SEM image of the 
Ge20 powder showing a cluster of nanoparticles, with EDX map of the Si signal (top inset) 
and of the Ge signal (bottom inset) acquired on the same cluster. 

 

Fig. 3. AFM images recorded for the powder obtained by the KrF laser irradiation of the Ge8 
glass (panel a) and Ge20 (panel b). 

4. Discussion 

All these data clearly indicate the production of luminescent Ge doped particles and 
nanoparticles from the starting glass. On the one hand, the presence of micro-particles should 
be avoided since it implies that a relevant mass of the samples is not employed for the 
nanoparticles production. On the other hand, the presence of particles with sizes of hundreds 
of nanometers is not necessarily a disadvantage. In fact, for some biological applications 
nanoparticles of 500/300 nm [31], and from ten to hundreds nm [3,4] (up to 600 nm [32]) 
were previously proposed or employed. Further control on the size of the obtained 
nanoparticles could be achieved by changing the laser wavelength, duration, photon flux or 
fluence. 

Regarding the employed starting samples we note that the G8 glass has a high GLPC 
content as the one reported for similar samples in [24]. By contrast, in the Ge20 glass the 
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GLPC content is lower, but the higher Ge content implies larger decrease of the band gap. In 
Fig. 4, we report the OA (optical absorption) spectrum recorded for this sample up to the 
VUV spectral domain. Such spectrum clearly shows a high absorption coefficient and a 
significant difference with the one detected in OH- and defect-free pure-silica materials [33]. 

 

Fig. 4. Optical absorption spectrum recorded for a Ge20 sample having a thickness of 0.3 mm. 

These two considerations prove that the incorporation of Ge atoms into silica provides a 
relevant increase of the absorption coefficient in the UV and VUV spectral domain, 
improving the energy absorption by the target. Indeed, the multi-photons processes needed for 
multi-photons ionization require a lower number of photons with respect to that needed in 
pure silica and obviously the defects contribute with their optical absorption to transfer the 
laser energy to the glass network. All these factors can help avalanche and multi-photons 
ionization. The high sensitivity of the Ge doped materials to the UV laser was reported [29] 
and it results not only into point defects generation but also into some matrix reorganization. 
Then, silica related defects can be generated by two-steps processes by irradiation with a 5 ns 
pulsed laser at ~5.1 eV (243 nm) [34]. We underline that the 243 nm is in the spectral range 
of the GLPC optical absorption, as the here employed laser. So the results obtained in [34] 
support the idea that multi-photons processes can be induced in Ge-doped materials using this 
typology of lasers. Considering previous investigations [12] and the long time duration of our 
laser pulse we expect that the absorbed energy is transferred to a sample volume larger than 
the one in which the laser is focused and that the material is mainly removed after the heating 
of the samples. Anyway, it seems difficult that micro-particles are generated after melting 
or/and vaporization. So their presence could be related to the fact that in different moments of 
the irradiation the samples featured some explosions, generated by the induced thermal 
gradient, as-made stress or inhomogeneities in the samples. Anyway, the present investigation 
proves the possibility to produce luminescent Ge-doped silica nanoparticles. We underline 
that the Ge doping can be used to obtain silica nanoparticles intrinsically luminescent and that 
they can be further adapted to specific applications applying surface functionalization 
processes [4] or through loading with O2 [35]. 

Furthermore, employing samples containing other luminescent codopants, already used in 
optical fiber technology, nanoparticles with specific properties can be produced too. We 
highlight that there are not evidences that the dopant could come out from the network, 
whereas the leak of dye trapped in the nanoparticles can take place [4]. 

5. Conclusion 

We produced silica nanoparticles starting from standard Ge-doped glasses already employed 
in other technological fields. By immerging these glasses in water during the irradiation with 
a KrF laser we obtained emitting nanoparticles. These particles were characterized in sizes by 
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SEM and AFM. The first technique coupled with cathodoluminescence mapping provide 
evidence for the presence of nanoparticles with sizes of tens and of hundreds of nanometers 
and of different agglomerate/aggregates. Such results were supported by EDX analysis of the 
samples. AFM images evidenced the presence and to characterize the sizes of isolated non 
spherical nanoparticles. The role of the Ge doping in facilitating the energy absorption of the 
target from the laser is also discussed and VUV data are supporting this aim. Even though the 
presented procedure is still under improvement to avoid the presence of micro-particles, it 
proves the possibility to obtain emitting silica nanoparticles, which can be further tuned in 
properties applying already known procedures in literature. Finally, we note that by 
considering starting silica samples containing also other emitting codopants, a larger 
tunability of nanomaterials will be achieved. 
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