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Abstract 

Resource scheduling is a challenging but potentially very frustrating NP-

hard problem of project management. There are two basic categories of 

resource scheduling resource allocation and resource leveling. 

In the resource allocation problem, the resource-availabilities are limited. 

The scheduling objective is to keep the project completion time as close as 

possible to the critical path length such that the resource constraints are met. 

In the resource leveling (balancing) problem the resource availabilities are 

unlimited but the maximal project makespan is fixed. The scheduling 

objective is to minimize some measure of the variation of the resource usage. 

The main objective of this thesis is to demonstrate how modeling ideas 

and solution procedures, borrowed from the field of production scheduling, 

can be used to formulate and solve several types of project scheduling 

(resource balancing) problems. 

In production scheduling, the idle time plays a central role. We hope to 

prove that the idle time may play a similar role in project scheduling and it 

may be the starting base of several new "global" performance measures. 

In the first part of the thesis we introduce a new interruption oriented 

global resource leveling measure. In the proposed new approach, the desired 

resource profile is defined as quasi-concave one. The proposed new measure 

based on the total number of interruptions. 
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In the second part of the thesis, we present new exact interruption oriented 

resource balancing (leveling) models for single-mode, multi-mode, and 

double-constrained multi-mode projects. 

Theoretically, every new model is formulated as a mixed integer linear 

programming problem (MILP), which may be solved directly in the case of 

small-scale projects with the help of any commercial MILP package. In our 

study, the LINBQ system was used to solve the MILP problems. 

According to the NP-hard nature of the resource-balancing problem, for 

medium-size projects we present tree-search implicit enumeration algorithms 

with effective pruning rales for every case. In the case of double-constrained 

multiple-mode projects, the proposed algorithm is formulated as a multi-level 

"tree of trees" like searching problem. 

For large-scale problems, simple "beam-search" heuristics may be 

developed by constraining the size of the searching-trees. 

To develop and ran the tree-search algorithms, generate the LINDO input 

files, draw projects and searching trees the ProMan system developed by A. 

Ghobadian and Csébfalvi (1995), Csébfalvi (2002) was used. 

In order to illustrate the essence of the proposed models computational 

results for several sample problems are presented. 

In the last part of the thesis, we summarize our most important new 

results. 
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1. INTRODUCTION 

Resource scheduling is a challenging but potentially very frustrating NP-

hard problem of the project management. There are two basic categories of 

resource scheduling resource allocation and resource leveling (for example 

Brucker et al. (1999) and Weglarz (1999)). 

In the resource-allocation problem (RAP), the resource-availabilities are 

limited. The scheduling objective is to keep the project completion time as 

close as possible to the critical path length such that the resource constraints 

are met. 

In the resource-balancing problem (RLP) the resource availabilities are 

unlimited but the maximal project completion time is fixed. The scheduling 

objective is to minimize some measure of the variation of the resource usage. 

The best known procedure for the RLP is the Burgess-Killebrew (1962) 

heuristics. 

Very little work has been done to solve RLP exactly. An explicit 

enumeration approach has been devised by Ahuja (1976). A non-serial 

dynamic programming approach has been proposed by Bandelloni et al. 

(1994) and an integer programming approach has beep developed by Younis 

and Saad (1996). An implicit enumeration approach has been discussed by 

Zimmermann and Engelhart (1998) and Neumann and Zimmermann (1999). 
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All of the works mentioned above, connected to the traditional resource 

balancing measures and single-mode projects. 

The traditional measures used in resource leveling are the following: 

maximal resource usage (MU), resource usage fluctuation around average 

(FA), and resource usage fluctuation between consecutive periods (FB). 

The concave resource profile as a desired shape was mentioned by several 

authors without formal description or models. For example: Tavares (1987), 

Haj du (1997), and Lova et al. (2000). 

To the best of our knowledge, Konstantinidis (1998) was the first who 

presented a multi-mode heuristic with a new interruption oriented resource 

balancing measure based on quasi-concavity. 

The first exact resource balancing procedure based on quasi-concavity 

was presented by Csébfalvi and Konstantinidis (1998, 1999) for single-mode 

projects. 

The first exact resource balancing procedure based on quasi-concavity 

with hard and soft resource constraints was presented by Kruzslicz (2002) for 

single-mode projects. 
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2. DEFINITIONS AND NOTATIONS 

A project is a set of interrelated activities. Without loss of generality, we 

assume that a project can be depicted by an acyclic activity-on-node (AoN) 

graph where activities are numerically labeled such that successor activities 

always have higher numbers (labels) than all their predecessors. 

Associated with each activity is a set of possible durations and the 

corresponding resource requirements, which would permit the activity to be 

completed in the stated durations. 

Each duration-resource combination is called "activity-operating mode" 

or simply a "mode". For example, it may be possible to complete an activity 

in 5 days using a skilled person (mode 1), or in 7 days using an unskilled 

person (mode 2). In the single-mode case, every activity has exactly one 

operating mode. 

In keeping with the general nature of the model, three resource categories 

are included. Using the terminology introduced by Talbot (1982) these 

resources are defined as renewable, nonrenewable or doubly constrained. 

If resources are available in each period, the resources are considered 

renewable. An example of such a resource would be skilled labor: the 

number of skilled laborers available to work on the project each day is 

limited, although no constraint is placed on the number of days skilled labor 

may be used. Thus, the resource labor is renewed each period to a 

predetermined level. 

Note that, in the resource-leveling problem we usually assume that the 

renewable resource availabilities are unlimited. 

If the total consumption of the resource over the life of the project is 

constrained, it is called nonrenewable. Money is perhaps the best example of 
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2.2 Multiple-mode case 



8 



3. A NEW INTERRUPTION MEASURE 



It is important to note, that the traditional fluctuation oriented resource 

leveling measures, namely the resource usage fluctuation around average 

(FA) and the resource usage fluctuation between consecutive periods (FB) 

measures are essentially "local" measures. They concentrate on local 

fluctuations, so they are unable to characterize the resource profile from a 

global point of view. The "dream shape" of the traditional fluctuation 

oriented resource leveling measures is defined as a rectangle. Unfortunately, 

in practice the dream usually remains a dream, so the "optimal shape" may 

be "all hills and dales", which from managerial point of view always means 

undesirable idle times and interruptions. 

In this chapter, we introduce a new "global" resource leveling measure, 

which is able to evaluate the resource profile from a global point of view. 

In the proposed approach, we define the desired resource profile as a 

"quasi-concave" one and introduce a penalty function as a new resource 

leveling measure, which penalizes the deviations from the desired quasi-

concave profile. The penalty is the number of interruptions. 

The objective is to demonstrate how modeling ideas and solution 

procedures, borrowed from the field of production scheduling, can be used to 

formulate and solve several types of project scheduling problems. In 

production, scheduling the idle time plays a central role. 

We hope to prove that the idle time may play a similar role in project 

scheduling and it may be the starting base of several new "global" 

performance measures. 
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In general, a resource unit is idle in a time unit when it is available for the 

project but it is not assigned to any activity. The "active life" of a resource 

unit may be much diversified in the life of a project. It is not necessarily 

continuous, and it may be interrupted several times, which always mean 

undesirable intermediate idle periods. 

The first (last) active period of a resource unit not necessarily coincides 

with the first (last) active period of the whole project (for example: waiting, 

working, waiting, waiting, working, and working...). 

According to a "lifelike" definition, a quasi-concave resource profile has 

no interruptions; it is ascending, descending or ascending and descending, 

like a hill. (Note that, a rectangle is a quasi-concave shape.). Figure 3-1 

illustrates a typical quasi-concave resource profile. 

11 



12 



Figure 3-3 The quasi-concave hull and the intermediate idle units (intervals) 

Figure 3-2 illustrates a typical non-quasi-concave resource profile. Its 

quasi-concave hull and the intermediate idle resource units (intervals) are 

shown in Figure 3-3. In this example, the first resource unit (a worker or a 

machine) works continuously (it is always busy), but the second resource 
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unit is idle in the fourth period, and finish the work a bit earlier. The total 

number of the idle resource units is three. 

The reasons of replacing the traditional "local fluctuation oriented" 

measures by new "global shape oriented" measures are the following: 

1. When a resource profile is quasi-concave then the idle resource units 

are clustered at the beginning and at the end of the project, so they can be 

used more efficiently. For instance, in a multi-project environment this 

clustered idle resource units (intervals) may be transferred to other projects. 

2. The idle time (the interruption) minimization and the traditional local 

fluctuation minimization are not the same, and the management is much 

more interested in the intermediate idle time (interruption) minimization than 

in the "local" fluctuation minimization. It is clear that the project cost can be 

reduced by using the resources as continuously as possible. In fact, it is 

equivalent with a minimization of the intermediate idle periods (intervals) or, 

in other words, with a definition of the desirable resource profile as a quasi-

concave one. 

Now we present a new global interruption oriented resource leveling 

(balancing) measure (IN) based on the number of intermediate idle intervals. 

The objective function of the approach is the total number of such 

intervals (the sum of the interruptions, or in other words, the sum of the 

restarting events). 
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Note that, this model belongs to a larger model family. This family is 

closely related to the setup time (setup cost) oriented production-scheduling 

models because an idle interval before the first active period (an intermediate 

idle interval) always means a starting (restarting) event with time and cost 

consequences. 

The project of Figure 3-4 can help to understand the essence of the 

proposed new interruption oriented resource leveling approach based on 

quasi-concavity. The efficient (non-dominated, Pareto optimal) solutions 

obtained by IN, FA, FB, and ES (early start) models are given in Table 3-1. 

The ES and the "best" schedules for measures IN, FA, and FB are shown in 

Figure 3-3 and 3-4. Note that, in this context "best" always means the 

M IN FA FB Efficient schedules 

IT {0,1} {34,43} {14,21} {2=>5,8=>9,9=>9,10=*7} 

FA {4,3} {24,19} {27,22} {2=>3,8=>9,9=>14,1Q=>5} 

FB {3,3} {24,27} {28,17} {2=>5,8=>9,9=>14,1Q=>1} 

ES {3,3} {38,33} {32,30} {} 
Table 3-1 Computational results (IN, FA, FB) for a sample project 
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Figure 3-3 The ES schedule and the best IN schedule 
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Computational results can be summarized as follows: (1) the results well 

illustrate the fact, that interruption minimization based on quasi-concavity 

and the traditional fluctuation minimization is not the same. (2) The 

proposed new quasi-concavity oriented interruption measure (IN) is able to 

smooth the resource profiles out according to a global point of view. 

The another "lifelike" definition of the interruption oriented resource-

leveling measure (IN), which penalizes the deviations from the desired 

quasi-concave profile, is also very simple. The penalty is the minimal 

amount of "unit height bricks ", which is needed to fill all "dales" up, where 

the width of the "bricks" as large as possible. This modified "definition" will 

be very useful in the subsequent discussion. 

The Figure 3-5 illustrates this definition. In this resource-profile, there are 

two "dales". It is easy to count down, that in this profile the total amount of 

penalty (the total amount of the appropriate "bricks'") is IN = 2 +1 = 3. 

Figure 3-5 A resource profile with three interruptions (idle intervals) 
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According to the previous verbal definition, the idle resource unit 

oriented global resource-leveling measure mathematically can be expressed 

in the following form for a resource r , where r e {l,2,...,R}: 

20 

Proposition 3-1 

When we replace MAXRt+lrwith Ut+lr in the original measure then we 

get the total number of idle intervals (the total number of interruptions) 

measure. 

Proof 

The result immediately follows from the modification. $ 



4o SINGLE-MODE CASE 

In this chapter, we present a MILP formulation and an implicit 

enumeration algorithm for single-mode projects. The MILP formulation and 

the algorithm for the proposed new interruption measure are based on the 

models developed by Csébfalvi (2000) for the idle resource unit measure. 
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This mathematically beautiful and "easy to understand" global measure 

has at least two very disadvantageous properties: (1) The Min and Max 

functions are non-smooth functions. Therefore, to maintain linearity, we 

must replace them with linear constraints or some appropriate combination 

of linear constraints and integer variables. (2) The problem of replacements 

is effected by the direction of optimization (we minimize the penalty 

function), therefore, the Min and Max replacements will be totally different. 

In the following we will show, that the interruption oriented resource 

leveling model (IN) for a single resource can be formulated as a mixed 

integer linear programming problem, which may be solved directly in the 

case of small-size projects. In the case of multi-resource-projects, the 

problem can be solved by introducing a weighting function. 

We consider a project consisting of N real activities. The duration of an 

activity i , where i e {0,1,..., N, N +1}, is denoted by D; e {l, 2,...} and its 

start time by S; e {0,1,... }. 

The project modeled by an activity-on-node (AoN) network G = 

where each node i e V represents an activity i, (i = 0,1,..., N +1). 

An arc i j e E represents a finish-start precedence relation Sj + Dj < Sj 

between activity i and activity j . 
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Preposition 4-1 

Problem (4-2) can be replaced by the following non-smooth problem: 
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These results immediately follow from the structure of IT(s) and the 

direction of optimization (IT(S)->Min!). By "squeezing" MAXL, to the 

correct value, we avoid using Max function. • 

At the end of Step 3, the non-smooth optimization problem will be the 

following: 

T-i (4-6) 
^ It -> Min! 
t = 2 

U t + I t >M1N, for t e {2,3,. . . ,T-l} 

MINt = Min(MAXL,_1,U,+1) for t e {2,3,...,T-1} 

MAXL, = U, 

MAXL, >U, for t e { 2 , 3 , . . . ,T -2} 

MAXL, > MAXLt_,. for t e {2,3, ...,T- 2 } 

S e 9Í 

Step Four 

Prop©sition 4-3 

M1N, = Min(MAXL,U t + 1 ) , t e { 2 , 3 , . . . ,T- l} , can be replaced by 

the following nonlinear constraint set, where L L T R i s a zero-one variable: 

MIN, = L L T R * MAXLt_, + (1 - LLTR t_,) * U ,+1 (4-7) 

MIN, < MAXL,_, 

M1N, < Ut+1 

LGTR,_, e {0,1} 
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T o i l l us t ra te t h e essence o f t h e M I L P f o r m u l a t i o n a s i m p l e p r o j e c t o f 

F i g u r e 4 - 1 w i l l b e p r e s e n t e d . T h e s t ructure o f t h e L E M D O i n p u t file g e n e r a t e d 

a u t o m a t i c a l l y b y t h e ProMan p r o g r a m w i l l b e s h o w n i n T a b l e 4 - 1 . 
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MIN +I2+I3+I4+I5+I6+I7+I8+I9+I10+111+112+113+114+115 

SUBJECT TO 

! MAXIMUM CONSTRAINTS 

MAXL 1-U 1=0 

MAXL2-U2>=0 

-MAXL 1+M AXL2>=0 

MAXL 14-U14>=0 

-MAXL 13+MAXL14>=0 

! MINIMUM CONSTRAINTS 

MIN 2-M AXL1 <=0 

MIN2-U3<=0 

MIN2-PROL1 -PROR3=0 

-3 LLER1+PROL1 >=0 

-MAXL 1 -5 LLER1+PROL1 >=-5 

+3 LLER 1 +PROR3>=3 

-U3+8LLER1 +PROR3>=0 

MIN 15 -MAXL 14<=0 

MIN15-U16<=0 

MIN 15 -PROL14-PROR16=0 

-4LLER14+PROL14>=0 

-MAXL 14-9LLER14+PROL 14>=-9 

+3 LLER 14+PROR16>=3 

-U16+4LLER14+PROR 16>=0 

! STARTING TIME CONSTRAINTS 

A1S1=1 

A1 OS 1+A10S2+A10S3+A10S4+A10S5+A10S6+A10S7= 1 
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! NETWORK CONSTRAINT 

5 A8S5+ ... +10 A8S10-3 A2S3-... -8 A2S8>=2 

! INTERRUPTION CONSTRAINTS 

I2-MIN2+U2>=0 

I15-MIN15+U15>=0 

! RESOURCE USAGE CONSTRAINTS 

+3A1S1+2A10S1-U1=0 

4-3 A5S15+A9S14-U16=0 

END 

INT A1S1 ... A10S7 

INT LLER1 ... LLER14 

PROBLEM STATISTICS 

ROWS = 171 

VARIABLES = 131 

INTEGER (ZERO-ONE) VARIABLES = 45 

NONZEROS = 579 

CONSTRAINT NONZEROS = 522 

DENSITY = 0.026 

OBJECTIVE = MINIMIZATION 

LESS THAN OR EQUAL TO CONSTRAINTS = 33 

EQUALITY CONSTRAINTS = 41 

GREATER THAN OR EQUAL TO CONSTRAINTS = 96 

SOLUTION TIME (166 MHz Pentium PC with 64 MB) = 2 seconds 

Figure 4-1 The Structure of the MILP formulation 
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4.2 AN IMPLICIT ENUMERATION ALGORITHM 
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Naturally, this quasi-cost may be replaced by a real cost function, which is 

able to express a tradeoff of the decision-maker. Thus, at each step of the 

tree-building process, we select the most promising state, which has been 

generated but not expanded. In the tree-building process, a parent node 

which has one or more movable activities is transformed into a set of child 

nodes by fixing the starting time of the first such activity all the possible 

ways. 

Note that, in this context "first" always means the first activity in 

topological order. The leaves of the search tree correspond to schedules 

which have no movable activity anymore or have been pruned according to 

the "at least as good" pruning rule will be introduced below. The tree-

building process maintains the dynamically changing set of efficient 

schedules. 
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Note that according to the progress of the searching process the schedules 

become more-and-more constrained. The more constrained the schedules, the 

more effective the pruning rule. 

To illustrate the essence of the "at least as concave rule" an example will 

be presented in Figure 4-2. It is easy to verify that the first schedule is 

dominated by the second one. In Figure 4-2 the actual and the partly 

constant values are represented by light gray and gray bars respectively. The 

constant histogram values are represented by dark gray bars. 

The example of Figure 4-3 will be used to illustrate the "efficient concave 

schedule searching phase" of the proposed model. The searching tree is 

shown in Figure 4-4. 
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Figure 4-2 The "at least as good" rule (the first schedule is dominated by the second one). 
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Figure 4-3 Early Start and Optimal Schedules 
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The second problem is a "easy" instance from the well-known Patterson's 

set. The problem 20 (P20) well illustrates the fact that problems that are 

difficult for RLP are not necessarily difficult for RAP and vice versa. 

The P20 was investigated by Bell and Park (1990) using the A* algorithm 

for RAP. The number of resources is three and the resource availability 

39 



Figure 4-5 The Structure of P20 

In the early start CPM schedule: IN = {17,20,19}, which is shown in 

Figure 4-6. When we constrain the maximal size of the searching tree (the 

maximal number of the node expanding steps), and stop the tree building 

process, for example, after five expanding steps, the "best heuristic solution", 

which is shown in Figure 4-7, will be: IN = {11,14,17}. The "truncated tree" 

is shown in Figure 4-8. After five steps the number of efficient schedules is 

three. The result well illustrates the fact that the proposed method can be 

used as a heuristic without essential modifications. 
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Figure 4-7 The "best" Schedule 
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Figure 4-8 The "truncated" searching tree 
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5. MULTI-MODE CASE 

T h e f o l l o w i n g e x a m p l e , a d o p t e d f r o m T a l b o t ( 1 9 8 2 ) i l lus t ra tes the 

f o r e g o i n g d iscuss ion . 

I n T a b l e 5 - 1 a n d F i g u r e 5 - 1 t h e p r o j e c t is s h o w n to cons is t o f s ix 

a c t i v i t i e s , e a c h o f w h i c h m a y b e a c c o m p l i s h e d i n o n e o f t w o m o d e s . 

Figure 5-1 A Six-Activity Project with four Resources (Talbot (1982)) 
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Figure 6-1 The Mode 1 and Mode 2 CPM Schedules of a Six-Activity Project (Talbot (1982)) 
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5.1 MILP FORMULATION 

It is easy to realize that when we replace in the single-mode MILP 

formulation the original single-mode variable set with the multi-mode 

variable set then we get the multi-mode MILP formulation of the balancing-

problem without any other modification. 

Multi-resource problems may be managed by introducing a weighting 

function. Here the decision-maker expresses a tradeoff, which, once 

specified, allows the problem to be solved with a single criterion. 

46 

Naturally, this quasi-cost may be replaced by any other real cost function, 

which is able to express a tradeoff of the decision-maker. 

The Essence of the generated LINBQ Formulation {ProMari) is presented 

in Figure 5-2. 

The optimal solution using the interruption measure (IN) is shown Figure 

5-3. 



! OBJECTIVE FUNCTION 

MIN 

+R1I2+R1I3 ... +R1I13 

+R2I2+R2I3 ... +R2I13 

+R3I2+R3I3 ... +R3I13 

+R4I2+R4I3 ... +R4I13 

SUBJECT TO 

! STARTING TIME CONSTRAINTS 

+A1M1S1+A1M1S2 ... +A1M2S3=1 

+A6M1S8+A6M1S92S11 ...+A6M2S14=1 

! NETWORK CONSTRAINTS 

+3 A4M1S3+4 A4M1S4 ... +4 A4M2S4-3 A1M1S1-4 A1M1S2 ... -6 A1M2S3>=0 

+8 A6M1S8+9 A6M1S9 ... +14 A6M2S14-8 A4M1S3-9 A4M1S4 ... -11 A4M2S4>=0 

! RESOURCE-USAGE CONSTRAINTS 

+ 1 A1M1S1+0 A1M2S1 ... +0 A3M2S1-R1U1=0 

+4 A3M1S12+4 A3M2S11 ... +2 A6M2S14-R4U14=Q 

47 



! MAXIMUM CONSTRAINTS 

+R1MAX2-R1U2>=0 

+R1M AX2-R1 MAX 1 >~0 

-HR4M AX 12-R4U12>=0 

+R4M AX 12-R4MAX11 >=0 

+R112-R1MIN2+R1 U2>=0 

+R4M AX 12-R4U12>=0 

+R4M AX 12-R4M AX 1 >=(> 

! INTERRUPTION CONSTRAINTS 

+R112-R 1MIN2+R1 U2>=0 

+R4113-R4MIN i 3+R4U13>=0 

! MINIMUM CONSTRAINTS 

+R1MIN2-R1 MAX 1 <=0 

+R1MIN2-R1U3<=0 

+R1MIN2-R1PROL1 -R1PROR3 =0 

+R1PROL1 -R1 MAX 1-99 RlLLERl>=-99 

+R1PROR3 -R1U3+9 9 R1LLER1>=0 

+R4MIN13-R4MAX12<=0 

+R4MIN13 -R4U14<=0 

+R4MIN13 -R4PROL 12-R4PROR14=0 

+R4PROL12-R4MAX 12-99 R4LLER12>=-99 

+R4PROR14-R4U14+99 R4LLER12>=0 

END 
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PROBLEM STATISTICS 

ROWS = 447 

VARIABLES = 425 

INTEGER (ZERO-ONE) VARIABLES = 177 

NONZEROS =2071 

CONSTRAINT NONZEROS = 1969 

DENSITY = 0.011 

OBJECTIVE = MINIMIZATION 

LESS THEN OR EQUAL TO CONSTRAINTS = 96 

EQUALITY CONSTRAINTS = 114 

GREATER THEN OR EQUAL TO CONSTRAINTS = 236 

"BIG-M" CONSTANT = 99 

SOLUTION TIME (166 MHz Pentium PC with 64 MB) = 128 seconds 

Figure 5-2 The Essence of the Generated LINDO Formulation to Solve a Problem (Talbot (1982)) 
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Figure 5-3 Optimal Schedule of a Six-Activity Project with four Resources (Talbot (1982)) 
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5=2 AN IMPLICIT ENUMERATION ALGORITHM 
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An activity is defined "movable" if it has no explicitly prescribed start 

time and it is non-critical. By definition, the starting position of such 

activities will be the earliest CPM starting time. 

represented by its early start schedule. At this node, each movable activity is 

movable so the set of explicitly prescribed activity starting times is empty. 

Our node evaluation function is very simple: It assigns to any node the 

Naturally, this quasi-cost may be replaced by a real cost function, which 

is able to express a tradeoff of the decision-maker. 

Thus, at each step of the searching process, we select the most promising 

node (IT —> Min!), which has been generated but not expanded. 

In the tree-building process, a parent node which has one or more 

movable activities is transformed into a set of child nodes by fixing the 

starting time of the first such activity all the possible ways. 

Note that, in this context "first" always means the first activity in 

topological order. 

The leaves of the search tree correspond to schedules which have no 

movable activity anymore or have been pruned according to the "at least as 

good" pruning rale will be introduced below. 
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T h e t r e e - b u i l d i n g process m a i n t a i n s the dynamically c h a n g i n g set o f 

efficient schedules. 

T h e s e a r c h i n g t ree ( P r o M a n ) is presented i n F i g u r e 5 - 4 . T h e o p t i m a l 

s o l u t i o n u s i n g the i n t e r r u p t i o n m e a s u r e ( I N ) is s h o w n F i g u r e 5 - 5 . 
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6. DOUBLE-CONSTRAINED CASE 

T h e f o l l o w i n g e x a m p l e , a d o p t e d f r o m T a l b o t ( 1 9 8 2 ) i l lus t ra tes the 

f o r e g o i n g d iscuss ion . I n T a b l e 6 - 1 a n d F i g u r e 6 - 1 t h e p r o j e c t is s h o w n to 

cons is t o f s ix a c t i v i t i e s , e a c h o f w h i c h m a y b e a c c o m p l i s h e d i n o n e o f t w o 

m o d e s . 

Table 6-1 A Six-Activity Double Constrained Project with four Resources (Talbot (1982)) 
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Figure 6-1 The Mode 1 and Mode 2 CPM Schedules of a Six-Activity Project (Talbot (1982)) 
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6.1 MILP FORMULATION 

It is easy to realize that when we insert the set of daily cost constraints 

and project cost constraint into the multi-mode MILP formulation then we 

get the double constrained multi-mode MILP formulation of the balancing-

problem without any other modification. 

We must mention it again, that a multi-resource problem may be managed 

by introducing a weighting function. Here the decision-maker expresses a 

tradeoff, which, once specified, allows the problem to be solved with a single 

criterion. 

57 

Naturally, this quasi-cost may be replaced by any other real cost function, 

which is able to express a tradeoff of the decision-maker. 

The Essence of the generated LINBO Formulation (given by ProMan) is 

presented in Figure 6-2. 

The optimal solution using the interruption measure (IN) is shown Figure 

6-3. 



! OBJECTIVE FUNCTION 

MIN 

+R1I2+R1I3 ... +R1I13 

+R2I2+R2I3 ... +-R2I13 

+R3I2+R3I3 ... +R3I13 

+R4I24R4I3 ... +R4I13 

SUBJECT TO 

! STARTING TIME CONSTRAINTS 

+A1M1S1+A1M1S2 ... +A1M2S3=1 

+A6M1S8+A6M1S92S11 ... +A6M2S14=1 

! NETWORK CONSTRAINTS 

+3 A4M1S3+4 A4M1S4 ... +4 A4M2S4-3 A1M1S1-4 A1M1S2 ... -6 A1M2S3>=0 

+8 A6M1S8+9 A6M1S9 ... +14 A6M2S14-8 A4M1S3-9 A4M1S4 ... -11 A4M2S4>=0 

! RESOURCE-USAGE CONSTRAINTS 

+1 A1M1S1+0 A1M2S1 ... +0 A3M2S1-R1U1=0 

+4 A3M1S12+4 A3M2S11 ... +2 A6M2S14-R4U14=0 
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! MAXIMUM CONSTRAINTS 

+R1MAX1-R1U1=0 

+RIM AX2-R1 U2>=0 

+R1M AX2-R1 MAX 1 >=0 

+R4M AX 12-R4U12>=0 

+R4M AX 12-R4M AX 11>=0 

+R112-R1MIN2+R1 U2>=0 

+R4M AX 12-R4U12>=0 

+R4MAX12-R4MAX11>=0 

! INTERRUPTION CONSTRAINTS 

+R112-R 1MIN2+R1 U2>=0 

+R4113-R4MIN13+R4U13>=0 

! MINIMUM CONSTRAINTS 

+R1MIN2-R1MAX1<=0 

+RJMIN2-R1U3<=0 

+R1MIN2-R1PROL1-R1PROR3=0 

+R1 PROL 1 -R1 MAX 1-99 RlLLERl>=-99 

+R1PROR3-R1U3+99 R1LLER1>=0 

+R4MIN 13-R4MAX12<=0 

+R4MIN13 -R4U14<=0 

+R4MIN13-R4PROL12-R4PROR14=0 

+R4PROL12-R4MAX12-99 R4LLER12>=-99 

+R4PROR14-R4U14+99 R4LLER12>=0 
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! DAILY COST CONSTRAITS 

+135 AlMlSl+65 A1M2S1 ... +100 A3M2S1<=300 

+ 170 A3M1S12+100 A3M2S11 ... +190 A6M2S14<=300 

! PROJECT COST CONSTRAIT 

+270 A1M1S1+270 A1M1S2 ... +190 A6M2S14<=2020 

END 

PROBLEM STATISTICS 

ROWS = 462 

VARIABLES = 425 

INTEGER (ZERO-ONE) VARIABLES = 177 

NONZEROS =2433 

CONSTRAINT NONZEROS = 2316 

DENSITY = 0.012 

OBJECTIVE = MINIMIZATION 

LESS THEN OR EQUAL TO CONSTRAINTS = 111 

EQUALITY CONSTRAINTS = 114 

GREATER THEN OR EQUAL TO CONSTRAINTS = 236 

"BIG-M" CONSTANT = 99 

SOLUTION TIME (166 MHz Pentium PC with 64 MB) = 162 seconds 

Figure 6-2 The Structure of the Generated LINDO Formulation to Solve a Problem (Talbot (1982)) 
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Figure 6-3 Optimal Schedule of a Six-Activity Project with four Resources (Talbot (1982)) 
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6.2 AN IMPLICIT ENUMERATION ALGORITHM 

In the case of double-constrained multiple-mode projects, the exact 

implicit enumeration algorithm may be formulated as a trilevel "tree of 

trees" like searching problem. 

For large-scale problems, the exact tree-search algorithm may be replaced 

a simple heuristics by constraining the size of the searching-trees at every 

level. 

The essence of the proposed trilevel algorithm is very simple: 

First Level: 

We generate all the total cost feasible operating-mode combinations. 

Second Level: 

On the set of total cost feasible operating-mode combinations, we solve 

the make-span minimization problem subject to the daily cost constraints. 

Third Level: 

On the set of make-span minimal cost feasible schedules, we solve the 

resource-balancing problem. 
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been generated but not expanded. In the tree searching process, a parent 

node is transformed into a set of child nodes. A child node will be created 

from its parent node by changing exactly one mode index to the next smaller 

one. Because a child node will be "at least as expensive" as its parent node, a 

cost infeasible child can be immediately discarded (pruned). 

A project cost feasible mode combination generally defines a project cost 

feasible mode combination set. 

The reason is very simple. In a cost feasible mode combination every 

mode A;, which satisfies the relation A; < M ( , may be replaced by a set of 

cheaper nodes {A;, A; 

For the sample problem, the first level searching tree is presented in 

Figure 6-4. 
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6.2.2 The Second Level Searching Tree 

On the second level, on the set of project cost feasible operating-mode 

combination sets, we solve the make-span minimization problem subject to 

the daily cost constraints. 

It means that we have to solve the following decision problem: 

Given a project cost feasible operating-mode combination set and a 

maximal project length, does there exist a solution with a project length, that 

does not exceed the maximal project length and none of the daily cost 

constraints is violated. 

The essence of our algorithm is very simple: 

Stalling from the network-feasible project length and increasing it step-

by-step, in each step we try to solve the daily inequality system on the set of 

project cost feasible operating-mode combination sets. 

If the solution set is not empty, the process is terminated and the actual 

project length will be the cost feasible minimal makespan. 

From methodological point of view, there are at least two new elements in 

this algorithm Csébfalvi (2000): (1) the objective function (IN) will be used 

on the third level is irregular. Therefore, we must modify the usual 

makespan minimization procedure according to this fact. (2) We must know 

all the cost feasible solutions, which may be very a complicated problem. 
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In the daily cost constrained makespan minimization phase, the project is 

characterized by the set of its daily cost violating sets. 

A daily cost violating set of activities means the following: (1) All 

activities in the set may be executed concurrently. (2) The total daily cost 

requirement of these activities exceeds the maximal daily cost DC. (3) The 

set does not contain another daily cost violating set as a proper subset. See 

for example Bell and Park (1990). 

We note that a cost conflict with cost violating set can be explicitly 

repaired by inserting a feasible precedence arc between some pair of 

activities in the set. This will guarantee that not all members of the chosen 

resource-violating set can be executed concurrently. 

According to our approach, we must redefine the traditional makespan 

minimization process. The reasons are the following: (1) we must find all 

cost feasible solutions. (2) We must replace the traditional "visible conflict" 

oriented approach by a new "feasible conflict" oriented one. In other words, 

we have to repair every feasible cost conflict regardless of whether it is 

"visible" or "hidden". In our modified approach, in a cost-constrained 

schedule each non-critical activity can be shifted within their available float 

without affecting the cost feasibility (Csébfalvi (2000)). 
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In the cost-constrained solution finding process, the nodes of the tree 

correspond to "partial" schedules. In our model, any partial schedule 

satisfies all original precedence constraints and assigns a start time to all 

activities. Nevertheless, it is "partial" because it may violate one or more 

"visible" or "hidden" cost constraints. 

The nodes of the tree are characterized by the set of original network 

relations and a set of additional cost conflict repairing relations. The root 

node contains only the network relations. 

Leaf nodes of search tree are network and cost feasible schedules or 

pruned schedules. Our node evaluation function is very simple: It assigns to 

any node the number of feasible cost conflicts. Thus, at each step of the tree-

building process, we select the most promising state, which has been 

generated but not expanded. 

A parent node is transformed into a set of child nodes by repairing its first 

resource conflict all the possible ways. Note that, in this context "first" 

always means the earliest conflict in time interval [ f i ] . 

According to our "best-first" searching strategy, a node without feasible 

cost conflict will be a solution of the cost-constrained scheduling problem. 

In this simple form, the searching process is very inefficient as too many 

states are generated. Pruning rules must be employed to cut down the 

effective branching factor of the search tree. 
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According to our modified solution strategy, we must revise the 

traditional pruning rales of resource-constrained project scheduling very 

carefully since our resource-leveling criterion is not a regular measure of 

performance. 

In this study, we applied a pruning rule which are suitable for our 

irregular interruption measure and which are able to reduce the number of 

generated nodes (Csébfalvi (2000)). 

The "at least as shiftable rule" is a straightforward modification of the 

well-known "left-shiftable rule" which is a well-known and very efficient 

"regular rule". 

Let 9! = ) denote the set of network-feasible schedules. 

In the cost feasible schedule searching phase a partially or completely 

cost feasible schedule set is characterized by the set of original network 

relations and a particular set of additional cost conflict repairing relations. 

Let 9Í = u E*) denote a partially or completely cost feasible schedule 

set, where E* denotes an additional conflict repairing relation set. 

In the "at least as shiftable rule" each node of the searching tree is 

characterized by the corresponding schedule set: 

9Í(E u E n ) , where n = 0,1,2, ... ( 6 4 ) 

The "at least as shiftable rule" involves the comparison of two schedule 

sets ^.{EKJE ') and 3Í(EUEj) to conclude that the best feasible schedule 
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Figure 6-5 The essence of the "at least as shiftable" rule 

69 



The daily cost feasible schedule-searching tree is presented in Figure 6-6. 

The problem has four daily cost feasible solutions. 

Figure 6-6 The daily cost feasible schedule searching tree 
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The leaves of the search tree correspond to schedules, which have no 

movable activity anymore, or have been pruned according to the "at least as 

good rule" introduced previously. The tree-building process maintains the 

dynamically changing set of efficient schedules. 

A sub-tree is presented in Figure 6-7. The cost feasible early CPM 

schedule and the "best" cost feasible balanced solution are shown in 

Figure6-8. 
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Cost Feasible Early Start Schedule Optimally Shifted Schedule 

Figure 6-8 The Early Start and the "best" Schedules 
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7. NEW RESULTS 

This thesis contributes the following new results: 

1. In the first part of this thesis, we presented a new global interruption-

oriented resource-balancing measure based on quasi-concavity. It was the 

main objective of this thesis is to show how modeling ideas and solution 

procedures, originally developed for solving production scheduling 

problems, can be used to formulate and solve several types of project 

scheduling (resource balancing) problems. In production scheduling, the idle 

time plays a central role. We proved that the idle time might play a similar 

role in project scheduling and it might be the starting base of new global 

performance measures. 

2. In the second part of the thesis, we presented new exact interruption 

oriented resource balancing (leveling) models for single-mode, multi-mode, 

and double-constrained multi-mode projects. Theoretically, every new model 

is formulated as a mixed integer linear programming problem, which may be 

solved directly in the case of small-scale projects with any commercial MILP 

package. 

3. According to the NP-hard nature of resource balancing, for medium-

size projects we introduced implicit enumeration algorithms with effective 

pruning rales for every problem type. In the case of double-constrained 

multiple-mode projects, the proposed algorithm was formulated as a 

multilevel tree-searching problem. For large-scale problems, simple "beam-

search like" heuristics can be applied by constraining the size of the 

searching-trees. 
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