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Abstract

We provide Monte Carlo evidence on the finite sample behavior of the conditional em-
pirical likelihood (CEL) estimator of Kitamura, Tripathi, and Ahn (2004) and the conditional
Euclidean empirical likelihood (CEEL) estimator of Antoine, Bonnal, and Renault (2007) in
the context of a heteroskedastic linear model with an endogenous regressor. We compare
these estimators with three heteroskedasticity-consistent instrument-based estimators and the
Donald, Imbens and Newey (2003) estimator in terms of various performance measures. Our
results suggest that the CEL and CEEL with fixed bandwidths m@igrduom the no-moment
problem, similarly to the unconditional generalized empirical likelihood estimators studied by
Guggenberger (2008). We also study the CEL and CEEL estimators with automatic band-
widths selected through cross-validation. We do not find evidence that theefsom the
no-moment problem. When the instruments are weak, we find CEL and CEEL to have fi-

nite sample properties —in terms of mean squared error and coverage probability of confidence
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intervals— poorer than the heteroskedasticity-consistent Fuller (HFUL) estimator. In the strong
instruments case the CEL and CEEL estimators with automatic bandwidths tend to outper-
form HFUL in terms of mean squared error, while the reverse holds in terms of the coverage

probability, although the dlierences in numerical performance are rather small.
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1 Introduction

Motivated by the practical importance of models defined by conditional moment restrictions, a
number of recent important contributions have proposed empirical likelihood-based techniques for
estimation and inference of this class of models. Kitamura, Tripathi, and Ahn (2004, KTA hence-
forth) develop a conditional empirical likelihood estimator of these models. Antoine, Bonnal, and
Renault (2007, ABR henceforth) introduce an estimator based on a related idea that instead of the
empirical likelihood uses the Euclidean likelihood. A common way of dealing with conditional
moment restrictions is to reduce them to unconditional ones by means of instruments. This proce-
dure typically leads to a large number of potentially useful instruments, which implies the problem
of selecting a reduced number of most useful instruments. An alternative way to proceed is to con-
struct asymptotically optimal instruments (e.g., Newey 1993). The KTA and ABR estimators are
appealing from an asymptotic theoretical point of view as they are able to achieve semiparametric
first-order asymptoticféiciency without computing the optimal instruments.

The literature has paid considerable attention to conditional empirical likelihood estimators.
Smith (2007) generalizes the conditional empirical likelihood (CEL) of KTA and the conditional
euclidean empirical likelihood (CEEL) of ABR to the class of local Cressie-Read discrepancies,

where the termocal refers to the explicit use of kernel weights. He shows that the estimators
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of the local Cressie-Read class are first order asymptotically equivalent to the CEL and CEEL
(CE(E)L for short) estimators. A few other recent contributions stress the potential of the con-
ditional generalized empirical likelihood (GEL) framework from an asymptotic theory point of
view. Gospodinov and Otsu (2012) show that in an AR(1) model with iid errors the local GMM
estimator, which is essentially the same as CEEL, has a higher order asymptotic bias smaller than
the OLS estimator. Tripathi and Kitamura (2003) show that a test statistic for conditional moment
restrictions based on the CEL objective function is asymptotically optimal in terms of a certain
average power criterion.

A conclusion of these papers is that empirical likelihood-based estimators are rather appealing
for conditional moment restriction models from an asymptotic theory point of view. However,
although some of these papers present finite sample studies of these estimators, none of them
provides information on their finite sample performance in the important class of models with en-
dogenous regressors. Another problem that is important in practice is that, although the CE(E)L are
instrument-free methods, they depend on additional unknown parameters, that is, bandwidths. The
asymptotic theory of these estimators specifies the rate at which the bandwidths should change with
the sample size in order to obtain asymptofticéency, but this does not provide a clear indication

on how to choose the bandwidths in practice. For some models (e.g., the linear heteroskedastic
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model in KTA, or the AR(1) model with ARCH errors in Gospodinov and Otsu, 201 2Z¢rint
bandwidth values lead to similar estimates. For models with endogenous regressors, however, it is
not known to what extent the finite sample performance of these estimatdisated, if one uses
different bandwidths, or if one uses some bandwidth selection procedure.

There are at least two reasons to expect CE(E)L to perform poorly in models with endogenous
regressors, especially when the instruments are weak. First, these estimators are the result of a
saddle point optimization problem, which may have extensive flat parts near the optimum. Second,
for a linear model with an endogenous regressor, Guggenberger (2008) finds that the unconditional
GEL estimators diier from the no-moment problem. These estimators are also obtained as the
outcome of a saddle point optimization problem, compared to which the dimensionality of the
optimization problem increases considerably in the conditional moment case.

Due to these considerations we find it important to investigate how the CE(E)L estimators
perform in finite samples. In order to do so, we conduct a Monte Carlo experiment, in which we
estimate a one-parameter linear model with an endogenous regressor and heteroskedasticity using
several estimators: CEL (KTA), CEEL (ABR), GMM, HLIM, HFUL (the latter two from Hausman
et al., 2012) and the estimator proposed by Donald, Imbens and Newey (2003). For the CE(E)L

estimators we use a grid search on a very fine grid in a rather large interval around the true value in
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order to circumvent possible convergence problems of standard algorithms like Newton-Raphson
or nonderivative simplex search. Since the CE(E)L estimators depend on unknown bandwidths,
we compute these estimators for a small grid of fixed bandwidth values, and then out of these
we select the best bandwidth according to a cross-validation criterion proposed by Newey (1993).
We then evaluate the performance of the estimators according to a range of criteria. Newey’s
cross-validation criterion uses the second-order remainder term from estimation of the optimal
instruments. We provide intuition for the fact that this cross-validation acts in a way similar to
regularization in that it tends to eliminate estimates that are far from zero.

Due to their similarity to unconditional GEL estimators, the CE(E)L estimators may af&y su
from the no-moment problem. Therefore, interpretation of quadratic loss measures such as stan-
dard deviation and mean square error computed from Monte Carlo samples should be dealt with
care. In order to avoid potential problems of interpretation, in addition to the standard measures of
performance, we also look at performance measures like the median absolute error, the nine-decile
range, and the tail probability, which do not depend on moments. A related concept is the proba-
bility of concentration used by Morimune (1983). Fiebig (1985) provides examples on how some
estimators with no moments may be preferred to others that have moments. He suggests as a gen-

eral evaluation criterion in this case the concentration of the estimator around the true parameter.
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In this respect, his probability of concentration criterion (Fiebig, 1985, equation (2)) is virtually
the same as the tail probability statistic used in this paper and also in Guggenberger (2008).

Our results suggest that CEL and CEEL perform rather similarly. Both estimators computed
with fixed bandwidths may sier from the no-moment problem. We draw this conclusion from
the fact that both estimators perform similarly to the HLIM estimator, which is known to have the
no-moment problem (Hausman et al., 2012). We do not find evidence that the CE(E)L estimators
with bandwidths computed by cross-validation have the no-moment problem. In addition, these
estimators outperform their fixed bandwidth counterparts, especially in the weak instruments case.
In this case, these estimators are outperformed by the HFUL estimator (Hausman et al., 2012), but
in the strong instruments case they have competitive finite sample properties with respect to the
other estimators.

The remainder of the paper is organized as follows: Section 2 describes the Monte Carlo setup
and the estimators, while in Section 3 we discuss the implementation and the results. Section
4 collects some final remarks and, finally, the Appendix contains the tables and some technical

details on estimation and cross validation.
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2 Monte Carlo experiment

In this section we describe the data generating process (DGP) in our Monte Carlo experiment and
present the estimators that we study. For our DGP we consider a linear model with heteroskedastic

errors that is similar to the one considered by Hausman et al. (2012). Specifically,

y|:ﬁ0X|+8|’ izl,""n,

wherex; is expected to be endogenous and the exogenous varjablebserved. The parameter

Bo is identified by the conditional moment restriction

E(9(yi.%.p)1z) =0, (1)

whereg (i, %, 8) = i — B%. Regarding the primitives of our DGP we assume that
X = 7Z + Ui

wherez ~ N(0,1), ui ~ N(0,1), and

2

Jol
¢? + .86%

& = pU + (pvai + .86vy)
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with vi; ~ N (0,72), voi ~ N (0,.86?). The parametep is computed from the theoretica for the

regression of? on Z, that is,

) Var(E(fSi2 |Z|2))
Ve lER) - el

for given values ofR%. This latter quantity measures the degree of heteroskedasticity, while
determines the degree of endogeneity becaasgx;, ;) = p/ /(1 + 7). We consider two sample

sizesn = 100 andn = 500. For each sample size we have the following parameter combinations

(0, R, ¢) = (0.75,0.1, 1.863521)
(0, R, ¢) = (0,0.1,0.5765206)

(0, R?, ) = (0.75,0,0).

The first parameter combination implies a rather large degree of endogeneity accompanied by
heteroskedasticity; the second parameter combination includes heteroskedasticity but has no endo-
geneity; the third parameter combination considers the presence of endogeneity and homoskedastic
errors! We vary the strength of instrumergsby takingz = 0.4 andr = 0.04; the latter value

provides instruments with strength comparable to that in Guggenberger (2008), where in the case

1t would be desirable to study the case of high degree of heteroskedasticity as well. However, this does not seem
to be possible within the current DGP because the restrictiorettgts unconditional variance equal to 1 restricts
andR? so thatR? cannot take values much higher thad.0
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of one instrument the lowest correlation between the endogenous regressors and instruments is
0.0322 Whenever we use estimators that require instruments, we consider the following two sets

of 10 and 30 instruments:

N|
Il

(l’ziaz|'2’z|'3’z;4’ZiDlia-~-’ZiD5i)/9 (2)

(1.2.2.2.2.2Dy. ... zD2s) .

N|
Il

where the variabl®,; is a dummy variable that takes value 1 with probabilify.Bimilar dummies
are used by Hausman et al. (2012).

In the next sections we describe the estimators that we consider.

2.1 Conditional empirical likelihood estimators

In this section we describe the CEL and CEEL estimators. These estimators are the result of a con-
strained optimization of certain nonparametric objective functions, where one of the constraints
is the sample analog of the conditional moment restriction. The nonparametric objective func-
tions are a nonparametric version of the log-likelihood function for CEL, and a local quadratic
Cressie-Read discrepancy criterion for CEEL, respectively (see KTA and ABR for further details,

as well as Smith (2007) for a unified treatment based on Cressie-Read discrepancy). In practice

2The results forr = 0.4 are shown only in the case of= 100.
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both estimators can be obtained from unconstrained optimizations of the so-called dual objective
functions, which are derived from the first order conditions of the constrained optimization. These
dual problems have the feature that they are saddle point optimization problems.

In particular, the CEL estimator ¢, is

n n
PeeL=argmin max > > wilog(1+%g(y;. x;.5)). (3)

ii=1,..,n &= £
" =1 i=1

wherewj, i, j = 1,...,nare defined as
(&)
er]=1 K (Zit:nzj)

Wij

(4)

that is, the weights of the Nadaraya-Watson nonparametric regression estikhagaa, density
function onR, symmetric around O, playing the role of a kernel function, andi = 1,...,n

are the Lagrange multipliers in the constrained maximization of the original objective function.
Determining the CEL estimator from the dual (3) involves the first step maximization with respect
to these Lagrange multipliers. A computationali@ent method for determining the Lagrange
multipliers is discussed in the Appendix in Section B.1.

The CEEL estimator is

\ 9(8)° ,
2w (i %.8) (9 (v x5.8) -3 (8)

()

ECEEL =arg ”/}in
wheregi (8) = X0, Wijg(yj, xj,ﬁ) with weights given in (4). Oterently from the CEL estimator,

the CEEL estimator does not require optimization with respect to the Lagrange multipliers. This
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is because the quadratic Cressie-Read discrepancy criterion implies first-order conditions of the
constrained optimization that allow for explicit expressions of the Lagrange multipliers. Therefore,
although not directly visible in the CEEL-objective function (5), CEEL estimation is also a saddle
point problem. We also note that the CEEL estimator is numerically identical to a conditional
generalization of the continuously updated GMM estimator of Hansen et al. (1996) (see ABR for
further details).

The limiting distribution of the CE(E)L estimators is the same. That iskferCEL, CEEL

\/ﬁ(ﬁk —ﬁo) -4 N(Q,V),

where

V=(E[p@*e@)"

is the semiparametric lower bound with(z) = E[ag(yxﬂ) z|. Q@ = E[g(y.xp)?lz|- The

asymptotic variance ¢, k = CEL, CEEL, can be estimated as

vk—[ZD(z)z (Boz)) ]_l,

whereQ (z) . Q (B z) are nonparametric regression estimator®¢#) . Q (Ai.z). Specifically,

ACCEPTED MANUSCRIPT
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the Nadaraya-Watson nonparametric kernel regression estimators for our DGP are
n
D(z) = —ZWinj,
j=1

and

n
ﬁ(ECE(E)'-’ Z‘) = Zwijg(YJ’ Xj’ECE(E)L)Z.

j=1
We use cross-validation for both the CEL and CEEL estimators. The cross-validation criterion
used is presented in Appendix B.2. There we also show that in the case of our model for large
values of the estimate the cross-validation criterion is also large. This appears to suggest that the
cross-validation criterion tends to select values that are closer to zero. This is a feature similar to

regularized estimators (e.g., Hausman et al. 2011).

2.2 The Donald, Imbens and Newey (2003) estimator

DIN consider dicient estimation of conditional moment restriction models via empirical like-
lihood estimation. Conditional moments are transformed into unconditional ones by means of
splines or other approximating functions. The problem we consider is the same problem defined in

equation (1). The DIN estimator requires the specificationkokd vector of spline approximating

ACCEPTED MANUSCRIPT
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functions

qK(Z) = (1’ Z 22’ cee ZS’ f(Z— tl)s)’ . -‘f(z_ tK—s—l)S)’

whereé(2) = 1(z > 0)z, 1(:) is the indicator function taking value 1 if the conditiers true and 0
otherwise andy, ..., tk_s1 IS a set of knots. In our simulatiorss= 3 andK = 2,3,5,10,15. The
knots are to be found equispaced in the range of the varzaltepractice we choose the knots in

a set of 21 equispaced quantileszofhe conditional moment restriction (1) implies

E(0“@)(y: - xp)) = 0.

From this set of moments we can define the EL problem

n

PB.m.y.1) = ) logmi +v' > md @)% —%8) +u( Y mi — 1).
i=1 i=1

i=1

The estimation of the parameters of interests can be implemented by solving the saddle point

problem

@DIN,7D|N)’ = arg mﬁinmaxz log(1-y'qX(@)(yi — X))
-
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andr = (n(L+7g(z)(y; - xi[?)))‘l. The asymptotic distribution gﬁD”\, is the same as the CE(E)L

estimators. An estimator of the asymptotic variance is given by
Voin = (D'Q D)

whereD = ¥, mq*(z)% andQ = YL, m(y% — x8)%0*(z)d (2) -
2.3 Instrumental variable estimation

Suppose that we have &anx 1 vector of instrumental variables as described in (2). Then the

conditional moment (1) implies the unconditional moment restrictions
E(z (yi —xp)) =0,

which leads to estimation by means of GMM. GMM estimation generally requires a two step

procedure. The first step estimator is given by the minimum of

Qamm (B) = (Y — XB) ZWZ (y — XB)

ACCEPTED MANUSCRIPT
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for y andx beingn x 1 vectors of observations aZdis an x L matrix, such that itéth row is Z.

The resulting first step estimator is defined as
Br=(XZWZX) ' XZWZy

for a certain positive definite matrW. In our simulationdV is chosen to be the identity matrix.
In order to achievef@iciency and robustness with respect to heteroskedasticity, in the second step

we use an Eicker-White matrix (White, 1980):
Bomm = (x’Zﬁ‘lz’x)_1 XZQ 7'y
whereQ = > (yi - xiﬁl)z zZ. The GMM estimator is normally distributed
\/E(EGMM —ﬂ) —q N (0, Vomm)

andVgum = (E(x’Z) Q‘lE(Z’x))_l, for Q = E(Z' (Y- XBo) (Y — XB0)’ Z), which we estimate by
Voum = (x’Zﬁ‘lz’x)_l.

In a recent paper Hausman et al. (2012) describe a simple one-step estimator that is robust to
the presence of heteroskedasticity and many instruments. Such an estimator is similar to LIML

and it is based on jackknife techniques. Let us first define the projection rateixZ (2'2) 1z

ACCEPTED MANUSCRIPT
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and the diagonal matri®p,, whose diagonal elements are the diagonal entri€s ol hen, the so

called HLIM estimator is computed as the minimum of

QHLim (,3) = (/—
B

with
A= (y’ X), (PZ - DPz) (y’ X) , B= (y’ X)/ (y’ X)

and is equal to

EHLIM = (X' (Pz — Dp,) X— AuLim X’X)_l (X' (Pz—Dp,)Y — AuLimXy)

(6)

wheredy v is the minimum eigenvalue of the matrc*A. This estimator shares some features

with LIML, most notably it may not have moments (Hausman et al., 2012, p. 217) in the weak

instruments case. These authors propose a correction in the spirit of Fuller (1977), where the

eigenvaluely v Is replaced by

1I-Anum
AnLm — =248 C

_ 1-puwm
1- Hhumg

AnFuL =

The paramete€ is chosen by the econometrician and following the suggestion of Hausman et al.
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(2012) we se€ = 1. The so called HFUL estimator is then defined as

BrruL = (X (Pz = Dp,) X = Auru X X) (X (P2 = Dp,) Y — AupuLXy) . (7)

Fork = HLIM, HFUL we have the following convergence in distribution:

—

Bl L iN@D,
Vi
where
Vi= MISM™, M =X (Pz — Dp,) X — AX'X

and

. n L L n._ n

S= (X1 - 2p||><|xi):§|2 + Z Z ( thzlsa] [Z thzjsa] s

i=1 t=1 s=1 \i=1 =1

for,Z = Z(22)™*, =y - X, X = x— Z&, x = P, furthermorep; is theith diagonal element

of Pz. The limit oka is provided in Hausman et al. (2012).

3 Implementation and results

We implement the CE(E)L estimators by using the Epanechnikov kernel:

K(u):g(l—u2)~1(|u|sl),

ACCEPTED MANUSCRIPT
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wherel(-) is the indicator function. For the two sample sizes 100 and 500 we use the band-
widths b, in the set

b, € {0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9} .

As mentioned in the previous section, the CE(E)L estimators are the solution of a saddle point
problem. Therefore, in certain situations that typically occur when the instruments are weak, the
corresponding objective function may be very flat in the neighborhood of the optimum, causing the
failure of standard optimization routines. In order to avoid this, we solve the optimization problem
by means of a grid search. The grid we consider is betwé&snand 25 and has step lengt®D3
In order to provide a fair comparison of performance, we also restrict the other estimates to the
interval[-25, 25]. We note that Guggenberger (2008) uses the same grid search approach in his
study of unconditional GEL.

In order to provide some insight on thdftulty of solving a saddle-point optimization prob-
lem, we make a few remarks on the behavior of the CE(E)L estimatorsffereht bandwidths.
First, in cases when the objective functions in (3) and (5) do not have flat parts around the optimum
for any given bandwidth, the objective functions are similar, and, as a consequence, the estimates

corresponding to dierent bandwidths will also be similar (the cases studied by KTA in their Monte

3This approach is not attractive from a computational point of view, in particular when the dimension of the
parameter of interest is larger than one. However, it is ideal for our simulation environment where we have to tackle
situations where the instruments provided by our DGP are particularly weak.
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Carlo experiments appear to be of this type). Second, whenever, for some bandwidths the objective
function is flat near the optimum, the estimates correspondingtereint bandwidths may be very
different. We illustrate this phenomenon by plotting the objective function in these two cases.

In Figure 1 we present the CEEL objective functionriot 100 in a case with low endogeneity
(0 = 0.3) and strong instruments & 0.4) for four different bandwidth values. We can see that the
objective function is well-behaved in the sense that we can clearly distinguish a global minimum in
the case of each bandwidth. The global minima in the four cases occur at values close to 0, which
is the true parameter value.

On the contrary, in the presence of weak instruments and high endogeneity, the objective func-
tion may be characterized by multiple local optima and extensive flat parts in the vicinity of the
minimum. This situation is well depicted in Figure 2, where we plot the CEEL objective function
again forn = 100 and four diferent bandwidth values in a case with high endogengity 0.75)
and weak instruments (= 0.04). In this figure we can see that for bandwidths= 0.5 and 07
there are two minima for which the value of the objective function is quite similar. For bandwidth
valuesb, = 1.7 and 19 the objective function degenerates so that the minimum falls in a region
where the objective function is very flat. This figure illustrates the pathological features of the

optimization problem in the case of weak instruments, and provides an argument for using grid
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search instead of standard optimization routines such as Newton-Raphson or simplex search.

In order to compare the performance of the estimators, we conduct a Monte Carlo experiment
based on 1000 simulation repetitions in each case. Tables 1-9 contain the results; each table cor-
responds to a éierent DGP. The leftmost columns list all the estimators and the bandwidth values
for the CE(E)L. In the other columns we report the results for various performance measures, such
as mean and median bias (referred to as Mean and Median in the tables), median absolute error
(MAE), standard deviation (StD) and root mean square error (RMSE). In addition to these standard
measures we consider the nine-decile range (9-DR), the tail probability (TailPr) and the coverage
probability of a 95% confidence interval (CovPr)The former provides us with information on
how spread out is the distribution of the estimator between the 5th and 95th percentile. The tail
probability is computed as the relative frequency of the estimates for \/ﬂithZS (we follow
Guggenberger (2008) in choosing this number), and it conveys information on the fatness of the
tails of the distribution of the estimators. The coverage probability of the symmetric 95% confi-
dence interval is estimated by the relative frequency of the E{ﬁémﬁo‘ <196- E) for a certain
estimators of the true valugd,, wherea is an estimator of the standard errorgfwhich may

differ across the various estimators we consider.

4Since Guggenberger (2008) uses similar simulation setup and performance measures for studying the finite sample
properties of unconditional GEL estimators, we can directly compare the tail probabilities for our estimators to his
estimators.
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The focus of the Monte Carlo experiment is on the performance of the CE(E)L estimators in
comparison with the instrument-based methods presented above. The latter may petirm di
ently if few or many instruments are included, specifically, in theory many instruments lead to
asymptotic éiciency gains, but in practice they may lead to biased estimates. Therefore, for the
three instrumental variable-based estimators we use two instrument dets- df0 and 30 in-
struments. Another objective in analyzing the results is to compare CEL to CEEL. CEEL has a
computational advantage compared to CEL due to the fact that the Lagrange multipliers can be ex-
pressed explicitly and need not be estimated via numerical optimization as for CEL (see equations
(3) and (5)).

Before discussing the details with respect to the performance measures, we provide some gen-
eral remarks. Most of the estimatordieu considerably from the presence of endogeneity. Having
strong instruments may mitigate th#exts of endogeneity. When instruments are weak and endo-
geneity is present none of the estimators performs well in terms of bias and coverage probability.
Moreover, having or not heteroskedasticity seems to play a relatively minor role. Apart from the
case of GMM in the absence of endogeneity, in none of the tables can we find an estimator that
dominates all the others in the sense that it performs better with respect to all measures.

The HLIM estimator is often similar to CE(E)L estimators with some fixed bandwidth, espe-
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cially in the weak instruments case (Tables 4-9). In the case of endogeneity the GMM estimator
tends to perform well in terms of precision (MAE, StD), but performs poorly in terms of bias
(Mean, Median) and coverage probability. On the other hand, wherD GMM is the best es-
timator according to nearly all performance measures and its coverage probabilities (CovPr) are
quite close to the nominal probabilities. HFUL has a rather sound performance compared to the
other estimators in all the cases. The DIN estimator seems to display quite clear patterns with
respect to our performance measures as we Karlylore specifically, we notice that & grows

all the measures of dispersion and the TailPr get larger. On the other hand, the coverage proba-
bilities tend to zero. Regarding th&ect of increasing the sample size from 100 to 500 we note
that, contrary to our expectations, the dispersion does not decrease while the bias (both Mean and
Median) gets slightly smaller. The tail probabilities, where strictly positive, tend to go down.

The two conditional empirical likelihood estimators, CEL and CEEL, have a rather similar
performancé. Their performance is much better with automatic bandwidths than with fixed band-
widths in most of the cases. This is remarkable, because it contrasts the findings for a linear
heteroskedastic model with an exogenous regressor, where CEL is only slightly better with auto-

matic bandwidths than with fixed bandwidths (see KTA). This contrast is rather sharp in the weak

5This can be seen in the= 100 cases. Due to this similarity we do not present results for CEL im the500
cases.
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instruments case. We believe this is due to the fact that the cross-validation criterion tends to select
lower estimates (see Appendix B.2), and in the weak instruments case the proportion of excessively
large estimates, as shown by the TailPr, is larger.

In what follows we make some distinctive comments on these and the strong instruments case,
and then we discuss the properties of the estimators for each performance measure.

Weak instruments casgTables 4-9). The CE(E)L estimators with fixed bandwidths have large
tail probabilities, similarly to the HLIM estimator, which is known tofar from the no-moment
problem (Hausman et al., 2012). Therefore, the CE(E)L estimators with fixed bandwidths may
also have the no-moment problem in the weak instruments case. Besides the tail probabilities,
these estimators perform rather poorly also with respect to the 9-DR.

The CE(E)L estimators with automatic bandwidths perform much better than their counterparts
with fixed bandwidths. Their most remarkable feature is that they all have tail probabilities equal
to O (the TailPr of CEEL fom = 500 andp = 0 is actually 0.001), which suggests that these
estimators do not ster from the no-moment problem. In addition, their performance with respect
to the two measures of dispersion MAE and 9-DR improves dramatically, although the latter values
still remain high relative to those of GMM and HFUL. The same observation holds for the StD and

RMSE. Apart from the no endogeneity case, it i§idult to rank the CE(E)L and GMM even if we
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restrict the comparison to the criteria RMSE and CovPr, because in most cases GMM has lower
RMSE but poorer CovPr.

Strong instruments case(Tables 1-3). The CE(E)L estimators with fixed bandwidths have
small TailPr, possibly except for some low bandwidth values. Consequently, for most of the
bandwidths the second moments of these estimators are finite. For the lowest bandwidth values
(b, = 0.5) CEL tends to perform poorly compared to HLIM in terms of the 9-DR and TailPr, so
in these cases these estimators mdiesdrom the no-moment problem. For= 100 (Tables 1-3)
CE(E)L are rather competitive regarding the MAE, but poor regarding the RMSE, for several fixed
bandwidth values.

The CE(E)L estimators with automatic bandwidths perform better than their counterparts with
fixed bandwidths. These estimators are rather competitive compared to the other estimators as well.
A clear ranking is diicult to establish even if we restrict the comparison to RMSE and CovPr, but
we can claim that CEEL has rather good CovPr and low RMSE in all four cases. Compared to
HFUL, CEEL has similar CovPr and lower RMSE in almost all the cases.

Mean bias. The mean bias tends to be small in absolute value when we remove endogeneity,
while it seems to be inflierent to the presence of heteroskedasticity. In the weak instruments

case the CE(E)L have ftierent bias values for flerent bandwidths. The CE(E)L with automatic

ACCEPTED MANUSCRIPT
25



Downloaded by [Gazi University] at 08:10 29 October 2015

ACCEPTED MANUSCRIPT

bandwidths have a performance comparable to the other estimators. Apart from thercase0sr

without endogeneity, the bias increases slightly for the GMM and HFUL estimators as the number
of instrumentsL increases from 10 to 30, while for the HLIM the change is ambiguous. In the
strong instruments case, the CE(E)L are only biased for some very low fixed bandwidth values,
while the CE(E)L with automatic bandwidths are virtually unbiased. The bias of GMM and HFUL
tends to decrease with the strength of instruments, and decrease with the number of observations
n. The bias of GMM increases substantially as the number of instrurhantseases; the bias of

HLIM is small in most cases. The size of the bias of the DIN is comparable to that of the CE(E)L

in the fixed bandwidth case.

Median bias. In the weak instruments case the CE(E)L estimators have similar median bias
values for diferent bandwidths, for both fixed and automatic bandwidths. These bias values are
rather similar to the median biases of the other estimators. The median bias increases slightly for
the GMM, HLIM and HFUL estimators ak increases from 10 to 30. In the strong instruments
case and in the case of absence of endogeneity the CE(E)L estimators tend to be median-unbiased
for any choice of bandwidth. The median bias is small if we siil¢iodogeneity. HFUL and espe-
cially HLIM have small median bias values in most of the cases, while in the case of endogeneity

GMM has considerable median bias. This bias increaseslwitith the degree of endogeneity,
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and decreases with. The median bias of the DIN estimator does not follow a specific pattern.
However, in the case of endogeneity and weak instruments the size of the median bias is compa-
rable to that of the CE(E)L estimators. Moreover, it is negative in the strong instruments case and
large and positive in the case of endogeneity and weak instruments.

MAE. The MAE is a measure of dispersion that is robust to the no-moment problem. It de-
creases with the strength of instruments and wijttvhile the dfect of the degree of endogeneity
is ambiguous. For HLIM and HFUL, MAE increases witlh, while for GMM the dfect of L is
ambiguous. Except for very low bandwidths likg= 0.5, 0.7, the CE(E)L estimators with fier-
ent fixed bandwidths have rather similar MAE values. In the weak instruments case these values
are also similar to the MAE of HLIM and larger than the MAE of GMM and HFUL. In this case,
the CE(E)L estimators with automatic bandwidths have very competitive MAE, they are compa-
rable to those of the HFUL wheb = 10 and they are only outperformed by GMM in the low
endogeneity cases. In the weak instruments case with endogeneity (Table 4) CEL with bandwidths
b, €{1.1,1.3,15,1.7, 1.9} dominates the other estimators. In most of the strong instruments cases
the CE(E)L with automatic bandwidths have the lowest MAE, and they dominate HLIM and HFUL

in all these cases. Fa&t = 2, 3 the MAE of the DIN is comparable to that of CE(E)L with fixed

5The ambiguity may come from the feature of the DGP that a change in the degree of endogeneity is accompanied
by a change in the degree of heteroskedasticity.
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bandwidths, while foK = 5, 10,15 it tends to be larger. For those latter value&dhe MAE of
the DIN is often the larger value in the tables.

9-DR. The 9-DR is a measure of dispersion that can be estimated consistently for estimators
that sufer from the no-moment problem. In general the performance of all the estimators with
respect to the 9-DR improves with the strength of instruments, but their relative performance is
specific to this feature. In all the weak instruments case GMM has the lowest 9-DR followed
by HFUL, which is followed by the CE(E)L with automatic bandwidths. The CE(E)L with fixed
bandwidths have rather large 9-DR values, which tend to decrease with the bandwidth. The largest
values of the 9-DR are found for the DIN estimator with laKjeHLIM has 9-DR values similar
to those of the CE(E)L corresponding to the highest bandwidths. Compared to these, the 9-DR
values of the CE(E)L with automatic bandwidths are lower by a factor ranging roughly between
2 and 3. In the strong instruments case GMM still has the lowest 9-DR in all the cases, but here
this is followed by the CE(E)L with automatic bandwidths, which tends to outperform HFUL in
most of the cases. The CE(E)L with some larger fixed bandwidths outperform HFUL in most of
the cases, while for some lower fixed bandwidths they have 9-DR values similar to HLIM.

In general for all the estimators the 9-DR increases with the degree of heteroskedasticity. For

GMM the 9-DR decreases with, but the reverse holds for HLIM and HFUL. In the weak in-

ACCEPTED MANUSCRIPT
28



Downloaded by [Gazi University] at 08:10 29 October 2015

ACCEPTED MANUSCRIPT

struments case the 9-DR of GMM, HLIM, HFUL tend to increase withwhile for the CE(E)L

with automatic bandwidths it tends to decrease; for the CE(E)L with fixed bandwidths it changes
ambiguously. The 9-DR of the DIN estimator tends to be large and to grdw im the strong
instruments case, fdf = 2, the DIN estimator is comparable to the CE(E)L estimator with auto-
matic bandwidths. However, in the weak instruments case, its smallest value is similar to the 9-DR
of the HLIM.

StD. We can repeat here the qualitative remarks made in the first paragraph of the discussion on
the 9-DR. Therefore, we only mention théfdrences and make some further quantitative remarks.
The StD still increases with the degree of heteroskedasticity in most cases, except for CE(E)L in
the strong instruments case. In this case the StD of CE(E)L changes in an ambiguous way, which
is most probably due to the presence of some non-zero tail probabilities. For GMM the StD still
decreases with., but the reverse only holds for HFUL, while for HLIM it does so only in the
strong instruments case. In the weak instruments case the StD of HLIM changes very little and
ambiguously withL. Further, in this case the StD of GMM and HFUL tend to increase wijth
while for the CE(E)L with automatic bandwidths and HLIM it tends to decrease; for the CE(E)L
with fixed bandwidths it changes little and ambiguously.

In the weak instruments case (Tables 4-9) the StD values of CE(E)L are improved by a factor
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ranging roughly between2 and 35 with automatic bandwidths. In the weak instruments case the
DIN with K = 2 is similar to the HLIM. It is interesting to note that in this case, the numerical StD
values of the CE(E)L for fixed (large) bandwidths and HLIM are rather similar to the StD of the
unconditional GEL and LIML estimators in Guggenberger’s (2008) weak instruments case (Tables
1(a) and 1(b)).

RMSE. The RMSE values, although in some cases numericaffgréint, qualitatively behave
like the StD values. Therefore, the discussion on the performance of the estimators regarding the
StD is also valid here.

CovPr. In an overall sense, the estimator with the best CovPr tends to be HLIM, which outper-
forms HFUL most of the times. However, we can make a few remarks. In particuld, $amall
the DIN estimator displays competitive CovPr’s in all the cases. The HFUL estimator outperforms
the CE(E)L with automatic bandwidths. In almost all cases GMM performs rather poorly in the
presence of endogeneity where its CovPr is beldi® several cases. When= 0 the CovPr of
the GMM is quite close to the nominal coverage. The poorest CovPr of the CE(E)L with automatic
bandwidths is (86 (Table 6), where the CovPr of HLIM isT/0. In the absence of endogeneity,
the CovPr of the CE(E)L is very close to the nominal coverage. In the case-&00 ando = 0

the CovPr of CEEL is exactly 0.950. The CovPr of the CE(E)L with fixed bandwidths increases
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with the bandwidth values.

The CovPr improves with the strength of instruments and it gets poorer with higher endogene-
ity. In the weak instruments case thffeet of n is not clear. The CovPr for HLIM and HFUL
increases i, while for GMM it decreases iiL; the latter is remarkably poor fdr = 30. A
similar phenomenon is observed for the DIN estimator.

TailPr. The TailPr of the CE(E)L with automatic bandwidths, GMM and HFUL are 0O in nearly
all the cases. The CE(E)L with fixed bandwidths and HLIM have strictly positive TailPr in several
cases. Inthe weak instruments case these are typically rather large for the former estimator, ranging
from 0.012 to 0054, while they are slightly lower, ranging from0Q7 to 0036 for the latter
estimator. In the strong instruments case, these estimators have their TailPr equal to 0 or below
0.01 in most of the cases. Some exceptions to these can be found for CEL for bandyigths
0.5, 0.7, where the TailPr values range fronmib to 020, and for HLIM withn = 100, where the
TailPr could be as high as@6. The TailPr of the DIN is an increasing functionkof ForK = 2
we find values that are comparable to the TailPr of the HLIM estimator. The TailPr’s of CE(E)L,
HLIM and DIN tend to go down as the sample size changes fienil00 to 500.

We use the TailPr together with the fact that HLIMI&us from the no-moment problem (Haus-

’For comparison, we mention that the corresponding tail probability of the standard Cauchy distribution, whose
first absolute moment does not exist, is aba028.
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man et al., 2012, p.217) as a practical indicator of the existence of moments. Our conclusions
earlier in this section regarding the no-moment problem for the CE(E)L with fixed bandwidths are
based on this indicator. For further comparison purposes we note that the unconditional GEL and
LIML in the weak instruments case discussed by Guggenberger (2008, Tables 1(a)-(b), 3(a)-(b))
have tail probabilities ranging fromDto 03. These values are rather close to those found in our
weak instruments case for HLIM and slightly lower than those found for the CE(E)L with fixed

bandwidths.

4 Conclusions

In this paper we find evidence that the CE(E)L estimators with certain fixed bandwidths have
standard deviations and tail probabilities similar to the HLIM estimator, which is known to have
the no-moment problem. This suggests that the CE(E)L with fixed bandwidths may &0 su
from the no-moment problem. We also study these estimators with automatic bandwidths ob-
tained through the cross-validation method proposed by Newey (1993). Our results suggest that
the CE(E)L estimators with automatic bandwidths do not have the no-moment problem. This is re-
markable for two reasons. First, the closely related unconditional GEL estimators fitsdigum

the no-moment problem (Guggenberger, 2008). Second, in linear heteroskedastic models without
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endogenous regressors the CE(E)L with fixed and automatic bandwidths have similar finite sample
properties (KTA and Gospodinov and Otsu, 2012). We provide arguments that the cross-validation
criterion in the model we consider tends to eliminate estimates with large values, which implies
that estimators with automatic bandwidths have low tail probabilities.

In linear models with endogenous regressors and weak instruments we find CE(E)L to have
finite sample properties poorer than the HFUL estimator. This holds regardless of whether the
bandwidth is fixed or automatic, although the latter considerably improves the performance of
CE(E)L under the various performance measures. The relative performances change significantly
in the strong instruments case. Automatic bandwidths for CE(E)L still improve over fixed band-
widths in most cases, but the improvement is not as large as in the weak instruments case. Further,
the CE(E)L with automatic bandwidths tend to outperform HFUL in terms of RMSE, while the
reverse holds in terms of the coverage probability, although tfierednces in performance are
numerically rather small.

Based on these considerations, we recommend the use of HFUL. This advice also takes into
account the computational burden that CEEL, and in particular CEL, entail, which increases fur-
ther when the automatic bandwidth is calculated. Still, in cases when the RMSE is the relevant

loss function, and the instruments are known to be strong, one may prefer CE(E)L. In this situ-
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ation, since CEL and CEEL deliver similar results, we recommend the computationally simpler
CEEL. Since even in the strong instruments case it may happen for some fixed bandwidths that the
CEEL estimator has a large tail probability, we recommend estimation by using at least a few fixed
bandwidths followed by the selection of the best bandwidth.

The conclusions regarding the relative performance of the CE(E)L estimators majeberdi
in nonlinear models. In such models, since the HFUL estimator has been developed for linear
models, the performance of CE(E)L should be compared to other estimators, which are suited to
nonlinear models. Such estimators have recently been developed binp@ern and Lobato (2004)
and Lavergne and Patilea (2012) based on unconditional moment restrictions that are equivalent
to the conditional moment restriction that identifies the model. Future research will focus on the
finite samples properties of CE(E)L compared to these estimators, as well as fixdieateGMM

estimator (Newey, 1993) for a nonlinear model.
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A Appendix: Tables

A.l n=100
ean edian - t ovPr allPr
n=100 x=04,p=075R?2=0.1
CEL

automatic 0.018 0.080 0.210 1.300 0.472 0.472 0.877 0.000
b, =05 -0.605 -0.020 0.350 4.040 4.026 4.071 0.732 0.020
b, =07 -0.485 -0.010 0.320 3.200 3.484 3,518 0.798 0.015
b, =0.9 -0.218 -0.010 0.240 1680 1978 1990 0.852 0.003
b,=11 -0.172 -0.010 0.240 1460 1.267 1.279 0.853 0.002
b, =13 -0.143 -0.010 0.240 1.440 1.491 1498 0.916 0.003
b,=15 -0.140 -0.010 0.230 1.440 1.497 1503 0.905 0.003
b,=17 -0.088 -0.010 0.240 1470 1.857 1.859 0.948 0.005
b, =19 -0.037 0.000 0.250 1530 1.502 1.503 0.950.002
CEEL

automatic  0.025 0.060 0.220 1.170 0.450 0.451 0.891 0.000
b, =05 -0.333 -0.040 0.290 2.553 2.347 2.370 0.716 0.004
b, =0.7 -0.209 -0.040 0.280 2.112 2.039 2.050 0.797 0.004
b, =0.9 -0.109 -0.010 0.235 1560 1.018 1.023 0.882 0.000
b,=11 -0.073 -0.010 0.230 1.391 0.793 0.797 0.915 0.000
b, =13 -0.085 -0.010 0.230 1.381 0.585 0.591 0.926 0.000
b,=15 -0.055 -0.010 0.240 1.321 0.965 0.967 0.931 0.001
b,=17 -0.080 -0.020 0.240 1.361 0.682 0.687 0.936 0.000
b, =19 -0.035 -0.010 0.240 1.431 1.239 1.239 0.940.001
GMM

L=10 0.295 0.311 0.144 0.779 0.244 0.383 0.633 0.000
L=30 0.532 0.533 0.091 0470 0.144 0551 0.073 0.000
HLIM

L=10 -0.108 0.026 0.266 1910 1.483 1.487 0.912 0.001
L=30 -0.109 0.068 0.375 4.222 3436 3.437 0.921 0.011
HFUL

L=10 0.067 0.093 0.213 1.136 0.372 0.378 0.892 0.000
L=30 0.202 0.181 0.252 1.449 0.441 0.485 0.907 0.000

DIN

K=2 -0.133 -0.004 0.250 1.350 1.206 1.213 0.910 0.002
K=3 -0.230 -0.029 0.261 1.547 1.828 1.842 0.870 0.004
K=5 -0.621 -0.134 0.475 14.870 5.553 5587 0.478 0.024

K=10 -0.716  -0.295 1.159 23.460 7.269 7.305 0.187 0.040
K=15 -0.081 -0.259 1.273 24.262 7.284 7.284 0.140.040

Table 1: strong instruments, endogeneity, heteroskedasticity
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Mean Median MAE 9-DR SiD RMSE CovPr TailPr
n=100 7=04,,=0R2=01
CEL
automatic -0.013 0.005 0.225 1.270 0.492 0.492 0.975 0.000
b, =05 -0.340 0.000 0.380 3.930 3.643 3.659 0594 0.017
b, =07 -0.167 0.010 0.330 3.080 2.989 2993 0.647 0.009
b, =0.9 0.035 0.010 0.260 1.670 1.675 1.676 0.693 0.002
b,=11 -0.025 0.000 0.240 1540 1.304 1.304 0.722 0.002
b, =13 -0.016 0.010 0.250 1540 1.333 1.333 0.751 0.002
b,=15 -0.050 0.000 0.260 1510 1634 1635 0.774 0.003
b,=17 -0.013 0.000 0.270 1590 1.613 1.613 0.796 0.002
b, =19 -0.033 0.000 0.280 1.740 1.685 1.686 0.810.003
CEEL
automatic -0.002 -0.020 0.200 1.300 0.422 0.422 0.982 0.000
b, =05 -0.009 -0.020 0.310 2.612 2.145 2.145 0.682 0.004
b, =0.7 -0.042 -0.020 0.280 2.072 1.499 1500 0.728 0.002
b, =0.9 -0.020 -0.020 0.250 1.613 0.859 0.859 0.775 0.000
b,=11 -0.034 -0.010 0.240 1.491 0978 0.979 0.798 0.001
b, =13 0.039 -0.010 0.230 1.482 1.098 1.099 0.834 0.001
b,=15 0.011 -0.020 0.230 1581 1.314 1.314 0.850 0.002
b,=17 -0.005 -0.010 0.250 1.622 1.010 1.010 0.866 0.000
b, =19 -0.021 -0.020 0.260 1.791 0.783 0.783 0.884€.000
GMM
L=10 -0.010 -0.007 0.170 0.904 0.279 0.279 0.936 0.000
L=30 0.002 0.000 0.119 0.609 0.188 0.188 0.925 0.000
HLIM
L=10 0.007 -0.004 0.289 2.279 1836 1.836 0.972 0.002
L=30 -0.002 -0.004 0.479 5.343 3592 3592 0991 0.011
HFUL
L=10 -0.006 -0.002 0.251 1.554 0.453 0.453 0.966 0.000
L=30 0.011 -0.002 0.380 2.103 0.621 0.621 0.988 0.000

DIN

K=2 0.007 -0.015 0.242 1.340 0.961 0.961 0.947 0.000
K=3 0.093 -0.009 0.249 1.739 2.166 2.168 0.870 0.006
K=5 -0.073 -0.044 0.561 15.143 5.748 5.748 0.411 0.030

K=10 0.033 -0.030 1.589 24.647 7.347 7.347 0.156 0.044
K=15 0.515 -0.001 2.154 28.694 8.301 8.317 0.100.061

Table 2: strong instruments, no endogeneity, heteroskedasticity
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Mean Median MAE 9-DR SiD RMSE CovPr TailPr
n=100 7=04,=075R2=0
CEL
automatic 0.082 0.140 0.190 1.130 0.382 0.390 0.869 0.000
b,=05 -0.660 0.020 0.270 3.100 3.728 3.786 0.656 0.019
b, =07 -0.449 0.030 0.240 1.880 3.259 3.290 0.700 0.016
b,=09 -0.121 0.010 0.210 1.360 1.053 1.060 0.735 0.001
b,=11 -0.133 0.005 0.215 1.250 1.212 1.219 0.769 0.002
b,=13 -0.087 0.020 0.210 1.250 1.109 1.112 0.807 0.001
b,=15 -0.036 0.020 0.220 1330 1.278 1.279 0.829 0.002
b,=17 -0.085 0.020 0.220 1.480 1.416 1.418 0.851 0.002
b,=19 -0.137 0.020 0.240 1.640 1.697 1.703 0.876.001
CEEL
automatic  0.047 0.100 0.190 1.070 0.411 0.414 0.899 0.000
b,=05 -0.138 0.010 0.240 1.840 1.753 1.759 0.719 0.003
b, =0.7 -0.185 0.020 0.220 1.490 1505 1516 0.757 0.003
b,=09 -0.131 0.000 0.210 1.290 0995 1.004 0.801 0.001
b,=11 -0.093 0.000 0.200 1.330 1.014 1.018 0.854 0.001
b,=13 -0.113 0.010 0.200 1.440 0.764 0.772 0.880 0.000
b,=15 -0.114 0.010 0.200 1.470 0.897 0.904 0.894 0.000
b,=17 -0.056 0.010 0.210 1.440 1.736 1.737 0.910 0.004
b,=19 -0.018 0.010 0.220 1550 1.204 1.204 0.928.001
GMM
L=10 0.298 0.311 0.122 0.654 0.201 0.359 0.498 0.000
L=30 0.520 0.519 0.083 0427 0.131 0536 0.023 0.000
HLIM
L=10 -0.115 0.016 0.218 1.713 1532 1536 0.936 0.002
L=30 0.002 0.090 0.377 4.270 3.089 3.089 0.902 0.009
HFUL
L=10 0.058 0.097 0.173 0963 0.305 0.311 0.911 0.000
L=30 0.247 0.205 0.269 1658 0.487 0546 0.867 0.000

DIN

K=2 -0.105 -0.001 0.194 1.152 0.905 0.911 0.916 0.001
K=3 -0.118 -0.007 0.211 1.248 0.999 1.005 0.879 0.001
K=5 -0.821 -0.108 0.352 11.449 4617 4.690 0.515 0.014

K=10 -0.599 -0.228 0.767 21.824 6.595 6.623 0.218 0.032
K=15 -0.608 -0.224 0.870 23.411 6.878 6.905 0.174.031

Table 3: strong instruments, endogeneity, homoskedasticity
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Mean Median MAE 9-DR SiD RMSE CovPr TailPr
n=100 x=004p,=075R=01
CEL
automatic 0.698 0.730 0.400 3.640 1514 1667 0.615 0.000
b, =05 0.236 0.740 1.090 16.270 6.183 6.188 0.367 0.039
b, =07 0.648 0.730 1.050 14.880 5.736 5.772 0.459 0.025
b, =0.9 0.656 0.730 0.865 13.140 5.666 5.704 0.561 0.030
b,=11 0.636 0.740 0.720 10.870 5.632 5.668 0.687 0.036
b, =13 0.674 0.740 0.650 11.410 5.387 5.429 0.723 0.028
b,=15 0.666 0.740 0.615 10.140 5.262 5.304 0.797 0.025
b,=17 0.703 0.740 0.590 8.980 4.878 4.929 0.850 0.022
b, =19 0.564 0.740 0.570 9.130 4.721 4.755 0.85B.019
CEEL
automatic  0.656 0.700 0.440 3.650 1.318 1.472 0.656 0.000
b, =05 0.528 0.710 1.040 14.490 5.683 5.708 0.360 0.029
b, =0.7 0.626 0.740 1.050 13.808 5.965 5.997 0.497 0.037
b, =0.9 0.736 0.700 0.860 12.498 5.762 5.809 0.589 0.033
b,=11 0.514 0.695 0.745 10.802 5.490 5514 0.663 0.031
b, =13 0.460 0.680 0.670 10.330 5.489 5508 0.737 0.034
b,=15 0.408 0.680 0.645 9.837 4.861 4.863 0.770 0.023
b,=17 0.557 0.695 0.920 8.847 4.393 4.427 0.798 0.016
b, =19 0.709 0.700 0.610 8.105 4.713 4.765 0.810.022
GMM
L=10 0.728 0.735 0.180 1.026 0.326 0.798 0.294 0.000
L=30 0.752 0.751 0.092 0481 0.144 0.766 0.010 0.000
HLIM
L=10 0.506 0.730 0.568 9.782 4.702 4.729 0.718 0.020
L=30 0.564 0.751 0.619 8.534 4908 4940 0.822 0.025
HFUL
L=10 0.726 0.739 0.346 1.720 0.512 0.888 0.649 0.000
L=30 0.753 0.746 0.387 1.783 0.542 0.927 0.794 0.000

DIN

K=2 0.590 0.684 0.845 9.798 4.682 4.719 0.808 0.017
K=3 0.260 0.685 1.144 16.567 6.144 6.144 0.678 0.034
K=5 -0.273 0.657 1.885 27.869 7.962 7966 0.331 0.062

K=10 -0.374 0.616 2.658 38.041 9.289 9.296 0.085 0.090
K=15 -0.610 0.488 2.829 36.804 9.166 9.187 0.050.087

Table 4. weak instruments, endogeneity, heteroskedasticity
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Mean Median MAE 9-DR SiD RMSE CovPr TailPr
n=100 7=004p=0R2=01
CEL
automatic  0.047 0.030 0560 5.010 1.725 1.726 0.943 0.000
b, =05 -0.425 0.020 1.330 20.540 7.165 7.177 0.587 0.054
b, =07 0.079 0.050 1.350 19.040 6.908 6.908 0.720 0.046
b, =0.9 0.123 0.050 1.155 17.080 6.583 6.585 0.730 0.047
b,=11 0.078 0.040 1.015 16.200 6.396 6.396 0.730 0.045
b, =13 0.166 0.025 0.985 15.810 6.289 6.291 0.735 0.041
b,=15 0.092 0.010 0.940 12.760 5.668 5.669 0.730 0.031
b,=17 -0.007 0.005 0.915 12.190 5.545 5545 0.738 0.034
b, =19 -0.039 0.010 0.880 10.980 5.268 5.268 0.748.026
CEEL
automatic  0.085 0.020 0.600 4.850 1.840 1.842 0.959 0.000
b, =05 -0.340 -0.025 1.220 19.450 6.449 6.458 0.602 0.034
b, =0.7 0.010 0.055 1.200 16.080 6.141 6.141 0.731 0.034
b, =0.9 0.197 0.010 1.090 14.170 6.237 6.240 0.774 0.042
b,=11 0.066 0.005 1.025 15.320 6.196 6.196 0.773 0.037
b, =13 -0.046 0.010 0.970 16.160 6.079 6.079 0.772 0.031
b,=15 0.028 0.010 0.980 14.820 6.078 6.078 0.771 0.036
b,=17 0.043 0.020 0.940 13.200 5.750 5.751 0.770 0.032
b, =19 -0.030 0.010 0.920 13.120 5.429 5.429 0.776.029
GMM
L=10 -0.003 -0.003 0.268 1.411 0.443 0.443 0.952 0.000
L=30 0.007 -0.004 0.138 0.738 0.221 0.221 0.924 0.000
HLIM
L=10 -0.231 -0.009 0.904 13.285 5.815 5.819 0.990 0.036
L=30 0.031 0.033 0.992 11.619 5.629 5.629 0.993 0.030
HFUL
L=10 0.007 -0.005 0.522 2.434 0.726 0.726 0.983 0.000
L=30 0.017 0.019 0.603 2.755 0.839 0.840 0.993 0.000

DIN

K=2 -0.015 0.006 1.069 14.278 5.785 5.785 0.994 0.030
K=3 0.300 0.052 1.345 17.393 6.462 6.469 0.935 0.036
K=5 -0.181 -0.097 2.063 33.875 8.627 8.681 0.413 0.078

K=10 -0.289 0.059 2.933 36.961 9.326 9.330 0.089 0.090
K=15 -0.167 0.082 2.825 37.129 9.426 9.428 0.060.091

Table 5: weak instruments, no endogeneity, heteroskedasticity
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Mean Median MAE 9-DR SiD RMSE CovPr TailPr
n=100 7=0.04p=075R2=0
CEL
automatic 0.741 0.750 0.340 2.890 0994 1.240 0.586 0.000
b,=05 0561 0.740 0.670 9.550 4.631 4.665 0.368 0.020
b, =07 0.552 0.730 0.650 9.880 4.818 4.850 0.444 0.022
b,=09 0.675 0.710 0.670 9.610 4554 4604 0556 0.019
b,=11 0.586 0.700 0.680 8.490 4.370 4.410 0.614 0.017
b,=13 0.848 0.700 0.700 7.940 4.320 4.402 0.659 0.018
b,=15 0.853 0.720 0.700 7.850 4.108 4.196 0.688 0.014
b,=17 0.783 0.720 0.710 8.210 4.138 4.211 0.716 0.014
b,=19 0931 0.735 0.685 7.950 3.934 4.043 0.739.013
CEEL
automatic 0.748 0.745 0.355 3.020 1.372 1562 0.628 0.000
b,=05 0595 0.670 0.660 11.120 4.886 4.922 0.402 0.019
b, =0.7 0.572 0.700 0.660 9.550 4555 4591 0.452 0.018
b,=09 0.877 0.720 0.700 9.110 4685 4.766 0548 0.019
b,=11 0.661 0.730 0.700 8.650 4960 5.004 0.627 0.027
b,=13 0.672 0.720 0.675 7.830 4519 4569 0.682 0.022
b,=15 0.470 0.710 0.665 8.790 4.478 4502 0.721 0.019
b,=17 0.629 0.720 0.650 8.060 4523 4566 0.732 0.018
b,=19 0.558 0.705 0.640 8.730 4.282 4.319 0.744€.013
GMM
L=10 0.746 0.751 0.157 0.772 0.246 0.786 0.136 0.000
L=30 0.754 0.757 0.095 0.452 0.142 0.767 0.002 0.000
HLIM
L=10 0.823 0.771 0.672 9.741 4694 4.766 0.770 0.022
L=30 0.643 0.778 0.696 8577 4925 4966 0.763 0.023
HFUL
L=10 0.757 0.765 0.351 1549 0472 0.892 0.671 0.000
L=30 0.755 0.769 0.407 1814 0554 0.937 0.703 0.000
DIN
K=2 0.308 0.679 0.674 8520 4.779 4.789 0.776 0.022
K=3 0.277 0.715 0.680 12.451 5.354 5.361 0.618 0.028
K=5 0.364 0.736 0.973 17.669 6.337 6.348 0.318 0.040
K =10 0.325 0.743 1.621 23.085 7.457 7.464 0.123 0.054
K =15 0.319 0.744 1.718 23.088 7.604 7.611 0.088.085

Table 6: weak instruments, endogeneity, homoskedasticity
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A.2 n=500

n =500

Mean Median MAE 9-DR SiD RMSE CovPr TailPr

7 =004,p=075R =01

CEEL

automatic 0.538 0.640 0.420 3.760 1.510 1.603 0.669

0.000

0.704 0.701 0.196 1.119 0.335 0.780 0.392
0.734 0.735 0.113 0.568 0.174 0.755 0.029

0.651 0.674 0595 9.263 4.737 4.782 0.716
0.464 0.685 0.681 8590 4.810 4.832 0.728

0.671 0.691 0.396 2.275 0.666 0.945 0.674
0.682 0.694 0.500 2.611 0.778 1.085 0.704

-0.044 0.431 0.731 9.475 5.108 5.108 0.842
-0.176 0.426 0.842 15900 5.850 5.852 0.743
0.321 0.453 1.152 16.021 6.254 6.262 0.568
0.026 0.492 1.293 18.864 6.640 6.641 0.318

0.000
0.000

0.022
0.020

0.000
0.000

0.026
0.033
0.038
0.040

-0.160 0.544 1.334 20.472 7.044 7.045 0.200.052

Table 7: weak instruments, endogeneity, heteroskedasticity
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Mean Median MAE 9-DR SiD RMSE CovPr TailPr
n=500 x=004p=0R=01
CEEL
automatic 0.005 0.010 0.555 4.780 2.006 2.006 0.950 0.001
b, =05 0.135 0.040 0.960 13.580 5.661 5.662 0.738 0.026
b, =07 -0.014 0.020 0.880 10.990 5.264 5.264 0.806 0.025
b, =0.9 -0.202 0.015 0.875 10.240 5.141 5.145 0.813 0.027
b,=11 -0.004 0.045 0.875 9.900 5.052 5.052 0.821 0.024
b, =13 -0.115 0.020 0.860 9.040 4693 4694 0.821 0.021
b,=15 -0.020 0.030 0.870 9.320 4923 4923 0.830 0.022
b,=17 0.074 0.020 0.895 9.930 4950 4.950 0.831 0.020
b, =19 0.061 0.015 0.905 10.510 5.229 5.229 0.839.022

L=10 0.006 0.014 0.260 1.389 0.433 0.433 0.977 0.000
L =30 0.002 0.010 0.153 0.762 0.231 0.285 0.958 0.000

L=10 0.140 0.018 0.776 9.969 5.373 5375 0.991 0.029
L=30 -0.048 -0.022 0.913 11.310 5.109 5.109 0.992 0.022

L=10 0.010 0.013 0.525 2919 0.852 0.852 0.989 0.000
L=30 0.002 -0.019 0.691 3.524 1.028 1.454 0.990 0.000

DIN

K=2 0.133 0.024 0.837 9.502 5.252 5253 0.994 0.029
K=3 0.286 0.043 0.980 12.065 5.959 5966 0.972 0.039
K=5 0.202 0.013 1.254 16.767 5.993 5.996 0.758 0.026

K =10 -0.017 0.033 1.617 21.157 7.344 7.344 0.356 0.055
K=15 0.029 0.026 1579 21.124 7.261 7.261 0.198.050

Table 8: weak instruments, no endogeneity, heteroskedasticity
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Mean Median MAE 9-DR SiD RMSE CovPr TailPr
n=500 7=0.04p=075R=0
CEEL
automatic 0.595 0.640 0.380 3.690 1.479 1594 0.652 0.000
b, =05 0.617 0.520 0.650 9.190 4.981 5.019 0.496 0.025
b, =07 0.453 0.490 0.625 8.140 4.343 4.366 0.565 0.016
b, =0.9 0.367 0.480 0.610 8.150 4.244 4.260 0.617 0.016
b,=11 0.524 0.480 0.600 7.660 3.940 3.975 0.662 0.012
b, =13 0.362 0.490 0.590 7.980 4.030 4.046 0.712 0.015
b,=15 0.433 0.505 0.615 7.740 4.379 4.400 0.747 0.018
b,=17 0.589 0.510 0.625 8.650 4.679 4.716 0.758 0.021
b,=19 0.695 0.530 0.645 7.940 4.740 4.790 0.778.023

L=10 0.698 0.701 0.160 0.756 0.233 0.735 0.155 0.000
L=30 0.735 0.737 0.088 0.434 0.132 0.746 0.004 0.000

L=10 0.638 0.584 0.645 7.909 4308 4.355 0.813 0.017
L =30 0.656 0.672 0.624 7.847 4.340 4397 0.764 0.020

L=10 0.649 0.619 0.387 1.710 0.530 0.838 0.734 0.000
L=30 0.706 0.689 0.439 2.118 0.639 0.952 0.731 0.000

K=2 0.297 0.415 0.585 9.148 4.111 4121 0.813 0.010
K=3 0.269 0.442 0.586 9.125 4569 4577 0.710 0.020
K=5 0.386 0.493 0.677 10.158 4.991 5.006 0.530 0.024
K =10 0.414 0.606 0.829 10.500 4.799 4.817 0.323 0.019
K=15 0.348 0.595 0.865 9.928 4.843 4.856 0.240.020

Table 9: weak instruments, endogeneity, homoskedasticity

B Appendix: Notes on computation

B.1 Lagrange multipliers for CEL

The Lagrange multiplier (z, 8) is the solution, for any = 1, ..., n, of the maximization problem

A(z.B) = arg n;axz wij log (1 +yg(y;. X;.5)).-
=1
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For simplicity of notation drop the subscrigromw; and letg; = g(y;. x;.8). Then, the Lagrange
multiplier corresponding to this generic case is found by maximizing

f() =) wilog(1+gy).

=1

This is a function strictly concave inunlessy; = 0 for all j.

In order to search foy values for which 2g;y > Ofor all j, we compute = max{é—jllgj > 0,w; > 0} <
0 andd = min{a—lﬂgj <0,w; > 0} > 0;8 then forc < y < d it holds that 1+ gjy > O for all j. We
use the Newton-Raphson algorithm to find the Lagrange multiplier. In order to ensure that the

algorithm does not take values outside the intervét, d), we maximize in fact the function
n
c+dé
F (t) = ;Wj |Og(1+ gjm), teR;

suppose we obtaiti = arg maxF (t). Then, the Lagrange multiplier is determined as

_ c+dé

A= Tia € (c,d).

This method for computing the Lagrange multipliar&;, 8) has worked very well for our DGP’s.

8Note that, since we use the Epanechnikov kernel, not all weightse necessarily strictly positive.
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B.2 Cross-validation

The cross-validation criterion proposed by Newey (1993, p.433) adapted to our model is
_ n
CV(b) = ) R(2)Q(@),
i=1
where
R@)={D@@)-D@) +B(@)|Q@)-2@)}

B(2=D(2Q (2 *andD (2, Q (2) are nonparametric kernel regression estimatoi3 @, Q2 (2),

respectively, where

ag (y’ X, :80) |

D(z):E[ B

2| 2@ -E[Puxpie 2 ™

The expressioR (z) cannot be computed; Newey proposes to estimad it

_ a9y %.8) ~ o~ . —~
R(z) = [T -D.+BL (G- Q)|
9For our DGP these expressions are
D@ = E[-XZ=-nz
2
I 1-p2 ’Z + .86*
Q (Z) = E {pu + ¢2+—p864 (¢V]_ + 86\/2)] |z| = p2 + (1 _p2) %
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whereD_; andﬁ_i are leave-one-out estimatorsd{z) andQ (z). Specifically,

n

D_i = - Z XjW_ij,

=1, j#i
n
ﬁ—i = Z /g\jzw—ija
=1, j#i
§—| = B—iﬁ:il,
where
K (52
W-ij = n ( > )ﬁ—zj ’
it K(52)
g = Q(Yi,Xi,,E)~

The basic idea underlying this estimation is to replace the conditional expectations by their leave-
one-out estimators and the estimators of the conditional expectations by the dependent variables in

the associated nonparametric regression. In our model the criterion simiglifies

R(z) = [S_i (%i -~ 1) — X — B_i].

The cross-validation criterion we uge

CV(b) = ) R @)
i=1
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For all values of bandwidthis, from a grid (e.g., ®, 0.7, 0.9, 11, 1.3, 15, 17, 19) we obtain an
estimator,E = E(bn). Then we compute thealuesCV (b,) for eachb, and choose the estimator

and the bandwidth thainimize CV (b,). We refer to the estimator that we obtain this way as the
cross-validated estimator, and to the bandwidth that we obtain as the automatic bandwidth. In the
remainder of this section we show that in the case of our model for large values of the estimate the
cross-validation criterion is also large, that is, wlﬁne oo we havethatCV (b,) — o First note

that When‘ﬁ — oo we havethat

—

)(1.2

R(z) - D, (— - 1) —x-D...
| Z?:l, j#i XjZW_ij |

Since we assume that the variables in our model are continuous random variables, it holds with

probability 1 that there are numbetsk such that_, = D_ (”#wah - 1) — X, — D_p, # 0 and
jon

j=1, j#h 7

XW_nk # 0. Then

TV = Y R (@01 2R ()00 > R (2) FWone (8)

i=1
Sincex, # 0 we have tha@? = (yk _,'g‘xk)2 — oo ale' — o0, S0 the limit of the right hand side of

(8) Whenlﬁ — 00 |S 00.
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CEEL objective function
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Figure 1: CEEL objective function in the case of strong instruments and low endogeri&nity (
0.2, p =03 andr = 0.4)
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CEEL objective function
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Figure 2: CEEL objective function in the case of weak instruments and high endoger@nity (
0.1, p = 0.75, andr = 0.04)
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