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Abstract

We provide Monte Carlo evidence on the finite sample behavior of the conditional em-

pirical likelihood (CEL) estimator of Kitamura, Tripathi, and Ahn (2004) and the conditional

Euclidean empirical likelihood (CEEL) estimator of Antoine, Bonnal, and Renault (2007) in

the context of a heteroskedastic linear model with an endogenous regressor. We compare

these estimators with three heteroskedasticity-consistent instrument-based estimators and the

Donald, Imbens and Newey (2003) estimator in terms of various performance measures. Our

results suggest that the CEL and CEEL with fixed bandwidths may suffer from the no-moment

problem, similarly to the unconditional generalized empirical likelihood estimators studied by

Guggenberger (2008). We also study the CEL and CEEL estimators with automatic band-

widths selected through cross-validation. We do not find evidence that these suffer from the

no-moment problem. When the instruments are weak, we find CEL and CEEL to have fi-

nite sample properties –in terms of mean squared error and coverage probability of confidence
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ACCEPTED MANUSCRIPT

intervals– poorer than the heteroskedasticity-consistent Fuller (HFUL) estimator. In the strong

instruments case the CEL and CEEL estimators with automatic bandwidths tend to outper-

form HFUL in terms of mean squared error, while the reverse holds in terms of the coverage

probability, although the differences in numerical performance are rather small.
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ACCEPTED MANUSCRIPT

1 Introduction

Motivated by the practical importance of models defined by conditional moment restrictions, a

number of recent important contributions have proposed empirical likelihood-based techniques for

estimation and inference of this class of models. Kitamura, Tripathi, and Ahn (2004, KTA hence-

forth) develop a conditional empirical likelihood estimator of these models. Antoine, Bonnal, and

Renault (2007, ABR henceforth) introduce an estimator based on a related idea that instead of the

empirical likelihood uses the Euclidean likelihood. A common way of dealing with conditional

moment restrictions is to reduce them to unconditional ones by means of instruments. This proce-

dure typically leads to a large number of potentially useful instruments, which implies the problem

of selecting a reduced number of most useful instruments. An alternative way to proceed is to con-

struct asymptotically optimal instruments (e.g., Newey 1993). The KTA and ABR estimators are

appealing from an asymptotic theoretical point of view as they are able to achieve semiparametric

first-order asymptotic efficiency without computing the optimal instruments.

The literature has paid considerable attention to conditional empirical likelihood estimators.

Smith (2007) generalizes the conditional empirical likelihood (CEL) of KTA and the conditional

euclidean empirical likelihood (CEEL) of ABR to the class of local Cressie-Read discrepancies,

where the termlocal refers to the explicit use of kernel weights. He shows that the estimators
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of the local Cressie-Read class are first order asymptotically equivalent to the CEL and CEEL

(CE(E)L for short) estimators. A few other recent contributions stress the potential of the con-

ditional generalized empirical likelihood (GEL) framework from an asymptotic theory point of

view. Gospodinov and Otsu (2012) show that in an AR(1) model with iid errors the local GMM

estimator, which is essentially the same as CEEL, has a higher order asymptotic bias smaller than

the OLS estimator. Tripathi and Kitamura (2003) show that a test statistic for conditional moment

restrictions based on the CEL objective function is asymptotically optimal in terms of a certain

average power criterion.

A conclusion of these papers is that empirical likelihood-based estimators are rather appealing

for conditional moment restriction models from an asymptotic theory point of view. However,

although some of these papers present finite sample studies of these estimators, none of them

provides information on their finite sample performance in the important class of models with en-

dogenous regressors. Another problem that is important in practice is that, although the CE(E)L are

instrument-free methods, they depend on additional unknown parameters, that is, bandwidths. The

asymptotic theory of these estimators specifies the rate at which the bandwidths should change with

the sample size in order to obtain asymptotic efficiency, but this does not provide a clear indication

on how to choose the bandwidths in practice. For some models (e.g., the linear heteroskedastic
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ACCEPTED MANUSCRIPT

model in KTA, or the AR(1) model with ARCH errors in Gospodinov and Otsu, 2012 ) different

bandwidth values lead to similar estimates. For models with endogenous regressors, however, it is

not known to what extent the finite sample performance of these estimators is affected, if one uses

different bandwidths, or if one uses some bandwidth selection procedure.

There are at least two reasons to expect CE(E)L to perform poorly in models with endogenous

regressors, especially when the instruments are weak. First, these estimators are the result of a

saddle point optimization problem, which may have extensive flat parts near the optimum. Second,

for a linear model with an endogenous regressor, Guggenberger (2008) finds that the unconditional

GEL estimators suffer from the no-moment problem. These estimators are also obtained as the

outcome of a saddle point optimization problem, compared to which the dimensionality of the

optimization problem increases considerably in the conditional moment case.

Due to these considerations we find it important to investigate how the CE(E)L estimators

perform in finite samples. In order to do so, we conduct a Monte Carlo experiment, in which we

estimate a one-parameter linear model with an endogenous regressor and heteroskedasticity using

several estimators: CEL (KTA), CEEL (ABR), GMM, HLIM, HFUL (the latter two from Hausman

et al., 2012) and the estimator proposed by Donald, Imbens and Newey (2003). For the CE(E)L

estimators we use a grid search on a very fine grid in a rather large interval around the true value in
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ACCEPTED MANUSCRIPT

order to circumvent possible convergence problems of standard algorithms like Newton-Raphson

or nonderivative simplex search. Since the CE(E)L estimators depend on unknown bandwidths,

we compute these estimators for a small grid of fixed bandwidth values, and then out of these

we select the best bandwidth according to a cross-validation criterion proposed by Newey (1993).

We then evaluate the performance of the estimators according to a range of criteria. Newey’s

cross-validation criterion uses the second-order remainder term from estimation of the optimal

instruments. We provide intuition for the fact that this cross-validation acts in a way similar to

regularization in that it tends to eliminate estimates that are far from zero.

Due to their similarity to unconditional GEL estimators, the CE(E)L estimators may also suffer

from the no-moment problem. Therefore, interpretation of quadratic loss measures such as stan-

dard deviation and mean square error computed from Monte Carlo samples should be dealt with

care. In order to avoid potential problems of interpretation, in addition to the standard measures of

performance, we also look at performance measures like the median absolute error, the nine-decile

range, and the tail probability, which do not depend on moments. A related concept is the proba-

bility of concentration used by Morimune (1983). Fiebig (1985) provides examples on how some

estimators with no moments may be preferred to others that have moments. He suggests as a gen-

eral evaluation criterion in this case the concentration of the estimator around the true parameter.
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In this respect, his probability of concentration criterion (Fiebig, 1985, equation (2)) is virtually

the same as the tail probability statistic used in this paper and also in Guggenberger (2008).

Our results suggest that CEL and CEEL perform rather similarly. Both estimators computed

with fixed bandwidths may suffer from the no-moment problem. We draw this conclusion from

the fact that both estimators perform similarly to the HLIM estimator, which is known to have the

no-moment problem (Hausman et al., 2012). We do not find evidence that the CE(E)L estimators

with bandwidths computed by cross-validation have the no-moment problem. In addition, these

estimators outperform their fixed bandwidth counterparts, especially in the weak instruments case.

In this case, these estimators are outperformed by the HFUL estimator (Hausman et al., 2012), but

in the strong instruments case they have competitive finite sample properties with respect to the

other estimators.

The remainder of the paper is organized as follows: Section 2 describes the Monte Carlo setup

and the estimators, while in Section 3 we discuss the implementation and the results. Section

4 collects some final remarks and, finally, the Appendix contains the tables and some technical

details on estimation and cross validation.
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2 Monte Carlo experiment

In this section we describe the data generating process (DGP) in our Monte Carlo experiment and

present the estimators that we study. For our DGP we consider a linear model with heteroskedastic

errors that is similar to the one considered by Hausman et al. (2012). Specifically,

yi = β0xi + εi , i = 1, ..., n,

wherexi is expected to be endogenous and the exogenous variablezi is observed. The parameter

β0 is identified by the conditional moment restriction

E (g (yi , xi , β) |zi ) = 0, (1)

whereg (yi , xi , β) = yi − βxi. Regarding the primitives of our DGP we assume that

xi = πzi + ui

wherezi ∼ N (0,1), ui ∼ N (0,1), and

εi = ρui +

√
1− ρ2

φ2 + .864
(φv1i + .86v2i)
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ACCEPTED MANUSCRIPT

with v1i ∼ N
(
0, z2

i

)
, v2i ∼ N

(
0, .862

)
. The parameterφ is computed from the theoreticalR2 for the

regression ofε2i onz2
i , that is,

R2 =
Var

(
E

(
ε2i

∣∣∣z2
i

))

Var
(
E

(
ε2i

∣∣∣z2
i

))
+ E

(
Var

(
ε2i

∣∣∣z2
i

))

for given values ofR2. This latter quantity measures the degree of heteroskedasticity, whileρ

determines the degree of endogeneity becausecorr (xi , εi) = ρ/
√(

1+ π2
)
. We consider two sample

sizesn = 100 andn = 500. For each sample size we have the following parameter combinations

(ρ,R2, φ) = (0.75,0.1,1.863521),

(ρ,R2, φ) = (0,0.1,0.5765206),

(ρ,R2, φ) = (0.75,0,0).

The first parameter combination implies a rather large degree of endogeneity accompanied by

heteroskedasticity; the second parameter combination includes heteroskedasticity but has no endo-

geneity; the third parameter combination considers the presence of endogeneity and homoskedastic

errors.1 We vary the strength of instrumentszi by takingπ = 0.4 andπ = 0.04; the latter value

provides instruments with strength comparable to that in Guggenberger (2008), where in the case

1It would be desirable to study the case of high degree of heteroskedasticity as well. However, this does not seem
to be possible within the current DGP because the restriction thatεi has unconditional variance equal to 1 restrictsρ
andR2 so thatR2 cannot take values much higher than 0.2.
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of one instrument the lowest correlation between the endogenous regressors and instruments is

0.032.2 Whenever we use estimators that require instruments, we consider the following two sets

of 10 and 30 instruments:

z̄i =
(
1, zi , z

2
i , z

3
i , z

4
i , ziD1i , ..., ziD5i

)′
, (2)

z̄i =
(
1, zi , z

2
i , z

3
i , z

4
i , ziD1i , ..., ziD25i

)′
,

where the variableDki is a dummy variable that takes value 1 with probability 0.5. Similar dummies

are used by Hausman et al. (2012).

In the next sections we describe the estimators that we consider.

2.1 Conditional empirical likelihood estimators

In this section we describe the CEL and CEEL estimators. These estimators are the result of a con-

strained optimization of certain nonparametric objective functions, where one of the constraints

is the sample analog of the conditional moment restriction. The nonparametric objective func-

tions are a nonparametric version of the log-likelihood function for CEL, and a local quadratic

Cressie-Read discrepancy criterion for CEEL, respectively (see KTA and ABR for further details,

as well as Smith (2007) for a unified treatment based on Cressie-Read discrepancy). In practice

2The results forπ = 0.4 are shown only in the case ofn = 100.
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ACCEPTED MANUSCRIPT

both estimators can be obtained from unconstrained optimizations of the so-called dual objective

functions, which are derived from the first order conditions of the constrained optimization. These

dual problems have the feature that they are saddle point optimization problems.

In particular, the CEL estimator ofβ0 is

β̂CEL = arg min
β

max
γi ,i=1,...,n

n∑

j=1

n∑

i=1

wi j log
(
1+ γig

(
yj , xj , β

))
, (3)

wherewi j , i, j = 1, ..., n are defined as

wi j =
K

(
zi−zj

bn

)

∑n
j=1 K

(
zi−zj

bn

) , (4)

that is, the weights of the Nadaraya-Watson nonparametric regression estimator,K is a density

function onR, symmetric around 0, playing the role of a kernel function, andγi , i = 1, ..., n

are the Lagrange multipliers in the constrained maximization of the original objective function.

Determining the CEL estimator from the dual (3) involves the first step maximization with respect

to these Lagrange multipliers. A computationally efficient method for determining the Lagrange

multipliers is discussed in the Appendix in Section B.1.

The CEEL estimator is

β̂CEEL = arg min
β

n∑

i=1




ĝ (β)2

∑n
j=1 wi j g

(
yj , xj , β

) (
g
(
yj , xj , β

)
− ĝ (β)

)


 , (5)

wherêgi (β) =
∑n

j=1 wi j g
(
yj , xj , β

)
with weights given in (4). Differently from the CEL estimator,

the CEEL estimator does not require optimization with respect to the Lagrange multipliers. This
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ACCEPTED MANUSCRIPT

is because the quadratic Cressie-Read discrepancy criterion implies first-order conditions of the

constrained optimization that allow for explicit expressions of the Lagrange multipliers. Therefore,

although not directly visible in the CEEL-objective function (5), CEEL estimation is also a saddle

point problem. We also note that the CEEL estimator is numerically identical to a conditional

generalization of the continuously updated GMM estimator of Hansen et al. (1996) (see ABR for

further details).

The limiting distribution of the CE(E)L estimators is the same. That is, fork = CEL,CEEL

√
n
(
β̂k − β0

)
→d N (0,V) ,

where

V =
(
E

[
D (z)2 Ω (z)−1

])−1

is the semiparametric lower bound withD (z) = E
[
∂g(y,x,β)
∂β
|z
]
, Ω (z) = E

[
g (y, x, β)2 |z

]
. The

asymptotic variance of̂βk, k = CEL,CEEL, can be estimated as

V̂k =




n∑

i=1

D̂ (zi)
2
(
Ω̂

(
β̂k, zi

))−1



−1

,

whereΩ̂ (zi) , Ω̂
(
β̂k, zi

)
are nonparametric regression estimators ofD (zi) , Ω

(
β̂k, zi

)
. Specifically,

12
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ACCEPTED MANUSCRIPT

the Nadaraya-Watson nonparametric kernel regression estimators for our DGP are

D̂ (zi) = −
n∑

j=1

wi j xj ,

and

Ω̂
(
β̂CE(E)L, zi

)
=

n∑

j=1

wi j g
(
yj , xj , β̂CE(E)L

)2
.

We use cross-validation for both the CEL and CEEL estimators. The cross-validation criterion

used is presented in Appendix B.2. There we also show that in the case of our model for large

values of the estimate the cross-validation criterion is also large. This appears to suggest that the

cross-validation criterion tends to select values that are closer to zero. This is a feature similar to

regularized estimators (e.g., Hausman et al. 2011).

2.2 The Donald, Imbens and Newey (2003) estimator

DIN consider efficient estimation of conditional moment restriction models via empirical like-

lihood estimation. Conditional moments are transformed into unconditional ones by means of

splines or other approximating functions. The problem we consider is the same problem defined in

equation (1). The DIN estimator requires the specification of aK×1 vector of spline approximating
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functions

qK(z) = (1, z, z2, . . . , zs, ξ(z− t1)
s), . . . ξ(z− tK−s−1)

s)′

whereξ(z) = 1(z > 0)z, 1(∙) is the indicator function taking value 1 if the condition∙ is true and 0

otherwise andt1, . . . , tK−s−1 is a set of knots. In our simulationss = 3 andK = 2,3,5,10,15. The

knots are to be found equispaced in the range of the variablez. In practice we choose the knots in

a set of 21 equispaced quantiles ofz. The conditional moment restriction (1) implies

E(qK(zi)(yi − xiβ)) = 0.

From this set of moments we can define the EL problem

P(β, πi , γ, μ) =
n∑

i=1

logπi + γ
′

n∑

i=1

πiq
K(zi)(yi − xiβ) + μ

( n∑

i=1

πi − 1
)
.

The estimation of the parameters of interests can be implemented by solving the saddle point

problem

(̂βDIN , γ̂
′
DIN)′ = arg min

β
max
γ

n∑

i=1

log(1− γ′qK(zi)(yi − xiβ))

14
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and̂π = (n(1+ γ̂′qK(zi)(yi − xi β̂)))−1. The asymptotic distribution of̂βDIN is the same as the CE(E)L

estimators. An estimator of the asymptotic variance is given by

V̂DIN = (D̂′Ω̂−1D̂)−1

whereD̂ =
∑n

i=1 π̂iqK(zi)xi andΩ̂ =
∑n

i=1 π̂i(yi − xiβ)2qK(zi)qK(zi)′.

2.3 Instrumental variable estimation

Suppose that we have anL × 1 vector of instrumental variables ˉzi as described in (2). Then the

conditional moment (1) implies the unconditional moment restrictions

E (z̄i (yi − xiβ)) = 0,

which leads to estimation by means of GMM. GMM estimation generally requires a two step

procedure. The first step estimator is given by the minimum of

QGMM (β) = (y− xβ)′ ZWZ′ (y− xβ)

15
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for y andx beingn× 1 vectors of observations andZ is an× L matrix, such that itsith row is z̄′i .

The resulting first step estimator is defined as

β̂1 =
(
x′ZWZ′x

)−1 x′ZWZ′y

for a certain positive definite matrixW. In our simulationsW is chosen to be the identity matrix.

In order to achieve efficiency and robustness with respect to heteroskedasticity, in the second step

we use an Eicker-White matrix (White, 1980):

β̂GMM =
(
x′ZΩ̂−1Z′x

)−1
x′ZΩ̂−1Z′y

whereΩ̂ =
∑n

i=1

(
yi − xi β̂1

)2
z̄i z̄′i . The GMM estimator is normally distributed

√
n
(
β̂GMM − β

)
→d N (0,VGMM)

andVGMM =
(
E (x′Z)Ω−1E (Z′x)

)−1
, for Ω = E

(
Z′ (y− xβ0) (y− xβ0)

′ Z
)
, which we estimate by

V̂GMM =
(
x′ZΩ̂−1Z′x

)−1
.

In a recent paper Hausman et al. (2012) describe a simple one-step estimator that is robust to

the presence of heteroskedasticity and many instruments. Such an estimator is similar to LIML

and it is based on jackknife techniques. Let us first define the projection matrixPZ = Z (Z′Z)−1 Z′

16
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and the diagonal matrixDPZ, whose diagonal elements are the diagonal entries ofPZ. Then, the so

called HLIM estimator is computed as the minimum of

QHLIM (β) =

(
1
−β

)′
A
(

1
−β

)

(
1
−β

)′
B
(

1
−β

)

with

A = (y, x)′
(
PZ − DPZ

)
(y, x) , B = (y, x)′ (y, x)

and is equal to

β̂HLIM =
(
x′

(
PZ − DPZ

)
x− λHLIM x′x

)−1 (
x′

(
PZ − DPZ

)
y− λHLIM x′y

)
(6)

whereλHLIM is the minimum eigenvalue of the matrixB−1A. This estimator shares some features

with LIML, most notably it may not have moments (Hausman et al., 2012, p. 217) in the weak

instruments case. These authors propose a correction in the spirit of Fuller (1977), where the

eigenvalueλHLIM is replaced by

λHFUL =
λHLIM −

1−λHLI M
n C

1− 1−λHLI M
n C

.

The parameterC is chosen by the econometrician and following the suggestion of Hausman et al.
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(2012) we setC = 1. The so called HFUL estimator is then defined as

β̂HFUL =
(
x′

(
PZ − DPZ

)
x− λHFULx′x

)−1 (
x′

(
PZ − DPZ

)
y− λHFULx′y

)
. (7)

For k = HLIM,HFUL we have the following convergence in distribution:

β̂k − β0
√

V̂k

→d N (0,1) ,

where

V̂k = M̂−1ŜM̂−1, M̂ = x′
(
PZ − DPZ

)
x− λkx′x

and

Ŝ =

n∑

i=1

(
ẋ2

i − 2pii x̂i ẋi

)
ε̂2i +

L∑

t=1

L∑

s=1




n∑

i=1

Z̃it Z̃iŝεi







n∑

j=1

ZjtZjŝε j


 ,

for, Z̃ = Z (Z′Z)−1, ε̂ = y− x̂βk, x̂ = x− ε̂x
′ε̂
ε̂′ε̂

, ẋ = PZx̂; furthermore,pii is theith diagonal element

of PZ. The limit of V̂k is provided in Hausman et al. (2012).

3 Implementation and results

We implement the CE(E)L estimators by using the Epanechnikov kernel:

K (u) =
3
4

(
1− u2

)
∙ 1 (|u| ≤ 1) ,
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where1 (∙) is the indicator function. For the two sample sizesn = 100 and 500 we use the band-

widthsbn in the set

bn ∈ {0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9} .

As mentioned in the previous section, the CE(E)L estimators are the solution of a saddle point

problem. Therefore, in certain situations that typically occur when the instruments are weak, the

corresponding objective function may be very flat in the neighborhood of the optimum, causing the

failure of standard optimization routines. In order to avoid this, we solve the optimization problem

by means of a grid search. The grid we consider is between−25 and 25 and has step length 0.01.3

In order to provide a fair comparison of performance, we also restrict the other estimates to the

interval [−25,25]. We note that Guggenberger (2008) uses the same grid search approach in his

study of unconditional GEL.

In order to provide some insight on the difficulty of solving a saddle-point optimization prob-

lem, we make a few remarks on the behavior of the CE(E)L estimators for different bandwidths.

First, in cases when the objective functions in (3) and (5) do not have flat parts around the optimum

for any given bandwidth, the objective functions are similar, and, as a consequence, the estimates

corresponding to different bandwidths will also be similar (the cases studied by KTA in their Monte

3This approach is not attractive from a computational point of view, in particular when the dimension of the
parameter of interest is larger than one. However, it is ideal for our simulation environment where we have to tackle
situations where the instruments provided by our DGP are particularly weak.
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Carlo experiments appear to be of this type). Second, whenever, for some bandwidths the objective

function is flat near the optimum, the estimates corresponding to different bandwidths may be very

different. We illustrate this phenomenon by plotting the objective function in these two cases.

In Figure 1 we present the CEEL objective function forn = 100 in a case with low endogeneity

(ρ = 0.3) and strong instruments (π = 0.4) for four different bandwidth values. We can see that the

objective function is well-behaved in the sense that we can clearly distinguish a global minimum in

the case of each bandwidth. The global minima in the four cases occur at values close to 0, which

is the true parameter value.

On the contrary, in the presence of weak instruments and high endogeneity, the objective func-

tion may be characterized by multiple local optima and extensive flat parts in the vicinity of the

minimum. This situation is well depicted in Figure 2, where we plot the CEEL objective function

again forn = 100 and four different bandwidth values in a case with high endogeneity (ρ = 0.75)

and weak instruments (π = 0.04). In this figure we can see that for bandwidthsbn = 0.5 and 0.7

there are two minima for which the value of the objective function is quite similar. For bandwidth

valuesbn = 1.7 and 1.9 the objective function degenerates so that the minimum falls in a region

where the objective function is very flat. This figure illustrates the pathological features of the

optimization problem in the case of weak instruments, and provides an argument for using grid
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search instead of standard optimization routines such as Newton-Raphson or simplex search.

In order to compare the performance of the estimators, we conduct a Monte Carlo experiment

based on 1000 simulation repetitions in each case. Tables 1-9 contain the results; each table cor-

responds to a different DGP. The leftmost columns list all the estimators and the bandwidth values

for the CE(E)L. In the other columns we report the results for various performance measures, such

as mean and median bias (referred to as Mean and Median in the tables), median absolute error

(MAE), standard deviation (StD) and root mean square error (RMSE). In addition to these standard

measures we consider the nine-decile range (9-DR), the tail probability (TailPr) and the coverage

probability of a 95% confidence interval (CovPr).4 The former provides us with information on

how spread out is the distribution of the estimator between the 5th and 95th percentile. The tail

probability is computed as the relative frequency of the estimates for which
∣∣∣∣̂β
∣∣∣∣ > 22.5 (we follow

Guggenberger (2008) in choosing this number), and it conveys information on the fatness of the

tails of the distribution of the estimators. The coverage probability of the symmetric 95% confi-

dence interval is estimated by the relative frequency of the event
(∣∣∣∣̂β − β0

∣∣∣∣ ≤ 1.96 ∙ σ̂
)

for a certain

estimator̂β of the true valueβ0, whereσ̂ is an estimator of the standard error ofβ̂, which may

differ across the various estimators we consider.
4Since Guggenberger (2008) uses similar simulation setup and performance measures for studying the finite sample

properties of unconditional GEL estimators, we can directly compare the tail probabilities for our estimators to his
estimators.
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The focus of the Monte Carlo experiment is on the performance of the CE(E)L estimators in

comparison with the instrument-based methods presented above. The latter may perform differ-

ently if few or many instruments are included, specifically, in theory many instruments lead to

asymptotic efficiency gains, but in practice they may lead to biased estimates. Therefore, for the

three instrumental variable-based estimators we use two instrument sets ofL = 10 and 30 in-

struments. Another objective in analyzing the results is to compare CEL to CEEL. CEEL has a

computational advantage compared to CEL due to the fact that the Lagrange multipliers can be ex-

pressed explicitly and need not be estimated via numerical optimization as for CEL (see equations

(3) and (5)).

Before discussing the details with respect to the performance measures, we provide some gen-

eral remarks. Most of the estimators suffer considerably from the presence of endogeneity. Having

strong instruments may mitigate the effects of endogeneity. When instruments are weak and endo-

geneity is present none of the estimators performs well in terms of bias and coverage probability.

Moreover, having or not heteroskedasticity seems to play a relatively minor role. Apart from the

case of GMM in the absence of endogeneity, in none of the tables can we find an estimator that

dominates all the others in the sense that it performs better with respect to all measures.

The HLIM estimator is often similar to CE(E)L estimators with some fixed bandwidth, espe-
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cially in the weak instruments case (Tables 4-9). In the case of endogeneity the GMM estimator

tends to perform well in terms of precision (MAE, StD), but performs poorly in terms of bias

(Mean, Median) and coverage probability. On the other hand, whenρ = 0 GMM is the best es-

timator according to nearly all performance measures and its coverage probabilities (CovPr) are

quite close to the nominal probabilities. HFUL has a rather sound performance compared to the

other estimators in all the cases. The DIN estimator seems to display quite clear patterns with

respect to our performance measures as we varyK. More specifically, we notice that asK grows

all the measures of dispersion and the TailPr get larger. On the other hand, the coverage proba-

bilities tend to zero. Regarding the effect of increasing the sample size from 100 to 500 we note

that, contrary to our expectations, the dispersion does not decrease while the bias (both Mean and

Median) gets slightly smaller. The tail probabilities, where strictly positive, tend to go down.

The two conditional empirical likelihood estimators, CEL and CEEL, have a rather similar

performance.5 Their performance is much better with automatic bandwidths than with fixed band-

widths in most of the cases. This is remarkable, because it contrasts the findings for a linear

heteroskedastic model with an exogenous regressor, where CEL is only slightly better with auto-

matic bandwidths than with fixed bandwidths (see KTA). This contrast is rather sharp in the weak

5This can be seen in then = 100 cases. Due to this similarity we do not present results for CEL in then = 500
cases.
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instruments case. We believe this is due to the fact that the cross-validation criterion tends to select

lower estimates (see Appendix B.2), and in the weak instruments case the proportion of excessively

large estimates, as shown by the TailPr, is larger.

In what follows we make some distinctive comments on these and the strong instruments case,

and then we discuss the properties of the estimators for each performance measure.

Weak instruments case(Tables 4-9). The CE(E)L estimators with fixed bandwidths have large

tail probabilities, similarly to the HLIM estimator, which is known to suffer from the no-moment

problem (Hausman et al., 2012). Therefore, the CE(E)L estimators with fixed bandwidths may

also have the no-moment problem in the weak instruments case. Besides the tail probabilities,

these estimators perform rather poorly also with respect to the 9-DR.

The CE(E)L estimators with automatic bandwidths perform much better than their counterparts

with fixed bandwidths. Their most remarkable feature is that they all have tail probabilities equal

to 0 (the TailPr of CEEL forn = 500 andρ = 0 is actually 0.001), which suggests that these

estimators do not suffer from the no-moment problem. In addition, their performance with respect

to the two measures of dispersion MAE and 9-DR improves dramatically, although the latter values

still remain high relative to those of GMM and HFUL. The same observation holds for the StD and

RMSE. Apart from the no endogeneity case, it is difficult to rank the CE(E)L and GMM even if we
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restrict the comparison to the criteria RMSE and CovPr, because in most cases GMM has lower

RMSE but poorer CovPr.

Strong instruments case(Tables 1-3). The CE(E)L estimators with fixed bandwidths have

small TailPr, possibly except for some low bandwidth values. Consequently, for most of the

bandwidths the second moments of these estimators are finite. For the lowest bandwidth values

(bn = 0.5) CEL tends to perform poorly compared to HLIM in terms of the 9-DR and TailPr, so

in these cases these estimators may suffer from the no-moment problem. Forn = 100 (Tables 1-3)

CE(E)L are rather competitive regarding the MAE, but poor regarding the RMSE, for several fixed

bandwidth values.

The CE(E)L estimators with automatic bandwidths perform better than their counterparts with

fixed bandwidths. These estimators are rather competitive compared to the other estimators as well.

A clear ranking is difficult to establish even if we restrict the comparison to RMSE and CovPr, but

we can claim that CEEL has rather good CovPr and low RMSE in all four cases. Compared to

HFUL, CEEL has similar CovPr and lower RMSE in almost all the cases.

Mean bias. The mean bias tends to be small in absolute value when we remove endogeneity,

while it seems to be indifferent to the presence of heteroskedasticity. In the weak instruments

case the CE(E)L have different bias values for different bandwidths. The CE(E)L with automatic
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bandwidths have a performance comparable to the other estimators. Apart from the case ofn = 500

without endogeneity, the bias increases slightly for the GMM and HFUL estimators as the number

of instrumentsL increases from 10 to 30, while for the HLIM the change is ambiguous. In the

strong instruments case, the CE(E)L are only biased for some very low fixed bandwidth values,

while the CE(E)L with automatic bandwidths are virtually unbiased. The bias of GMM and HFUL

tends to decrease with the strength of instruments, and decrease with the number of observations

n. The bias of GMM increases substantially as the number of instrumentsL increases; the bias of

HLIM is small in most cases. The size of the bias of the DIN is comparable to that of the CE(E)L

in the fixed bandwidth case.

Median bias. In the weak instruments case the CE(E)L estimators have similar median bias

values for different bandwidths, for both fixed and automatic bandwidths. These bias values are

rather similar to the median biases of the other estimators. The median bias increases slightly for

the GMM, HLIM and HFUL estimators asL increases from 10 to 30. In the strong instruments

case and in the case of absence of endogeneity the CE(E)L estimators tend to be median-unbiased

for any choice of bandwidth. The median bias is small if we shut off endogeneity. HFUL and espe-

cially HLIM have small median bias values in most of the cases, while in the case of endogeneity

GMM has considerable median bias. This bias increases withL, with the degree of endogeneity,
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and decreases withn. The median bias of the DIN estimator does not follow a specific pattern.

However, in the case of endogeneity and weak instruments the size of the median bias is compa-

rable to that of the CE(E)L estimators. Moreover, it is negative in the strong instruments case and

large and positive in the case of endogeneity and weak instruments.

MAE. The MAE is a measure of dispersion that is robust to the no-moment problem. It de-

creases with the strength of instruments and withn, while the effect of the degree of endogeneity

is ambiguous.6 For HLIM and HFUL, MAE increases withL, while for GMM the effect of L is

ambiguous. Except for very low bandwidths likebn = 0.5, 0.7, the CE(E)L estimators with differ-

ent fixed bandwidths have rather similar MAE values. In the weak instruments case these values

are also similar to the MAE of HLIM and larger than the MAE of GMM and HFUL. In this case,

the CE(E)L estimators with automatic bandwidths have very competitive MAE, they are compa-

rable to those of the HFUL whenL = 10 and they are only outperformed by GMM in the low

endogeneity cases. In the weak instruments case with endogeneity (Table 4) CEL with bandwidths

bn ∈ {1.1,1.3,1.5,1.7,1.9} dominates the other estimators. In most of the strong instruments cases

the CE(E)L with automatic bandwidths have the lowest MAE, and they dominate HLIM and HFUL

in all these cases. ForK = 2,3 the MAE of the DIN is comparable to that of CE(E)L with fixed

6The ambiguity may come from the feature of the DGP that a change in the degree of endogeneity is accompanied
by a change in the degree of heteroskedasticity.
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bandwidths, while forK = 5,10,15 it tends to be larger. For those latter values ofK the MAE of

the DIN is often the larger value in the tables.

9-DR. The 9-DR is a measure of dispersion that can be estimated consistently for estimators

that suffer from the no-moment problem. In general the performance of all the estimators with

respect to the 9-DR improves with the strength of instruments, but their relative performance is

specific to this feature. In all the weak instruments case GMM has the lowest 9-DR followed

by HFUL, which is followed by the CE(E)L with automatic bandwidths. The CE(E)L with fixed

bandwidths have rather large 9-DR values, which tend to decrease with the bandwidth. The largest

values of the 9-DR are found for the DIN estimator with largeK. HLIM has 9-DR values similar

to those of the CE(E)L corresponding to the highest bandwidths. Compared to these, the 9-DR

values of the CE(E)L with automatic bandwidths are lower by a factor ranging roughly between

2 and 3. In the strong instruments case GMM still has the lowest 9-DR in all the cases, but here

this is followed by the CE(E)L with automatic bandwidths, which tends to outperform HFUL in

most of the cases. The CE(E)L with some larger fixed bandwidths outperform HFUL in most of

the cases, while for some lower fixed bandwidths they have 9-DR values similar to HLIM.

In general for all the estimators the 9-DR increases with the degree of heteroskedasticity. For

GMM the 9-DR decreases withL, but the reverse holds for HLIM and HFUL. In the weak in-

28
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

G
az

i U
ni

ve
rs

ity
] 

at
 0

8:
10

 2
9 

O
ct

ob
er

 2
01

5 



ACCEPTED MANUSCRIPT

struments case the 9-DR of GMM, HLIM, HFUL tend to increase withn, while for the CE(E)L

with automatic bandwidths it tends to decrease; for the CE(E)L with fixed bandwidths it changes

ambiguously. The 9-DR of the DIN estimator tends to be large and to grow inK. In the strong

instruments case, forK = 2, the DIN estimator is comparable to the CE(E)L estimator with auto-

matic bandwidths. However, in the weak instruments case, its smallest value is similar to the 9-DR

of the HLIM.

StD.We can repeat here the qualitative remarks made in the first paragraph of the discussion on

the 9-DR. Therefore, we only mention the differences and make some further quantitative remarks.

The StD still increases with the degree of heteroskedasticity in most cases, except for CE(E)L in

the strong instruments case. In this case the StD of CE(E)L changes in an ambiguous way, which

is most probably due to the presence of some non-zero tail probabilities. For GMM the StD still

decreases withL, but the reverse only holds for HFUL, while for HLIM it does so only in the

strong instruments case. In the weak instruments case the StD of HLIM changes very little and

ambiguously withL. Further, in this case the StD of GMM and HFUL tend to increase withn,

while for the CE(E)L with automatic bandwidths and HLIM it tends to decrease; for the CE(E)L

with fixed bandwidths it changes little and ambiguously.

In the weak instruments case (Tables 4-9) the StD values of CE(E)L are improved by a factor

29
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

G
az

i U
ni

ve
rs

ity
] 

at
 0

8:
10

 2
9 

O
ct

ob
er

 2
01

5 



ACCEPTED MANUSCRIPT

ranging roughly between 2.5 and 3.5 with automatic bandwidths. In the weak instruments case the

DIN with K = 2 is similar to the HLIM. It is interesting to note that in this case, the numerical StD

values of the CE(E)L for fixed (large) bandwidths and HLIM are rather similar to the StD of the

unconditional GEL and LIML estimators in Guggenberger’s (2008) weak instruments case (Tables

1(a) and 1(b)).

RMSE. The RMSE values, although in some cases numerically different, qualitatively behave

like the StD values. Therefore, the discussion on the performance of the estimators regarding the

StD is also valid here.

CovPr. In an overall sense, the estimator with the best CovPr tends to be HLIM, which outper-

forms HFUL most of the times. However, we can make a few remarks. In particular, forK small

the DIN estimator displays competitive CovPr’s in all the cases. The HFUL estimator outperforms

the CE(E)L with automatic bandwidths. In almost all cases GMM performs rather poorly in the

presence of endogeneity where its CovPr is below 0.5 in several cases. Whenρ = 0 the CovPr of

the GMM is quite close to the nominal coverage. The poorest CovPr of the CE(E)L with automatic

bandwidths is 0.586 (Table 6), where the CovPr of HLIM is 0.770. In the absence of endogeneity,

the CovPr of the CE(E)L is very close to the nominal coverage. In the case ofn = 500 andρ = 0

the CovPr of CEEL is exactly 0.950. The CovPr of the CE(E)L with fixed bandwidths increases
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with the bandwidth values.

The CovPr improves with the strength of instruments and it gets poorer with higher endogene-

ity. In the weak instruments case the effect of n is not clear. The CovPr for HLIM and HFUL

increases inL, while for GMM it decreases inL; the latter is remarkably poor forL = 30. A

similar phenomenon is observed for the DIN estimator.

TailPr. The TailPr of the CE(E)L with automatic bandwidths, GMM and HFUL are 0 in nearly

all the cases. The CE(E)L with fixed bandwidths and HLIM have strictly positive TailPr in several

cases. In the weak instruments case these are typically rather large for the former estimator, ranging

from 0.012 to 0.054, while they are slightly lower, ranging from 0.017 to 0.036 for the latter

estimator.7 In the strong instruments case, these estimators have their TailPr equal to 0 or below

0.01 in most of the cases. Some exceptions to these can be found for CEL for bandwidthsbn =

0.5, 0.7, where the TailPr values range from 0.15 to 0.20, and for HLIM withn = 100, where the

TailPr could be as high as 0.036. The TailPr of the DIN is an increasing function ofK. For K = 2

we find values that are comparable to the TailPr of the HLIM estimator. The TailPr’s of CE(E)L,

HLIM and DIN tend to go down as the sample size changes fromn = 100 to 500.

We use the TailPr together with the fact that HLIM suffers from the no-moment problem (Haus-

7For comparison, we mention that the corresponding tail probability of the standard Cauchy distribution, whose
first absolute moment does not exist, is about 0.028.
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man et al., 2012, p.217) as a practical indicator of the existence of moments. Our conclusions

earlier in this section regarding the no-moment problem for the CE(E)L with fixed bandwidths are

based on this indicator. For further comparison purposes we note that the unconditional GEL and

LIML in the weak instruments case discussed by Guggenberger (2008, Tables 1(a)-(b), 3(a)-(b))

have tail probabilities ranging from 0.1 to 0.3. These values are rather close to those found in our

weak instruments case for HLIM and slightly lower than those found for the CE(E)L with fixed

bandwidths.

4 Conclusions

In this paper we find evidence that the CE(E)L estimators with certain fixed bandwidths have

standard deviations and tail probabilities similar to the HLIM estimator, which is known to have

the no-moment problem. This suggests that the CE(E)L with fixed bandwidths may also suffer

from the no-moment problem. We also study these estimators with automatic bandwidths ob-

tained through the cross-validation method proposed by Newey (1993). Our results suggest that

the CE(E)L estimators with automatic bandwidths do not have the no-moment problem. This is re-

markable for two reasons. First, the closely related unconditional GEL estimators also suffer from

the no-moment problem (Guggenberger, 2008). Second, in linear heteroskedastic models without
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endogenous regressors the CE(E)L with fixed and automatic bandwidths have similar finite sample

properties (KTA and Gospodinov and Otsu, 2012). We provide arguments that the cross-validation

criterion in the model we consider tends to eliminate estimates with large values, which implies

that estimators with automatic bandwidths have low tail probabilities.

In linear models with endogenous regressors and weak instruments we find CE(E)L to have

finite sample properties poorer than the HFUL estimator. This holds regardless of whether the

bandwidth is fixed or automatic, although the latter considerably improves the performance of

CE(E)L under the various performance measures. The relative performances change significantly

in the strong instruments case. Automatic bandwidths for CE(E)L still improve over fixed band-

widths in most cases, but the improvement is not as large as in the weak instruments case. Further,

the CE(E)L with automatic bandwidths tend to outperform HFUL in terms of RMSE, while the

reverse holds in terms of the coverage probability, although the differences in performance are

numerically rather small.

Based on these considerations, we recommend the use of HFUL. This advice also takes into

account the computational burden that CEEL, and in particular CEL, entail, which increases fur-

ther when the automatic bandwidth is calculated. Still, in cases when the RMSE is the relevant

loss function, and the instruments are known to be strong, one may prefer CE(E)L. In this situ-
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ACCEPTED MANUSCRIPT

ation, since CEL and CEEL deliver similar results, we recommend the computationally simpler

CEEL. Since even in the strong instruments case it may happen for some fixed bandwidths that the

CEEL estimator has a large tail probability, we recommend estimation by using at least a few fixed

bandwidths followed by the selection of the best bandwidth.

The conclusions regarding the relative performance of the CE(E)L estimators may be different

in nonlinear models. In such models, since the HFUL estimator has been developed for linear

models, the performance of CE(E)L should be compared to other estimators, which are suited to

nonlinear models. Such estimators have recently been developed by Domı́nguez and Lobato (2004)

and Lavergne and Patilea (2012) based on unconditional moment restrictions that are equivalent

to the conditional moment restriction that identifies the model. Future research will focus on the

finite samples properties of CE(E)L compared to these estimators, as well as to the efficient GMM

estimator (Newey, 1993) for a nonlinear model.
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ACCEPTED MANUSCRIPT

A Appendix: Tables

A.1 n = 100

Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 π = 0.4, ρ = 0.75,R2 = 0.1
CEL
automatic 0.018 0.080 0.210 1.300 0.472 0.472 0.877 0.000
bn = 0.5 -0.605 -0.020 0.350 4.040 4.026 4.071 0.732 0.020
bn = 0.7 -0.485 -0.010 0.320 3.200 3.484 3.518 0.798 0.015
bn = 0.9 -0.218 -0.010 0.240 1.680 1.978 1.990 0.852 0.003
bn = 1.1 -0.172 -0.010 0.240 1.460 1.267 1.279 0.853 0.002
bn = 1.3 -0.143 -0.010 0.240 1.440 1.491 1.498 0.916 0.003
bn = 1.5 -0.140 -0.010 0.230 1.440 1.497 1.503 0.905 0.003
bn = 1.7 -0.088 -0.010 0.240 1.470 1.857 1.859 0.948 0.005
bn = 1.9 -0.037 0.000 0.250 1.530 1.502 1.503 0.9590.002
CEEL
automatic 0.025 0.060 0.220 1.170 0.450 0.451 0.891 0.000
bn = 0.5 -0.333 -0.040 0.290 2.553 2.347 2.370 0.716 0.004
bn = 0.7 -0.209 -0.040 0.280 2.112 2.039 2.050 0.797 0.004
bn = 0.9 -0.109 -0.010 0.235 1.560 1.018 1.023 0.882 0.000
bn = 1.1 -0.073 -0.010 0.230 1.391 0.793 0.797 0.915 0.000
bn = 1.3 -0.085 -0.010 0.230 1.381 0.585 0.591 0.926 0.000
bn = 1.5 -0.055 -0.010 0.240 1.321 0.965 0.967 0.931 0.001
bn = 1.7 -0.080 -0.020 0.240 1.361 0.682 0.687 0.936 0.000
bn = 1.9 -0.035 -0.010 0.240 1.431 1.239 1.239 0.9410.001
GMM
L = 10 0.295 0.311 0.144 0.779 0.244 0.383 0.633 0.000
L = 30 0.532 0.533 0.091 0.470 0.144 0.551 0.073 0.000
HLIM
L = 10 -0.108 0.026 0.266 1.910 1.483 1.487 0.912 0.001
L = 30 -0.109 0.068 0.375 4.222 3.436 3.437 0.921 0.011
HFUL
L = 10 0.067 0.093 0.213 1.136 0.372 0.378 0.892 0.000
L = 30 0.202 0.181 0.252 1.449 0.441 0.485 0.907 0.000
DIN
K = 2 -0.133 -0.004 0.250 1.350 1.206 1.213 0.910 0.002
K = 3 -0.230 -0.029 0.261 1.547 1.828 1.842 0.870 0.004
K = 5 -0.621 -0.134 0.475 14.870 5.553 5.587 0.478 0.024
K = 10 -0.716 -0.295 1.159 23.460 7.269 7.305 0.187 0.040
K = 15 -0.081 -0.259 1.273 24.262 7.284 7.284 0.1410.040

Table 1: strong instruments, endogeneity, heteroskedasticity
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ACCEPTED MANUSCRIPT

Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 π = 0.4, ρ = 0,R2 = 0.1
CEL
automatic -0.013 0.005 0.225 1.270 0.492 0.492 0.975 0.000
bn = 0.5 -0.340 0.000 0.380 3.930 3.643 3.659 0.594 0.017
bn = 0.7 -0.167 0.010 0.330 3.080 2.989 2.993 0.647 0.009
bn = 0.9 0.035 0.010 0.260 1.670 1.675 1.676 0.693 0.002
bn = 1.1 -0.025 0.000 0.240 1.540 1.304 1.304 0.722 0.002
bn = 1.3 -0.016 0.010 0.250 1.540 1.333 1.333 0.751 0.002
bn = 1.5 -0.050 0.000 0.260 1.510 1.634 1.635 0.774 0.003
bn = 1.7 -0.013 0.000 0.270 1.590 1.613 1.613 0.796 0.002
bn = 1.9 -0.033 0.000 0.280 1.740 1.685 1.686 0.8100.003
CEEL
automatic -0.002 -0.020 0.200 1.300 0.422 0.422 0.982 0.000
bn = 0.5 -0.009 -0.020 0.310 2.612 2.145 2.145 0.682 0.004
bn = 0.7 -0.042 -0.020 0.280 2.072 1.499 1.500 0.728 0.002
bn = 0.9 -0.020 -0.020 0.250 1.613 0.859 0.859 0.775 0.000
bn = 1.1 -0.034 -0.010 0.240 1.491 0.978 0.979 0.798 0.001
bn = 1.3 0.039 -0.010 0.230 1.482 1.098 1.099 0.834 0.001
bn = 1.5 0.011 -0.020 0.230 1.581 1.314 1.314 0.850 0.002
bn = 1.7 -0.005 -0.010 0.250 1.622 1.010 1.010 0.866 0.000
bn = 1.9 -0.021 -0.020 0.260 1.791 0.783 0.783 0.8840.000
GMM
L = 10 -0.010 -0.007 0.170 0.904 0.279 0.279 0.936 0.000
L = 30 0.002 0.000 0.119 0.609 0.188 0.188 0.925 0.000
HLIM
L = 10 0.007 -0.004 0.289 2.279 1.836 1.836 0.972 0.002
L = 30 -0.002 -0.004 0.479 5.343 3.592 3.592 0.991 0.011
HFUL
L = 10 -0.006 -0.002 0.251 1.554 0.453 0.453 0.966 0.000
L = 30 0.011 -0.002 0.380 2.103 0.621 0.621 0.988 0.000
DIN
K = 2 0.007 -0.015 0.242 1.340 0.961 0.961 0.947 0.000
K = 3 0.093 -0.009 0.249 1.739 2.166 2.168 0.870 0.006
K = 5 -0.073 -0.044 0.561 15.143 5.748 5.748 0.411 0.030
K = 10 0.033 -0.030 1.589 24.647 7.347 7.347 0.156 0.044
K = 15 0.515 -0.001 2.154 28.694 8.301 8.317 0.1070.061

Table 2: strong instruments, no endogeneity, heteroskedasticity
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ACCEPTED MANUSCRIPT

Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 π = 0.4, ρ = 0.75,R2 = 0
CEL
automatic 0.082 0.140 0.190 1.130 0.382 0.390 0.869 0.000
bn = 0.5 -0.660 0.020 0.270 3.100 3.728 3.786 0.656 0.019
bn = 0.7 -0.449 0.030 0.240 1.880 3.259 3.290 0.700 0.016
bn = 0.9 -0.121 0.010 0.210 1.360 1.053 1.060 0.735 0.001
bn = 1.1 -0.133 0.005 0.215 1.250 1.212 1.219 0.769 0.002
bn = 1.3 -0.087 0.020 0.210 1.250 1.109 1.112 0.807 0.001
bn = 1.5 -0.036 0.020 0.220 1.330 1.278 1.279 0.829 0.002
bn = 1.7 -0.085 0.020 0.220 1.480 1.416 1.418 0.851 0.002
bn = 1.9 -0.137 0.020 0.240 1.640 1.697 1.703 0.8750.001
CEEL
automatic 0.047 0.100 0.190 1.070 0.411 0.414 0.899 0.000
bn = 0.5 -0.138 0.010 0.240 1.840 1.753 1.759 0.719 0.003
bn = 0.7 -0.185 0.020 0.220 1.490 1.505 1.516 0.757 0.003
bn = 0.9 -0.131 0.000 0.210 1.290 0.995 1.004 0.801 0.001
bn = 1.1 -0.093 0.000 0.200 1.330 1.014 1.018 0.854 0.001
bn = 1.3 -0.113 0.010 0.200 1.440 0.764 0.772 0.880 0.000
bn = 1.5 -0.114 0.010 0.200 1.470 0.897 0.904 0.894 0.000
bn = 1.7 -0.056 0.010 0.210 1.440 1.736 1.737 0.910 0.004
bn = 1.9 -0.018 0.010 0.220 1.550 1.204 1.204 0.9270.001
GMM
L = 10 0.298 0.311 0.122 0.654 0.201 0.359 0.498 0.000
L = 30 0.520 0.519 0.083 0.427 0.131 0.536 0.023 0.000
HLIM
L = 10 -0.115 0.016 0.218 1.713 1.532 1.536 0.936 0.002
L = 30 0.002 0.090 0.377 4.270 3.089 3.089 0.902 0.009
HFUL
L = 10 0.058 0.097 0.173 0.963 0.305 0.311 0.911 0.000
L = 30 0.247 0.205 0.269 1.658 0.487 0.546 0.867 0.000
DIN
K = 2 -0.105 -0.001 0.194 1.152 0.905 0.911 0.916 0.001
K = 3 -0.118 -0.007 0.211 1.248 0.999 1.005 0.879 0.001
K = 5 -0.821 -0.108 0.352 11.449 4.617 4.690 0.515 0.014
K = 10 -0.599 -0.228 0.767 21.824 6.595 6.623 0.218 0.032
K = 15 -0.608 -0.224 0.870 23.411 6.878 6.905 0.1740.031

Table 3: strong instruments, endogeneity, homoskedasticity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 π = 0.04, ρ = 0.75,R2 = 0.1
CEL
automatic 0.698 0.730 0.400 3.640 1.514 1.667 0.615 0.000
bn = 0.5 0.236 0.740 1.090 16.270 6.183 6.188 0.367 0.039
bn = 0.7 0.648 0.730 1.050 14.880 5.736 5.772 0.459 0.025
bn = 0.9 0.656 0.730 0.865 13.140 5.666 5.704 0.561 0.030
bn = 1.1 0.636 0.740 0.720 10.870 5.632 5.668 0.687 0.036
bn = 1.3 0.674 0.740 0.650 11.410 5.387 5.429 0.723 0.028
bn = 1.5 0.666 0.740 0.615 10.140 5.262 5.304 0.797 0.025
bn = 1.7 0.703 0.740 0.590 8.980 4.878 4.929 0.850 0.022
bn = 1.9 0.564 0.740 0.570 9.130 4.721 4.755 0.8550.019
CEEL
automatic 0.656 0.700 0.440 3.650 1.318 1.472 0.656 0.000
bn = 0.5 0.528 0.710 1.040 14.490 5.683 5.708 0.360 0.029
bn = 0.7 0.626 0.740 1.050 13.808 5.965 5.997 0.497 0.037
bn = 0.9 0.736 0.700 0.860 12.498 5.762 5.809 0.589 0.033
bn = 1.1 0.514 0.695 0.745 10.802 5.490 5.514 0.663 0.031
bn = 1.3 0.460 0.680 0.670 10.330 5.489 5.508 0.737 0.034
bn = 1.5 0.408 0.680 0.645 9.837 4.861 4.863 0.770 0.023
bn = 1.7 0.557 0.695 0.920 8.847 4.393 4.427 0.798 0.016
bn = 1.9 0.709 0.700 0.610 8.105 4.713 4.765 0.8190.022
GMM
L = 10 0.728 0.735 0.180 1.026 0.326 0.798 0.294 0.000
L = 30 0.752 0.751 0.092 0.481 0.144 0.766 0.010 0.000
HLIM
L = 10 0.506 0.730 0.568 9.782 4.702 4.729 0.718 0.020
L = 30 0.564 0.751 0.619 8.534 4.908 4.940 0.822 0.025
HFUL
L = 10 0.726 0.739 0.346 1.720 0.512 0.888 0.649 0.000
L = 30 0.753 0.746 0.387 1.783 0.542 0.927 0.794 0.000
DIN
K = 2 0.590 0.684 0.845 9.798 4.682 4.719 0.808 0.017
K = 3 0.260 0.685 1.144 16.567 6.144 6.144 0.678 0.034
K = 5 -0.273 0.657 1.885 27.869 7.962 7.966 0.331 0.062
K = 10 -0.374 0.616 2.658 38.041 9.289 9.296 0.085 0.090
K = 15 -0.610 0.488 2.829 36.804 9.166 9.187 0.0570.087

Table 4: weak instruments, endogeneity, heteroskedasticity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 π = 0.04, ρ = 0,R2 = 0.1
CEL
automatic 0.047 0.030 0.560 5.010 1.725 1.726 0.943 0.000
bn = 0.5 -0.425 0.020 1.330 20.540 7.165 7.177 0.587 0.054
bn = 0.7 0.079 0.050 1.350 19.040 6.908 6.908 0.720 0.046
bn = 0.9 0.123 0.050 1.155 17.080 6.583 6.585 0.730 0.047
bn = 1.1 0.078 0.040 1.015 16.200 6.396 6.396 0.730 0.045
bn = 1.3 0.166 0.025 0.985 15.810 6.289 6.291 0.735 0.041
bn = 1.5 0.092 0.010 0.940 12.760 5.668 5.669 0.730 0.031
bn = 1.7 -0.007 0.005 0.915 12.190 5.545 5.545 0.738 0.034
bn = 1.9 -0.039 0.010 0.880 10.980 5.268 5.268 0.7480.026
CEEL
automatic 0.085 0.020 0.600 4.850 1.840 1.842 0.959 0.000
bn = 0.5 -0.340 -0.025 1.220 19.450 6.449 6.458 0.602 0.034
bn = 0.7 0.010 0.055 1.200 16.080 6.141 6.141 0.731 0.034
bn = 0.9 0.197 0.010 1.090 14.170 6.237 6.240 0.774 0.042
bn = 1.1 0.066 0.005 1.025 15.320 6.196 6.196 0.773 0.037
bn = 1.3 -0.046 0.010 0.970 16.160 6.079 6.079 0.772 0.031
bn = 1.5 0.028 0.010 0.980 14.820 6.078 6.078 0.771 0.036
bn = 1.7 0.043 0.020 0.940 13.200 5.750 5.751 0.770 0.032
bn = 1.9 -0.030 0.010 0.920 13.120 5.429 5.429 0.7760.029
GMM
L = 10 -0.003 -0.003 0.268 1.411 0.443 0.443 0.952 0.000
L = 30 0.007 -0.004 0.138 0.738 0.221 0.221 0.924 0.000
HLIM
L = 10 -0.231 -0.009 0.904 13.285 5.815 5.819 0.990 0.036
L = 30 0.031 0.033 0.992 11.619 5.629 5.629 0.993 0.030
HFUL
L = 10 0.007 -0.005 0.522 2.434 0.726 0.726 0.983 0.000
L = 30 0.017 0.019 0.603 2.755 0.839 0.840 0.993 0.000
DIN
K = 2 -0.015 0.006 1.069 14.278 5.785 5.785 0.994 0.030
K = 3 0.300 0.052 1.345 17.393 6.462 6.469 0.935 0.036
K = 5 -0.181 -0.097 2.063 33.875 8.627 8.681 0.413 0.078
K = 10 -0.289 0.059 2.933 36.961 9.326 9.330 0.089 0.090
K = 15 -0.167 0.082 2.825 37.129 9.426 9.428 0.0610.091

Table 5: weak instruments, no endogeneity, heteroskedasticity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 π = 0.04, ρ = 0.75,R2 = 0
CEL
automatic 0.741 0.750 0.340 2.890 0.994 1.240 0.586 0.000
bn = 0.5 0.561 0.740 0.670 9.550 4.631 4.665 0.368 0.020
bn = 0.7 0.552 0.730 0.650 9.880 4.818 4.850 0.444 0.022
bn = 0.9 0.675 0.710 0.670 9.610 4.554 4.604 0.556 0.019
bn = 1.1 0.586 0.700 0.680 8.490 4.370 4.410 0.614 0.017
bn = 1.3 0.848 0.700 0.700 7.940 4.320 4.402 0.659 0.018
bn = 1.5 0.853 0.720 0.700 7.850 4.108 4.196 0.688 0.014
bn = 1.7 0.783 0.720 0.710 8.210 4.138 4.211 0.716 0.014
bn = 1.9 0.931 0.735 0.685 7.950 3.934 4.043 0.7390.013
CEEL
automatic 0.748 0.745 0.355 3.020 1.372 1.562 0.628 0.000
bn = 0.5 0.595 0.670 0.660 11.120 4.886 4.922 0.402 0.019
bn = 0.7 0.572 0.700 0.660 9.550 4.555 4.591 0.452 0.018
bn = 0.9 0.877 0.720 0.700 9.110 4.685 4.766 0.548 0.019
bn = 1.1 0.661 0.730 0.700 8.650 4.960 5.004 0.627 0.027
bn = 1.3 0.672 0.720 0.675 7.830 4.519 4.569 0.682 0.022
bn = 1.5 0.470 0.710 0.665 8.790 4.478 4.502 0.721 0.019
bn = 1.7 0.629 0.720 0.650 8.060 4.523 4.566 0.732 0.018
bn = 1.9 0.558 0.705 0.640 8.730 4.282 4.319 0.7440.013
GMM
L = 10 0.746 0.751 0.157 0.772 0.246 0.786 0.136 0.000
L = 30 0.754 0.757 0.095 0.452 0.142 0.767 0.002 0.000
HLIM
L = 10 0.823 0.771 0.672 9.741 4.694 4.766 0.770 0.022
L = 30 0.643 0.778 0.696 8.577 4.925 4.966 0.763 0.023
HFUL
L = 10 0.757 0.765 0.351 1.549 0.472 0.892 0.671 0.000
L = 30 0.755 0.769 0.407 1.814 0.554 0.937 0.703 0.000
DIN
K = 2 0.308 0.679 0.674 8.520 4.779 4.789 0.776 0.022
K = 3 0.277 0.715 0.680 12.451 5.354 5.361 0.618 0.028
K = 5 0.364 0.736 0.973 17.669 6.337 6.348 0.318 0.040
K = 10 0.325 0.743 1.621 23.085 7.457 7.464 0.123 0.054
K = 15 0.319 0.744 1.718 23.088 7.604 7.611 0.0850.085

Table 6: weak instruments, endogeneity, homoskedasticity
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ACCEPTED MANUSCRIPT

A.2 n = 500

Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 500 π = 0.04, ρ = 0.75,R2 = 0.1
CEEL
automatic 0.538 0.640 0.420 3.760 1.510 1.603 0.669 0.000
bn = 0.5 0.495 0.540 0.790 11.100 4.692 4.718 0.472 0.016
bn = 0.7 0.081 0.520 0.720 10.460 5.238 5.238 0.554 0.028
bn = 0.9 0.517 0.550 0.690 9.780 5.255 5.280 0.612 0.029
bn = 1.1 0.423 0.545 0.695 10.240 4.707 4.726 0.653 0.017
bn = 1.3 0.306 0.540 0.665 8.650 4.645 4.655 0.683 0.018
bn = 1.5 0.369 0.540 0.650 8.320 4.691 4.706 0.702 0.018
bn = 1.7 0.350 0.540 0.630 8.340 4.568 4.581 0.720 0.019
bn = 1.9 0.521 0.560 0.640 8.250 4.523 4.553 0.7250.020
GMM
L = 10 0.704 0.701 0.196 1.119 0.335 0.780 0.392 0.000
L = 30 0.734 0.735 0.113 0.568 0.174 0.755 0.029 0.000
HLIM
L = 10 0.651 0.674 0.595 9.263 4.737 4.782 0.716 0.022
L = 30 0.464 0.685 0.681 8.590 4.810 4.832 0.728 0.020
HFUL
L = 10 0.671 0.691 0.396 2.275 0.666 0.945 0.674 0.000
L = 30 0.682 0.694 0.500 2.611 0.778 1.035 0.704 0.000
DIN
K = 2 -0.044 0.431 0.731 9.475 5.108 5.108 0.842 0.026
K = 3 -0.176 0.426 0.842 15.900 5.850 5.852 0.743 0.033
K = 5 0.321 0.453 1.152 16.021 6.254 6.262 0.568 0.038
K = 10 0.026 0.492 1.293 18.864 6.640 6.641 0.318 0.040
K = 15 -0.160 0.544 1.334 20.472 7.044 7.045 0.2090.052

Table 7: weak instruments, endogeneity, heteroskedasticity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 500 π = 0.04, ρ = 0,R2 = 0.1
CEEL
automatic 0.005 0.010 0.555 4.780 2.006 2.006 0.950 0.001
bn = 0.5 0.135 0.040 0.960 13.580 5.661 5.662 0.738 0.026
bn = 0.7 -0.014 0.020 0.880 10.990 5.264 5.264 0.806 0.025
bn = 0.9 -0.202 0.015 0.875 10.240 5.141 5.145 0.813 0.027
bn = 1.1 -0.004 0.045 0.875 9.900 5.052 5.052 0.821 0.024
bn = 1.3 -0.115 0.020 0.860 9.040 4.693 4.694 0.821 0.021
bn = 1.5 -0.020 0.030 0.870 9.320 4.923 4.923 0.830 0.022
bn = 1.7 0.074 0.020 0.895 9.930 4.950 4.950 0.831 0.020
bn = 1.9 0.061 0.015 0.905 10.510 5.229 5.229 0.8390.022
GMM
L = 10 0.006 0.014 0.260 1.389 0.433 0.433 0.977 0.000
L = 30 0.002 0.010 0.153 0.762 0.231 0.285 0.958 0.000
HLIM
L = 10 0.140 0.018 0.776 9.969 5.373 5.375 0.991 0.029
L = 30 -0.048 -0.022 0.913 11.310 5.109 5.109 0.992 0.022
HFUL
L = 10 0.010 0.013 0.525 2.919 0.852 0.852 0.989 0.000
L = 30 0.002 -0.019 0.691 3.524 1.028 1.454 0.990 0.000
DIN
K = 2 0.133 0.024 0.837 9.502 5.252 5.253 0.994 0.029
K = 3 0.286 0.043 0.980 12.065 5.959 5.966 0.972 0.039
K = 5 0.202 0.013 1.254 16.767 5.993 5.996 0.758 0.026
K = 10 -0.017 0.033 1.617 21.157 7.344 7.344 0.356 0.055
K = 15 0.029 0.026 1.579 21.124 7.261 7.261 0.1960.050

Table 8: weak instruments, no endogeneity, heteroskedasticity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 500 π = 0.04, ρ = 0.75,R2 = 0
CEEL
automatic 0.595 0.640 0.380 3.690 1.479 1.594 0.652 0.000
bn = 0.5 0.617 0.520 0.650 9.190 4.981 5.019 0.496 0.025
bn = 0.7 0.453 0.490 0.625 8.140 4.343 4.366 0.565 0.016
bn = 0.9 0.367 0.480 0.610 8.150 4.244 4.260 0.617 0.016
bn = 1.1 0.524 0.480 0.600 7.660 3.940 3.975 0.662 0.012
bn = 1.3 0.362 0.490 0.590 7.980 4.030 4.046 0.712 0.015
bn = 1.5 0.433 0.505 0.615 7.740 4.379 4.400 0.747 0.018
bn = 1.7 0.589 0.510 0.625 8.650 4.679 4.716 0.758 0.021
bn = 1.9 0.695 0.530 0.645 7.940 4.740 4.790 0.7780.023
GMM
L = 10 0.698 0.701 0.160 0.756 0.233 0.735 0.155 0.000
L = 30 0.735 0.737 0.088 0.434 0.132 0.746 0.004 0.000
HLIM
L = 10 0.638 0.584 0.645 7.909 4.308 4.355 0.813 0.017
L = 30 0.656 0.672 0.624 7.847 4.340 4.397 0.764 0.020
HFUL
L = 10 0.649 0.619 0.387 1.710 0.530 0.838 0.734 0.000
L = 30 0.706 0.689 0.439 2.118 0.639 0.952 0.731 0.000
DIN
K = 2 0.297 0.415 0.585 9.148 4.111 4.121 0.813 0.010
K = 3 0.269 0.442 0.586 9.125 4.569 4.577 0.710 0.020
K = 5 0.386 0.493 0.677 10.158 4.991 5.006 0.530 0.024
K = 10 0.414 0.606 0.829 10.500 4.799 4.817 0.323 0.019
K = 15 0.348 0.595 0.865 9.928 4.843 4.856 0.2490.020

Table 9: weak instruments, endogeneity, homoskedasticity

B Appendix: Notes on computation

B.1 Lagrange multipliers for CEL

The Lagrange multiplierλ (zi , β) is the solution, for anyi = 1, ..., n, of the maximization problem

λ (zi , β) = arg max
γ

n∑

j=1

wi j log
(
1+ γg

(
yj , xj , β

))
.
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For simplicity of notation drop the subscripti from wi j and letgj = g
(
yj , xj , β

)
. Then, the Lagrange

multiplier corresponding to this generic case is found by maximizing

f (γ) =
n∑

j=1

wj log
(
1+ gjγ

)
.

This is a function strictly concave inγ unlessgj = 0 for all j.

In order to search forγ values for which 1+gjγ > 0 for all j, we computec = max
{
−1
gj
|gj > 0,wj > 0

}
<

0 andd = min
{
−1
gj
|gj < 0,wj > 0

}
> 0;8 then forc < γ < d it holds that 1+ gjγ > 0 for all j. We

use the Newton-Raphson algorithm to find the Lagrange multiplier. In order to ensure that the

algorithm does not takeγ values outside the interval(c,d), we maximize in fact the function

F (t) =
n∑

j=1

wj log

(

1+ gj
c+ det

1+ et

)

, t ∈ R;

suppose we obtaint∗ = arg maxt F (t). Then, the Lagrange multiplier is determined as

λ =
c+ det∗

1+ et∗
∈ (c,d) .

This method for computing the Lagrange multipliersλ (zi , β) has worked very well for our DGP’s.

8Note that, since we use the Epanechnikov kernel, not all weightswj are necessarily strictly positive.
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B.2 Cross-validation

The cross-validation criterion proposed by Newey (1993, p.433) adapted to our model is

ĈV (bn) =
n∑

i=1

R̂2 (zi)Ω (zi) ,

where

R̂(zi) =
{
D̂ (zi) − D (zi) + B (zi)

[
Ω̂ (zi) − Ω (zi)

]}
,

B (z) = D (z)Ω (z)−1 andD̂ (z), Ω̂ (z) are nonparametric kernel regression estimators ofD (z), Ω (z),

respectively, where

D (z) = E

[
∂g (y, x, β0)
∂β

|z

]

, Ω (z) = E
[
g2 (y, x, β0) |z

]
.9 (7)

The expression̂R(zi) cannot be computed; Newey proposes to estimate itby

R(zi) =



∂g

(
yi , xi , β̂

)

∂β
− D̂−i + B̂−i

(
ĝ2

i − Ω̂−i

)

 ,

9For our DGP these expressions are

D (z) = E [−x|z] = −πz,

Ω (z) = E





ρu+

√
1− ρ2

φ2 + .864
(φv1 + .86v2)




2

|z



= ρ2 +

(
1− ρ2

) φ2z2 + .864

φ2 + .864
.
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whereD̂−i andΩ̂−i are leave-one-out estimators ofD (zi) andΩ (zi). Specifically,

D̂−i = −
n∑

j=1, j,i

xjw−i j ,

Ω̂−i =

n∑

j=1, j,i

ĝ2
j w−i j ,

B̂−i = D̂−iΩ̂
−1
−i ,

where

w−i j =
K

(
zi−zj

bn

)

∑n
j=1, j,i K

(
zi−zj

bn

) ,

ĝi = g
(
yi , xi , β̂

)
.

The basic idea underlying this estimation is to replace the conditional expectations by their leave-

one-out estimators and the estimators of the conditional expectations by the dependent variables in

the associated nonparametric regression. In our model the criterion simplifiesto

R(zi) =

[

D̂−i

(
ĝ2

i

Ω̂−i

− 1

)

− xi − D̂−i

]

.

The cross-validation criterion we useis

CV (bn) =
n∑

i=1

R
2
(zi) Ω̂−i .
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For all values of bandwidthsbn from a grid (e.g., 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9) we obtain an

estimator̂β ≡ β̂ (bn). Then we compute the valuesCV (bn) for eachbn and choose the estimator

and the bandwidth thatminimizeCV (bn). We refer to the estimator that we obtain this way as the

cross-validated estimator, and to the bandwidth that we obtain as the automatic bandwidth. In the

remainder of this section we show that in the case of our model for large values of the estimate the

cross-validation criterion is also large, that is, when
∣∣∣∣̂β
∣∣∣∣→ ∞ we havethatCV (bn)→ ∞ First note

that when
∣∣∣∣̂β
∣∣∣∣→ ∞ we havethat

R(zi)→ D̂−i




x2
i∑n

j=1, j,i x2
j w−i j

− 1


 − xi − D̂−i .

Since we assume that the variables in our model are continuous random variables, it holds with

probability 1 that there are numbersh, k such that̂Lh ≡ D̂−h

(
x2

h∑n
j=1, j,h x2

j w−h j
− 1

)
− xh − D̂−h , 0 and

xkw−hk , 0. Then

CV (bn) =
n∑

i=1

R
2
(zi) Ω̂−i ≥ R

2
(zh) Ω̂−h ≥ R

2
(zh) ĝ2

kw−hk. (8)

Sincexk , 0 we have that̂g2
k =

(
yk − β̂xk

)2
→ ∞ as

∣∣∣∣̂β
∣∣∣∣ → ∞, so the limit of the right hand side of

(8) when
∣∣∣∣̂β
∣∣∣∣→ ∞ is∞.
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Figure 1: CEEL objective function in the case of strong instruments and low endogenenity (R2 =

0.2, ρ = 0.3 andπ = 0.4)
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Figure 2: CEEL objective function in the case of weak instruments and high endogenenity (R2 =

0.1, ρ = 0.75, andπ = 0.04)
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