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Objective: The aim of the present study was to explore whether individual

characteristics such as age, education, vocabulary, and baseline performance

in a working memory (WM) task—similar to the one used in the training

(criterion task)—predict the short- and long-term specific gains and transfer effects of

a verbal WM training for older adults.

Method: Four studies that adopted the Borella et al. (2010) verbal WM training

procedure were found eligible for our analysis as they included: healthy older adults

who attended either the training sessions (WM training group), or alternative activities

(active control group); the same measures for assessing specific gains (on the criterion

WM task), and transfer effects (nearest on a visuo-spatial WM task, near on short-term

memory tasks and far on a measure of fluid intelligence, a measure of processing speed

and two inhibitory measures); and a follow-up session.

Results: Linear mixed models confirmed the overall efficacy of the training, in the

short-term at least, and some maintenance effects. In the trained group, the individual

characteristics considered were found to contribute (albeit only modestly in some cases)

to explaining the effects of the training.

Conclusions: Overall, our findings suggest the importance of taking individual

characteristics and individual differences into account when examiningWM training gains

in older adults.

Keywords: working memory training, older adults, age, working memory baseline performance, general cognitive

ability, training benefits, individual differences, individual characteristics

INTRODUCTION

Working memory (WM), i.e., the ability to retain and manipulate information for use in complex
cognitive tasks, is one of the core mechanisms involved in higher-order cognitive abilities (e.g.,
fluid intelligence, problem-solving, and reading comprehension; de Ribaupierre, 2001; Borella et al.,
2011). Though characterized by a limited capacity, WM is a crucial mechanism in cognition.
It is also one of the cognitive processes that suffer a clear and linear decline with aging (e.g.,
Borella et al., 2008; Mammarella et al., 2013). WM is consequently one of the general processes
targeted by the new generation of process-based cognitive training. The assumption that WM
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is trainable is based on evidence of the plasticity of our cognitive
system across the whole life span (i.e., Hertzog et al., 2008).
Further, according to some WM models, such as the continuity
model (see Cornoldi and Vecchi, 2003; Cornoldi, 2010), WM is
characterized by different processes that depend on the type of
content processed (verbal vs. spatial) and also on the involvement
of executive control. Therefore, by improving WM, its related
processes can also theoretically be enhanced. The Cornoldi and
Vecchi WM model distinguished between a “basic structure”
(a sort of personal biological equipment), and a “used ability”
determined by the way in which individuals use their WM. On
this basis, the benefits of training may presumably concern not
only the basic structure of WM, but also its usage.

The aim of WM training in aging is thus to improve older
adults’ information processing system (e.g., Zinke et al., 2012;
Bürki et al., 2014), in order to sustain their cognitive functioning
for an active aging. WM training was shown to improve
performance not only in the trained tasks (or in tasks similar to
the one used in the training), but also in untrained tasks (transfer
effects). Training changes the way in which individuals process
information, enabling them to make more flexible use of their
own resources.

The recent meta-analysis by Karbach and Verhaeghen (2014),
focusing on aging, showed that WM training for older people
could promote significant gains both in the trained tasks and
in other similar tasks (near transfer effects). There also seemed
to be some improvements in untrained tasks that shared some
cognitive processes with the task used in the training (far transfer
effects), though they were usually small in terms of effect size
(see Karbach and Verhaeghen, 2014). There have been mixed
reports on the matter of the efficacy of WM training in aging
(see Table 1), however, making it necessary to identify which
factors are involved in giving rise to training benefits. Among
the numerous factors to consider, individual characteristics—
such as age, general cognitive ability, and baseline cognitive
resources—believed to predict the benefits of memory training
(e.g., Verhaeghen and Marcoen, 1996) may also have a role
as modulators of WM training outcomes (Bürki et al., 2014).
Surprisingly, their role has not been the focus of WM training
studies as yet.

Age is one of the crucial factors that may explain whether
and to what extent individuals may gain more or less in terms
of both specific training gains (in a given trained task) and
transfer effects (e.g., von Bastian and Oberauer, 2014). Some
WM training studies examined the role of age in explaining
the benefits of training by comparing young and older adults,
or considering older adults in different age brackets (see also
Borella et al., 2014 for a review). Some of the studies that included
both young and older adults analyzed how performance changed
over the course of the training sessions (Dahlin et al., 2008; Li
et al., 2008; Richmond et al., 2011; Brehmer et al., 2012; von
Bastian et al., 2013; Bürki et al., 2014). Brehmer et al. (2012),
for instance, considered weeklyWMperformance scores, pooling
participants’ daily performance in 7 WM training tasks into a
single t-standardized WM performance score. They found that
young adults gained more than older adults from week 1 to 2, but
then the two age groups showed comparable improvements from

the second week to the end of training, from week 2 to 4. Bürki
et al. (2014) found that age-related differences in the performance
of young and older adults persisted over 10 training sessions
(with greater improvements in the former). Li et al. (2008) found
significant improvements for both young and older adults in
two trained spatial n-back tasks (though the best performance
reached by the older adults was still not as good as that of the
younger adults). Other studies reported mixed results, however:
age-related differences in favor of young adults were found in
some of the trained tasks, while improvements were comparable
between the two age groups in others.

As concerns specific training gains (i.e., in the criterion tasks),
as shown in Table 1, mixed results were found: comparable
benefits in young and older adults in tasks strictly similar to
those used in the training were obtained in five studies (Li et al.,
2008; Richmond et al., 2011; von Bastian et al., 2013; Bürki
et al., 2014; Zając-Lamparska and Trempała, 2016); three studies
showed greater improvements in young than in older adults
(Dahlin et al., 2008; Heinzel et al., 2014; Salminem et al., 2015);
one study obtained mixed results with age-related differences
for some criterion tasks but not for others (Brehmer et al.,
2012); two studies showed that older adults reached the young
adults’ baseline performance level on the WM criterion tasks
immediately after the training-i.e., at the post-test assessment-(Li
et al., 2008; Salminem et al., 2015), and one study found that older
adults exceeded the young participants’ baseline performance in
the criterion task.

Similarly, for near as well as far transfer effects (when found),
studies found either no differences between the two age groups,
or larger effects in young adults than in older adults, or again
mixed results (see Table 1). As for any long-term effects, if
they were examined, Brehmer et al. (2012), and Dahlin et al.
(2008) found a comparable maintenance of specific training gains
between young and older adults. Brehmer et al. (2012) also
identified the maintenance of both near and far transfer effects in
both age groups. Partially in contrast, Li et al. (2008) found larger
long-term specific training gains for young adults than for older
ones, while the long-term near transfer effects were comparable
between the two age groups (see Table 1).

Among the studies focusing only on older adults (see Table 1),
the ones that found significant specific training gains and transfer
effects, along with their maintenance were those involving
young-old participants (from 60 to 74 years old). Studies that
included old-old participants (from 75 to 87 years old), and those
considering a broad age range (i.e., from 60 to 82) reported
mixed findings in terms of specific and transfer training gains
in the short term (see Table 1). As for the maintenance effects,
some found limited transfer benefits (Borella et al., 2010, 2013,
2017; Zinke et al., 2013), and others found none (Buschkuehl
et al., 2008). In one of these studies, older age also emerged as
a negative predictor of training gains and at least some transfer
effects (Zinke et al., 2013); it is worth noting that the effect sizes
for transfer effects in this case were medium to large for tasks
assessing near effects, but only small for far transfer effects (see
Table 1).

Taken together, the above studies seem to support a negative
role of age in determining the benefits of WM training.
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Another variable that may influence the efficacy of cognitive
training is general cognitive ability, operationalized in some
studies with crystallized intelligence, i.e., performance in a
vocabulary test (Zinke et al., 2013). This can be considered
an index of general cognitive ability (e.g., Baltes, 1987), and
a possible moderator of WM training benefits. The only WM
training study that considered this variable found, however,
that it did not contribute to explaining WM training gains and
transfer effects (Zinke et al., 2013).

Individual differences in cognitive resources, such as WM
baseline performance, are another factor that may predict
training outcomes (see Jaeggi et al., 2014 for evidence in young
adults), but only two WM training studies that focused on older
adults (aged 77 to 96, Zinke et al., 2012; aged 65 to 80 and over:
Zinke et al., 2013) have considered this variable. One study found
a negative correlation between specific gains and participants’
baseline WM performance, i.e., those with a weaker baseline
WM performance gained more in the trained tasks than those
whose WM performance was better (Zinke et al., 2012). The
other confirmed this association, i.e., the lower the baseline WM
performance, the larger the specific gains in the trained tasks
(Zinke et al., 2013). In another study by Bürki et al. (2014), the
pre-test score obtained in a reasoning measure was considered
instead, and the results indicated that the effects of the training
were predicted not by this reasoning score, but by age group.

Overall, the pattern of results concerning the role of individual
characteristics and individual differences in training-related
performance gains and transfer effects is rather mixed. It is also
worth noting that, despite the importance of analyzing individual
factors when assessing the benefits of WM training, only three
studies have so far addressed this issue directly in relation to aging
(Zinke et al., 2012, 2013; Bürki et al., 2014).

Hence the present study, the aim of which was to examine
the role of individual differences (or individual characteristics)
by jointly considering different factors to identify those capable
of influencing short- and longer-term training-induced plasticity,
measured in terms of both specific training gains and transfer
effects. The factors considered as potential mediators of the
efficacy of training (e.g., von Bastian and Oberauer, 2014)
were demographic characteristics (i.e., age), baseline WM
performance (Zinke et al., 2012) and general cognitive ability (i.e.,
crystallized intelligence measured with a vocabulary test; Zinke
et al., 2013). The role of education was also examined because
education is considered an index of cognitive efficiency that can
preserve cognitive functioning, and because it is also used as a
proxy of cognitive reserve (e.g., Stern, 2002; Staff et al., 2004),
although no studies have examined whether it interacts with the
trainability of WM.

We investigated the role of these variables by analyzing data
emerging from studies that adopted the same WM training
procedure, developed by Borella et al. (2010). This is one
of the few procedures to have been used across different
studies, generating consistent and promising results in terms
of short- and long-term benefits (Borella et al., 2010, 2017)—
also in tasks related to everyday abilities (Carretti et al., 2013b;
Cantarella et al., 2017)—in normal and pathological aging (in
healthy young-old and old-old, Borella et al., 2013, 2014; in
amnestic Mild Cognitive Impairment, Carretti et al., 2013a).

The effectiveness of the training has been attributed to the fact
that it involves participants practicing with a complex WM
span task, combining an adaptive procedure with a systematic
variation of the demands of the task, so that it remains
constantly novel and challenging, keeping participants interested
and motivated during the proposed activities. According to the
authors, the training also engages numerous different processes
that include encoding, maintaining and inhibiting information,
simultaneously managing two tasks, sustaining and shifting
attention. Together, these aspects are believed to promote
learning and particularly to enable the training to favor transfer
effects (see Borella et al., 2010). To date, seven studies have
adopted this procedure (see Table 2 for a summary), and four
were selected for the present analysis because: (i) the same verbal
procedure was adopted; (ii) the same measures were used to
assess training gains and transfer effects; (iii) a follow-up session
was included; and (iv) a sample of healthy older adults was
considered (see Tables 2, 3).

Specific training gains and transfer effects were categorized
along a conceptually-based continuum of nearest to far transfer
tasks (i.e., Noack et al., 2009). The complex WM task (the
Categorization Working Memory Span task, CWMS) was used
to assess specific training gains because it is similar to the
task administered to participants during the training sessions.
Another complex WM task measuring the same narrow ability
(WM), and also involving active processes (see Cornoldi and
Vecchi, 2003), but with a different type of material (visuo-
spatial, the Dot Matrix Task) was administered to assess what
we describe here as nearest transfer effects. Measures of the same
broad ability (memory), but with different demands from those
of the other complex WM tasks (the Forward and Backward
Digit Span tests; see meta-analyses by Bopp and Verhaeghen,
2005) were used to assess near transfer effects. Finally, tasks
assessing fluid intelligence (the Cattell test), processing speed (the
Pattern Comparison task), and inhibitory mechanisms (Stroop
Color test and intrusion errors in the CWMS), i.e., mechanisms
differing fromWM but known to correlate with WM and to help
explaining the age-related decline in WM (e.g., de Ribaupierre
and Lecerf, 2006), were used to measure far transfer effects.

Linear mixed effects (LME) models were used to examine
the role of individual characteristics (demographic variables)
and individual differences in predicting improvements in the
measures used to assess the effects of the training (in terms of
training gains and transfer effects). These models afford a more
robust analytical approach for addressing problems associated
with hierarchical and correlated data than the traditional analyses
generally conducted in training studies (e.g., ANOVA, t-test).
In particular, LME models allow for a more flexible approach
in dealing with individual changes over time when repeated
measures are considered (e.g., Gueorguieva and Krystal, 2004;
Wainwright et al., 2007; Baayen et al., 2008).

In general, we expected to confirm the beneficial effect of
the WM training in terms of short- and long-term gains in
the criterion task, and at least short-term transfer effects for all
the measures considered. The advantage of performing such an
analysis on all four studies sharing the same procedure lay in
enabling us to establish the strength of the effects (i.e., effect sizes)
on a larger sample.
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Concerning the main objective of the study, we used
LME models to analyze participants’ individual characteristics
and differences vis-à-vis the short- and long-term effects of
their training. Analyzing these potential predictors will enable
us to test the two proposed theoretical explanations for
individual differences in training-related performance gains,
i.e., a compensation or a magnification effect of process-based
training on cognition in older adults (see for example Titz
and Karbach, 2014; see also Lövdén et al., 2012). If there is a
magnification effect, then individuals who already perform well
will benefit the most from the WM training. In other words,
high-performing participants may have more efficient cognitive
resources and therefore be in a better position to learn and
implement new abilities. The WM training should therefore
result in a magnification of age-related (in older adults) and
individual differences; baseline cognitive performance should
also be positively associated with training-related gains and
transfer effects. If there is a compensation effect, on the other
hand, then high-performing individuals will benefit less from the
training because they are already functioning at their optimal
level, and thus have less room for improvement. In this case,
age-related and individual differences should be reduced after
the training, and baseline cognitive performance should be
negatively associated with training-induced gains.

The magnification and compensation effects would thus lead
in opposite directions. Among the older adults, the younger
participants with a good cognitive status, as represented by a
measure of crystallized intelligence (vocabulary), a good WM
(revealed by their baseline CWMS performance), and a good
education might profit more from an adaptive training on a
complex aspect of cognition—WM—because a relatively high
level of functioning is required to actively engage in and benefit
from the activities proposed in the training (Bissig and Lustig,
2007; Lustig et al., 2009), which would, in turns, magnify their
abilities. On the other hand, older participants with a worse
cognitive statusmight benefitmore from theWM training (Zinke
et al., 2012, 2013) because it could counteract the suboptimal use
of resources typical of aging by prompting a more flexible use
of these resources, more reliant on controlled than on automatic
processes, that would re-activate the older participants’ potential,
having a compensatory effect.

There is also the possibility, as emerges from the results
obtained by Zinke et al. (2013), that the factors thought to predict
training-related gains might depend on the measures considered,
because these factors may also take effect independently. In fact,
the individual characteristics examined may explain the training
gains differently, as the transfer tasks vary in several aspects—not
only in terms of their relationship with WM, but also in terms of
the processes involved, such as the type of control (passive as in
the short-term memory tasks vs. active as in the reasoning task),
or the more or less strong involvement of fluid abilities (stronger
in reasoning and in processing speed than in short-termmemory
tasks) and/or those related to knowledge.

METHOD

Table 1 lists the characteristics and the main results of the seven
studies that used the verbal WM training procedure developed

by Borella et al. (2010). As mentioned in the Introduction, three
studies (in the last rows of Table 2) were not considered because:
one involved a sample of older adults with mild cognitive
impairment (Carretti et al., 2013a); one used a visuo-spatial
version of the training program (Borella et al., 2014); and one did
not include a follow-up assessment (Cantarella et al., 2017).

The four studies considered eligible for the present analysis
had in common: (i) the same verbal procedure; (ii) the same
measures for assessing training gains and transfer effects (see
Table 3); and (iii) a follow-up assessment.

Participants
All the four studies considered here included a sample of healthy
older adults (all native Italian speakers) recruited from the
University of the Third Age, at social clubs in north-eastern Italy,
or by word of mouth, who all volunteered for the study.

They were told, either individually (Borella et al., 2010, 2017)
or at a plenary session (Borella et al., 2013; Carretti et al., 2013b),
that they would be involved in one of two different programs each
consisting of five individual sessions, plus a final one at a later
date (follow-up). They were also told that the activities proposed
in one program would concern their cognitive functioning (i.e.,
practicing with memory tasks), while in the other one they would
be asked to reflect on aspects of memory (e.g., autobiographical
recall) and complete some questionnaires.

Depending on the study, participants had to meet the
following inclusion criteria: (i) good physical and mental health,
assessed by means of a questionnaire and a semi-structured
interview, respectively (as in Borella et al., 2010; Carretti et al.,
2013b); (ii) none of the exclusion criteria proposed by Crook
et al. (1986) as in Borella et al. (2010, 2013); (iii) a Mini-
Mental State Score (Folstein et al., 1975) higher than 27 (as
in Borella et al., 2013); (iv) a maximum score on the Italian
Checklist for Multidimensional Assessments (SVAMA; Gallina
et al., 2006), i.e., no signs of incipient dementia (as in Borella
et al., 2017). In all four studies, participants were randomly
assigned to either the trained group or the active control
group.

Overall, 148 participants were involved in the four studies
considered, with 73 forming the trained groups, and 75 the active
control groups. The pooled trained and control groups were
comparable in terms of age (age range: 61–87; trained group:
M = 71.63, SD = 5.53; control group: M = 71.61 SD = 5.67),
F(1, 146) < 1, years of formal education (from 8 to 24 years; trained
group: M = 9.42 SD = 4.54; control group: M = 9.97 SD =

4.72), F(1, 146) < 1, and vocabulary score in the Wechsler Adult
Intelligence Scale—Revised (WAIS–R; Wechsler, 1981; max 70;
trained group:M = 49.21 SD = 10.89; control group:M = 47.04
SD= 11.87), F(1, 146) = 1.33, p= 0.25.

As common outcome measures used to assess transfer
effects varied within the four studies considered, pooled
trained and control groups were compared with respect to
demographic characteristics and vocabulary score. The pooled
trained and control groups were not statistically different
in terms of age, years of formal education, and vocabulary
score1.

1As for the Forward and the Backward Digit Span tasks and

the Pattern Comparison task, these measures were used in three
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MATERIALS

Criterion Task
Categorization Working Memory Span (CWMS) task (De

Beni et al., 2008)
The task consisted of 10 sets of word lists, each including 20
lists of words (divided into groups containing from 2 to 6
lists). Participants listened to a set of word lists audio-recorded
at a rate of 1 word per second and they had to tap with
their hand on the table whenever an animal noun was heard
(processing phase). The interval between word lists was 2 s.
At the end of a set, participants recalled the last word on
each list (maintenance phase)—i.e., they needed to remember
from 2 to 6 words altogether, depending on the difficulty of
the set.

The total number of words recalled was used as the measure
of WM performance (maximum 20).

Nearest Transfer Effects
Visuo-Spatial WM Task

Dot Matrix task (adapted fromMiyake et al., 2001)
In this task participants had to check amatrix equation consisting
of an addition or a subtraction presented as lines drawn on a 3×
3matrix, and tomemorize sequences of dots presented on a 5× 5
grid. They were given a maximum of 4.5 s to check each equation
and say “True” or “False.” Immediately after they gave their
answer, they were shown a 5 × 5 grid containing a dot in one of
the squares for 3 s. After seeing sets of two to six pairs of equations
and grids, they had to indicate the positions of the dots on a blank
5 × 5 grid. There was one practice trial with two equations, each
with one dot. The number of dot locations to recall increased
from two to six. A total of 28 equations and 28 matrices
were presented. The total number of dot positions correctly
recalled was considered as the dependent variable (maximum
score 14).

(Borella et al., 2010, 2013, 2017) of the four studies considered. The pooled

trained (n = 56) and control (n = 56) groups from these three studies did not

differ in terms of age (trained group: M = 72.43 SD = 5.81; control group: M =

72.04, SD = 6.16), F(1, 110) < 1, years of formal education (trained group: M =

9.482 SD= 4.72; control group:M = 10.30 SD= 4.65), F(1, 110) < 1, or vocabulary

score on the Wechsler Adult Intelligence Scale - Revised (WAIS–R; Wechsler,

1981; trained group: M = 50.23 SD = 11.27; control group: M = 49.07 SD =

11.45), F(1, 110) < 1.

As for the Cattell test, this was used in three (Borella et al., 2010, 2013; Carretti

et al., 2013b) of the four studies considered. The pooled trained (n = 55) and

control (n = 57) groups from these two studies did not differ in terms of age

(trained group: M = 72.35, SD = 5.86; control group: M = 72.72 SD = 5.47),

F(1, 110) < 1, years of formal education (trained group: M = 7.80 SD = 3.73;

control group: M = 8.49 SD = 4.07), F(1, 110) < 1, or vocabulary score on the

Wechsler Adult Intelligence Scale—Revised (WAIS–R; Wechsler, 1981; trained

group: M = 45.11 SD = 8.89; control group: M = 43.16 SD = 10.25), F(1, 110) =

1.15, p= 0.28.

The Dot Matrix task and the Stroop Color task were used in two (Borella et al.,

2010, 2013) of the four studies considered. The pooled trained (n = 38) and

control (n = 38) groups from these two studies did not differ in terms of age

(trained group: M = 73.84, SD = 6.12; control group: M = 73.89 SD = 5.85),

F(1, 74) < 1, years of formal education (trained group:M = 7.66 SD= 3.79; control

group: M = 8.24 SD = 3.62), F(1, 74) < 1, or vocabulary score on the Wechsler

Adult Intelligence Scale—Revised (WAIS–R; Wechsler, 1981; trained group: M =

44.79 SD= 8.93; control group:M = 44.21 SD= 9.65), F(1, 74) <1.

Near Transfer Effects
Short-Term Memory Tasks

Forward and Backward Digit Span tasks (De Beni et al.,

2008)
Participants had to repeat series of digits in the same (forward)
or reverse (backward) order. Each level (from 3 to 9 digits for the
forward task, from 2 to 8 digits for the backward task) contained
two series of digits. After two consecutive recall errors, the task
was discontinued. One point was awarded for each correctly
recalled series. The final score corresponded to the total number
of series recalled correctly (maximum score of 14 for both tasks).

Far Transfer Effects
Fluid Intelligence

Culture Fair test (Cattell test; Cattell and Cattell, 1963)
This task consisted of 4 subtests (to be completed in 2.5–4 min.,
depending on the subtest) in which participants were asked to:
(1) choose from among six different options which ones correctly
completed a series of figures; (2) identify figures or shapes that
did not belong in a sequence; (3) choose items that correctly
completed matrices of abstract figures; (4) assess relationships
between sets of items. The dependent variable was the
number of correct answers across the four subtests (maximum
score 50).

Processing Speed

Pattern comparison task (adpated from Salthouse and

Babcock, 1991)
In this task, participants had to decide whether arrangements of
line segments were identical or not. The items to be compared
were set out on two pages each containing 30 items. Responses
consisted of writing S (for Si [Yes], for identical items) or N (for
No, for different items) on the line between the two items in each
pair. The experimenter used a stopwatch to record the time taken
to complete each page. Three practice trials were run before the
experiment started. The dependent variable was the total time
taken to complete the task.

Inhibition

Stroop Color task (adapted from Trenerry et al., 1989)
In this task participants were shown six cards. The first two
contained names of colors printed in an incongruent ink color
(Incongruent condition); the third and fourth contained names
of colors printed in a congruous ink color (Congruent condition);
and the last two contained color patches (Control condition).
Participants had to name the ink color of each stimulus and were
asked to process the stimuli as quickly and accurately as possible.
The experimenter recorded response latencies for all conditions
by using a stopwatch to time the interval between naming the
first and last stimuli—as typically done in other studies using
the paper version (e.g., West and Alain, 2000; Van der Elst et al.,
2006; Troyer et al., 2006)—and noted the respondents’ accuracy
by hand on a prepared form. The dependent variable—in order
to control for individual differences at the baseline (e.g., Borella
et al., 2009)—was the interference index computed in terms of
relative difference between the time taken to complete the task
in the incongruent and control conditions, that is [(incongruent
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condition − control condition)/control condition]. A higher
score thus implied a greater difficulty in controlling the prepotent
response in the incongruent condition.

Intrusion errors in the CWMS -CWMS intrusion errors- (De

Beni et al., 2008)
The total intrusion errors made in the CWMS, i.e., words that
were not actually the last in of each string of words presented,
were also considered as a measure of inhibition, representing
a participant’s ability to inhibit no longer relevant information
(Borella et al., 2007).

For each task, two parallel versions were devised and
administered in a counterbalanced order across the testing
sessions.

Procedure
Participants attended six individual sessions: the first and fifth
were the pre-test and the post-test sessions, and the sixth was
for the follow-up (held 6–8 months later). For the other three
sessions, the trained participants attended the training program,
while the active controls were involved in alternative activities.
For both groups, all activities were completed within a 2-
week time frame, with a fixed 2-day break between sessions.
The duration of the sessions and the amount of interaction
with the experimenter were much the same for the two
groups.

The three sessions of WM training (sessions 2-3-4) lasted
about 30–40 min. Participants were presented with lists of words
audio-recorded and organized in the same way as for the CWMS
task, and asked to recall target words, and to tap with their hand
on the table when they heard an animal noun. The maintenance
demand of the CWMS task was manipulated by increasing the
number of words that successful participants were asked to recall,
and by presenting the lowest memory load to participants who
were unsuccessful (session 2). The demands of the task also varied
and, depending on the session, they could involve having to
recall: (i) the last or first word in each list; (ii) words preceded by a
beep sound. The processing demand (tapping on the table when
an animal noun occurred) was also manipulated by varying the
frequency of the animal words in the lists (session 3). Participants
in the active control group were asked to complete questionnaires
on memory (session 1: Autobiographical Memory questionnaire;
session 2: Memory Sensitivity questionnaire—De Beni et al.,
2008), and on psychological well-being (De Beni et al., 2008; see
Borella et al., 2010 for more details of the training program and
the active control group’s activities).

The procedure was completed in accordance with the
Declaration of Helsinki (2008).

RESULTS

Linear Mixed Models
Linear mixed effects (LME) models were used to analyze
the data because, unlike the more classical and frequently-
used methods, they enable estimates to be adjusted for repeat
sampling (when more than one observation arises from the same
individual), and for sampling imbalance (when some individuals

are sampled more than others), and because they allow for
variation among individuals within the data (McElreath, 2016).
Adopting the Bayesian approach when estimating parameters
enabled us to exploit all the advantages of LME modeling,
focus directly on the probability of an effect, given the observed
data (posterior probability), and compute the evidence of our
results.

Analytical Plan
For each of the eight measures of interest (i.e., the total number
of words recalled in the CWMS, the total number of dots recalled
in the Dot Matrix task, the total number of series correctly
recalled in the Forward and in the Backward Span tasks, the total
number of correctly answered items in the Cattell test, the total
time taken to complete the task in the Pattern Comparison test,
the interference index in the Stroop Color task, and the total
number of intrusion errors in the CWMS), we tested several
mixed effects models including all combinations of predictors,
i.e., group (trained vs. control), age, education, vocabulary,
baseline performance in the verbal WM task (the CWMS), and
subjects as random effects. More precisely, we started from the
null model (i.e., the model with no predictors), considering
only the longitudinal effect (pre-test, post-test, follow-up) and
subsequently introduced all the predictors and the interactions
of all the predictors with the sessions.

For data analysis, we proceeded as follows:

(i) A first graphical inspection of the univariate and bivariate
distributions of all the outcome variables considered, then
their summarizing with descriptive statistics (see Table 4).
This step was done to: (i) check the data distributions and
identify any errors/anomalies (e.g., wrong label codes or
potential outliers); and to (ii) ascertain which model to
adopt for a better fit of our data and choose appropriate
priors for the parameters.

(ii) Model fitting and parameter estimation: each model was
fitted (separately for each measure of interest) using
the Bayesian MCMC estimation method implemented
in the STAN probabilistic programming language (Stan
Development Team, 2015) with the R packages rstanarm
(Gabry and Goodrich, 2016) and brms (Buerkner, 2016).

For the regression parameters (ß) we used normal priors
(M= 0 and SD= 10), and for standard deviation parameters
we used half-Student t (df = 3, M = 0, SD = 10);
convergences were assessed by examining the potential scale
reduction factor (PSRF; Gelman and Rubin, 1992).

(iii) Comparison between the models (separately for each
measure of interest) to identify the best one. We considered
the Widely Applicable Information Criterion (WAIC;
Watanabe, 2010), where lower values indicate a better fit,
and the AkaikeWeight, i.e., an estimate of the likelihood of a
model making the best prediction on new data, conditional
on the set of models considered (Burnham et al., 2011;
McElreath, 2016).

(iv) Analysis of the best model using posterior distributions
of parameters. Parameter estimates were summarized by
using posterior means and 95% Credibility Intervals (CI;
Kruschke, 2011).
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Data Inspection
Table 3 contains the descriptive statistics for each of themeasures
of interest by group (trained and control), and by assessment
session (pre-test, post-test, and follow-up).

Model Fitting and Parameter Estimation
In all, 1,026 models, 58 for the CWMS, and 121 for each of the
other measures of interest, were fitted. The fit indices of the 5
best models for each measure of interest are given in Table 5.

Model Comparison and Best Model Analysis
For each outcome measure we compared the fit indices of the 5
best models. Then, focusing on the best one (the one with the
lowest WAIC), we proceeded with a graphical inspection of the
Group (trained vs. control) X Session (pre-test vs. post-test vs.
follow-up) interaction to assess the effectiveness of the training
(see Figure 1).

To gain a better understanding of the extent of the benefits of
training on the trained group’s performance, the effect size was
computed on the differences between the two groups (trained
and control) at pre-test, post-test, and follow-up (see Table 6).
In addition, to ascertain the dimension of the immediate (pre- vs.
post-test) and long-term (pre-test vs. follow-up) gains obtained
in the trained group, Cohen’s d was computed using the following
formula: {(Post-test or follow-up for the trained group− Pre-test
for the trained group)− (Post-test or follow-up for the controls−
Pre-test for the controls)}/(Pooled SD of the difference; seeWeisz
and Hawley, 2001). This enabled us to adjust the gains shown by
the trained group in relation to the gain obtained by the active
control group (see Table 6).

Then, for the trained group, we conducted a graphical
inspection (separately for each session) of the values fitted for the
significant effects of the best model (see Figure 2), supported by
the evidence ratio for the hypothesis involving the ß coefficients
considered (see Table 7).

The evidence ratio represents the evidence of the targeted
hypothesis (e.g., ß > 0) with respect to the opposite hypothesis
(e.g., ß < 0). If the evidence ratio equals 1, then the two
hypotheses are equally plausible. An evidence ratio larger than
1 indicates that the target hypothesis is more plausible than
the opposite one, and an evidence ratio of <1 means that the
opposite hypothesis is more plausible than the targeted one.
In the present study, the evidence ratio was used to assess the
differences between the pre- and post-test slopes, and between
the post-test and follow-up slopes.

Criterion Task
CWMS
For the CWMS we considered a total of 58 models2. The best
model was the one with the Session X Group X Vocabulary
interaction, with a probability of 59.1% (see Table 5).

Figure 1A shows the Group (trained vs. control) X Session
(pre-test vs. post-test vs. follow-up) interaction from the best
model: the trained group performed better at post-test than at
pre-test, and maintained its better performance from post-test

2For the CWMS, the baseline performance in the CWMS was not entered as a

predictor because of multicollinearity problems.
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TABLE 5 | Fit indices of the five best models for each variable of interest.

Measure of interest Model Formula WAIC δWAIC weight

CWMS 1 M236 ss × group × vocab 1912.49 0.00 0.59

2 M313 ss × age + ss × group + ss × vocab 1914.53 2.03 0.21

3 M216 ss × group + ss × vocab 1916.38 3.88 0.08

4 M333 ss × age × group × vocab 1917.19 4.69 0.05

5 M311 ss × age + ss × educ + ss × group 1920.38 7.89 0.01

Dot Matrix task 1 M336 ss × age × group × vocab 879.12 0.00 0.84

2 M316 ss × age + ss × group + ss × vocab 884.74 5.62 0.05

3 M233 ss × age × group 885.14 6.02 0.04

4 M413 ss × age + ss × CWMS baseline + ss × group + ss × vocab 886.33 7.21 0.02

5 M213 ss × age + ss × group 887.01 7.89 0.01

Forward Span task 1 M340 ss × educ × group × vocab 985.33 0.00 0.27

2 M339 ss × CWMS baseline × group × vocab 985.63 0.29 0.23

3 M336 ss × age × group × vocab 986.19 0.85 0.17

4 M220 ss × group + ss × vocab 988.06 2.72 0.06

5 M316 ss × age + ss × group + ss × vocab 988.13 2.79 0.06

Backward Span task 1 M334 ss × age × educ × group 1023.03 0.00 0.48

2 M531 ss × age × educ × vocab × group × CWMS baseline 1024.05 1.01 0.29

3 M336 ss × age × group × vocab 1025.06 2.02 0.17

4 M431 ss × age × CWMS baseline × educ × group 1028.94 5.90 0.02

5 M433 ss × age × CWMS baseline × group × vocab 1029.49 6.45 0.01

Cattell Test 1 M332 ss × age × CWMS baseline × group 1747.97 0.00 0.43

2 M233 ss × age × group 1749.88 1.90 0.16

3 M334 ss × age × educ × group 1750.31 2.33 0.13

4 M434 ss × age × educ × group × vocab 1751.08 3.10 0.09

5 M314 ss × age + ss × educ + ss × group 1751.45 3.47 0.07

Pattern Comp. Task 1 M339 ss × CWMS baseline × group × vocab 3132.28 0.00 0.38

2 M233 ss × age × group 3133.55 1.26 0.20

3 M114 ss × group 3135.60 3.31 0.07

4 M433 ss × age × CWMS baseline × group × vocab 3135.65 3.36 0.07

5 M332 ss × age × CWMS baseline × group 3136.00 3.71 0.05

Stroop color index on RTs 1 M233 ss × age × group 174.18 0.00 0.22

2 M020 Age 176.69 2.51 0.06

3 M111 ss × age 176.89 2.71 0.05

4 M060 CWMS baseline 177.35 3.17 0.04

5 M000 (1 | subject) 177.37 3.18 0.04

CWMS intrusions 1 M332 ss × age × CWMS baseline × group 1481.79 0.00 0.93

2 M431 ss × age × CWMS baseline × educ × group 1487.59 5.79 0.05

3 M337 ss × CWMS baseline × educ × group 1491.27 9.48 0.01

4 M433 ss × age × CWMS baseline × group × vocab 1492.32 10.53 0.00

5 M531 ss × age × educ × vocab × group × CWMS baseline 1493.49 11.70 0.00

CWMS, Categorization Working Memory Span Task; ss, session; vocab, vocabulary; educ, education; CWMS baseline, baseline performance level; in the Categorization Working

Memory Span Task; CWMS intrusions, intrusion errors in the CWMS; WAIC, Widely Applicable Information Criterion (lower values indicate better fit; Watanabe, 2010); δWAIC, Widely

Applicable Information Criterion difference between the best model and the others; weigth, Akaike Weight, i.e., an estimate of the probability that the model will make the best prediction

on new data conditional on the set of models considered (Burnham et al., 2011; McElreath, 2016).

to follow-up. The effect sizes for group differences were large
at both post-test and follow-up (see Table 6). No differences
were found for the active control group. The trained group

outperformed the control group at post-test and follow-up (see
Figure 1A). The net effect size index for the trained group,
adjusted on the control group’s performance, was large for
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FIGURE 1 | Group (trained vs. control) X Session (pre-test vs. post-test vs. follow-up) interaction from the best model for each measure of interest.

Categorization Working Memory Span task (A), Dot Matrix task (B), Forward (C) and Backward (D) digit span tasks, Cattell test (E), Pattern Comparison task (F),

Stroop Color task (G) and intrusion errors in the Categorization Working Memory Span task (H). CWMS, Categorization Working Memory Span Task; CWMS

intrusions, intrusion errors in the Categorization Working Memory Span Task; RTs, Response Times. Segments represent the 95% credibility intervals.
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TABLE 6 | Effect sizes.

d of Cohen Net effect sizes

Trained group—Active control group Trained group vs. Active control group

Pre-test Post-test Follow-up Short-term gains* Long-term gains**

CWMS 0.05 1.13 1.02 1.48 1.54

Dot Matrix Task 0.09 0.89 0.20 0.95 0.16

Forward Digit Span 0.10 0.87 0.43 0.91 0.39

Backward Digit Span 0.25 1.03 0.39 0.80 0.10

Cattell Test −0.09 0.50 0.39 0.67 0.78

Pattern Comparison Test −0.21 −0.86 −0.62 −0.72 −0.47

Stroop Color index on RTs −0.07 −0.22 0.15 −0.12 0.23

CWMS intrusions 0.09 −0.27 −0.50 −0.36 −0.66

Cohen’s d of the difference between the trained and control groups at pre-test, post-test, and follow-up, for each measure of interest (first three columns); and net effect sizes computed

immediately after the training (pre-test vs. post-test; short-term gains), then 6/8 months later (pre-test vs. follow-up; long-term gains) for all measures of interest (last two columns).

CWMS, Categorization Working Memory Span Task; CWMS intrusions, intrusion errors in the CWMS; RTs, Response Times. *For short-term gains, the net effect size was computed

with the formula {(Post-test for the training groups − Pre-test for the training groups) − (Post-test for the controls − Pre-test for the controls)}/(Pooled SD of the difference). **For the

long-term gains, the net effect size was computed with the formula {(Follow-up for the training groups − Pre-test for the training groups) − (Follow-up for the controls − Pre-test for the

controls)}/(Pooled SD of the difference).

immediate gains (pre- vs. post-test) and for long-terms gains (see
Table 6).

Figure 2A shows the fitted values from the best model for
the trained group alone, as a function of vocabulary score at
the three assessment sessions, with the relative estimated linear
trend. The regression slope decreased from session 0 (pre-test) to
session 1 (post-test), with an evidence ratio of 89.91 (see Table 7),
and it became flat at follow-up, as shown by the evidence ratio
(see Table 7). These results indicate that participants with low
vocabulary scores were the ones who showed an improvement in
performance in the criterion WM task from pre-test to post-test,
and maintained this gain at follow-up.

Nearest Transfer Effects
Visuo-Spatial Working Memory

Dot Matrix task
For the Dot Matrix task we considered a total of 121 models. The
best model was given by the Session XAge XGroup XVocabulary
interaction with a probability of 84.7%. This model was about
17 times more evident than the next one, which achieved a
probability of around 5.1% (see Table 5).

As for the Group (trained vs. control) X Session (pre-test
vs. post-test vs. follow-up) interaction, the two groups did not
differ at pre-test. The trained group performed better at post-
test than at pre-test, but this gain was not maintained at follow-
up, when performance was not as good as at post-test (see
Figure 1B). Effect sizes for group differences were large at post-
test and became small at follow-up (see Table 6). No differences
were found for the control group. The trained group only
outperformed the control group at post-test (see Figure 1B). The
net effect size for the trained group, adjusted on the control
group’s performance, was large for the immediate gains (pre-
vs. post-test), but became small for the long-terms gains (see
Table 6).

Figure 2B shows the values fitted from the best model for
the trained group alone, as a function of age, and of vocabulary
score at the three assessment sessions, with the corresponding
estimated linear trend. For age, the regression slope suggests
a change—with an evidence ratio of 32.06 (see Table 7)—
from session 0 (pre-test) to session 1 (post-test), and a slight
deterioration from post-test to follow-up (evidence ratio of 7.05;
see Table 7): it was the younger participants whose performance
improved from pre-test to post-test, and then dropped back at
follow-up to much the same as their pre-test performance.

As for vocabulary, the regression slope rose from session
0 (pre-test) to session 1 (post-test), with an evidence ratio
of 5.02 (see Table 7), and clearly dropped again, becoming
flat at follow-up (see evidence ratio): it was the participants
with high vocabulary scores whose performance improved in
terms of the number of dots correctly recalled from pre-test to
post-test, but not at follow-up when their performance clearly
deteriorated.

Near Transfer Effects
Short-Term Memory

Forward Digit Span task
A total of 121 models, one of which did not converge, were
considered for the Forward Digit Span task. The best model was
represented by the Session X Education X Group X Vocabulary
interaction with a probability of 27.3%. This model did not seem
much more evident than the next two, for which the probability
was around 23.5 and 17.7%, respectively (see Table 4).

As for the Group (trained vs. control) X Session (pre-test
vs. post-test vs. follow-up) interaction, the two groups did not
differ at pre-test. The trained group performed better at post-test
than at pre-test, but this gain was not maintained at follow-up,
when performance was worse than at post-test (see Figure 1C).
The effect sizes for group differences were large at post-test and
became small at follow-up (seeTable 6). No differences were seen
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FIGURE 2 | Fitted values from the best model for the trained group alone for each variable of interest. Categorization Working Memory Span task (A), Dot

Matrix task (B), Forward (C) and Backward (D) digit span tasks, Cattell test (E), Pattern Comparison task (F), Stroop Color task (G) and intrusion errors in the

Categorization Working Memory Span task (H). CWMS, Categorization Working Memory Span Task; CWMS intrusions, intrusion errors in the Categorization Working

Memory Span Task; RTs, Response Times; cwmspre, CWMS baseline performance level.
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TABLE 7 | Evidence ratio of the differences between pre- and post-test slopes, and between post-test and follow-up slopes, for each variable of interest,

by fit index.

Measure of interest Fitted value Targeted hypothesis Alternative hypothesis Estimate Estimate error Evidence ratio

CWMS Vocabulary ß0 > ß1 ß0 < ß1 0.08 0.04 89.91

ß1 < ß2 ß1 > ß2 −0.02 0.04 2.86

Dot Matrix task Age ß0 > ß1 ß0 < ß1 0.13 0.07 32.06

ß1 < ß2 ß1 > ß2 −0.08 0.07 7.05

Vocabulary ß0 < ß1 ß0 > ß1 −0.04 0.05 5.02

ß1 > ß2 ß1 < ß2 0.12 0.05 306.69

Forward Span task Education ß0 > ß1 ß0 < ß1 0.05 0.04 7.39

ß1 < ß2 ß1 > ß2 −0.05 0.04 8.83

Vocabulary ß0 > ß1 ß0 < ß1 0.04 0.02 199

ß1 < ß2 ß1 > ß2 −0.04 0.02 199

CWMS baseline ß0 > ß1 ß0 < ß1 −0.02 0.06 0.63

ß1 > ß2 ß1 < ß2 −0.02 0.06 0.67

Backward Span task Education ß0 > ß1 ß0 < ß1 0.00 0.05 0.97

ß1 < ß2 ß1 > ß2 0.01 0.05 0.67

Age ß0 > ß1 ß0 < ß1 0.08 0.04 77.43

ß1 < ß2 ß1 > ß2 −0.11 0.03 665.67

Cattell Test Age ß0 > ß1 ß0 < ß1 0.28 0.10 433.44

ß1 < ß2 ß1 > ß2 −0.18 0.09 41.11

CWMS baseline ß0 > ß1 ß0 < ß1 −0.04 0.14 0.61

ß1 < ß2 ß1 > ß2 0.00 0.15 0.99

Pattern Comparison Task Vocabulary ß0 > ß1 ß0 < ß1 0.65 0.45 13.13

ß1 < ß2 ß1 > ß2 −0.07 0.45 1.25

CWMS baseline ß0 < ß1 ß0 > ß1 −1.63 1.58 5.77

ß1 > ß2 ß1 < ß2 0.19 1.63 1.21

Stroop color index on RTs Age ß0 < ß1 ß0 > ß1 −0.04 0.01 665.67

ß1 > ß2 ß1 < ß2 0.02 0.01 27.99

CWMS intrusions Age ß0 > ß1 ß0 < ß1 0.01 −0.05 1.49

ß1 > ß2 ß1 < ß2 0.1 0.04 189.48

CWMS baseline ß0 < ß1 ß0 > ß1 −0.16 0.06 799

ß1 < ß2 ß1 > ß2 0 0.06 1.14

CWMS, Categorization Working Memory Span Task; RTs, Response Times; CWMS intrusions, intrusion errors in the CWMS.

for the control group. The trained group only outperformed the
control group at post-test (see Figure 1C). The net effect size for
the trained group, adjusted on the control group’s performance,
was large for immediate gains (pre- vs. post-test), but became
small for long-terms gains (see Table 6).

Figure 2C shows the values fitted from the best model for
the trained group alone as a function of education, vocabulary,
and pre-test performance in the WM criterion task, at the three
assessment sessions, with the corresponding estimated linear
trend. A minimal change from pre-test to post-test emerged
for all the variables: the evidence ratio between session 0 (pre-
test) and session 1 (post-test) was 7.39 for education, 199
for vocabulary, and 0.63 for pre-test performance in the WM
criterion task (see Table 7). At follow-up, there was a change

from post-test (see evidence ratio), with performance dropping
back to pre-test levels. In particular, it was the participants who
had a limited education, low vocabulary scores, and a poor pre-
test performance in the WM criterion task who experienced
a slight improvement in their performance, but only at post-
test.

Backward digit span task
For the Backward Digit Span task we considered a total of 121
models, one of which did not converge. The best model emerged
for the Session X Age X Education X Group interaction, with
a probability of 48.3%. This model was about two times more
evident than the next one, for which the probability was around
29% (see Table 5).
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For the Group (trained vs. control) X Session (pre-test vs.
post-test vs. follow-up) interaction, the two groups did not
differ at pre-test. The trained group performed better at post-
test than at pre-test, and then its performance deteriorated from
post-test to follow-up (see Figure 1D). The effect sizes for group
differences were large at post-test and became small at follow-
up (see Table 6). No differences were identified in the control
group. The trained group only outperformed the control group
at post-test (see Figure 1D). The net effect size for the trained
group, adjusted on the control group’s performance, was large
for immediate gains (pre- vs. post-test), but became small for
long-terms gains (see Table 6).

Figure 2D shows the values fitted from the best model for the
trained group alone as a function of education, and of age at
the three assessment sessions, with the corresponding estimated
linear trend. For education, there was no change in the slope. For
age, the younger the participants, the greater the improvement
in performance from pre-test to post-test, with an evidence ratio
of 77.43 (see Table 7). From post-test to follow-up, there was
a decline in the slope, with an evidence ratio of 665.67 (see
Table 7), meaning that performance returned to the levels seen at
pre-test.

Far Transfer Effects
Fluid Intelligence

Cattell test
For the Cattell test we considered a total of 121 models.
The best model was obtained with the Session X Age X
CWMS baseline X Group interaction, with a probability of
43.1%. This model was about three times more evident than
the next, for which the probability was around 16.6% (see
Table 5).

For the Group (trained vs. control) X Session (pre-test vs.
post-test vs. follow-up) interaction, the two groups did not differ
at pre-test. The trained group performed better at post-test than
at pre-test, and then its performance declined from post-test to
follow-up (see Figure 1E). The effect sizes for group differences
were medium at post-test and became small at follow-up (see
Table 6). No differences came to light for the control group. The
trained group outperformed the control group at both post-test
and follow-up (see Figure 1E). The net effect size for the trained
group, adjusted on the control group’s performance, was medium
for both immediate gains (pre- vs. post-test) and long-term gains
(see Table 6).

Figure 2E shows the values fitted from the best model for
the trained group alone as a function of age, and of pre-test
performance in the WM criterion task at the three assessment
sessions, with the corresponding estimated linear trend. For age,
it was the younger participants whose performance was better
at post-test than at pre-test, with an evidence ratio of 443.44
(see Table 7), and they also maintained their better level of
performance at follow-up, with an evidence ratio of 41.11 (see
Table 7).

There was no differences in the slopes for pre-test
performance in the WM criterion task, as confirmed by the
evidence ratio. It is worth noting that there was a slightly higher

variability in the Cattell test at post-test for participants with low
scores for pre-test performance in the WM criterion task.

Processing Speed

Pattern Comparison task
We considered a total of 121 models for the Pattern Comparison
task. The best model was the one with the Session X
CWMS baseline X Group X Vocabulary interaction, reaching
a probability of 38.5%. This model was about two times more
evident than the next, which reached a probability of around
20.5% (see Table 5).

For the Group (trained vs. control) X Session (pre-test vs.
post-test vs. follow-up) interaction, the two groups did not differ
at pre-test. The trained group performed better (taking less time
to complete the task) at post-test than at pre-test, and maintained
this improvement from post-test to follow-up (see Figure 1F).
The effect sizes for group differences were large at post-test and
became medium at follow-up (see Table 6). No differences were
found for the control group. The trained group outperformed the
control group at post-test and, to a certain extent at, at follow-
up too (see Figure 1F). The net effect size for the trained group,
adjusted on the control group’s performance, was medium for
both immediate gains (pre- vs. post-test) and long-term gains (see
Table 6).

Figure 2F shows the values fitted from the best model for the
trained group alone, as a function of vocabulary, and pre-test
performance in the WM criterion task at the three assessment
sessions, with the corresponding estimated linear trend. There
was a very weak effect for vocabulary—the evidence ratio was
13.13 (see Table 7)—and it was the participants who had a higher
pre-test vocabulary score who improved in the processing speed
measure from pre- to post-test. No differences were found in the
slope when the WM criterion task at pre-test was considered; a
high individual variability also emerged (see Figure 2).

Inhibition

Stroop color task
We considered a total of 121 models for the Stroop color index
on response times (RTs). The best model coincided with the
Session X Age X Group interaction, with a probability of 22%,
which is rather low, though this model was about 4 times
more evident than the next one, which reached a probability of
around 6.3% (see Table 5). As shown in Figure 1G, no Group
(trained vs. control) X Session (pre-test vs. post-test vs. follow-
up) interaction was found. This is in line with the null effect
size identified on the differences between the groups, both
immediately after the training and at follow-up (see Table 6), and
also on the effect size computed for the immediate and long-term
training gains obtained by the trained group (see Table 6).

The best model was only examined for the trained group.
Figure 2G shows the values fitted from the best model as
a function of age at the three assessment sessions, with the
corresponding estimated linear trend. The results suggest that
younger participants weremore sensitive to interference, and that
it decreased from pre-test to post-test, with an evidence ratio of
665.67 (see Table 7), but then rose again to the pre-test level at
follow-up.
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CWMS intrusions
We considered a total of 121 models for the CWMS intrusion
errors. The best model was the one with the Session X Age X
CWMS baseline X Group interaction, with a probability of 93%.
This model showed a higher evidence than the others, since the
associated probability was 18 times higher than that of the next
model (see Table 5).

The differences were not very large for the Group (trained
vs. control) X Session (pre-test vs. post-test vs. follow-up)
interaction. Performance seemed to deteriorate from pre-test to
post-test in the trained group, but not in the control group, while
the number of errors increased at follow-up (see Figure 1H).
The effect sizes for group differences were small at post-test and
became medium at follow-up (see Table 6), but the two groups
did not differ. The net effect size for the trained group, adjusted
on the control group’s performance, was small for immediate
gains (pre- vs. post-test), but becamemedium for long-term gains
(see Table 6).

Figure 2H the values fitted from the best model for the trained
group alone as a function of age, and of pre-test performance
in the WM criterion task, at the three assessment sessions, with
the corresponding estimated linear trend. The regression slope
for age decreased from post-test to follow-up, but not from pre-
test to post-test, as supported by the evidence ratio, indicating
that it was the older individuals who made more mistakes at
pre-test, and it was only at follow-up that they were likely
to experience fewer intrusion errors. The regression slopes for
baseline performance in the WM criterion task decreased from
session 0 (pre-test) to session 1 (post-test), with an evidence ratio
of 799 (see Table 7), and then became flat, as supported by the
evidence ratio (see Table 7): all the participants with a poor WM
performance made more mistakes, in terms of intrusion errors,
at pre-test, and fewer mistakes at post-test, and this improvement
was maintained at follow-up.

DISCUSSION AND CONCLUSIONS

Our aim in the present study was to delineate how certain
individual characteristics contribute to explaining WM training
gains and transfer effects. Despite the importance of individual
characteristics in cognition, only three studies in the aging
literature have considered this issue. Here, age, formal education,
general cognitive ability (operationalized with the vocabulary
score), and WM baseline performance level were considered as a
predictor of the short- and long-term specific training gains and
transfer effects of a verbal WM training in a sample of healthy
older adults.

To elucidate this issue, an analysis was conducted using linear
generalized mixed effects models on data from four previous
studies on healthy older adults that adopted the verbal WM
training program developed by Borella et al. (2010). Part of the
interest of such an analysis lies in that—for the first time, to our
knowledge at least—all the studies examined were based on the
same procedure and the same assessment measures, and they all
included a follow-up session. The Borella et al. (2010) training
program seems to be the only WM procedure to have been

applied repeatedly in older adults with consistent results across
studies. It is worth adding that another advantage of the studies
selected for the present analysis is the inclusion of an active
control group, and parallel versions of the tasks were presented
(as recommended, but rarely done, in the literature; Zinke et al.,
2012). The effects identified therefore cannot be attributed to the
influence of item-specific practice.

Overall, our findings confirmed the efficacy of the verbal WM
training procedure proposed by Borella et al. (2010): the trained
group showed specific gains, performing better in the criterion
task than the active control group immediately after the training,
and maintaining this benefit at follow-up. Positive effects of the
WM training were also generally apparent in terms of transfer
effects, in the short term at least (at post-test), since the trained
group outperformed the active controls in all the near transfer
measures considered. As for the far transfer measures, the trained
group again outperformed the active controls in all tasks, but not
in terms of the Stroop Color index on RTs or CWMS intrusion
errors.

This pattern of results was confirmed by the generally large
post-test effect sizes (over 0.80) computed on the differences
between the trained and active control groups, with the exception
of the reasoning task –the Cattell test- (medium effect sizes) and
intrusion errors in the CWMS (small effect sizes). At follow-up,
the differences remained large for the criterion task, but became
medium in the processing speed task—the Pattern Comparison
task—and for intrusion errors in the CWMS, and small in the
other tasks (Forward Digit and Backward Digit Span tasks, Dot
Matrix task, and Cattell test). There were no changes in the
effect size of the Stroop Color index on RTs, which confirms
the absence of an effect of the training—the fact that there were
no group differences—between the trained and control groups.
Also by considering the net effect size of the training activities on
participants’ performance, that is changes in the trained group
across sessions—pre-test, post-test and follow-up—(see Table 6)
after adjusting the value for any change in the control group, the
training benefits were confirmed. It is consequently reasonable to
say that the training produced some maintenance effects on the
trained group’s performance.

These overall findings are consistent with the previously-
published results obtained with the same WM training program.
Although the present training regimen is quite short (only
three training sessions) near and far training gains were found,
confirming that this WM training procedure is effective. As
also suggested by the meta-analysis conducted by Karbach and
Verhaeghen (2014), the length of a training does not seem a
crucial factor in determining its efficacy: in fact, most of the
WM training procedures for older adults failed to document
any benefits although they were much longer than the one
considered here (see Borella et al., 2017; see also Table 1). The
adaptive regimen adopted may well have favored training gains
by: (i) ensuring that the tasks were always challenging, cognitively
demanding and novel, consequently inducing participants to
adhere to the task; (ii) producing a change in participants’
allocation of attentional resources because the training engages
several processes (including encoding, retaining information,
inhibiting no longer relevant information, managing two tasks
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simultaneously, shifting attention, and attentional control) for
an efficient handling of the different demands of the tasks. On
the other hand, the lack of any short-term transfer effects for the
two inhibitory measures may mean that inhibitory mechanisms
are less amenable to training (see Zavagnin and Riboldi, 2012).
Some degree of caution is required in interpreting the findings
obtained with the Stroop Color task because they were based on
RTs, which are not a very reliable indicator (e.g., de Ribaupierre
et al., 2003; see Ludwig et al., 2010; Borella et al., 2017), and the
sample was reduced for this particular measure (see Table 3). It
is also possible, as discussed below, that it would take longer to
prompt any detectable change for the inhibitory measures, or
some of them at least.

Concerning long-term effects of the training, there was
evidence of the maintenance of the specific training gain (in the
criterion WM task), in line with all the WM training studies in
the aging literature. In the transfer tasks, the training gains were
only maintained for the Cattell test and the Pattern Comparison
task, as seen in other studies using the same training procedure:
the advantage of the trained group over the controls lay in
the range of a medium effect size (or near-medium for the
Pattern Comparison task). Such a selective maintenance of the
training gains may be attributable to the well-documented strong
relationship between WM and (i) processing speed (measured
with the Pattern Comparison task), and (ii) reasoning ability (for
a comprehensive discussion see Borella et al., 2010).

Improving WM performance makes cognitive operations
more efficient, thus fostering the ability to move among the
basic information processes. The other tasks may call upon
more task-specific processes and abilities instead, leading to
only transient (immediate) transfer effects (for a discussion, see
Borella et al., 2010). One of the inhibitory measures examined,
intrusion errors in the CWMS, seems particularly intriguing in
that it only showed a clear improvement (fewer intrusion errors
in the criterion task) at follow-up. This may mean that it would
take longer to see a benefit of the training for some measures
(inhibitory mechanisms in the present case). This phenomenon
(i.e., clear transfer effects only at follow-up) has been found in
other training studies in aging too (e.g., Borella et al., 2017), and
has been called the “sleeper” effect. Although its nature needs to
be further investigated (see Jaeggi et al., 2014), it may indicate that
certain abilities take longer to show a significant improvement in
performance. Future studies should make an effort to examine
this issue.

Such a result on the intrusion errors and not in the Stroop
Color task (leaving aside the problems associated with measuring
RTs and the reduced sample size) may even indicate that WM
training is more beneficial for some inhibitory functions than
for others. In fact, intrusion errors in the CWMS and the
Stroop Color task do belong to two different inhibitory functions.
CWMS intrusion errors—an internal measure of the WM task
and therefore closely related thereto (see Robert et al., 2009)—
represent the resistance to proactive interference function of
inhibition, which helps attention to be focused on relevant items
and simultaneously-presented irrelevant items to be ignored;
the Stroop Color task measures the resistance to prepotent
response function of inhibition, which blocks dominant and

prepotent cognitive responses automatically activated by the
stimulus presented (e.g., Borella et al., in press). Resistance to
proactive interference is also considered the only inhibitory
function related to the control of information coming from
memory content (Friedman and Miyake, 2004).

In light of the present findings, the questions following
are: 1. Do any individual characteristics have a part to play
in these findings? Are the effects of training supported by
magnification or compensation effects, or both? Of course, there
could be several aspects, such as methodological issues, but also
participants’ individual characteristics, capable of explaining the
training gains and supporting the results. Here, we particularly
analyzed the role of certain demographic variables (age and
educational level), cognitive abilities in WM (i.e., pre-test
performance in the criterion task), and a vocabulary test score
as an indicator of crystallized intelligence.

Our findings showed that the role of the individual
characteristics considered depended on the type of measure
examined, and the effect of these variables was very modest for
some tasks. The most interesting aspect seems to be that the
factors considered would support either a compensation or a
magnification effect immediately after the training, depending
on which measure was analyzed. In particular, irrespective of
the near or far transfer effects, the more the tasks demanded
active information processing (i.e., the Dot Matrix, Backward
Digit Span and Pattern Comparison tasks, the Cattell test, and
the Stroop Color task), the more the factors examined seemed to
support a magnification effect (of variable robustness). In other
words, participants who had a higher initial performance in the
crystallized measure used here and/or were younger, were more
likely to improve after the training. For more passive tasks, on the
other hand (i.e., the Forward Digit Span task, which is a short-
term memory task), our results supported a compensation effect:
participants with lower baseline vocabulary scores, an older age,
and a weakerWMperformance benefitedmore from the training.
A particular pattern emerged for the criterion task (i.e., the task
similar to the one used in the training) and for a closely related
measure (CWMS intrusion errors): although the criterion task
is complex, participants with a lower performance in a task
of crystallized intelligence, as assessed with the vocabulary test,
gained more from the training than those with higher vocabulary
scores. That vocabulary should have such a role suggests that
knowledge can counteract age-related decline (e.g., Baltes, 1987).
Further, the role of vocabulary in explaining specific training
gains may also suggest that participants exhibiting transfer effects
were those who acquired new knowledge, rather than a greater
processing efficiency. A finely-graded analysis at individual level
may be able to clarify this issue.

As for intrusion errors there was evidence of a compensation
effect related to age and baseline WM performance, with older
participants and those with a lower baseline WM performance
improving the most. These results may mean that the exercises
used in the training enabled individuals with a lower crystallized
ability to adapt to the demands of the tasks, engage better-
controlled processes, and make more efficient use of their
resources. It is hardly surprising that such a pattern of results
should emerge with a training task that involves an adaptive
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procedure, which may have enabled progress to be made during
the training, leading to a better performance and fewer intrusion
errors at post-test and its maintenance at follow-up. Similarly,
participants with a low baseline WM performance also became
better able to manage no longer relevant information (CWMS
intrusion errors).

One way to interpret these results could be by referring
to the supply-demand mismatch conceptualized by Lövdén
et al. (2010). According to these authors, changes in cognitive
performance are induced by a mismatch between available
resources and task demands: to cope with this mismatch,
individuals engage in activities that promote flexibility, and
consequently also plasticity. This hypothesis enables us to predict
how individual differences might affect the benefits gained from
a training regimen, depending on a task’s complexity. The
compensation effect seen for the criterion task (which closely
resembled the task used in the training) may be due to the
fact that using an adaptive procedure while practicing with
the training task favored the “right amount” of supply-demand
mismatch (i.e., demands exceeding than the available capacity)
for individuals with a weaker profile in terms of their general
cognitive abilities to re-activate their potential, and thus benefit
from the training in terms of a better performance in the criterion
task. It might have been easier to support this interpretation
if our training procedure had been designed to enable us to
test how performance changed from one training session to the
next. Such an analysis would also shed light on what happens
to individuals with the opposite profile (good general cognitive
abilities—high vocabulary scores in the present study), who
would only experience the mismatch if the WM tasks used in
the training were more difficult, so instead of benefiting in terms
of performance in the trained task they would gain in terms of
plasticity in the transfer tasks.

According to the mismatch concept, the magnification effect
found for the more demanding transfer tasks may indicate
that in participants with a higher profile, in terms of age (i.e.,
younger individuals), or crystallized intelligence (i.e., those with
higher vocabulary scores) the training induced a supply-demand
mismatch that gave an impetus to change, thus engendering a
flexible behavior. In participants with a lower profile, on the other
hand, the high demands of the tasks used in the training might
prevent any supply-demand mismatch because these individuals
might abandon any attempt or be unable to apply resources and
processes suited to the task.

The mixed results emerging from the present analysis as
concerns the role of individual characteristics in explaining
the compensation or magnification effects are consistent
with a report from Zinke et al. (2013): the authors found
that participants with weaker transfer effects were older
(magnification), and that those with smaller training gains had
stronger transfer effects (compensation). The role of age andWM
performance varied, however, depending on the transfer tasks
considered. The role of the predictors was examined too, but the
effect size was small for some of the transfer tasks, and this limits
the value of the results obtained.

It has to be said that the results found in the present study
were modest too, so some degree of caution is warranted in

interpreting them. Further, such a pattern of findings was found
at post-test and, except for the criterion task and the intrusion
errors, the role of the predictors was not maintained at follow-
up for the other measures. Such a result could be interpreted
in two different ways: one stems from on the idea that, because
of the training, the individual characteristics are no longer
significant because something beyond them has been modified
during the training, such as the way in which participants process
information; the other simply attributes the result to the fact
that the effects of the training were not maintained. It therefore
seems important to analyze the influence of other individual
characteristics on the effects ofWM training. This has been done,
for the first time, at least to our knowledge, in both the short
and the long term; the other three studies that approached such
an issue did not consider the role of the predictors in the long
term.

Our findings also suggest that compensatory and
magnification effects are not mutually exclusive in explaining
training gains; they may both contribute to characterizing
and explaining the outcome of training. It would therefore be
important for future WM training studies in general (and in
aging, in particular) to make the effort to examine the role of
individual factors. We are aware that large samples are needed
for such analyses, but it is only by trying to overcome such
practical problems that research can advance and enable us to
ascertain the real usefulness of intervention to promote an active
aging.

A number of limitations of the present study have to be
acknowledged. First, single measures were used to represent the
constructs of interest, whereas using multiple indicators of the
same process (e.g., Shipstead et al., 2010) in training studies
would enable us to draw stronger conclusions. Second, we were
unable to consider training gains per-se, i.e., the role of individual
differences in improvements induced by training across the
sessions, the rate of learning, in predicting the outcome of the
training, because the particular procedure used did not allow
for these aspects to be analyzed. Examining what progress a
given individual makes, and how it relates to the effects of the
training could shed further light on the value of the present
training program (Zinke et al., 2013; Bürki et al., 2014). A third
limitation lies in that we analyzed the role of a limited number
of factors potentially influencing training gains. In future studies
we plant to conduct a more complete assessment of general
cognitive ability, and assessing them with tasks not used to
test transfer effects (to avoid multi-collinearity problems). Since
we acknowledge the exploratory nature of our results, we have
discussed overall trends for the transfer tasks, rather than the
influence of each of the specific predictors on each task. There are
also other factors, of course, thatmay have influenced the training
gains, and that have yet to be considered, such as metacognitive
(motivational) variables, mood, and psychological well-being
(e.g., von Bastian and Oberauer, 2014; Könen and Karbach,
2015). It might also be of interest to analyze the influence of
genetics (such as dopamine availability) on training gains (von
Bastian and Oberauer, 2014). Future studies should therefore
strive to include a broad array of factors, with larger and more
homogeneous samples (i.e., with same size) than the one used
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here, in an effort to delineate all the conditions capable of shaping
the effects of WM training in older adults.

To conclude, the present study provides further evidence of
the elderly gaining in cognitive flexibility and plasticity from
a verbal WM training. It also highlights the importance of
analyzing the factors influencing WM training gains in aging.
Also, although we showed that older people’s WM can be
improved thanks to a plasticity that persists with aging, we
found that the role of individual characteristics depended on
the transfer measure examined. It is consequently important
to ascertain “who” gains from the training, but also “who
gains in which tasks,” in order to be able to design the
most effective WM training to suit an individual’s cognitive
profile. This study could thus be considered as one of the
first promising steps toward clarifying the impact of individual

characteristics on the short- and long-term efficacy of WM
training.
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