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Abstract

Objective: Glucose-dependent insulinotropic polypeptide receptor (GIPR) overexpression has been recently described 

in a proportion of gsp− somatotropinomas and suggested to be associated with the paradoxical increase of GH (GH-PI) 

during an oral glucose load.

Design and methods: This study was aimed at linking the GIP/GIPR pathway to GH secretion in 25 somatotropinomas-

derived primary cultures and correlating molecular with clinical features in acromegalic patients. Given the 

impairment of the GIP/GIPR axis in acromegaly, an additional aim was to assess the effect of GH/IGF-1 stimulation on 

GIP expression in the enteroendocrine cell line STC-1.

Results: Nearly 80% of GIPR-expressing somatotropinomas, all of them negative for gsp mutations, show increased 

GH secretion upon GIP stimulation, higher sensitivity to Forskolin but not to somatostatin analogs. Besides increased 

frequency of GH-PI, GIPR overexpression does not appear to affect acromegalic patients’ clinical features. In STC-1 

cells transfected with GIP promoter-driven luciferase vector, IGF-1 but not GH induced dose-dependent increase in 

luciferase activity.

Conclusions: We demonstrate that GIPR mediates the GH-PI in a significant proportion of gsp− acromegalic patients. 

In these cases, the stimulatory effect of IGF-1 on GIP promoter support the hypothesis of a functional GH/IGF-1/GIP 

axis. Further studies based on larger cohorts and the development of a stable transgenic model with inducible GIPR 

overexpression targeted to pituitary somatotroph lineage will be mandatory to establish the real role of GIPR in the 

pathogenesis of somatotropinomas.

Introduction

Acromegaly is a rare and progressive hormonal syndrome 
commonly due to a benign monoclonal GH-secreting 
pituitary adenoma (GH-sec PA) (1). Patients often have 
well-known systemic complications at diagnosis with 
increased morbidity and mortality (2) and reflecting the 

slow progression of the symptoms over a period of many 
years, and the clinical diagnosis is frequently delayed.

A biochemical diagnosis of acromegaly is made 
by quantifying serum IGF-1 levels and determining 
autonomous GH secretion by measuring its levels after 
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a standard oral glucose challenge (OGTT). In patients 
with active disease, oral glucose fails to suppress serum 
GH levels to below 0.4 μg/L, and in approximately 30% of 
cases, it increases paradoxically (1).

With the aim of clarifying the pathogenesis of 
GH-secreting PAs, we recently focused our attention on a 
member of the G-protein-coupled receptors superfamily 
(GPCR) – i.e. the glucose-dependent insulinotropic 
polypeptide receptor (GIPR) (3). Once activated by GIP, 
which is secreted by the K cells of the duodenum in 
response to meals, GIPR transduces extracellular stimuli 
into intracellular responses by activating the cAMP 
pathway (4, 5). In physiological conditions, the glucose-
dependent secretion of insulin in pancreatic β cells after 
GIP stimulation exemplifies this mechanism (6). When 
inappropriately expressed in the adrenal gland, the GIPR 
may instead result in the development of an adrenal 
tumor (7), disrupting cAMP homeostasis by altering the 
cascade normally triggered by ACTH. Consequently, this 
leads to increased cortisol secretion and the development 
of food-dependent Cushing’s syndrome (FDCS) (8, 9).

We found that nearly 30% of GH-sec PA expressed 
GIPR at significantly higher levels than normal pituitary 
glands. All were gsp negative, thus suggesting that these 
two events might be mutually exclusive and perhaps 
parts of the same pathogenic mechanism involving cAMP 
(3). Correlation of molecular findings with clinical data 
revealed that in most cases, GIPR overexpression was 
associated with a paradoxical increase in GH after OGTT 
(GH-PI) (3, 10). Similar to what is observed in FDCS, in 
GIPR-overexpressing GH-sec PAs, GH is inducible by 
meal (10), but unlike FDCS in which cortisol levels drop 
in parallel with GIP reduction; in acromegalic patients, 
the GH blood concentrations always remain above the 
diagnostic threshold. Although such observation might 
suggest that GIPR may not be the primary cause of 
acromegaly (10), these patients show abnormally high 
fasting and postprandial plasma GIP levels (11); this may 
be the consequence of a direct effect of GH, IGF-1 or both 
on GIP secretion.

Based on these premises, we aimed to study if a 
link between the GIP/GIPR axis and GH induction in 
GH-secreting PAs primary cultures exists and to GH-PI 
observed in acromegalic patients. Secondly, taking 
advantage of the GIP-secreting enteroendocrine model cell 
line STC-1, we assessed the effect of GH/IGF-1 stimulation 
on GIP secretion. Clinical-to-molecular correlation among 
patients from the current and our previous series (3) is 
also reported.

Subjects and methods

Patient tissues and primary cell cultures

We studied 25 consecutive active acromegalic patients 
(15 females; age 17–70  years, mean age 44 ± 15  years) 
diagnosed at the Endocrinology Unit of Padova 
University/Hospital and at the Pituitary Unit, Department 
of Neurosurgery, San Raffaele Hospital in Milan on the 
basis of consensus criteria (12). OGTT was performed in 
all 25 patients. An arbitrary threshold of greater than 
20% of GH increase during this test – to discriminate 
between real increase and test variability (see below) – 
was set to differentiate paradoxical from non-paradoxical 
responders. Patients’ clinical and hormonal features 
are reported in Supplementary Table  1 (see section on 
supplementary data given at the end of this article).

All 25 acromegalic patients underwent trans-
sphenoidal surgery. Portions of the surgically removed 
specimens were fixed in 10% buffered formalin and then 
embedded in paraffin; standard sections stained with 
hematoxylin and eosin were used for diagnosis, whereas 
the presence of pituitary hormones was evaluated by 
standard immunocytochemical analyses. A second 
fragment for each tissue specimen was immersed in 
RNAlater (Ambion), kept at 4°C for 24 h and then stored 
at −20°C until RNA extraction. The remainder of each 
somatotropinoma was transferred to sterile cold complete 
culture medium and processed within 36 h as previously 
described (13). Informed consent was obtained from each 
patient. The study was conducted in accordance with the 
Helsinki Declaration.

Primary cells treatments and GH measurement

The effect of GIP and somatostatin analogs (SA) on GH 
secretion was examined in somatotropinoma-derived 
primary cells. Novartis Pharma AG kindly provided the SA 
Pasireotide (SOM230) and Octreotide (OCT), whereas GIP 
and Forskolin (FK) were purchased from Sigma-Aldrich.

After seeding and incubation of primary cells at 37°C 
for 48–60 h, the medium was removed and replaced with 
2% FBS DMEM containing GIP (100 nM), FK (10 µM), 
OCT (100 nM) or SOM230 (100 nM). Cells were incubated 
for further 6 h (GIP and FK) or 24 h (OCT and SOM230) 
before the medium was recovered and frozen. GH was 
measured by Immulite 2000 (DPC, Carpinteria, CA, 
USA) (coefficient of variation (CV) <7%, lower detection 
limits 0.01 μg/L).
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Immunofluorescence

Immunofluorescence for GIPR expression was 
performed on GH-sec PAs on conventional sections 
after deparaffinization in xylene, rehydration through 
graded alcohols to water and antigen retrieval (Dako) in 
10 mM sodium citrate buffer (pH 6.0) for 10 min at 96°C. 
Sections of a normal human pancreas and of a GH-sec PA 
incubated with non-immune serum were used as positive 
and negative controls respectively.

GIPR expression was visualized with a rabbit polyclonal 
antibody (kindly provided by Prof. Timothy Kieffer, 
University of British Columbia, Vancouver, Canada; O/N, 
4°C, 1:250) and Alexa Fluor 594-labeled donkey anti-
rabbit IgG secondary antibody (Life Technologies, 1:250). 
Tissue sections were also stained for GH by incubating 
with a mouse anti-GH monoclonal antibody (Santa Cruz 
Biotechnology, 1:200) and Alexa Fluor 488-labeled donkey 
anti-mouse IgG secondary antibody (Life Technologies, 
1:250). Cell nuclei were stained with 1.5 μg/mL Hoechst 
33258 (Sigma-Aldrich). The cover slips were rinsed twice 
in excess PBS and mounted with Fluorescent Mounting 
Medium (Dako, Cat. No. S3023). The preparations were 
examined with a DMI6000CS fluorescence microscope 
(Leica Microsystems CMS) with a 63×/1.40 oil-immersion 
objective. Images were acquired by means of a DFC365FX 
camera and analyzed with Leica LAS-AF 3.1.0 software.

Nucleic acid isolation, cDNA synthesis and  
mutation screening

The tumor specimens collected in RNAlater were 
homogenized in a TissueLyser (Qiagen) in 1 mL of 
TRIzol reagent (Invitrogen) using a modified TRIzol 
protocol (14). RNA and DNA yields were determined on a 
NanoDrop spectrophotometer (NanoDrop Technologies, 
Wilmington, DE, USA), and RNA integrity was tested 
with the Agilent 2100 Bioanalyzer (Agilent Technologies). 
Genomic DNA in the RNA was removed by DNAse, 
treating total RNA with Turbo DNA free kit (Ambion). RNA 
(500 ng) was reverse-transcribed with M-MuLV Reverse 
Transcriptase RNase H- (Euroclone, Pero, Italy) according 
to the manufacturer’s recommendations.

Somatotroph adenomas were screened for somatic 
gsp mutations as reported previously (3). In nine GIPR 
overexpressing cases – included in this and previous 
cohort (3) – of which we had both somatic and matched 
germline DNA, the presence of somatic mutations in GIPR 
promoter (15) and transcribed regions has been evaluated. 
Lymphocytes DNA was extracted with a DNeasy Blood 

and Tissue Kit  (Qiagen) according to the manufacturer’s 
instructions. DNA sequencing was performed using the 
BigDye 1.1 Termination Chemistry on an ABI 3730XL 
(Applied Biosystems). All primer sequences and PCR 
conditions are available upon request.

Quantitative RT-PCR (RT-qPCR)

RT-qPCR experiments were performed according to 
the MIQE guidelines. The GoTaq Probe qPCR Master 
Mix (Promega) and TaqMan Gene Expression Assays 
for the GIPR (Hs00609210_m1, Life Technologies) 
were used in an ABI PRISM 7900HT Sequence 
Detector (Applied Biosystems). GIPR flanking genes 
GPR4 (NM_005282; For 5′-agggaacataagaccgcaat-3′; 
Rev 5′-tgcccttcacttgagttctg-3′), EML2 (isoforms 
NM_001193268, NM_001193269, NM_012155 and 
NR_034098; For 5′-atgctgtcatcccacaagaa-3′; Rev 
5′-ttggcaaagttcacctgttt-3′), SNRPD2 (NM_004597; For 
5′-ggagtgaacggagagcgtag-3′; Rev 5′-tcttattgttgcggcagttg-3′) 
and QPCTL (isoforms NM_001163377 and NM_017659; 
For 5′-acctgctgcagtctcatcc-3′; Rev 5′-tgagatggagcacgggta-3′) 
were assessed with the GoTaq qPCR Master Mix 
(Promega). Similarly, to assess the possible duplication 
of the GIPR-containing locus, two different genomic 
regions (CNV1, AC006132 For 5′-gtggcgggttgtgatgga-3′, 
Rev 5′-ccctccccttgccgattg-3′; CNV2, AC007191 For 
5′-cgggtagggggagaacca-3′, Rev 5′-ctcgcccctctcctgaga-3′) 
were assessed by qPCR as previously described (16). 
For this purpose, tumoral DNA was extracted with a 
DNeasy Blood and Tissue Kit (see previously). A final 
concentration of either 300 nM (GPR4, EML2, CNV1 
and CNV2) or 50 nM (SNRPD2 and QPCTL) for both 
forward and reverse primers was used. All samples were 
tested in duplicate in a MicroAmp 96-well reaction plate 
sealed with an optical adhesive film (Applied Biosystems) 
with a proper amount of template (5–20 ng of cDNA or 
10 ng gDNA) in 20 µL of reaction mixture. For GIPR, the 
reaction was set up using 20 ng of template. No-template 
controls were included in each run. The PCR conditions 
were 95°C for 2 min, followed by 40 cycles at 95°C for 
15 s and at 60°C for 1 min. Data were analyzed with SDS  
rel.2.4 (Applied Biosystems), with an automatically 
set baseline and a fluorescence threshold adjusted for 
measuring quantification cycle (Cq) values. Validation 
experiments performed using the standard curve method 
with five serial dilutions of genomic DNA from control 
subjects showed identical amplification efficiencies 
(100% ± 10%) calculated according to: E = 101/−slope − 1, 
for all assays. The amount of each target gene relative to 
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pituitary adenomas’ most stable housekeeping gene, HMBS 
(14) for RT-qPCR and to a reference locus on chromosome 
19 (GPR4 gene, see above) for qPCR was ascertained by 
the ΔΔCq method. The threshold for distinguishing high- 
(GIPR-H) and low-expressing GIPR (GIPR-L) specimens 
was established previously (3).

Cell lines, transfection and dual-luciferase assay

The possible interaction between the GH/IGF-1 axis and 
the synthesis and/or secretion of GIP was investigated 
with murine enteroendocrine cell lines STC-1 (ATCC 
CRL-3254). Cells were cultured at 37°C and 5% CO2 in 
DMEM-low glucose (ECM0749, Euroclone) supplemented 
with 10% FBS, 3.7 g/L NaHCO3, 2 mM l-glutamine, 100 U/
mL penicillin and 100 mg/mL streptomycin. Twenty-four 
hours before the experiment, STC-1 cells (1.75 × 105 cells/
well) were seeded into 12-well plates. Cells were transiently 
transfected with 2 μL of Lipofectamine 2000 (Invitrogen) 
together with 1.6 μg of total DNA consisting of hGIP2.9kb-
luc (a kind gift from Prof. T Kieffer generated by cloning a 
2.9-kb fragment of human GIP promoter (−2844 to +57 bp) 
upstream luciferase gene (17)) and pRL-TK (Promega) and 
incubated for 24 h. Cells were then treated for further 24 h 
with GH (from 1 to 100 ng/mL), IGF-1 (from 0.1 to 100 ng/
mL), insulin (100 nM) or the combination of FK and IBMX 
(10 μM each) and the effect on GIP promoter activity was 
examined. All compounds used for cell treatments were 
purchased from Sigma-Aldrich.

Cell media were removed, proteins were harvested in 
passive lysis buffer (Promega) and the relative luciferase 
activity was measured with the Dual-Luciferase Reporter 
Assay System and a GloMax 20/20 luminometer 
(Promega), according to the manufacturer’s instructions.

As part of the study, RT-PCR was used to detect the 
presence of GH (GH-R) and IGF-1 receptors (IGF-1R) in 
STC-1 cells. RNA was extracted and reverse-transcribed 
as reported previously. Twenty-five nanograms of cDNA 
was amplified for 40 cycles with Taq G2 Flexi DNA 
Polymerase (Promega) and 5 pmol of sense and antisense 
primers, common to all known isoforms (GH-R, Primer F 
5′-ggtcttcttaaccttggc-3′, Primer R 5′-tcttgcagcttgtcgttg-3′, 
IGF-1R, Primer F 5′-atggagtgctgtatgcttctg-3′, Primer R 
5′-cggttcatggtgatcttctctc-3′). Mouse liver cDNA was used 
as a positive control for GH-R and IGF-1R expression.

Statistical analysis

For cell culture studies, all experiments were performed 
at least twice, and results are presented as the mean ± s.d. 

of at least triplicate determinations. Significance was 
determined by Student’s t-test. To correlate clinical with 
molecular and biochemical data proportions and rates 
for categorical variables, means and standard deviations 
or medians and inter-quartile ranges (IQR) for parametric 
or non-parametric variables were calculated. Groups were 
compared with the chi-square test for categorical variables 
(or Fisher’s exact test when the cell count was <5) or 
the Mann–Whitney test for quantitative variables, as 
appropriate. The SPSS 17 software package (SPSS) was used 
for all analyses. The significance level was set at P < 0.05 
for all tests.

Results

Clinical and molecular analysis

Tumor specimens have been evaluated for GIPR 
expression by RT-qPCR. Based on our previous 
observations and established criteria (3), samples were 
divided into two distinct subgroups. The first comprises 
15 samples expressing GIPR within the range for normal 
pituitaries (GIPR-L; from 1.6 × 10−4 to 1.7 × 10−2, mean 
2.9 × 10−3 ± 4.6 × 10−3), and the second comprises 10 
samples expressing GIPR at significantly higher levels 
(GIPR-H; from 0.02 to 0.27, mean 0.13 ± 0.08) (Fig.  1). 
By immunofluorescence we confirmed the high GIPR 
expression in the adenoma sections in the latter cases, 
both membrane and cytoplasmic immunoreactivity (3). 
Co-localization of red and green staining in the same cell 
confirmed that GIPR is expressed in GH-secreting tumor 
cells (Fig. 2).

The thorough assessment of clinical features in the 25 
acromegalic patients revealed that 8/10 GIPR-H patients 
showed a GH-PI (Fig. 3 and Supplementary Table 1). The 
remaining two patients showed a decrease of GH that 
did not fall below 0.4 μg/L (#6) or a slight increase not 
exceeding the previously established cut-off of 120% 
(#9). In contrast, only 3/15 GIPR-L patients (#5, #7 and 
#15) showed a GH-PI. Among GIPR-H subjects with a 
postoperative OGTT, one was cured by adenomectomy 
and the paradoxical GH secretion was abolished. In three 
further cases, despite evidence of a markedly reduced nadir 
GH in two of them, persistence of GH levels above 0.4 μg/L 
confirmed the persistence of the diseases (Supplementary 
Table 1); the GH-PI was also maintained.

Seeking the molecular cause of GIPR gene 
overexpression, we studied the GIPR locus in GIPR-H 
tumors. On sequence analysis, no somatic mutations 
were identified. To evaluate a possible impairment of 
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transcription involving the 19q13.32 locus (SF 1a), we 
compared the steady-state level of GIPR’s upstream (GPR4 
and EML2) and downstream flanking genes (SNRPD2 
and QPCTL) mRNA between six GIPR-H and ten GIPR-L 
samples. No significant difference emerged between the 
two groups (see SF 1b). In addition, copy number gains of 
GIPR were excluded by qPCR testing two different genomic 
regions (CNV1 and CNV2 in SF 1a) in two GIPR-H and 
five GIPR-L specimens respectively (SF 1c).

Tumor specimens were then further evaluated for 
gsp mutations. As shown in Fig. 1, one of two mutations 
was identified in 5 of the 25 cases, and only associated 
with low GIPR expression. In all but one case with an A/T 
transition at codon 227 (Q227L), the mutation occurred 
at codon 201 (three R201C and one R201H).

Primary cell treatment and GH measurement

To definitively confirm the link between GIP/GIPR and 
the GH-PI, somatotropinoma-derived primary cultures 
have been established and cells were treated with GIP. 

As shown in Fig.  4A, 6/10 GIPR-H cases significantly 
responded to GIP stimulus (GH secretion mean induction 
204% ± 95%). In the remaining four cases, two (#6 and 
#22) showed a GH increase – 121% and 137% respectively 
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Figure 1

GIPR mRNA steady-state level in tumor tissue samples. 

GIPR mRNA levels were normalized against the most stable 

pituitary housekeeping gene, HMBS. Patients’ identification 

numbers have been reported in Supplementary Table 1. 

The dashed gray line represents the threshold above which 

samples were classified as overexpressing GIPR (see ‘Material 

and methods’ section). The dashed black line divides the chart 

in two parts that include GIPR-H (left) and GIPR-L (right) 

samples. §gsp+.
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Figure 2

Representative immunofluorescence staining of a GH-sec PA 

with high GIPR expression. (A) GH is visualized in the green 

immunofluorescent channel, whereas (B) GIPR in the red one. 

(C) Co-localization of red and green staining in the same cell 

confirms that GH-secreting tumor cells express GIPR. Cells are 

counterstained with Hoechst (blue) to mark nuclei. (D) Positive 

control is a section of a normal human pancreas. 

Immunofluorescent images are at 100× magnification.
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Figure 3

Zenith and nadir of two-hour OGTT in the cohort of 

acromegalic patients. Values are expressed as percentage of 

the zero time point. The dashed black line represents the 

120% threshold we considered for defining an increase  

as paradoxical.
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– that did not reach statistical significance (due to high 
variability among vehicle-treated wells). In contrast, 
among GIPR-L primary cells, only in one case (#15) a 
modest increase of GH secretion after GIP stimulation 
was observed. In vitro GH increase due to GIP treatment 
and GIPR overexpression were positively correlated 
(Spearman’s Rho R = 0.522, P = 0.006).

To characterize the activation status of the cAMP 
signaling pathway, according to GIPR expression, primary 
adenoma cells were treated with FK and GH secretion was 
evaluated. As shown in Fig. 4B, GIPR-H tumors responded 
more frequently (7/9 vs 3/13, P < 0.05) and with higher 
response to FK (185% ± 113% vs 110% ± 63%, P = 0.05) 
than GIPR-L adenomas. Interestingly, in four of five gsp+ 
tumors, FK treatment induced a significant reduction of 
GH (mean decrease 44% ± 10%) possibly as a consequence 
of a non-inducible pathway (18).

Whenever possible, primary cultures were treated 
with either OCT or SOM230, the SSTR2- and SSTR5-
selective agonists respectively. Both molecules were 
equally effective in inducing GH decrease in both GIPR-H 
and GIPR-L somatotropinomas (Fig. 4C).

Clinical-to-molecular phenotype

To increase the power to identify possible association, 
we then combined data from this and from a previously 
published cohort (3). This resulted in 47 cases (15 males) 
for which both molecular and comprehensive clinical 
data were available. The GH-PI was observed in 43% 
(20/47) of acromegalic patients and is strictly associated 
with GIPR expression in somatotropinomas but not to 
gsp mutational status. The group of 20 patients with a 
GH-PI included 81% (13/16) and 23% (7/31) of GIPR-H 
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Figure 4

GH-sec PA-derived primary cultures responsiveness to different stimuli. (A) Cell cultures have been treated with 100 nM GIP or 

vehicle and GH secretion has been evaluated. The level of GH secretion was expressed as relative percentage to vehicle-treated 

tumor cells. §gsp+, *P < 0.05. Samples have been ordered according to Fig. 1 to easily compare GIPR expression data with 

functional in vitro studies. (B) Primary cultures responsiveness to FK (10 µM). Bars represent the number of samples that either 

showed a statistically significant increase (incr), a decrease (decr) of GH after FK treatment. Stable are those cultures in which GH 

secretion is not influenced by FK treatment. The number of gsp+ cases in each group, when different from 0, is reported above 

the correspondent bar. (C) Primary cultures responsiveness to SOM230 or Oct (100 nM) divided according to the GIPR expression 

profile. Responders are considered as those cases with a statistically significant decrease of GH secretion compared to the 

correspondent vehicle-treated cells.
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and GIPR-L adenomas respectively (Fig.  5A, Pearson χ2 
13.75, P < 0.001). In contrast, a frequency of ~40% among 
paradoxical acromegalic patients could be observed in 
gsp+ (4/9) and gsp− (16/38) (Fig. 5B).

Although patients with GIPR-H tumors tended 
to be males (50% of males vs 27% of females, P = 0.18) 
with higher serum GH levels (26.8 ± 29.4 vs 17.2 ± 15.9, 
P = 0.159), these differences were not statistically 
significant. In addition, no differences were observed 
in the age at diagnosis, basal plasma PRL levels or in 
the distribution of macro and micro adenomas between 
GIPR-H and GIPR-L groups. We then evaluated the initial 
GH increase in patients with GH-PI according to the 
somatotropinoma GIPR expression status. In 77% (10/13) 
of patients with a GIPR-H tumor, GH increase occurred 
very early during OGTT (i.e. within 30 min), whereas only 
in one-third of patients with a GIPR-L adenoma (2/7) 
(P = 0.06, Fig. 5C).

Cell lines, transfection, dual-luciferase assay

To test if the high levels of circulating GIP reported for 
acromegalic patients (11) might be a direct consequence 
of high GH or IGF-1, GIP promoter inducibility was 
assessed in the murine enteroendocrine cell line STC-1. 
hGIP2.9kb-luc-transfected STC-1 cells were treated with 
increasing concentrations of either IGF-1 or GH, and 
luciferase activity was determined. A 100 nM insulin 
treatment was used as positive control.

As reported in Fig. 6A, the IGF-1 treatment induced 
a dose-dependent increase in luciferase activity with 
a significant effect already at 0.1 ng/mL (P < 0.05). The 
maximum increase (6.4-fold ± 0.5, P > 0.001) was reached 
at 50 ng/mL, comparable with that generated by IBMX + FK 
used as second positive control of GIP promoter activation. 
In contrast, no induction of the GIP promoter activity was 
seen at any concentration of GH. These data are consistent 
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Correlation between biochemical and molecular observations in acromegalic patients. Subjects have been grouped according to 

(A) GIPR expression profile or (B) gsp mutational status. Bars represent the number of patients within each group presenting a 

paradoxical or a canonical response of GH during OGTT. In panel (C) the bars heights correspond to the number of patients with 

a paradoxical increase of GH observed that begin at the time point indicated in the x-axis during OGTT.
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with the observation that IGF-1R is expressed in STC-1 
cells (Fig. 6B).

Discussion

Recently two studies – one by our group – raised the 
hypothesis that GIP/GIPR could promote the GH-PI 
in a proportion of acromegalic patients (3, 10) by 
counteracting hypothalamic inhibitory activity induced 
by glucose (19, 20). In the current study, we confirmed 
that impaired expression of a functional GIPR, rather 
than an altered hypothalamic somatostatinergic activity 
(21), mainly contributes to this effect. Indeed, previous 
observations of functional coupling of GIPR with Gαs in 
GIPR-transfected GH3 cells (3), and the current findings 
of GIP responsiveness of most high GIPR-expressing 
primary cultures, strongly suggest that in about 30% of 
GH-sec PAs, activation of an unconventional GIP/GIPR 
axis, after an oral glucose administration, stimulates GH 
secretion by mimicking the cellular events triggered by 
GHRH stimulation (22, 23, 24). The co-localization of 
GIPR and GH in somatotroph tumor cells further supports 
the assumption of a mechanism of action that parallels 
the GIP-mediated cortisol synthesis and secretion in 
FDCS patients (8).

In nearly 20% of cases, however, GH plasma levels 
increase after glucose stimuli in spite of low GIPR levels 
and vice versa – i.e., high GIPR level without GH-PI. 
Given the high specificity that characterizes the GIP/GIPR 
binding (25), in the former cases, GH-PI is unlikely caused 
by GIP binding to alternative GPCRs, which could instead 
be directly activated by a gastroenteropancreatic hormone 
(e.g. glucagon-like peptide-1). The secondary activation 
by an hypothalamus-mediated mechanism after an 
hyperglycemic stimulus (e.g. GnRH (26)) may represent 
an alternative hypothesis to explain this phenomenon, 
being a functional GnRH receptor identified in nearly 
15% of gsp− GH-sec PA (27). Looking to paradoxical 
cases, the evidence that in GIPR-negative patients GH 
increase occurs later during the test compared to GIPR-
positive suggests, in addition, that a GPCR-independent 
mechanism cannot be completely ruled out and that the 
GH-PI may occur when hyperglycemia cannot abolish 
the endogenous GHRH-induced GH rise, a mechanism 
proposed for explaining the GH-PI observed in 8% of 
normal subjects (34). On the other hand, neither GIPR-
inactivating mutations nor nucleotide variants (i.e. 
SNP rs1800437) associated to enhanced receptor 
desensitization (28) explain GIP unresponsiveness in 

GIPR-H cases. Although  technical reasons could not be 
fully ruled out, mechanisms affecting GPCR modulation, 
involving β-arrestins, GPCR kinases or regulators of 
G-protein signaling, as already associated to SSTRs 
activation (29), may represent an intriguing alternative.

Besides an higher incidence of GH-PI, as in FDCS 
(30) the presence of GIPR overexpression does apparently 
not influence the major clinical features in acromegalic 
patients as already reported in a subset of the present 
cohort (3). This partially reflects the results of previous 
studies in which patients’ clinical features have been 
analyzed with respect to gsp mutational status. Besides 
a slightly higher responsiveness to SA (31) and a more 
common small size and densely granulated pattern 
reported for gsp+ tumors, no relevant difference in clinical 
features (e.g. GH/IGF-1 levels, disease duration, cure rate 
and outcome) have been found (32, 33). This may imply 
that although the improper cAMP pathway activation 
represents a compelling mechanism for explaining GH 
cell hypersecretion, its clinical significance has not been 
clearly defined.

GIPR-overexpressing GH-sec PAs respond more 
frequently and effectively to the adenylate cyclase 
activator FK by increasing GH secretion, in accordance 
with previous observations of a less inducible cAMP-
signaling pathway in gsp+ tumors (18). The exclusion of 
these latter from our cohort to specifically determine the 
sole contribution of GIPR to this, however, greatly reduces 
the cohort size and prevents us from drawing final 
conclusions on this aspect, despite a tendency toward 
a higher responsiveness to FK in GIPR-H compared to 
GIPR-L/gsp− emerges. Evaluation of a larger cohort would 
be desirable to allow a reliable subgroup analysis. Given 
the correlation between GIPR overexpression and GH-PI, 
a possible relationship between GIPR mRNA steady-state 
level and clinical features could be indirectly inferred, 
thus stratifying acromegalic patients according to OGTT 
response. To our knowledge, no studies investigating the 
possibility of such an association have been performed, 
except for one showing that the simultaneous presence 
of a GH paradoxical response to TRH and the lack of 
partial GH inhibition after OGTT were related to smaller 
tumor size and postoperative long-term control of the 
disease (21).

Activating mutations in the gene promoter (15) 
or transcribed regions are unlikely to underlie GIPR 
overexpression in GH-sec PAs. This resembles FDCS 
tumors (34, 35) that does not even present changes in 
the level of transcription factor – e.g. Sp1/Sp3, Pax6 and 
Foxa1/Foxa2 (34, 36, 37) – involved in GIPR expression 
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regulation (38, 39, 40). Based on the quantification of 
flanking gene expression and GIPR copy number, we can 
also exclude a general (40) or locus-specific impairment 
of transcription as well as of a gross chromosomal 
duplication. A recent large integrated epigenomic and 
transcriptomic study associated a GIPR locus methylation 
defect to gene expression impairment (41). Although this 
mechanism seems at the moment the most probable, 
alternative genetic events – e.g promoter swapping, gene 
fusion – need to be considered for definitely explaining 
this phenomenon.

Regardless of the reasons for this upregulation, these 
data together suggest that the aberrant expression of 
GIPR may be a secondary rather than a primary event. 
This has been recently reported in Cushing’s disease and 
aldosteronomas in which EGFR or GnRHR overexpression 
is secondary to USP8 deubiquitinase gene mutations 
(42) or to b-catenin constitutive active mutations (43) 
respectively. On the other hand, the observation that 
GIPR-altered expression may be sufficient to trigger 
adrenocortical tumor formation (7) and its mutual 
exclusivity with ARMC5 gene mutations in patients 
with bilateral macronodular adrenal hyperplasia (16, 44) 
cannot exclude the possibility that GIPR overexpression 
might be the pivotal driver of tumor transformation in 
endocrine tissues.

In a previous report, in spite of the recognized analo-
gies in the mechanism regulating the aberrant secretion 
of GH and cortisol in GIPR-expressing GH-sec PA and 
adrenal nodules respectively, aberrant activation of the 
GIP/GIPR pathway has been excluded as the primary 
cause of acromegaly as the GH blood concentration 
remains always above the diagnostic threshold (10). The 
abnormally high fasting and postprandial plasma GIP 
levels in acromegalic patients (11) led us to postulate 
that in GIPR-expressing PAs, GIP plasma levels could 
be high enough to chronically trigger adenylyl cyclase/
cAMP signaling (3). In addition, the stimulatory effect of 
IGF-1 on GIPR promoter activity in STC-1 may suggest 
the possible presence of a self-sustaining GH/IGF-I/GIP 
axis in these patients. Food dependency indeed might 
characterize the first phase of the disease and prolonged 
exposure to high circulating GH levels might induce 
persistently elevated GIP levels that continuously trigger 
the adenylyl cyclase/cAMP signaling cascade in the GIPR-
overexpressing GH-sec PA. Higher basal circulating GH 
levels should characterize a persistent cAMP stimulation 
– i.e. patients overexpressing GIPR – which we have seen 
only as tendency. On the other hand, a similar expectation 
could also be formulated for gsp+  samples for which, 

on  the contrary, data are conflicting and inconclusive 
(33). This may imply that although important in tumoral 
transformation, as confirmed by recent NGS studies (45), 
an impaired cAMP pathway could not be used to predict 
basal serum GH levels.

In conclusion, we here demonstrate for the first time 
that in GH-sec PAs, the functional GIP/GIPR pathway 
mediates GH secretion and is frequently associated with 
GH-PI. Whether GIPR overexpression may be associated 
with a specific clinical or molecular phenotype in GH-sec 
PAs and acromegaly, and may thus be explored for 
novel therapeutic approaches, as recently proposed for 
neuroendocrine tumors (46), remains to be established. 
Finally, further studies based on a large number of cases 
and the development of a stable transgenic model with 
inducible GIPR overexpression targeted to pituitary 
somatotroph lineage will be required to establish the 
real role of GIPR overexpression in the pathogenesis of  
GH-sec PAs and to establish the possible existence of a  
GH/IGF-1/GIP axis in a proportion of acromegalic patients.
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