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MONSTROUS BPS-ALGEBRAS AND

THE SUPERSTRING ORIGIN OF MOONSHINE

NATALIE M. PAQUETTE, DANIEL PERSSON, AND ROBERTO VOLPATO

Abstract. We provide a physics derivation of Monstrous moonshine. We show that

the McKay-Thompson series Tg, g ∈ M, can be interpreted as supersymmetric indices

counting spacetime BPS-states in certain heterotic string models. The invariance groups

of these series arise naturally as spacetime T-duality groups and their genus zero property

descends from the behaviour of these heterotic models in suitable decompactification

limits. We also show that the space of BPS-states forms a module for the Monstrous

Lie algebras mg, constructed by Borcherds and Carnahan. We argue that mg arise

in the heterotic models as algebras of spontaneously broken gauge symmetries, whose

generators are in exact correspondence with BPS-states. This gives mg an interpretation

as a kind of BPS-algebra.
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1. Introduction and summary

The famous Monstrous moonshine conjecture [1] has motivated a host of new develop-

ments at the intersection between theoretical physics, algebra, number theory, and group

theory. In its basic formulation, the conjecture associates with each element g of the

Monster group M (the largest sporadic finite simple group) a modular function Tg, the

McKay-Thompson series. The invariance groups Γg ⊂ SL(2,R) of the series Tg were con-

jectured to satisfy very constraining properties: in particular, the quotient H/Γg of the

upper half plane by Γg is expected to have genus zero. The conjecture has been proved by

Borcherds [2], based on previous contributions by many authors, in particular by Frenkel,

Lepowsky, and Meurman [3]. While the proof dates back to almost 25 years ago, many

aspects of Monstrous moonshine are still unclear.

This paper aims to provide a natural physical framework where some of these open

issues can be understood. The main idea is to interpret the McKay-Thompson series as

supersymmetric indices in certain heterotic string compactifications. This leads to the two

main results of the paper. First, we show that the modular groups Γg can be understood as

groups of dualities in these models, and we provide a physical derivation of their genus zero

property. Second, we show that the Monster Lie algebra m, introduced by Borcherds in his

proof of Monstrous moonshine, is the algebra of spacetime BPS-states in these heterotic

models. More precisely, the algebra arises as a spontaneously broken gauge symmetry,
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whose generators are in exact correspondence with the BPS single-particle states. In the

remainder of the introduction we shall provide some motivational background, and give

a more detailed overview of the results.

1.1. Monstrous CHL-models. Monstrous moonshine [1–3] associates to each element

g in the Monster group M, a modular function (McKay-Thompson series)

Tg(τ) = TrV ♮(gqL0−1) =
∞
∑

n=−1

TrV ♮
n
(g)qn, q := e2πiτ , (1.1)

where the coefficients are characters of g in the graded components of the Frenkel-

Lepowsky-Meurman Monster module V ♮ =
⊕∞

n=−1 V
♮
n . In physics language, V ♮ is a

holomorphic two dimensional conformal field theory (CFT) of central charge 24 with sym-

metry group M, and Tg are its g-twisted partition functions. By the cyclicity property

of the trace, the McKay-Thompson series are actually class functions (i.e., they depend

only on the conjugacy class of g). A key ingredient in Borcherds’ proof of Monstrous

moonshine was the construction of an infinite-dimensional Lie algebra m, known as the

Monster Lie algebra, obtained by applying a certain functor to the Monster module V ♮.

In this paper we show that m is the “algebra of BPS-states” of a certain heterotic string

theory. The fact that BPS-states in string theory form an algebra was first proposed by

Harvey and Moore [4,5], but the precise structure of this algebra is still poorly understood

(see [6–10] for various attempts). In the original work, Harvey and Moore envisioned that

the algebraic structure was captured by the OPEs between BPS-vertex operators, and

the algebra should be closely related to a Borcherds-Kac-Moody algebra (BKM-algebra).

A slightly different construction was proposed in [11, 12], where the space of BPS-states

in a certain N = 4 string theory realized a module for a BKM-algebra. In this work we

take the latter approach, and show that the space of BPS-states in a certain heterotic

orbifold forms a representation of the Monster Lie algebra m constructed from V ♮. The

algebra is generated by BRST-exact string states, that are in one to one correspondence

with the BPS string states. This provides the first realization of the Monster Lie algebra

as an algebra of BPS-states, answering a long-standing question raised by, in particular,

Harvey and Moore [4], and Carnahan [13]. In fact, our construction is more general and

applies to the entire class of Lie algebras mg, g ∈ M, constructed by Carnahan [14] in

the context of proving “generalized moonshine” (the full proof is now complete and con-

stitutes [13–15]). Generalized moonshine was proposed by Norton [16] and concerns, for

each commuting pair g, h ∈ M, the following “twisted” and “twined” generalizations of

the McKay-Thompson series:

Tg,h(τ) = TrV ♮
g
(hqL0−1), (1.2)

where V ♮
g is the g-twisted sector in the orbifold of V ♮ by g. The specialization1 T

1,h recovers

the McKay-Thompson series, while Tg,1 constitutes part of the denominator formula for

1We will always use 1 to denote the identity element 1 ∈ M.
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the Lie algebra mg [14]. Each such Lie algebra is the algebra of BPS-states for a heterotic

string model labeled by g.

The key ingredient in our analysis is a new type of “Monstrous CHL” model, where

the name is taken from the analogous construction by Chaudhuri, Hockney, and Lykken

[17,18]. We consider the heterotic string compactified to 1+1 dimensions, with the internal

CFT of the form V ♮ × V̄ s♮, where V̄ s♮ is the super-moonshine module for the Conway

group, envisaged by [3] and constructed by Duncan [19]. It has no NS-sector states of

conformal weight 1/2, but 24 Ramond ground states of weight 1/2. We then consider the

further compactification of this theory on the spatial circle S1 of radius R and we take

a ZN -orbifold of this theory by (δ, g), where δ is an order N shift along S1 and g ∈ M.

The resulting theory has (0, 24) spacetime supersymmetry, and the spectrum contains

two kinds of irreducible representations: a short (BPS) 1-dimensional representation and

a long representation of dimension 212.

These constructions raise an immediate puzzle. There are no local massless states in

the spectrum since in lightcone quantization these precisely correspond to currents in the

internal CFT, and we have just seen that these are absent in our models. In particular,

there is no dilaton and hence, at first sight, no string coupling! We will propose a resolution

to this puzzle in Section 2.2 and henceforth tune the string coupling to zero; obstacles to

turning on finite string coupling are discussed briefly in Section 3.3.

1.2. The supersymmetric index. One of the main points of the paper is that in these

models we can compute a supersymmetric index Z which counts (with signs) the number

of BPS-states. This index will allow us to provide a spacetime interpretation of Monstrous

moonshine and use this to shed light on the elusive genus zero property of moonshine.

Let us first consider the unorbifolded case. We compute the index in three different

ways which each provide certain useful clues. First, using a Fock space construction we

define Z as a weighted trace over the second-quantized BPS-Hilbert space HBPS:

Z(T, U) := TrHBPS

(

(−1)F e2πiTW e2πiUM
)

, (1.3)

where F is the fermion number, (W,M) represent winding and momentum operators along

S1, and (T, U) ∈ H × H are the associated (complexified) chemical potentials, involving

in particular the radius R of S1 and the inverse temperature β. Evaluating this index we

find the explicit formula

Z(T, U) =
(

e2πi(w0T+m0U)
∏

m>0
w∈Z

(1− e2πiUme2πiTw)c(mw)
)24

, (1.4)

where c(mw) are the Fourier coefficients of the modular-invariant J-function

J(τ) = T
1

(τ) =

∞
∑

n=−1

c(n)qn = q−1 + 196884q + · · · . (1.5)
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and we allow for possible winding and momentum w0, m0 of the ground state. We will

argue below that the correct values are w0 = −1, m0 = 0.

We stress that in the original Monstrous moonshine the J-function is the graded dimen-

sion of the moonshine vertex operator algebra V ♮, or in physics parlance, the partition

function of the Monster CFT, and therefore it is intrinsically a worldsheet object. On

the other hand, the supersymmetric index Z(T, U) is a spacetime object, and therefore

provides a new spacetime interpretation of Monstrous moonshine.

Inspired by generalized moonshine we also extend this analysis to all Monstrous CHL-

models and we define for each commuting pair g, h ∈M the twisted twined index

Zg,h(T, U) := TrHg
BPS

(

h(−1)F e2πiTWe2πiUM
)

, (1.6)

where Hg
BPS is the space of BPS-states in the CHL-model. We will be particularly inter-

ested in the specialization Zg,1, for which we derive an infinite product formula analogous

to (1.4).

In the second approach, the index is computed in terms of an Euclidean path integral,

with the Euclidean time compactified on a circle with period the inverse temperature

β. We argue that the path-integral is one loop exact and show that it reproduces the

modulus squared of the supersymmetric index.

e−S1−loop = |Z(T, U)|2. (1.7)

The holomorphic part of the one-loop integral is the free energy F and thus we have the

expected relation:

F(T, U) = log Z(T, U), (1.8)

with similar results for all the twisted indices Zg,1(T, U). In this second approach, the

invariance of the index under the T-duality group is manifest.

The third approach is purely algebraic. By the work of Borcherds it is known that, for

suitable values of w0, m0, the infinite product formulas (1.4) and its twined generalizations

are the denominator formulas for the Monster Lie algebra m and its generalizations mg,

respectively. We give a spacetime BPS state interpretation of this algebra and show that

m is the algebra of BRST-exact string states associated with the supersymmetric partners

of the (first quantized) string BPS-states. BRST-exact states in string theory are expected

to generate a gauge symmetry, though in general this might be spontaneously broken for

finite string tension α′ <∞. Therefore, m can be interpreted as a kind of gauge algebra in

this theory. As a consequence, we show that the supersymmetric index Zg,1(T, U) exactly

coincides with (the 24th power of) the denominator of the algebra mg.
2

2As we will discuss in section 5, the space of physical BPS-states in the spectrum of a single first

quantized string form a representation of mg. We conjecture that the second quantized Fock space HBPS

is also a mg-module, but we were not able to prove this statement.
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Starting from the famous product formula for the J-function (see, e.g., [2, 20]):

J(σ)− J(τ) = p−1
∏

m>0,n∈Z
(1− pmqn)c(mn), p := e2πiσ, (1.9)

and using the description as an algebra denominator, we obtain a new formula for the

supersymmetric index of the associated CHL-model:

Zg,1(T, U) =
(

T
1,g(T )− Tg,1(U)

)24

. (1.10)

1.3. The genus zero property of moonshine. An outstanding puzzle in Monstrous

moonshine has been to find an explanation for the so called genus zero property, namely

that all the McKay-Thompson series are “Hauptmoduln” − generators of the function

field on H/Γ − for genus zero congruence subgroups Γ of SL(2,R). For g = 1 and some

other elements in the Monster group, all the properties of moonshine (except genus zero)

have a natural physical interpretation in the Monster CFT V ♮. Indeed, for these elements,

the space H/Γg is simply the moduli space parameterizing complex tori with additional

flat M-bundles and the McKay-Thompson series, as twisted partition functions in the

CFT V ♮, are naturally defined on such spaces. For other g ∈ M, however, the modular

groups näıvely expected by CFT arguments are strictly smaller than the actual groups

Γg and not necessarily of genus zero. In these cases, there is no good interpretation of

the spaces H/Γg as moduli spaces where the McKay-Thompson series should be naturally

defined.

Our approach allows us to shed light on this issue, by reinterpreting it in the context of

the spacetime BPS-states of CHL-models. We first notice that the group Gg of T-dualities

of the heterotic model is a subgroup of SL(2,R) × SL(2,R) acting on (T, U) ∈ H × H.

The index Zg,1(T, U) is naturally defined as a function on the moduli space (H×H)/Gg

of the heterotic model. Thus, for fixed U , Zg,1(T, U) as a function of T is defined on

H/proj1(Gg), where proj1(Gg) is the projection of Gg ⊂ SL(2,R)× SL(2,R) on the first

SL(2,R) factor. We will show that proj1(Gg) ⊂ SL(2,R) is exactly the modular group

Γg (or, more precisely, the eigengroup Γ′
g, see section 7.3). This observation, together

with the explicit formula (1.10) relating Zg,1(T, U) to the McKay-Thompson series T
1,g,

provides a natural string theory interpretation for the modular group Γg.

Our arguments also give a new understanding of the genus zero property of the groups

Γg. The Hauptmodul property for the McKay-Thompson series Tg is equivalent to the

fact that Tg has only one single pole on H/Γg. In turn, this is equivalent to the statement

that Zg,1(T, U), considered as a function of T for fixed U , has only one pole modulo

T-dualities.

The index Zg,1(T, U) can only diverge in the limit where T approaches one of the

cusps at the boundary of the moduli space. From the physics perspective, these cusps

can always be interpreted, in a suitable duality frame, as decompactification limits at

low temperature, where the index is dominated by the ground state contribution. For
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example, the limit T → i∞ always corresponds to a model in two uncompactified space-

time dimensions, namely heterotic strings on V ♮ × V̄ s♮. The index Zg,1 diverges in this

limit, due to the contribution e−2πiT of the ground state. Suppose that the index Zg,1

diverges also at another cusp (say, for T → 0), different from T → i∞. The contribution

e−2πiT of the ground state is finite as T → 0, so this cannot be the dominant term if

the index diverges in this limit. This means that, if we vary the moduli smoothly from

T → i∞ to T → 0, the model undergoes a phase transition at a certain critical value of

the moduli, where the energy of some excited state gets lower than the ground state. The

contribution of this excited state becomes dominant in the ‘small T phase’ and eventually

diverges for T → 0. Furthermore, whenever such a phase transition occurs, the two

phases are always related by a T-duality of the model. The reason is that, at the critical

manifold, new massless string modes appear. The latter generate an enhanced gauge

symmetry that contains, in particular, the relevant T-duality.

To summarize, whenever the index Zg,1 diverges at some cusp, such a cusp must be

related to i∞ by a T-duality. The latter is part of an enhanced gauge symmetry that

exists at some critical value of the moduli, and relates two different phases for the CHL

model. This implies that, up to dualities, the only divergence of the index Zg,1 is at the

cusp T → i∞, and this property is equivalent to the Hauptmodul property for Tg.

In many respects, our approach is very similar to Tuite’s reformulation of the genus zero

property in terms of orbifolds of conformal field theories [21]. Tuite noticed that a McKay-

Thompson series Tg(τ) has a pole at τ → 0 (is unbounded, using Gannon’s terminology)

if and only if the orbifold V ♮/〈g〉 is a VOA without currents. Furthermore, assuming that

any holomorphic VOA of central charge 24 and with no currents is isomorphic to V ♮ itself,

he showed that the McKay-Thompson series T
1,g(τ) is unbounded at 0 if and only if it is

invariant under the Fricke involution τ → − 1
Nτ

, where N is the order of g. Finally, he

showed that this property implies that Tg is a Hauptmodul for a genus zero group.

In our picture, the decompactification limit T → 0 corresponds to a two dimensional

heterotic string model on V ♮/〈g〉 × V̄ s♮. Using the representation of the index as an

algebra denominator, we show that Zg,1 diverges at T → 0 if and only if the orbifold

V ♮/〈g〉 has no currents. Furthermore, we show that the Fricke involution is contained in

the T-duality group Gg if and only if V ♮/〈g〉 is isomorphic to V ♮ (with some additional

conditions). These results reproduce the first part of Tuite’s argument. However, in order

to complete the proof, we do not need any assumption about the uniqueness of V ♮: as

explained above, the Hauptmodul property (and, in particular, Fricke invariance) follows

from the existence of critical manifolds with enhanced gauge symmetries.

In fact, one can reverse Tuite’s argument and use our construction to actually prove

the following results:

(i) When the orbifold V ♮/ 〈g〉 is consistent and has no currents, it is isomorphic to V ♮.
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(ii) When the orbifold V ♮/ 〈g〉 is consistent and has currents, it is isomorphic to V Leech

(the vertex operator algebra based on the Leech lattice).

The first statement was part of Tuite’s assumptions. The second statement was proved

by Tuite through a case by case analysis, while we obtain a conceptual proof: our con-

struction shows that the possible number of currents for a consistent orbifold V ♮/ 〈g〉 is
either 0 or 24, and in the latter case it is well-known that V Leech is the only possibility.

1.4. Outline. Our paper is organized as follows. In section 2 we describe the basic

features of our Monstrous CHL-models, which form the core of the results in subsequent

sections. In section 3 we discuss the BPS-spectrum in our model, and give the Fock space

construction of the supersymmetric index Z(T, U). In section 4 we define and evaluate a

one-loop integral that reproduces the same index. We also provide an extensive analysis

of the T-dualities satisfied by the index. In section 5, we argue that each Monstrous

CHL model contains an infinite dimensional Lie algebra of spontaneously broken gauge

symmetries and show that this algebra is isomorphic to the corresponding Monstrous

Lie algebra mg. We identify each supersymmetric index Zg,1 with the algebraic index of

the associated mg, and show that it reproduces the denominator formula. In section 6

we provide a number of detailed examples where we calculate the twisted index Zg,1 for

elements of low order in M and explicitly verify our claims. In section 7 we combine all

previous results to derive the genus zero properties of the McKay-Thompson series. Many

technical details and proofs are relegated to the appendices.

2. The setup

In this section, we describe the main properties of the heterotic string compactifications

that are the main focus of our paper.

2.1. Monstrous heterotic string and CHL models. The models we are interested in

are certain compactifications of the heterotic strings to 0 + 1 dimensions. We will define

one such model for each element g in the Monster group M. When two elements g and g′

are conjugated g′ = hgh−1 for some h ∈M, the corresponding models are equivalent and

will be identified.

The starting point of our construction is a particular compactification of heterotic

string to 1+1 dimensions. The internal CFT of central charges (c, c̃) = (24, 12) factorizes

as V ♮× V̄ s♮, where V ♮ is the famous Frenkel-Lepowsky-Meurman (FLM) Monster module

[3] and V̄ s♮ is the Conway super-moonshine module first discussed by FLM in [3] and

constructed in [19] (see below for more details).3 Compactifications of heterotic strings

involving the FLM module V ♮ have been considered before [18, 22–24]; in particular, the

compactification on V ♮ × V̄ s♮ is discussed in [24].

3In our conventions, the anti-holomorphic (right-moving) side of the heterotic string has world-sheet

supersymmetry.
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The FLM module V ♮ is a holomorphic bosonic conformal field theory, or vertex operator

algebra (VOA), with central charge c = 24. Its partition function is the SL(2,Z)-invariant

J-function with zero constant term

TrV ♮(qL0−1) = J(τ) = q−1 + 0 + 196884q + . . . , q := e2πiτ . (2.1)

It is the only known (and, conjecturally, the unique) holomorphic CFT of central charge

c = 24 with no fields of conformal weight 1 (currents). Its group of symmetries (i.e.,

linear transformations preserving the OPE, the vacuum, and the stress energy tensor) is

isomorphic to the Monster group M. It can be obtained starting from the Leech lattice

CFT, i.e. the chiral half of the bosonic non-linear sigma model on the torus R24/ΛLeech,

and then taking the Z2 orbifold under the symmetry that inverts the sign of all 24 torus

coordinates. Here, ΛLeech is the Leech lattice, the unique 24-dimensional even unimodular

lattice with no vectors of squared length 2.

The right moving side of heterotic string, in the NS sector, is the (anti-)holomorphic

N = 1 superconformal field theory (super VOA) V̄ s♮ with c = 12 studied in [19]. It can

be obtained as a Z2 orbifold of the N = 1 SCFT built in terms of the E8 lattice, i.e.

the chiral half of the supersymmetric non-linear sigma model with target space the torus

R8/E8. The theory V s♮ is characterized as the unique holomorphic SCFT of c = 12 with

no fields of conformal weight 1/2. Its group of automorphisms Aut(V s♮) preserving the

N = 1 superVirasoro algebra is the Conway group Co0, though we will not need this

property in the following. The right-moving Ramond sector of the heterotic string is the

other unique irreducible module for the superVOA V̄ s♮. (By abuse of language, we will

call these two modules the NS and the R sectors of V̄ s♮; one should keep in mind, however,

that in the mathematical literature V̄ s♮ denotes only our NS sector.) The Ramond sector

has 24 ground states of conformal weight 1/2 and positive fermion number.

The internal CFT has no direct geometric interpretation, i.e. it cannot be directly

described as a non-linear sigma model on a compact manifold. However, it can be obtained

as an asymmetric Z2 × Z2 orbifold of a compactification on a torus T8. In the Narain

moduli space parametrizing the geometry and the B-field of the torus T8, there is a unique

point where the non-linear sigma model factorizes as a product of the holomorphic Leech

lattice CFT and the anti-holomorphic E8 lattice SCFT. One considers the orbifold of

this model by the Z2 × Z2 symmetries that flip the signs of the 24 left-moving and,

independently, of the 8 right-moving scalar (super)fields in these theories.

The compactification of heterotic strings on T8 yields a 1+1 dimensional theory with

(8, 8) space-time supersymmetry. The Z2 orbifold acting on the left-moving (bosonic) side

preserves all such supersymmetries, while the Z2 orbifold acting on the right-moving (su-

persymmetric) sector breaks half of them, down to (0, 8). However, including the twisted

sector introduces 16 additional supersymmetries with the same space-time chirality, so

that the theory we are considering has (0, 24) supersymmetry [24].
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Starting from this heterotic compactification, we will now construct a host of 0 + 1

dimensional models (i.e., supersymmetric quantum mechanics) with 24 supersymmetries,

by first compactifying one further space direction on a circle S1 of radius R, and then

taking a CHL-like orbifold. More precisely, we consider the orbifold of heterotic strings

on S1×(V ♮× V̄ s♮) by a ZN symmetry (δ, g), where δ is a shift of 1/N of a period along the

S1 circle, and g ∈M is a symmetry of the left-moving internal CFT V ♮. This is analogous

to the standard CHL construction [17,18,25,26]. Many of the models constructed in this

way are actually equivalent to each other. In fact, up to equivalence, the CHL models

only depend on the conjugacy class of the cyclic subgroup 〈g〉 ⊂ M (although, we will

usually denote them simply by the generator g). This follows from the fact that V ♮ is

invariant under charge conjugation, and that any power ga of g, with a coprime to the

order N of g, is conjugated with either g or g−1 within the Monster group.

The CHL construction outlined above is consistent only for those g ∈ Aut(V ♮) that

satisfy the level-matching condition, i.e. such that the conformal weights in the g-twisted

sector V ♮
g of V ♮ take value in 1

N
Z, where N is the order of g. In general, the conformal

weights of a g-twisted state takes values in

Eg
Nλ

+
1

N
Z , (2.2)

where λ is a positive integer (depending on g) dividing both N and 24 (see Appendix B

for the proof of the latter), and Eg ∈ (Z/λZ)× is an integer defined modulo λ and coprime

with λ. Here, λ is also the order of the multiplier system of the McKay-Thompson series

Tg. Even when λ > 1, a consistent CHL orbifold can be constructed: it is sufficient to

take a symmetry (δ, g) with a shift δ of order Nλ rather than N . We refer to [27] and

Appendix B for more details.

2.2. The dilaton and other moduli. The spectra of these “Monstrous CHL” models

will be discussed in some detail in the next sections. However, one striking feature of these

models deserves to be stressed: there are no local massless degrees of freedom [22–24]!

This is most easily understood in the light-cone quantization, where massless string states

correspond to states with conformal weight 1 (currents) in the internal bosonic CFT.

However, as stressed in the last section, V ♮ has no currents; furthermore, no massless states

can be introduced in the orbifold by (δ, g), since the strings in the twisted sectors have

non-zero fractional winding along S1, so that they are necessarily massive.4 Therefore,

all physical states in the light-cone quantization must be massive.

In particular, as noticed in [22–24], there are no moduli and all parameters of the theory

seem to be completely fixed, including the string coupling constant gs. This is puzzling,

as the Z2 × Z2 orbifold procedure leading from the compactification on T8 to the model

we are considering seems to be perfectly consistent for all (small) values of the string

4This argument fails in the limit R → 0. Indeed, we will see in the following sections that, in some

CHL models, massless states can appear in this limit.
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coupling constant. It is not clear what kind of mechanism could fix gs to a specific value.

On the other hand, the alternative idea that the coupling constant is a free parameter

not related to any string background seems to be at odds with all we know about string

theory.

A somehow analogous issue seems to arise for the radius R of the compactification

circle. In this case, however, the resolution is quite clear: while the gauge (specifically,

diffeomorphism) invariance in two dimensions is more than sufficient to fix the metric and

eliminate all local degrees of freedom, the length of the geodesic along the circle is gauge

invariant and therefore has physical effects. The possibility of a residual global degree of

freedom of zero measure that cannot be fixed by a gauge transformation is a well known

phenomenon, occurring, for example, in the gauge fixing of string theory at genus higher

than zero. Even in this case, however, it is puzzling that there is no physical state in the

string theory corresponding to deformations of R.

We propose that both these puzzles can be solved by a more careful treatment of the

physical states at zero-momentum. Recall that the light-cone quantization can be shown

to be equivalent to BRST only for non-zero momentum states kµ 6= 0. At zero momentum,

the light-cone gauge is not a good gauge choice, and one has to apply a BRST quantization

procedure.

For simplicity, let us consider the bosonic string compactified on V ♮ × V̄ ♮, where the

same issues appear. In the BRST formalism, the physical states in closed string theory

correspond to the semi-relative BRST cohomology, i.e. the BRST cohomology on the

complex of states satisfying (b0− b̄0)|ψ〉 = 0. At zero momentum, the BRST cohomology

includes all states of the form

Dµν := c1α
µ
−1c̄1ᾱ

ν
−1|0〉 , (2.3)

where αµ
n, ᾱ

ν
n are the standard bosonic oscillators in the d uncompactified directions and

cn, c̃n are the ghosts, as well as the ghost dilaton [28–31]

Dg = (c1c−1 − c̄1c̄−1)|0〉 . (2.4)

Notice that all d2 states Dµν are physical at zero momentum; the corresponding string

background determines the global geometric properties of our two dimensional space-time,

such as the radius R.

The ghost dilaton Dg is the BRST variation of χ := (c0 − c̄0)|0〉. However, it is not

BRST exact in the semi-relative complex, since χ is not a ‘legal’ state in this complex;

that is, (b0 − b̄0)χ 6= 0. The zero-momentum limit of the physical dilaton field is the

following linear combination [31]

D := ηµνD
µν −Dg = Dm −Dg , (2.5)

of the ghost dilaton and of the so-called matter dilaton

Dm := ηµνD
µν . (2.6)
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Indeed, this is the linear combination that transforms as a scalar under gauge transfor-

mations. Another interesting linear combination is the trace

G := ηµνGµν = Dm −
d

2
Dg , (2.7)

of the (Einstein frame) graviton

Gµν = Dµν − 1

2
ηµνDg , (2.8)

where d is the number of uncompactified space-time dimensions.

In the framework of closed string field theory, it has been shown that, for any number

of space-time dimensions d, a change in the ghost dilaton background Dg has the effect of

shifting the string coupling constant [29,30]. On the other hand, a change of the graviton

trace background G only corresponds to a field redefinition and has no observable physical

effect [31]. In the usual case where d > 2, this implies that the string coupling constant is

determined by the background for the dilaton D (the zero-momentum limit of the physical

dilaton field) or, equivalently, by the background for the ghost dilaton Dg. In the case

we are considering, where there are only 2 non-compact directions (d = 2), the dilaton

D coincides with the graviton trace G and therefore has no observable physical effect.

However, a ghost dilaton background still makes perfect sense in our theory and has the

effect of shifting the string coupling constant.

While this reasoning has been derived in the context of bosonic strings, analogous

arguments should hold for the Monstrous heterotic CHL models. We conclude that also

in these theories, we are free to set the string coupling constant to any particular value,

since this corresponds to the choice of the string (ghost) dilaton background, as usual.

In particular, in the next sections, we will consider the Monster CHL models in the free

theory limit gs → 0.

3. The space-time index I: Fock space construction

We shall now consider the Fock space construction of the supersymmetric index Z. We

do this in two steps: first, we study the case without any CHL-orbifold and then then we

generalize this to the twisted indices associated with the Monstrous CHL models.

3.1. The untwisted case. Let us consider compactification of the heterotic string on

V ♮×V̄ s♮ to two space-time dimensions (without CHL orbifold, to start with). We consider

a space-time with a flat metric of Lorentzian signature and the topology of a cylinder

S1×R, where R is the time direction and S1 is a space-like circle of radius R. The theory

has (0, 24) space-time supersymmetries [24] Qi, i = 1, . . . , 24, with algebra

{Qi, Qj} = δij(P 0
R − P 1

R) , (3.1)

where (P 0
R, P

1
R) are the contributions to the space-time momenta coming from the world-

sheet right-moving sector. This algebra has two kinds of supermultiplets: short (BPS)
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supermultiplets, that are 1-dimensional, and whose states satisfy

k0R = k1R , (3.2)

which is essentially a BPS condition for the algebra (3.1) 5; and long supermultiplets with

k0R > k1R of dimension 212 and containing half fermions and half bosons.

We want to consider a Hilbert space H corresponding to the ‘second quantization’ of

this string theory, i.e. including any number of fundamental strings. In this theory we

consider the refined supersymmetric index

Z(β, b, v, R) = TrH(e
−βHe2πibW e2πivM (−1)F ) , (3.3)

where H is the space-time Hamiltonian, F is the space-time fermion number, and W

and M are the total winding and momentum numbers along the circle S1. We will use

lowercase letters w and m to denote the winding and momentum of a single fundamental

string. Here, β is the inverse temperature, and b and v are chemical potentials conjugate

to the quantum numbers W and M (b can be interpreted as a background B-field and v

as an off-diagonal component of the space-time metric). We impose periodic boundary

conditions for the fermions around the circle S1. The space H carries a representation

of the supersymmetry algebra (3.1) and, by the usual index arguments, the only states

contributing to this trace are the ones in short (BPS) supermultiplets. Thus, we can

reduce the trace to the BPS subspace HBPS.

Let us consider the 1-particle BPS states, obtained through a light-cone quantization

of the string theory. The mass-shell and level-matching conditions read






0 = −1
2
(k0L)

2 + 1
2
(k1L)

2 + hL − 1 ,

0 = −1
2
(k0R)

2 + 1
2
(k1R)

2 + hR − 1
2
,

(3.4)

where (hL, hR) are the (L0, L̄0)-eigenvalues of the state in the internal CFT V ♮ × V̄ s♮.

Since there is no winding around the time direction, we have

k0L = k0R = E , (3.5)

where E is the eigenvalue of the space-time Hamiltonian H . By imposing the BPS con-

dition (3.2), and using the relations

k1L =
1√
2

(m

R
− wR

)

, k1R =
1√
2

(m

R
+ wR

)

(3.6)

we obtain






0 = −1
2
(k1R)

2 + 1
2
(k1L)

2 + hL − 1 = −mw + hL − 1 ,

0 = hR − 1
2
.

(3.7)

5We denote by k0L,R, k
1
L,R the eigenvalues of P 0

L,R, P
1
L,R.
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The only states satisfying hR = 1/2 are the Ramond ground states in V̄ s♮. If we set

J(τ) =

∞
∑

n=−1

c(n)qn = q−1 + 0 + 196884q + . . . , (3.8)

then for each w,m ∈ Z there are 24c(mw) fermions carrying winding w and momentum

m along S1 and with energy

E = k1R =
1√
2

(m

R
+ wR

)

. (3.9)

In a free theory limit, we can think of the second quantized BPS Hilbert space HBPS as

a Fock space built in terms of fermionic oscillators corresponding to the 1-particle BPS

states. In particular, states with energy E > 0 (respectively, E < 0) are interpreted as

creation (respectively, annihilation) operators. Notice that

c(mw) > 0 ⇒ mw = −1 or mw > 0 , (3.10)

so that the condition E > 0 implies

m,w > 0 or







m = 1, w = −1 if R < 1

m = −1, w = 1 if R > 1 .
(3.11)

The ground state is, by definition, the unique (for R 6= 1) state in H that is annihilated

by all operators with E < 0. Notice that this definition depends on the radius R. When

R = 1 there are additional zero energy fermionic oscillators and the ground state is

degenerate. The space HBPS is constructed by acting on the vacuum in all possible ways

with creation operators. Let us focus on the case R > 1, for definiteness; the case R < 1

is analogous. The relation (3.9) generalizes by linearity to the relation

H =
1√
2

(

M

R
+WR

)

, (3.12)

between operators on the BPS space HBPS, so that

Z(β, b, v, R) = e24(−βE0+ivm0+ibw0)
∏

w>0
m∈Z

(1− e−
β√
2
(m
R
+wR)

e2πibwe2πivm)24c(mw) , (3.13)

where we included the possibility of vacuum momentum 24m0, winding 24w0 and energy

24E0 =
24√
2
(m0

R
+ w0R). It is useful to introduce the complex parameters

T = b+ i
βR

2
√
2π

U = v + i
β

2
√
2πR

, (3.14)

so that

Z(T, U) = e24(2πi(m0U+w0T ))
∏

w>0
m∈Z

(1− e2πiUme2πiTw)24c(mw) . (3.15)

In section 4, we will provide a formula for Z(T, U) (or, rather, its absolute value) in terms

of a string 1-loop path integral. In this context, the time direction is Wick-rotated to

a Euclidean time compactified on a thermal circle of radius β, so that the space-time
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becomes a Euclidean torus T2. The complex parameters U and T are then identified with

the complex structure and the (complexified) Kähler structure moduli of T2.

The vacuum winding and momentum will be computed in section 5 to be (w0, m0) =

(−1, 0), so that

Z(T, U) =
(

e−2πiT
∏

w>0
m∈Z

(1− e2πiUme2πiTw)c(mw)
)24

. (3.16)

Apart from the exponent 24, this is exactly the product formula for Borcherds’ Monstrous

Lie algebra! This is not an accident: we will show in section 5 that the (first quantized)

string BPS states are a representation over this algebra.

As stressed above, when the radius R is varied continuously from R > 1 to R < 1,

the energy of two fermionic operators change sign (an annihilation operator becomes a

creation operator and vice-versa), so that the vacuum state changes. Thus, one might

expect a discontinuity of Z(T, U) as one crosses the line R = 1. Furthermore, the infinite

product above is expected to converge only for sufficiently large β. However, in the

alternative derivations of the index Z in the following sections, it will be clear that there

is no discontinuity as the radius crosses the line R = 1 and that Z(T, U) is an analytic

function of T and U over all the upper half of the complex plane.

3.2. The twisted case. There are two ‘twists’ of the previous construction that will be

interesting for us. The simplest modification is to consider

Z
1,g(β, b, v, R) := TrH(g e

−βHe2πibwe2πivm(−1)F ) (3.17)

where we insert an element g ∈M of the Monster group inside the trace. More precisely,

the fermionic operators carry an action of the Monster group M and this determines a

representation of M over HBPS preserving H , M and W . In particular, the vacuum state

is invariant under this action, since the only 1-dimensional representation of M is the

trivial one.

The second modification of the index is to consider the ‘second quantized’ BPS space

HCHL(g) constructed from the CHL model associated with an element g ∈M, i.e.

Zg,1(β, b, v, R) := TrHCHL(g)
(e−βHe2πibW e2πivM (−1)F ) . (3.18)

We will show that for g of order N (with λ = 1), these twisted indices take the form

Zg,1(T, U) =
(

e−2πiT
∏

n>0
m∈Z

(1− e2πiU m
N e2πiTn)ĉn,m(mn

N
)
)24

, (3.19)

where the ĉn,m(
mn
N
) is the dimension of the e2πim/N -eigenspace of the gn-twisted sector V ♮

gn

at level L0 − 1 = mn
N
, c.f. equation (4.22). We will denote these graded spaces of states

by

V ♮
n,m =

{

v ∈ V ♮
gn |g(v) = e2πi

m
N

}

, n,m ∈ Z/(NZ). (3.20)



16 NATALIE M. PAQUETTE, DANIEL PERSSON, AND ROBERTO VOLPATO

Notice that, by definition, ĉn,m(
nm
N
) are always nonnegative integers. We will also show

that similar equations hold in the case λ 6= 1. The indices Zg,1 will be the main subject

of our investigation.

3.3. Coupling with gravity? Let us critically reconsider the construction of sections

3.1 and 3.2. We have considered the physical string states arising from the light-cone

quantization of the Monstrous CHL models and from these built a ‘second quantized’

Fock space of states, which describes the spectrum of an arbitrary number of free strings.

We have taken the strings to propagate in a fixed geometric background, neglecting any

backreaction of the strings on the space-time metric or B-field. Consistent with taking

a non-dynamical background, we have ignored the zero-momentum string modes that

appear in the BRST quantization of string theory, which would be associated to back-

ground fluctuations. This decoupling is consistent as long as the string coupling constant

is strictly zero, which we have assumed throughout our computations. From a different

viewpoint, the limit gs → 0 pushes the Planck scale MP lanck much higher than the string

scale Mstring, so that it makes sense to study the theory at energies in some intermediate

region Mstring ≪ E ≪ MP lanck. This is a convenient set-up for studying the symmetries

of the spectrum of the CHL models, as we will do in the following sections.

It is natural to ask if one can turn the string coupling constant on, so as to consider

a system of ‘second quantized’ interacting strings coupled to a dynamical background.

Unfortunately, this does not seem to lead to a consistent physical model. The basic

reason is that, in a theory with dynamical background fields, the number of spacetime-

filling strings cannot be arbitrary, but is fixed by the requirement of anomaly (or tadpole)

cancellation6. In two-dimensional heterotic compactifications, there is a potential 1-point

function for the B-field arising from the compactification of the 10-dimensional Green-

Schwarz term. This term in the effective action arises from a 1-loop string amplitude and

its coefficient can be computed using the techniques in [32, 33] to be

1

24
(24J(τ)E2(τ))q0 =

1

24

(

(24q−1 +O(q))(1− 24q +O(q2))
)

q0
= −24 . (3.21)

Here, E2 = 1 − 24q + . . . is the Eisenstein series of weight 2 and the notation (·)q0
denotes the constant term in the Fourier expansion of the modular form. This result

can also be understood in terms of local gravitational anomalies for the two-dimensional

effective theory: the 1-point function for the B-field is necessary in order to cancel the

contributions to the anomalies from the 24 chiral gravitini and dilatini. The tadpole

makes the background unstable and the theory inconsistent, but there is a standard

procedure to cancel it: one has to insert 24 spacetime-filling fundamental strings, which

couple to the B-field and thereby add the required positive term to the one-point function.

6This is completely analogous to the familiar restriction on the number of spacetime-filling D9-branes

in the 10-dimensional type IIB superstring.
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Equivalently, the contributions to the gravitational anomalies from the degrees of freedom

of the spacetime-filling heterotic strings cancel the ones from the gravitini and dilatini.

The calculation of the tadpole for the B-field also suggests that the correct ground state

winding in our second quantized string theory is 24w0 = −24. A similar analysis shows

that there is no tadpole for the off-diagonal component of the metric, which implies the

ground state momentum m0 = 0.

The outcome of this analysis is that the only sector of our second quantized string

theory that can be consistently coupled with gravity and a dynamical B-field is the one

with 24 spacetime-filling strings, i.e. the sector with total winding number W = 0. We

stress once again that it is formally correct to consider the full second quantized free

strings in a fixed, non-dynamical background. In a sense, the situation is similar to the

case of a two- or six-dimensional quantum field theory whose matter content contributes

to a non-vanishing gravitational anomaly: the theory is perfectly consistent as long as it

is is decoupled from gravity! The results of the following sections provide strong support

in favour of this viewpoint. On the other hand, the inconsistency of the full construction

when the string coupling constant is non-vanishing makes our physical interpretation of

the moonshine phenomenon not completely satisfactory. We hope we will be able improve

this point in future publications.

4. The space time index II: 1-loop integral

We shall now define and evaluate a one-loop integral in the Monstrous CHL-models. The

result of this integral reproduces the same supersymmetric index as was calculated in the

previous section using completely different methods. The main benefit of the present,

path-integral approach is that T-duality becomes manifest. After evaluating the integral

we analyze its T-duality symmetries in great detail, revealing that the T-duality groups

are directly related to the moonshine groups Γg.

4.1. The 1-loop integral and the GSO projection. The supersymmetric index Zg,1(T, U)

is a refined partition function at finite (inverse) temperature β. In general, one expects

any such partition function to be given by a suitable Euclidean path-integral with Eu-

clidean time periodically identified with period β. In our context, we need to consider our

Monstrous CHL-models with the two space-time directions on a Euclidean torus T2 with

complex modulus U and Kähler modulus T . The index Zg,1(T, U) should be obtained by

a path-integral

Zg,1(T, U) = e−(Stree+S1−loop+...) , (4.1)

where Sℓ−loop is the string ℓ-loop contribution. In general, each loop contribution is

weighted by a power g2−2ℓ
s of the string coupling constant gs. Since we are considering a

free theory gs = 0, it is natural to expect the path-integral should be one-loop exact. The
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one loop contribution is given by the standard string path integral on a torus

S1−loop =
1

2

∫

F

d2τ

τ 22

(

TrNS(q
L0− c

24 q̄L̄0− c̄
24PGSO)− TrR(q

L0− c
24 q̄L̄0− c̄

24PGSO)
)

(4.2)

i.e. a trace over the (GSO projected) full space of states, with different signs for the

Ramond and Neveu-Schwarz sector to take the space-time fermion number into account.

The GSO projection is rather subtle for fermions with k2R = 0. In two dimensions, the

massless Dirac equation relates the spin of the state with the sign of its momentum

k1,R. Therefore, for massless fermions, the GSO projection is implemented by including

states with either positive or negative transverse (internal) fermion number, depending

on whether k0,R = k1,R or k0,R = −k1,R. In our specific case, there are 24 internal

Ramond ground states with internal fermion number (−1)F̄ = +1 and no states with

(−1)F̄ = −1. Therefore, a properly implemented GSO projection should include 24 states

with k0,R = k1,R and no states with k0,R = −k1,R.
In practice, it is however very difficult to implement the GSO-condition directly in the

1-loop path integral. We circumvent this by the following trick. Consider instead the

naive path integral

Snaive
1−loop =

1

2

∫

F

d2τ

τ 22

[

TrNS(q
L0−1q̄L̄0− 1

2
1− (−1)F̄

2
)− TrR(q

L0−1q̄L̄0− 1
2
1 + (−1)F̄

2
)
]

, (4.3)

where the trace is taken over the holomorphic and anti-holomorphic ‘transverse’ CFTs

and over the winding-moments in the light-cone directions. The error we introduce in this

way corresponds to the contribution of 24 copies of each massless (i.e., k2R = 0) fermion

with the wrong chirality, i.e.

Snaive
1−loop = Strue

1−loop +P(Strue
1−loop) , (4.4)

where P is the parity transformation in the space direction. Let us focus on the case

g = 1 for clarity. We know that Z(T, U) is given by the exponential exp(−Strue
1−loop) of the

correct 1-loop path integral. Therefore, the exponential of the ‘naive’ 1-loop contribution

corresponds to

exp(−Snaive
1−loop) = Z(T, U)×P(Z(T, U)) . (4.5)

Parity reversal changes the sign of momentum and winding in the space direction

M → −M W → −W , (4.6)

while leaving the Hamiltonian H fixed. From the formula

Z(R, β, b, v) = TrHBPS
((−1)F e−βHe2πibW e2πivM ) , (4.7)

we see that the parity transformation corresponds to

P(Z(R, β, b, v)) = Z(R, β,−b,−v) , (4.8)

which, in turn, is equivalent to

P(Z(T, U)) = Z(−T̄ ,−Ū) = Z(T, U) . (4.9)
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To conclude, if we consider the ‘naive’ 1-loop integral then we have

e−Snaive
1−loop = |Z(T, U)|2 . (4.10)

Analogous results hold for the cases g 6= 1. Therefore, the ‘correct’ GSO projection is

simply obtained by picking the holomorphic part of e−Snaive
1−loop. We will drop the superscript

‘naive’ from now on.

4.2. Evaluating the 1-loop integral. In this section, we compute the 1-loop path

integral (4.3) explicitly. Let us first focus on the unorbifolded case g = 1. The trace

factorizes into the product of three contributions from V̄ s♮, from V ♮ and from the winding

and momenta along T2. The contribution of the oscillators along T2 and from the ghosts

and superghosts cancel each other, as usual. First note that V s♮ happens to have the nice

property that [24]

TrV̄ s♮,NS(q̄
L̄0− c̄

24
1− (−1)F̄

2
)− TrV̄ s♮,R(q̄

L̄0− c̄
24
1 + (−1)F̄

2
) = −24 . (4.11)

This completely takes care of the trace over V̄ s♮ in (4.3).

In the untwisted case (g = 1), the sum over winding and momenta along T2 is the usual

theta function ΘΓ2,2(T, U, τ) =
∑

(kL,kR)∈Γ2,2 qk
2
L/2q̄k

2
R/2, where Γ2,2 (the Narain lattice) is

the even unimodular lattice with signature (2, 2). The rest of the left-moving contribution

comes from the Monster module V ♮. As worked out carefully in e.g. [34], the theory simply

has chiral partition function J(τ).

For our more general CHL models, the computation is slightly more complicated. One

needs to sum over the (δ, g)-twisted sectors and then project over the (δ, g)-invariant

states. Putting everything together the 1-loop integral (4.3) can now be written in the

following explicit form

S1−loop = −
24

N

∫

F

d2τ

2τ2

N
∑

r,s=1

ΘΓ2,2

r,s (T, U, τ)Tgr ,gs(τ), (4.12)

where r labels the different (δ, g)-twisted sectors, 1
N

∑N
s=1 projects over the (δ, g)-invariant

states, and Tgr,gs(τ) is the g
r-twisted gs-twined partition function of the Monster CFT:

Tgr ,gs(τ) = TrV ♮
gr
(gsqL0−1). (4.13)

We have also defined the shifted theta series by

ΘΓ2,2

r,s (T, U, τ) =
∑

λ∈rδ+Γ2,2

e2πisδ·λq
k2L
2 q̄

k2R
2 =

∑

m1,m2,w2∈Z

∑

w1∈ r
N
+Z

e−2πi
sm1
N q

k2L
2 q̄

k2R
2 (4.14)
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where

k2L =

∣

∣

∣

∣

∣

(

T 1
N

)

(

w2 w1

−m1 m2

)(

−U
N

)∣

∣

∣

∣

∣

2

2T2U2

(4.15)

k2R = k2L − 2m1w1 − 2m2w2 . (4.16)

The lattice L of winding and momenta is the union L =
⋃N

r=1(rδ + Γ2,2), where r labels

the different twisted sectors.

Following Harvey-Moore [4], Borcherds [35] developed a method for calculating general

integrals of the form

Φ(M,F ) :=

∫

F

dxdy

y

(

ΘM(z), F (z)
)

, (4.17)

where z = x+ iy ∈ H, M is a lattice, F is a weight k vector-valued modular form (valued

in the group ring C[M∨/M ]) and ΘM is a weight −k vector-valued Siegel theta series for

the lattice M . The notation ( , ) denotes the scalar product

(eγ , eγ′) = δγ+γ′,0. (4.18)

in the vector space freely generated by eγ, γ ∈M∨/M . In terms of the basis eγ a vector-

valued modular function F for a congruence subgroup Γ ⊂ SL(2,Z) can be written as

F (z) =
∑

γ∈M∨/M

Fγ(z)eγ , (4.19)

where the components Fγ(z) are modular functions for Γ, transforming in the metaplectic

representation of (the double cover of) SL(2,Z) on C[M∨/M ]. In a similar vein, one

defines the vector-valued theta series as

ΘM(τ) =
∑

γ∈M∨/M

θM+γeγ, (4.20)

where θM+γ is the ordinary “shifted” Siegel theta series.

We now want to relate the general integral Φ(M,F ) to our one-loop integral (4.12).

Let us focus on the case λ = 1 for simplicity. In our case the lattice M can be identified

with (c.f. Eqn. 4.42)

M ≡ L∨ ∼= NZ⊕ Z⊕ Z⊕ Z, (4.21)

which is the dual of the winding-momentum lattice L.

To construct the vector-valued modular form Fg we take the discrete Fourier transform

of the generalized moonshine functions [13]:

Fγ(z) = Fl,k(z) =
1

N

∑

j∈Z/NZ

e−2πi jk
N Tgl,gj (z) =:

∑

n∈Z/NZ

ĉl,k(n)e
2πizn (4.22)
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Notice that the Fl,k are the generating functions for the graded dimensions of Vl,k, c.f.

equation (3.20). Thus

Fg(z) =
∑

l,k∈Z/NZ

Fl,k(z)el,k (4.23)

is a vector-valued modular form of weight 0. Similarly, the theta function for the lattice

M ≡ L∨ is

ΘL∨(σ, τ, z) =
∑

γ∈L/L∨

θL∨+γeγ , (4.24)

and the components are related to our Narain theta function by:

θL∨+γ(σ, τ, z) =
1

N

N
∑

s=1

e
2πist
N ΘΓ2,2

r,s (T, U, τ). (4.25)

With this choice of data the integrand in the theta lift Φ(L∨, Fg) can be written out

explicitly as

(

ΘL∨ , Fg

)

=
∑

γ∈L/L∨

∑

δ∈L/L∨

θL∨+δFγδγ−δ,0

=
∑

l,k∈Z/NZ

θL∨+(l,k)Fl,k

=
1

N

∑

l,j,k∈Z/NZ

e−2πi jk
N Tgl,gjθL∨+(l,k)

=
1

N

∑

l,j∈Z/NZ

ΘΓ2,2

l,j (T, U, z)Tgl,gj (z), (4.26)

where we used the relation

ΘΓ2,2

l,j =
∑

k∈Z/NZ

e−2πijk/NθL∨+(l,k). (4.27)

Thus, we conclude that our integral (4.12) is indeed of the type (4.17) and may be evalu-

ated using the methods of Borcherds [35]. Omitting the details, we find that our one-loop

integral (4.12), for large enough imaginary parts T2, U2, evaluates to

S1−loop = −48 log
∣

∣

∣
(e−2πiT

∏

n>0
m∈Z

(1− e2πiU m
N e2πiTn)ĉn,m(mn

N
)
∣

∣

∣
. (4.28)

The argument of the logarithm can be recognized as the absolute value of the infinite

product formula (3.19) for the twisted index Zg,1, provided that the vacuum contribution

is e−2πiT . Thus we conclude

e−S1−loop = |Zg,1(T, U)|2 , (4.29)

as we expected based on physical arguments.
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4.3. T-dualities and automorphisms of lattices. In this section, we study the groups

of T-dualities of the Monster CHL models with Euclidean time compactified on a circle.

As we will see, the most general group of T-dualities relates a CHL model at a given point

in the moduli space to a (possibly different) CHL model at different values of the moduli.

We denote by w1, m1, w2, m2 the winding and momenta along the space-like and the

Euclidean time circle of T2, respectively. The vectors of winding-momenta span a four

dimensional lattice (the Narain lattice) L. With each vector in L are associated the

left- and right-moving momenta (kL, kR) ∈ R2 × R2, depending on the moduli T, U . The

difference k2L−k2R, however, is a moduli-independent even integer and defines the quadratic

form of signature (2, 2)

(m1, w1, m2, w2)
2 := k2L − k2R = 2m1w1 + 2m2w2 , (4.30)

on the lattice. A necessary condition for T-duality to preserve the OPE, is that the

action on the lattice L is an automorphism, i.e. an invertible linear map that preserves

the quadratic form.

Thus, as for ordinary compactifications on T2, the full T-duality group of any CHL

model is a discrete subgroup of O(2, 2,R) and it can be identified with the group of

automorphisms of the lattice L (of signature (2, 2)) of winding-momenta along T2. The

index Zg,1(T, U) is expected to be invariant under the subgroup of self-dualities of the

CHL model, i.e. the group of T-dualities that related two different points in the moduli

space of the same CHL model.

The group of T-dualities always contains the parity transformation P along the space

direction, acting as in (4.9) on the index Z(T, U), as well as T-duality T along the

Euclidean time circle. The latter acts by

R̃↔ 1

R̃
(4.31)

on the radius R̃ = β

2
√
2
, and more generally by

T : U ↔ − 1

T
. (4.32)

Thus, T acts as

Zg,1(T, U) 7→ T(Zg,1(T, U)) = Zg,1(−
1

U
,− 1

T
) , (4.33)

on the index and is always a self-duality of any CHL model, so that Zg,1(T, U) must be

invariant (possibly up to a phase) under T.

Every other T-duality in O(2, 2,R) can be obtained by composing P and T with T-

dualities in the connected component SO+(2, 2,R) of O(2, 2,R) containing the identity.

There is an isomorphism

SO+(2, 2,R) ∼= (SL(2,R)× SL(2,R))/(−1,−1) . (4.34)
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To make this isomorphism explicit, rewrite a vector in R2,2 as a 2× 2 matrix

X =

(

w2 w1

−m1 m2

)

(4.35)

so that its norm (4.30) is simply the determinant

‖X‖2 = 2m1w1 + 2m2w2 = 2detX . (4.36)

Then, there is an obvious action of SL(2,R)×SL(2,R) on X preserving its norm, namely

X 7→ γ1Xγ2 γ1, γ2 ∈ SL(2,R) , (4.37)

and its clear that the kernel of this action is (−1,−1). We denote by S̃O
+
(L) ⊂ SL(2,R)×

SL(2,R) the preimage of SO+(L) ⊂ SO+(2, 2,R) under the quotient map SL(2,R) ×
SL(2,R)→ SO+(2, 2,R), so that

SO+(L) = S̃O
+
(L)/(−1,−1) . (4.38)

A T-duality acting on the lattice L by a general automorphism
(

w2 w1

−m1 m2

)

7→
(

a b

c d

)(

w2 w1

−m1 m2

)(

a′ b′

c′ d′

)

(4.39)

must also act on the moduli T and U by

T 7→ dT − c
Nλ

−NλbT + a
U 7→ d′U + b′Nλ

c′
Nλ
U + a′

. (4.40)

so that the left- and right-moving momenta are preserved

k2L =

∣

∣

∣

∣

∣

(

T 1
Nλ

)

(

w2 w1

−m1 m2

)(

−U
Nλ

)∣

∣

∣

∣

∣

2

2T2U2
, k2R = k2L − 2m1w1 − 2m2w2 . (4.41)

In the unorbifolded case (i.e. g = 1), preserving the norms k2L, k
2
R of all left- and right-

moving momenta is both necessary and sufficient for the spectrum and the OPE of the

theory to be preserved. For general g, this condition is not sufficient; the elements of

S̃O
+
(L) preserving a given CHL model generate its group Gg of self-dualities.

In the next subsections, we will study the groups of automorphisms S̃O
+
(L) of the

lattices L and then discuss the subgroups of self-dualities. We will first consider the

simplest case λ = 1 and then extend the analysis to generic λ.

4.3.1. Case λ = 1. In this section, we describe the group of T-dualities of a Monster CHL

model for a symmetry g of order N with trivial multiplier (λ = 1). The case λ > 1 will

be considered in the next section.

In the case of a CHL model with respect to a symmetry g of order N , the winding and

momenta span a lattice L given by

(m1, w1, m2, w2) ∈ Z⊕ 1

N
Z⊕ Z⊕ Z . (4.42)
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The following subgroup of SL(2,Z) ⊂ SL(2,R)

Γ0(N) :=

{(

a b

c d

)

∈ SL(2,Z) | c ≡ 0 mod N

}

, (4.43)

will be important in the following. The normalizer Γ̂0(N) of Γ0(N) in SL(2,R) is described

in [1]. It consists of the matrices of the form

1√
e

(

ae b/h

cN/h de

)

, (4.44)

where a, b, c, d ∈ Z, h is the maximal integer such that h|24 and h2|N , e ∈ Z>0 is an exact

divisor of N/h2(denoted by e||N
h2 ), i.e. e|Nh2 and (e, N

eh2 ) = 1,7 and

ade2 − bcN
h2

= e . (4.45)

Among the elements in Γ̂0(N)/Γ0(N), an important role is played by the Atkin-Lehner

involutions

We =
1√
e

(

ae b

cN de

)

, (4.46)

which obey W 2
e ∈ Γ0(N) and We1We2 = We3 modulo Γ0(N), where e3 := e1e2/(e1, e2)

2.

Theorem 1. The group S̃O
+
(L) of automorphisms of the lattice L is

S̃O
+
(L) = {

( 1√
e

(

ae b

cN de

)

,
1√
e

(

a′e b′

c′N d′e

)

)

∈ SL(2,R)× SL(2,R)

a, b, c, d, a′, b′, c′, d′ ∈ Z, e ∈ Z>0, e||N} . (4.47)

The group is generated by adjoining to the normal subgroup Γ0(N) × Γ0(N) ⊂ S̃O
+
(L)

the Atkin-Lehner involutions (We,We), for all e||N .

Proof. See Appendix A.1. �

For N = 1, preserving the norms k2L, k
2
R of all left- and right-moving momenta is both

necessary and sufficient for the spectrum and the OPE of the theory to be preserved.

However, this is not the case for N > 1. The reason is that the orbifold construction

forces the states with winding and momentum w1 :=
n
N
, m1 along the spatial circle S1 to

be tensored with a state in V ♮
n,m1

, the g = e
2πim1

N -eigenspace of the gn-twisted sector of the

internal CFT V ♮. Notice that the subgroup Γ0(N) × Γ0(N) of S̃O
+
(L) leaves n and m1

fixed modulo N . It follows that this subgroup is a genuine T-duality group, establishing

an equivalence of the Monster CHL model at two different values of the moduli T, U .

The effect of the Atkin-Lehner involutions (We,We) ∈ S̃O
+
(L) has been analyzed

in [27]. Let us first introduce some notation. For each holomorphic bosonic VOA V of

central charge c = 24 and symmetry g ∈ Aut(V ), let us denote by (V, g) the CHL model

7In this section, we make use of the standard notation gcd(a, b) =: (a, b).
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based on the heterotic compactification on T2×(V × V̄ s♮) followed by an orbifold by (δ, g),

where δ is a shift of the same order as g. Then, the transformation (We,We) establishes

an equivalence between the CHL model (V ♮, g) with moduli T, U and the CHL model

(V ′, g′) with moduli We ·T,We ·U . Here, V ′ = V ♮/〈gN/e〉 is the orbifold of V ♮ by gN/e and

g′ = Qg where Q is the quantum symmetry acting by e
2πir
N/e on the (gN/e)r-twisted sector

and the action of g on V ′ is induced by its action on V . Schematically,

(V ♮, g)
(We,We)←−−−→ (V ′ = V ♮/〈gN/e〉, g′ = gQ) . (4.48)

This result follows immediately by observing that if the action of the Atkin-Lehner invo-

lution on the winding momenta is

(m1, w1, m2, w2)
(We,We)←−−−→ (m′

1, w
′
1, m

′
2, w

′
2) , (4.49)

then (essentially by definition of V ′ and g′)

V ′
n′,m′

1
= V ♮

n,m1
, (4.50)

where V ′
n′,m′

1
is the g′ = e

2πim′
1

N eigenspace of the g′n
′
-twisted sector of the CFT V ′ and

n′ = Nw′.

From this discussion, it is clear that, for a generic (γ1, γ2) ∈ S̃O
+
(L), there is a relation

between the supersymmetric index relative to the CHL model (V ♮, g) and one for the CHL

model (V ′, g′) by8

ZV ♮

g,1(T, U) = ZV ′
g′,1(γ1 · T, γ2 · U) , (γ1, γ2) ∈ S̃O

+
(L) . (4.51)

It is useful to consider the subgroup Gg ⊆ S̃O
+
(L) of T-dualities such that the corre-

sponding orbifold V ′ is isomorphic to V ♮ and g′ is in the same Monster conjugacy class

as g. We call Gg the group of self-dualities. For this subgroup, eq.(4.51) implies

ZV ♮

g,1(T, U) = ZV ♮

g,1(γ1 · T, γ2 · U) , (γ1, γ2) ∈ Gg . (4.52)

i.e. the index ZV ♮

g,1 is invariant under the subgroup Gg. The group Gg is generated by

Γ0(N)×Γ0(N) as well as the Atkin-Lehner involutions (We,We) such that V ♮/〈gN/e〉 ∼= V ♮

and g′ is conjugated with g.

4.3.2. Case λ > 1. Let us consider the case where the level matching condition for the

g-twisted sector in the Monstrous CFT is not satisfied, i.e. the conformal weights take

values in Eg
Nλ

+
1

N
Z , (4.53)

where λ|N and (Eg, λ) = 1. As shown in Appendix B, for the Monster CFT V ♮, λ is

always a divisor of 24. The CHL model for λ > 1 is constructed by taking a shift of

order Nλ along the space-like circle S1 and then tensoring strings with winding m and

momentum n
Nλ

along S1 with states in the spaces V ♮
n,m, defined as in (B.13). One has

8Strictly speaking, our argument only implies an identity between the absolute values |ZV ♮

g,1| and |ZV ′

g′,1|.
However, one can check that non-trivial phases only arise when λ > 1.
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V ♮
n,m = 0 unless m− nEg ≡ 0 mod λ. Therefore, the lattice L of winding-momenta along

T2 is spanned by










m1

w1

m2

w2











= k











λ

0

0

0











+ n











Eg
1

Nλ

0

0











+ k̃











0

0

1

0











+ ñ











0

0

0

1











k, n, k̃, ñ ∈ Z , (4.54)

again with quadratic form (4.30).

It is useful to define the group Γ0(N |λ) ⊂ SL(2,R), whose elements are matrices
(

a b/λ

cN d

)

. (4.55)

The group Γ0(N |λ) is a subgroup of the normalizer of Γ0(Nλ) in SL(2,R). In particular,

as discussed in [1], Γ0(N |λ) is generated by Γ0(Nλ), together with
(

1 1/λ

0 1

)

and

(

1 0

N 1

)

. (4.56)

One can also define the Atkin-Lehner involutions for Γ0(N |λ)

we :=
1√
e

(

ae b/λ

cN de

)

(4.57)

where e||N
λ
, that are also in the normalizer of Γ0(Nλ) in SL(2,R). Two transformations

1√
e

(

ae b/λ

cN de

)

1√
e′

(

a′e′ b′/λ

c′N d′e′

)

(4.58)

are in the same Γ0(Nλ) left (or right) coset if and only if e = e′ and there is κ ∈ Z, with

(κ, λ) = 1, such that

a′ ≡ κa, b′ ≡ κb, c′ ≡ κc, d′ ≡ κd mod λ . (4.59)

Theorem 2. The group S̃O
+
(L) of automorphisms of the lattice L consists of transfor-

mations

( 1√
e

(

ae b/λ

cN de

)

,
1√
e

(

a′e c′Eg/λ
b′EgN d′e

)

)

∈ SL(2,R)× SL(2,R) (4.60)

where a, b, c, d, a′, b′, c′, d′ ∈ Z, e ∈ Z>0 with e||N
λ
and

a′ ≡ κa, b′ ≡ κb, c′ ≡ κc, d′ ≡ κd mod λ (4.61)

for some κ coprime to λ. The group is generated by adjoining to the normal subgroup

Γ0(Nλ)× Γ0(Nλ) ⊂ S̃O
+
(L) the transformations

((

1 1/λ

0 1

)

,

(

1 0

EgN 1

))

,

((

1 0

N 1

)

,

(

1 Eg/λ
0 1

))

, (4.62)

as well as the Atkin-Lehner involutions (we, we) for all e||N
λ
.
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Proof. See Appendix A.2 �

As in the λ = 1 case, the generic T-duality in S̃O
+
(L) is an equivalence between the

CHL model (V ♮, g) and a (possibly) different model (V ′, g′). The index ZV ♮

g,1 is expected to

be invariant only under the subgroup Gg ⊂ S̃O
+
(L) of self-dualities, i.e. where V ′ ∼= V ♮

and g is conjugated with g′ within Aut(V ♮) = M. The subgroup Γ0(Nλ)× Γ0(Nλ) fixes

the winding and momenta modulo Nλ, so that it must be a (normal) subgroup of Gg.

The effect of the symmetries (4.62) is rather subtle. A direct calculation shows that

the action of such dualities on momenta and winding along the spatial circle has the form

w1 7→w′
1 ≡ w1 +

1

λ
X(m1, w1, m2, w2) mod Z , (4.63)

m1 7→m′
1 ≡ m1 − EgNX(m1, w1, m2, w2) mod NλZ , (4.64)

where X : L → Z is an integral-valued linear functional that depends on the particular

duality. As discussed in Appendix B, for all X ∈ Z there is an isomorphism

V ♮
n,m
∼= V ♮

n+NX,m−EgNX , (4.65)

where V ♮
n,m is the g = e

2πim
Nλ -eigenspace in the gn-twisted sector, n,m ∈ Z/NλZ. In the

CHL orbifold, states with winding w = n
Nλ

and momentum m are tensored with states

in V ♮
n,m. Thus, the dualities (4.62), together with (4.65), are symmetries of the Monster

CHL model to itself and the index |Zg,1(T, U)|2 must be invariant under the corresponding

action.

Finally, the Atkin-Lehner involutions (we, we), where e||Nλ establish an equivalence with

the model (V ′, g′), where V ′ = V ♮/〈gN/e〉 (notice that N/e is a multiple of λ, so that the

level matching condition is satisfied and the orbifold is consistent) and g′ = gxQy is a

certain combination of order N of the quantum symmetry Q and g (see [27] for details).

To conclude, the group of T-dualities S̃O
+
(L) contains the normal subgroup Gg of self-

dualities, generated by Γ0(Nλ) × Γ0(Nλ), the transformations (4.62) and those Atkin-

Lehner involutions (we, we) such that (V ′, g′) ∼ (V ♮, g) up to the non-trivial automorphism

of the Monster CHL model. The index ZV ♮

g,1(T, U) is invariant up to a phase with respect

to this group

|ZV ♮

g,1(T, U)|2 = |ZV ♮

g,1(γ1 · T, γ2 · U)|2 (γ1, γ2) ∈ Gg . (4.66)

5. The space-time index III: algebras and denominators

In section 3 we noticed that the (24th root of the) index Z(T, U) 9 is exactly the de-

nominator of Borcherds’ Monstrous Lie algebra. In this section, we will show that this

is no coincidence: the Monstrous Lie algebra appears as a spontaneously broken gauge

symmetry in the string theory we are considering and the BPS states form a representa-

tion for this algebra. An analogous relation exists between each Monstrous CHL model

9Occasionally, we will loosely refer to Z(T, U) as the algebra denominator; the reader should be aware

that the precise denominator is really its 24th root Z(T, U)1/24.
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and an infinite dimensional Borcherds-Kac-Moody (BKM) algebra. Using this fact, we

will prove that the only states contributing to the index Z are the ones annihilating the

winding-momentum MW , which is the quadratic Casimir of the algebra.

5.1. Monstrous Lie algebras. The single string BPS states are related to physical

string states in the Ramond sector with k2R = 0 and hR = 1
2
whose vertex operator

(unintegrated, in the (−1/2)–picture) can be written as

(cc̃Vχe−φ̃/2S̃i
αe

ikX)(z, z̄) , (5.1)

where c, c̃ are the ghosts, e−φ̃/2 is the superghost, Vχ is a holomorphic vertex operator

corresponding to the state χ ∈ V ♮ of conformal weight hχ, S̃
i
α, i = 1, . . . , 24 is a tensor

product of one of the 24 Ramond ground states of the internal SCFT V̄ s♮ (labeled by i) and

a Ramond ground state of positive chirality in the space-time directions. Furthermore,

the space-time momentum k must satisfy the level-matching conditions (3.4). We denote

by

|χ, i, α, k〉 , (5.2)

the corresponding state.

These states have no supersymmetric partners: the reason is that the corresponding

states in the NS sector are either zero or BRST exact. Explicitly, space-time supersym-

metry acts on the BPS states by (we omit the holomorphic part cVχ(z) of the vertex

operator since it plays no role in this computation)
∮

dz(e−φ̃/2S̃i
α)(z̄) (c̃e

−φ̃/2S̃j
βe

ikX)(0) = δij(Γ0Γµ)αβ(c̃ψ̃µe
ikX)(0) (5.3)

= δij(c̃(ψ̃0 − ψ̃1)e
ikX)(0) ∝ kR,µ(c̃ψ̃

µeikX)(0) , (5.4)

where ψ̃µ is the weight 1/2 field related to the current ∂̄Xµ by world-sheet supersymmetry.

We used the fact that the supersymmetry charge and the BPS state are fermions of the

same chirality and that k0R = k1R by the BPS condition. Restoring the dependence on the

holomorphic part, we conclude that the supersymmetric partners of the BPS states can

be written as

kR,µψ̃
µ
−1/2|χ, k〉 . (5.5)

and correspond to the (unintegrated, in the (−1)–picture) vertex operator

(cc̃Vχe−φ̃kR,µψ̃
µeikX)(z, z̄) . (5.6)

The space-time momentum k satisfies the same conditions (3.4) as above. This state is

BRST exact

kR,µψ̃
µ
−1/2|χ, k〉 = G̃−1/2|χ, k〉 (5.7)

where G̃−1/2 is the world-sheet supersymmetry operator. More precisely, the vertex op-

erator (5.6) is the BRST variation

cc̃Vχe−φ̃kR,µψ̃
µeikX = {QBRST

R , cVχe−φ̃eikX} , {QBRST
L , (cVχe−φ̃eikX)} = 0 , (5.8)
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where QBRST
L and QBRST

R are the left- and right-moving components of the BRST oper-

ator. In general, massless (k2 = 0) BRST exact (null) states in string theory correspond

to gauge invariances. The zero momentum limit of such states give rise to global gauge

invariance and charge conservation laws. In the present context of compactification to

0 + 1 dimensions, the very definition of the mass as k2 is somehow problematic. Notice,

however, that the BRST exact states we are considering always carry non-zero momen-

tum and, in this sense, they are similar to massive null states. In analogy with massive

null states, the BRST exact states (5.6) are expected to generate a spontaneously broken

gauge symmetry, which is restored in the limit of tensionless string α′ → ∞, where all

these states become massless.

Even if spontaneously broken, we expect the gauge symmetry generators to form an

algebra. To see this explicitly, it is useful to write the vertex operator (5.6) in its integrated

form and 0-picture

Wχ :=

∫

d2z (VχkR,µ(∂̄X
µ)eikX)(z, z̄) =

∫

d2z ∂̄(VχeikX)(z, z̄) . (5.9)

(For a vector with generic polarization ǫµ, the 0-picture vertex operator also contains

a term proportional to ǫµkR,νψ̃
νψ̃µ; this term vanishes when ǫµ = kR,µ for symmetry

reasons).

By formally inserting this null vertex operator inside some string amplitude, we obtain

0 = 〈WχV1V2 . . .〉 = lim
ǫց0

∑

i

〈V1V2 . . .
∮

γi,ǫ

dz(VχeikX)(z, z̄)Vi . . .〉 , (5.10)

where γi,ǫ is a small circle of radius ǫ around the insertion point of the vertex operator Vi.
Let us consider the case where Vi is the vertex operator of a BPS state |χ̂, α, k̂〉 inserted
at z = 0, for some momentum k̂ and state χ̂ ∈ V ♮. Then,

lim
ǫց0

∮

γ0,ǫ

dz(VχeikX)(z, z̄)|χ̂, α, k̂〉

= lim
ǫց0

∮

γ0,ǫ

dz(VχeikLXL)(z) z̄kR·k̂R exp
(

∑

n>0

kR,µ
ᾱµ
−n

n
z̄n
)

|χ̂, α, k̂〉 , (5.11)

where we have written the dependence on z̄ explicitly. Now, since both k0R = k1R and

k̂0R = k̂1R, we conclude that kR and k̂R are proportional to each other. Therefore,

kR · k̂R ∝ k2R = 0 . (5.12)

Let us consider the mode expansion

(VχeikLXL)(z) =
∑

n∈Z
(VχeikLXL)−nz

n−1 exp
(

∑

n>0

kR,µ
ᾱµ
−n

n
z̄n
)

=
∑

m≥0

(eikRXr)−mz̄
m ,

(5.13)
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where we notice that the (anti-)holomorphic fields (VχeikLXL)(z) and exp
(

∑

n>0 kR,µ
ᾱµ
−n

n
z̄n
)

have total conformal weights10 −mw+hχ = 1 and k2R = 0, respectively. By replacing this

expansion in (5.11), we obtain

lim
ǫց0

∫ 2π

0

dt
∑

m≥0
n∈Z

ǫm+neit(n−m)(VχeikLXL)−n(e
ikRXr)−m|χ̂, α, k̂〉 (5.14)

= lim
ǫց0

∑

m≥0

ǫ2m(VχeikLXL)−m(e
ikRXr)−m|χ̂, α, k̂〉 (5.15)

= (VχeikLXL)0|χ̂, α, k̂〉 . (5.16)

Thus, the action is given by the zero-modes of the holomorphic currents (VχeikLXL)(z).

These zero-modes form an algebra, with commutation relations given by the usual contour

argument, and the space of single particle BPS states is a module over this algebra. It

is easy to see that this is exactly the Monster Lie algebra constructed by Borcherds [2].

Indeed, the starting point of Borcherds’ definition is the vertex operator algebra given by

the product of V ♮ and the lattice VOA based on the unimodular lattice Γ1,1 of signature

(1, 1). Borcherds then essentially takes the cohomology with respect to a suitable ‘BRST’

operator, whose class representatives have total conformal weight 1. Borcherds’ BRST

operator corresponds to the left-moving component QBRST
L of the full BRST operator

in the string model. In more detail, the level-matching and the right-moving mass-shell

conditions force the left-moving momentum kL to take values in a lattice isomorphic to Γ1,1

and the left-moving mass-shell condition is exactly Borcherds’ physical state condition.

To summarize, the algebra of gauge symmetries corresponding to the null states (5.5)

is Borcherds’ Monster Lie algebra and the space of BPS (first quantized) string states

is a module over this algebra. More precisely, for each generator of the Monster Lie

algebra, there are 24 physical BPS single string states, that form 24 copies of the adjoint

representation. In section 3, these BPS string states were the starting point for the

construction of the second quantized BPS Fock space HBPS and of the index Z(T, U).

As we will explain in the next subsections, Z(T, U)1/24 is a denominator for the Monster

Lie algebra and one can apply the Generalized Kac-Moody generalization of the standard

Weyl-Kac denominator formula to evaluate it.

This construction admits a direct generalization to the other Monster CHL models.

In all cases, the superpartners of the BPS states are BRST variations of some fields of

conformal weights (1, 0) and one obtains an infinite dimensional Lie algebra generated

by the zero modes of the corresponding holomorphic currents. These are exactly the

algebras considered in section 4 of [13] as part of the proof of the Generalized Monstrous

Moonshine conjecture [16]. In all cases, the first quantized BPS string states form 24

copies of the adjoint representation of the corresponding CHL algebra.

10In the remainder of the paper, for ease of notation, we will simply denote m1, w1 by m,w unless

otherwise noted.
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5.2. The index as an algebra denominator. In the last section, we showed that each

CHL model contains an infinite dimensional Lie algebra g and that each generator of

this algebra is associated with 24 fermionic BPS states. These fermionic BPS states are

the ones involved in the construction of the BPS Fock space in section 3 and in the

definition of the index Zg,1(T, U). In this section, we will show that each index Zg,1(T, U)

is essentially (the 24th root of) the Weyl denominator of the corresponding Lie algebra

g; this interpretation will allow us to derive explicit formulae for the index in terms of

the McKay-Thompson series. This section may be viewed as a physical reinterpretation

of the Lie algebra homology computations of [36–39].

Let us first fix some notation. Let g be a (semi-simple/(generalized) Kac-Moody) real

Lie algebra with a decomposition

g = g− ⊕ h⊕ g+ , (5.17)

with respect to a Cartan subalgebra h and subalgebras g± corresponding to positive/negative

roots. The algebra has a grading g =
⊕

γ∈Γ g
γ with weight space Γ ⊂ h∗ (or possibly in

some extended (he)∗) and such that each gγ is finite dimensional. We denote by fa
bc the

(real) structure constants of g

[b, c] =
∑

a∈g
fa

bca b, c ∈ g . (5.18)

In the case where g is the algebra of a Monster CHL model, the Cartan subalgebra

is generated by the zero-modes of the left-moving currents ∂Xµ(z), µ = 0, 1, so that

the weight space h∗ is two dimensional. The grading is given by the set of winding-

momenta (n,m) or, equivalently, by the left-moving momenta kµL, µ = 0, 1, which are

linear combinations of n and m, depending on the radius R. Remember, we have defined

n ∈ Z implicitly via w := n
N

(taking λ = 1 for now). The zero component k0L (the

energy) will be often denoted by E. The positive energy condition E > 0 then selects

the subalgebra g− of negative roots. The graded components gγ, with γ = (n,m) have

dimension ĉn,m(
mn
N
), where ĉn,m(k) is the coefficient of qk in the Fourier expansion of

Fn,m(τ) (4.22) or, equivalently, the dimension of the space V ♮
n,m at level L0 − 1 = k.

The algebras we are considering can be endowed with a non-degenerate symmetric g-

invariant bilinear form κ such that, for any a ∈ gγ , κ(a, b) = 0 unless b ∈ g−γ. Physically,

κ(a, b) is the coefficient of the two point function of the holomorphic vertex operators

associated with a, b ∈ g. This is non-zero only when the two vertex operators have

opposite (left-moving) momentum. On the Cartan subalgebra, κ is the usual space-time

metric with Lorentzian signature. In particular, for any kµL, k̂
ν
L ∈ h∗, one has κ(kµL, k̂

ν
L) =

ηµνk
µ
Lk̂

ν
L. Finally, we require a (Cartan) involution θ acting by multiplication by −1

on h and mapping θg± → g∓ and such that −κ(a, θ(a)) > 0 for all nonzero a ∈ gγ ,
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γ 6= (0, 0). This involution simply flips the sign of the momentum in the vertex operator

(Vχe
ikLXL)→ (Vχe

−ikLXL).11

For each element a ∈ g of the algebra, there are 24 Ramond string states satisfying the

BPS condition (kR)
2 = 0. For simplicity, we will build a BPS space H just from one of

these 24 sets of BPS states. The full BPS space considered in section 3, therefore, will

be the tensor product of 24 identical copies of the space H and the corresponding index

Z(T, U) the 24th power of the index of a single copy.

Thus, with each a ∈ g, we associate a fermionic mode ηa, corresponding to a physical

Ramond string state in the (−1/2)-picture. The two point function of any pair of such

(−1/2)-picture states vanishes, suggesting the anticommutation relations

{ηa, ηb} = 0 a, b ∈ g. (5.19)

Let us consider a ground state |0〉 such that

ηa|0〉 = 0 a ∈ g+ ⊕ h , (5.20)

and let H be the Fock space constructed by acting on |0〉 by ηa, a ∈ g−. In fact, the

operators ηa, a ∈ g+ ⊕ h annihilate every state in H, so we can simply set them to zero

and consider only ηa, a ∈ g−. The Fock space H is isomorphic to
∧

g− and inherits the

grading from g, so that H =
⊕

γ∈ΓHγ .
12 The denominator of the algebra is simply an

index in this space

Z(z) :=
∑

γ∈Γ
TrHγ (e

κ(z,γ+ρ)(−1)F ) , z ∈ h∗ , (5.21)

where ρ ∈ h∗ is the Weyl vector with defining property

κ(ρ, γ) = −1
2
κ(γ, γ) , (5.22)

for all simple roots γ. As we will see, the Weyl vector exists in all the algebras relevant

for our construction.

The space of Ramond string states in the (−1/2)-picture is dual to the space of Ramond

states in the (−3/2)-picture. Associated with the latter states, we introduce fermionic

operators ∂
∂ηa

, a ∈ g− satisfying

∂

∂ηa
|0〉 = 0

{

∂

∂ηa
,
∂

∂ηb

}

= 0

{

∂

∂ηa
, ηb

}

= δab a, b ∈ g− . (5.23)

11We are considering real vertex operators Vχ of the Monster VOA. In the complexified case, the

involution θ is anti-linear and −κ(a, θ(b)) is hermitian.
12If g is an ordinary Kac-Moody algebra,

∧

g− is an irreducible highest weight g-module, with highest

weight the Weyl vector. This can be easily proved using the Weyl-Kac denominator formula. To the best

of our knowledge, the analogous statement for Generalized Kac Moody algebras has not been established.

In particular, when g is the Monster Lie algebra,
∧

g− might be a reducible g-module. We thank Richard

Borcherds and Scott Carnahan for correspondence about this point.
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Finally, we can endow H with the structure of a Hilbert space by defining the adjoint

operator as

η†a := −κaθ(b)
∂

∂ηb
. (5.24)

where we use the shorthand κab := κ(a, b).

The definition of the energy depends on the compactification radius R, it can happen

that, as we vary R, the energy of some of the algebra generators change sign. From

the point of view of the algebra, this corresponds to a Weyl transformation, leading

to a different choice of the subalgebra g−. Apparently, the Hilbert space H depends

on this choice. However, notice that two Hilbert spaces H and H′ related by a Weyl

transformation are actually isomorphic. If a1, . . . , ar are the algebra elements changing

sign under a Weyl transformation, then this isomorphism maps the new ground state

|0′〉 ∈ H′ to ηa1 . . . ηar |0〉 ∈ H and exchanges

ηai ↔ κaib
∂

∂η′b

∂

∂ηai
↔ κaibη′b , i = 1, . . . , r . (5.25)

Let us define the left-moving momenta operators Pµ, µ = 0, 1, as

Pµ :=
(1

2

∑

a,b∈g−
fa

µb(ηa
∂

∂ηb
− ∂

∂ηb
ηa)
)

reg
=
∑

a,b∈g−
fa

µbηa
∂

∂ηb
− 1

2

(

∑

a∈g−
fa

µa

)

reg
, (5.26)

and the winding and momentum number operators

M =
R√
2
(P 0 + P 1) W =

1√
2R

(P 0 − P 1) . (5.27)

Here, fa
µb are the structure constants for the Cartan generator ∂Xµ and the subscript reg

denotes a suitable regularization procedure. It is easy to check that the definition (5.26) is

independent of the choice of the subalgebra g−, provided one identifies the corresponding

operators as in (5.25). In particular,M andW are the appropriate winding and momenta

in order to define an index Z(T, U) that is continuous in the moduli, as expected from

the 1-loop integral definition of the previous section.

The vector

ρµ := −1
2

(

∑

a∈g−
fa

µa

)

reg
, (5.28)

is a normal ordering constant that determines the winding and momentum (n0, m0) of

the vacuum state |0〉. If g was a finite dimensional Lie algebra, ρ would correspond to the

Weyl vector. We will argue that, in order to match with the 1-loop expression, this must

be true also in the case of the CHL Lie algebras. Notice that each graded component Hγ ,

γ ∈ Γ is an eigenspace for P µ with a shifted eigenvalue

P µ|φ〉 = (γµ + ρµ)|φ〉 , φ ∈ Hγ . (5.29)

It is now clear that the index Z(T, U)1/24 exactly corresponds to the Weyl-Kac-Borcherds

denominator (5.21), with γ + ρ = (n+ n0, m+m0) and z = (T, U).
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The final ingredients needed in order to explicitly compute the index Z(T, U) are the

‘boundary operator’

d :=
1

2

∑

a,b,c∈g−
fa

bcηa
∂

∂ηb

∂

∂ηc
, (5.30)

and its adjoint

d† :=
1

2

∑

a,b,c∈g+
fa

bcη
bηc

∂

∂ηa
. (5.31)

Here, the indices are lowered and raised using κab and its inverse κab

ηa := κabηb ,
∂

∂ηa
:= κab

∂

∂ηb
, (5.32)

and we used the algebra automorphism

fa
bc = f

θ(a)
θ(b)θ(c) . (5.33)

If we identify H with the
∧

g− := ⊕i

∧i
g−, then d ≡ ⊕idi represents the standard

boundary operator di :
∧i

g− → ∧i−1
g− acting by

di(a1 ∧ . . . ∧ ai) =
∑

1≤r<s≤i

(−1)r+s[ar, as] ∧ a1 ∧ . . . ∧ ǎr ∧ . . . ∧ ǎs ∧ . . . ∧ ai . (5.34)

The operators d and d† are nilpotent

d2 = 0 = (d†)2 , (5.35)

as follows by direct calculation and by the Jacobi identity
∑

c∈g±
(fa

bcf
c
de + fa

ecf
c
bd + fa

dcf
c
eb) = 0 , a, b, d, e ∈ g± (5.36)

for the algebras g− and g+. Furthermore, they preserve the grading of H

d(Hγ) ⊆ Hγ d†(Hγ) ⊆ Hγ , (5.37)

since fa
bc 6= 0 implies γa = γb + γc and each ηa (respectively, ∂

∂ηa
) raise (resp., lower) the

weight by γa. The homology groups Hi(g) = ker di/Imdi+1 on the nilpotent operator d

represent the standard homology of the Lie algebra g.

We can decompose H into irreducible representations of the algebra generated by d, d†.

It is clear that only the 1-dimensional representations contribute to the index Z, since the

higher dimensional representations contain the same number of fermions and bosons, all

with the same weight. States belonging to a 1-dimensional representation are annihilated

by both d and d†, so that they are contained in the kernel of {d, d†} (in fact, ker{d, d†} =
ker d ∩ ker d†, using the standard argument that

〈ψ|{d, d†}|ψ〉 = ‖d|ψ〉‖2 + ‖d†|ψ〉‖2 ≥ 0 , (5.38)

and the right-hand side vanishes only when d|ψ〉 = 0 = d†|ψ〉. ).
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It is a standard theorem (see for example [36]) that the anticommutator {d, d†} is given
by the quadratic Casimir of the algebra. When the algebra admits a Weyl vector ρ ∈ h∗

satisfying (5.22), the Casimir has the form

{d, d†}|Hγ = −1
2

(

κ(γ + ρ, γ + ρ)− κ(ρ, ρ)
)

. (5.39)

As we will see, all the algebras we are interested in have a Weyl vector ρ ∈ h∗ which

coincides with the normal ordering constant (5.28) and is null κ(ρ, ρ) = 0. Therefore,

using (5.29), we conclude that the only states contributing to the index Zg,1(T, U) will be

the ones annihilated by PµP
µ = 2MW .

5.3. Explicit formulas for the indices. In this section, we will use the information of

section 5.2 to obtain a third alternative formula for the indices Zg,1(T, U).

5.3.1. The index for the Monster Lie algebra. For the Monster Lie algebra, the infinite

product formula (3.19) obeys the famous identity (independently proved in the 1980’s by

Koike, Norton, and Zagier)

Z(T, U)1/24 = J(T )− J(U) , (5.40)

where the vacuum contribution is given by e−2πiT , as required by the 1-loop formula,

corresponding to a normal ordering constant (n0, m0) = (−1, 0). Borcherds [2] used this

identity to deduce that the simple roots of the algebra are the ones of the form (1, m),

m ∈ Z, with multiplicity c(m). For any algebra, the one particle states corresponding to

simple roots are always in the kernel of {d, d†}. In this case, their contribution the index

is

−
∑

m∈Z
c(m)e2πiUm = −J(U) . (5.41)

It is clear then that the vector ρ = (−1, 0) is indeed the Weyl vector, since it satisfies the

defining property (5.22) for all simple roots. As anticipated, the Weyl vector coincides

with the vacuum winding-momentum (n0, m0) and is null. Therefore, all non-vanishing

contributions to Z(T, U) come from states satisfying

0 = κ(γ, γ + 2ρ) = 2MW = 2mtot(ntot − 1) , (5.42)

where we have defined mtot, ntot as the sum of momenta and windings, respectively, of

multiparticle states. In particular, the term J(T )−e−2πiT comes entirely from two particle

states.

Using this description of the algebra, it is easy to compute a similar formula for the

twined indices [2]

Z
1,g(T, U)

1/24 = T
1,g(T )− T1,g(U) , (5.43)

for any g ∈M.

Of course, it would be ideal to derive the Koike-Norton-Zagier formula directly in our

heterotic construction from the outset. The main impediment to this is an independent
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proof of the existence of a Weyl vector for the Monster Lie algebra, i.e. to derive the

vacuum winding and momentum. We leave this point to future work.

5.3.2. CHL models. Let us consider now the CHL case, for g of order N (in this section,

we will restrict to λ = 1, for simplicity). The root lattice Γ is given by

γ = (k0L, k
1
L) =

1√
2

(

m

R
+
nR

N
,
m

R
− nR

N

)

, m, n ∈ Z , (5.44)

so that

κ(γ, γ′) =
mn′ +m′n

N
, (5.45)

and the root multiplicity is

mult(n,m) = ĉn,m

(nm

N

)

, (5.46)

where ĉn,m(l) is the Fourier coefficient of Fn,m, the (discrete Fourier transform of the)

generalized McKay-Thompson series (see eq.(4.22)). Physically, they represent the di-

mensions of V ♮
n,m (the g = e

2πim
N eigenspace in the gn-twisted sector) at level L0 − 1 = l.

The positive roots satisfy

m

R
+
nR

N
> 0 . (5.47)

This condition, and therefore the Fock space used in the definition of Z, changes dis-

continuously whenever R crosses a ‘wall of marginal stability’, i.e. when the energy of

some single particle state changes sign. On the other hand, the path-integral description

suggests that the index Z itself should be a continuous function of R. Mathematically,

the choice of R determines which Weyl chamber is the fundamental one. Continuity of Z

corresponds to the statement that the denominator of the algebra is invariant under Weyl

transformations, although this invariance is not manifest in its product formula descrip-

tion. Thus, we expect to be able to obtain the same expression for the index for different

values of R. We will consider, in particular, the regimes R≫ 0 and 1/R≫ 0.

5.3.3. The R ≫ 0 regime. For R sufficiently large, a necessary and sufficient condition

for single particle states to have positive energy, i.e.

m > −nR
2

N
, (5.48)

is to have positive winding n > 0. This follows from the following observations:

(1) There are no states with zero winding n = 0. This can be seen by noticing

that F0,m(τ) = 1
N

∑

k e
− 2πimk

N T
1,gk(τ) has vanishing constant term, so that the

multiplicity ĉ0,m(0) = 0. Note that, in general, there can be states with zero

momentumm = 0. This happens if some of the twisted-twining McKay-Thompson

series Tgr ,gs(τ) have constant terms.
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(2) For n < 0 and R≫ 0, the positive energy condition implies m≫ 0 and therefore
mn
N
≪ 0. On the other hand, all Fourier coefficients ĉn,m(

mn
N
) vanish when mn

N
is a

sufficiently large negative number, so these states have zero multiplicity (in fact,

by unitarity, we expect ĉn,m(l) = 0 for l < −1).
The second quantized index is

Zg,1(T, U) =
(

e−2πiT
∏

n>0
m∈Z

(1− e2πiU m
N e2πiTn)ĉn,m(mn

N
)
)24

, (5.49)

where T, U are defined as (note the appearance of the factors N with respect to the

Monstrous Lie algebra)

T = b+ i
βR

2
√
2πN

U = v + i
βN

2
√
2πR

. (5.50)

In this product formula, we set the constant orderings (n0, m0) to (−1, 0) as for the

(unorbifolded) Monster Lie algebra. We will justify this choice below.

Using the expression (5.43), it is easy to derive an alternative formula for Zg,1(T, U).

Indeed, in the 1-loop picture, Z
1,g can be simply computed by requiring the fields (and

the strings) to transform by a g transformation as one moves around the Euclidean time

circle. This is exactly the same as taking a CHL orbifold by (δ, g) where the shift δ is

taken along the Euclidean time direction, rather than along the space-like circle. This

means that Zg,1 and Z
1,g are simply related by a rotation of the Euclidean T2 torus that

exchanges the space with Euclidean time. Such a rotation acts by U ↔ − 1
U
, T ↔ T on

the moduli, so that

Zg,1(T, U)
1/24 = Z

1,g(T,−
1

U
)1/24 = T

1,g(T )− Tg,1(U) . (5.51)

Strictly speaking, since the derivation is based on the 1-loop expression for the index, we

might expect a non-trivial phase to arise. This phase can be excluded by considering the

index Zg,1(T, U) in the large radius, low temperature limit R, β → ∞, β/R fixed (i.e.

T → i∞, with U fixed). In this limit, we expect the CHL model to be indistinguishable

from the unorbifolded case, since all twisted states become infinitely massive and the effect

of the orbifold projection is negligible when the momentum is approximately continuous.

By requiring Zg,1(T, U)
1/24 ∼ Z(T, U)1/24 ∼ e−2πiT in this limit, we find that (5.51) must

hold with no additional phase. This reasoning also shows that the appropriate vacuum

winding number is n0 = −1. The identity Zg,1(T, U) = Z
1,g(T,− 1

U
) can also be derived

directly by manipulating the infinite product formulas of both sides (see, for example, the

proofs of Lemma 3.12 and Proposition 3.13 in [13]).

We can use (5.51) to describe the set of simple roots of the algebra in the regime R≫ 0.

Since all positive roots have n ≥ 1, then all roots with n = 1 are simple. Single particle
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states corresponding to simple roots of the form (1, m) give a non-vanishing contribution

−
∑

m∈Z
ĉ1,m

(m

N

)

e2πiU
m
N = −

N
∑

m=1

F1,m(U) = −Tg,1(U) , (5.52)

to the index. Here, we have to set m0 = 0 in order to match with (5.51), so that the

vacuum winding-momentum is (n0, m0) = (−1, 0), as anticipated in (5.49). In general, a

single particle state corresponding to a simple root (n,m) contributes

− e2πiT (n−1)+mU , (5.53)

to the index. By (5.51), the contributions of all simple roots that are not of the form (1, m)

must be included in T
1,g(T ), i.e. they must depend only on T . This means that all simple

roots are either of the form (1, m) or (n, 0). It follows that the vector ρ = (−1, 0) ∈ h∗

satisfies (5.22) for any simple root and is therefore a Weyl vector for the algebra. Thus,

any CHL algebra has a (null) Weyl vector and it coincides with the normal ordering

constants (n0, m0) defining the vacuum winding and momentum.

The only states contributing to (Zg,1)
1/24 are the ones satisfying

0 = κ(γ + ρ, γ + ρ) = 2
MW

N
=

2

N
mtot(ntot − 1) . (5.54)

Indeed, (Zg,1)
1/24 is the sum of a function depending only on T (the contribution from

states with mtot = 0) and a function depending only on U (from states with ntot = 1).

5.3.4. The 1/R≫ 0 regime. The positive energy condition

n > −Nm
R2

(5.55)

implies, for 1/R≫ 0,

m > 0, n ∈ Z or m = 0, n > 0 . (5.56)

In particular, one can argue that there are no positive energy states with negative momen-

tum m < 0. The argument is analogous to the one used in the R ≫ 0 regime, just with

the winding and momenta exchanged: if m < 0, the positive energy condition requires

n≫ 0, but the multiplicity ĉn,m(
mn
N
) vanishes for mn≪ 0.

In fact, the two regimes R ≫ 0 and 1/R ≫ 0 are similar, upon exchanging winding

and momentum. The main qualitative difference is that, while there are no states with

n = 0 (because ĉ0,m(0) = 0 for all m), we cannot exclude the presence of states with zero

momentum m = 0. This phenomenon is related to the fact that, while the R→∞ limit

corresponds to a two dimensional heterotic model compactified on V ♮, the R → 0 limit

might correspond to a two dimensional heterotic model either on a c = 24 VOA with

currents (if there are states with m = 0) or on one without currents (if there are no states

with m = 0). It is convenient to distinguish these two cases.
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Without zero momentum states. Let us assume first that there are no states with m = 0,

i.e. that ĉn,0(0) = 0 for all n. Then, positive energy single particle states have necessarily

m > 0, so that the single-particle states with m = 1 are simple roots for any winding n

and the Weyl vector ρ corresponds to (n0, m0) = (0,−1).
The (single- or multi-particle) states contributing to the index Z1/24 satisfy

0 = κ(γ + 2ρ, γ) =
2MW

N
=

2

N
(mtot − 1)ntot , (5.57)

so that Z1/24 is the sum of a function of T (states with mtot = 1) and a function of U

(states with ntot = 0).

The states with ntot = 0 consist of the vacuum, contributing −e− 2πiU
N , and multi-

particle states contributing −e 2πiUmtot
N , mtot > 0, – no single-particle states with n = 0

exists. Notice that we have to assume that the vacuum in the 1/R≫ 0 case has negative

fermion number, in order to match with the R ≫ 0 analysis.13 In order to match with

the R ≫ 0 regime, all such contributions should sum up to −Tg,1(U). This implies that

Tg,1(τ) must be of the form

Tg,1(τ) = q−
1
N +O(q

1
N ) , (5.58)

with the polar term q−
1
N coming from the vacuum contribution and the other terms

coming from multi-particle states.

The only states with mtot = 1 are single-particle states and their contribution to the

index (Zg,1(T, U))
1/24 is

∑

n∈Z
e2πiTnĉn,1

( n

N

)

. (5.59)

By comparing with the R≫ 0 case, we find the identity
∑

n∈Z
e2πiTnĉn,1

( n

N

)

= T
1,g(T ) = e−

2πiT
N + 0 + . . . (5.60)

Eq.(5.60) implies that, whenever ĉn,0(0) = 0 for all n, the algebra in the 1/R ≫ 0

regime has always one simple root (−1, 1) with multiplicity ĉ−1,1(− 1
N
) = 1. Similarly, by

(5.58), for R≫ 0, the algebra has always one simple root (1,−1), again with multiplicity

ĉ1,−1(− 1
N
) = 1. Roots with κ(γ, γ) = 2mn

N
< 0 are called real roots. Notice that the

only oscillators ηa whose energy can (and do) change sign as we vary R are the ones

corresponding to real roots. Further implications of the existence of real roots in the

algebra will be discussed in section 7.1.

13The action of the fermion number (−1)F on the vacuum state |0〉 is a matter of convention. When

R crosses a domain wall, the fermion number of the vacua |0〉 and |0′〉 differ by a factor (−1)n, where n

is the number of single particle fermionic states whose energy changes sign. In our case, since we have

24 identical copies of each fermion, n is always a multiple of 24, so that all vacua have the same fermion

number (that we conventionally fix to be positive). However, in the calculations, we often focus on the

Fock space and index (that we denote by Z1/24) built from a single copy of each fermion. In this case

we might have vacua with different fermion numbers. By convention we fix the fermion number of the

vacuum for R≫ 0 to be positive.



40 NATALIE M. PAQUETTE, DANIEL PERSSON, AND ROBERTO VOLPATO

With zero momentum states. Let us consider the case where ĉn,0(0) 6= 0 for some n > 0.

Let n̂ > 0 be the smallest winding such that ĉn̂,0(0) 6= 0 and let ñ > 0 the smallest

winding such that (ñ, 1) has non-zero multiplicity mult(ñ, 1) = ĉñ,1
(

ñ
N

)

6= 0. Then, (n̂, 0)

and (ñ, 1) are necessarily simple roots, so that the Weyl vector must be (n0, m0) = (−ñ, 0).
The ground states contributes e−2πiñT to the index Zg,1(T, U)

1/24 and comparison with

the R ≫ 0 regime shows that ñ = 1, so that ĉ1,1
(

1
N

)

6= 0 and (n0, m0) = (−1, 0). The

condition κ(ρ, γ) = −κ(γ, γ)/2 implies that, as in the R≫ 0 regime, the simple roots are

of the form (1, m) or (n, 0). The states contributing to (Zg,1)
1/24 satisfy

κ(γ + 2ρ, γ) =
2

N
MW =

2

N
mtot(ntot − 1) = 0 , (5.61)

so that states with mtot = 0 give a function of T and states with ntot = 1 give a function of

U . There is also a constant term from states with (ntot, mtot) = (1, 0), that are necessarily

single-particle states; it is convenient to include this contribution in the function of U .

Since the positive energy single-particle states have m ≥ 0, all contributions with mtot = 0

come from states built (in all possible ways) from single particles of zero momentum.

These contributions are given by

e−2πiT
∏

n>0

(1− e2πiTn)ĉn,0(0) + ĉ1,0(0) , (5.62)

where we subtract the contribution −ĉ1,0(0) from the (fermionic) states with (n,m) =

(1, 0). By comparing with the R≫ 0 regime, we find that

T
1,g(T ) = e−2πiT

∞
∏

n=1

(1− e2πiTn)ĉn,0(0) + ĉ1,0(0) . (5.63)

This formula can be written as a product of η-functions (see appendix A.3)

T
1,g(T ) =

∏

ℓ|N
η(ℓT )α(ℓ) + α(1) , (5.64)

where

α(ℓ) =
∑

d|ℓ
ĉd,0(0)µ(ℓ/d) , (5.65)

with µ the Möbius function. Using Möbius inversion formula, it is easy to verify that the

modular weight of this product is zero

∑

ℓ|N
α(ℓ) = ĉN,0(0) = 0 . (5.66)
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The exponents α(ℓ) are also related to the number of currents of the orbifold CFT V ♮/〈g〉,
which is given by

N
∑

n=1

ĉn,0(0) =
∑

d|N

N
∑

n=1
(n,N)=d

ĉd,0(0) =
∑

d|N
ĉd,0(0)ϕ

(

N

d

)

=
∑

d|N

∑

ℓ|d
α(ℓ)ϕ

(

N

d

)

=
∑

ℓ|N
α(ℓ)

∑

k|N
ℓ

ϕ

(

N

kℓ

)

=
∑

ℓ|N
α(ℓ)

N

ℓ
,

(5.67)

where ϕ(n) is the Euler totient function counting the numbers coprime to n in Z/nZ.

Let us consider the states with ntot = 1. Each such state gives a contribution of the

form e
2πiUmtot

N , mtot ≥ 0; in particular, there are no poles in the limit U → i∞. By

comparison with the R≫ 0 regime, these contributions should sum up to −Tg,1(U); this
implies that Tg,1(τ) is of the form

Tg,1(τ) = const+O(q1/N) . (5.68)

This can be verified explicitly using (5.64), since

Tg,1(τ) = T
1,g(−

1

τ
) =

∏

ℓ|N

(

ℓ−1/2η(
τ

ℓ
)
)α(ℓ)

+ α(1) = α(1) +O(q
∑

ℓ|N
α(ℓ)
24ℓ ) (5.69)

and noticing that
∑

ℓ|N

α(ℓ)

24ℓ
=

1

24N

∑

ℓ|N

α(ℓ)N

ℓ
> 0 (5.70)

since the right-hand side is, up to the 24N factor, the number of currents (5.67) of the

orbifold V ♮/〈g〉. Actually, the number of currents (5.67) can be evaluated exactly. As we

argued above, whenever there are zero momentum states, one has ĉ1,1(
1
N
) 6= 0, i.e. the

coefficient of q
1
N in Tg,1(τ) must be non-zero. By (5.69), this implies that the order (5.70)

of the first non-constant coefficient is at most 1/N , so that the number of currents (5.67)

must be at most 24

0 <
∑

ℓ|N

α(ℓ)N

ℓ
≤ 24 . (5.71)

The only VOA satisfying this bound is the Leech lattice VOA, which has exactly 24

currents. We conclude that, whenever the orbifold V ♮/〈g〉 is consistent and has currents,

it must be the Leech lattice VOA.

By (5.68), Tg,gk(τ) and F1,r(τ) have no poles as τ → i∞, for all r, k ∈ Z, so that

ĉ1,r(l) = 0 for l < 0. Using these observations, it is easy to check that all contributions to

−Tg,1(U) come from single-particle states with n = 1, m ≥ 0

−
∑

m≥0

ĉ1,m

(m

N

)

e
2πimU

N = −
∑

m∈Z
ĉ1,m

(m

N

)

e
2πimU

N = −
N
∑

r=1

F1,r(U) = −Tg,1(U) . (5.72)

The absence of a polar term in Tg,1(U) implies that there are no simple real roots with

κ(γ, γ) = mn
N

< 0. As a consequence, all simple (and therefore all positive) roots have
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m,n ≥ 0. This means that there is no oscillator ηa for which the energy can change sign

as we vary R. This is compatible with the observation that the Weyl vector ρ = (−1, 0)
is the same in the R≫ 0 and 1/R≫ 0 regime.

5.3.5. The λ 6= 1 case. Much of the analysis of the previous subsections carries over

directly to the λ 6= 1 case if one simply makes the replacement N 7→ Nλ. In this

subsection we will spell out the less automatic aspects of the generalization. In this case,

the root lattice is given by

γ =
(

k0L, k
1
L

)

=
1√
2

(

kλ + nEg
R

+
nR

Nλ
,
kλ+ nEg

R
− nR

Nλ

)

, n, k ∈ Z (5.73)

and, to emphasize the similitude with the previous subsections, we will use the notation

w := n
Nλ

and m := kλ+ nEg.
The argument in the R ≫ 0 regime directly applies to this case, after making the

aforementioned substitution. In particular, the Weyl vector is (n0, m0) = (−1, 0) and the

index is

Zg,1(T, U) =
(

e−2πiT
∏

n>0
m∈Z

(1− e2πiU m
Nλ e2πiTn)ĉn,m(mn

Nλ
)
)24

= (T
1,g(T )− Tg,1(U))24 . (5.74)

Recall that ĉn,m(l) = 0 unless m − Egn ≡ 0 mod λ. The infinite product formula then

implies that

Zg,1

(

T − Eg
λ
, U +N

)1/24

= e
2πiEg

λ Zg,1(T, U)
1/24 , (5.75)

where the phase e
2πiEg

λ comes from the vacuum contribution.

The 1
R
≫ 0 regime is slightly more involved, but the case without zero momentum

states is very similar to its λ = 1 counterpart. Namely, one computes as before

Tg,1(U) = e−
2πiU
Nλ + 0 +O(e

2πiU
Nλ ) , (5.76)

and
∑

n∈Z
e2πiTnĉn,1

( n

Nλ

)

= T
1,g(T ) . (5.77)

Notice that the coefficients ĉn,1
(

n
Nλ

)

in this sum can be non-zero only for nEg ≡ 1 mod λ.

For theories without currents we can show that in fact the Eg ≡ −1 mod λ condition

always holds: we know the right hand side of 5.77 starts with a pole of the form e−2πiT

so the left hand side must have ĉ−1,1

( −1
Nλ

)

6= 0. Then, the values m = 1, n = −1 must

satisfy m ≡ nEg mod λ, and this enforces the condition Eg ≡ −1 mod λ.

On the other hand, assume that ĉn,0(0) 6= 0, for some n > 0 (to satisfy the positive

energy condition). In this case, since (λ, Eg) = 1, we must have λ|n, so we can write

n = n̄λ for some n̄ ∈ N. This condition is necessary but not sufficient to have currents; in
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particular, it is violated when n ≡ 0 mod N , so we allow for the possibility that ĉn,0(0) = 0

even if λ|n. The T -dependent part of the index again reduces to

T
1,g(T ) = e−2πiT

∏

n̄>0

(

1− e2πiT n̄λ
)ĉn̄λ,0(0) =

∏

ℓ|N
η(ℓT )α(ℓ) (5.78)

where now we have the condition λ|ℓ. The proof of (5.64) can be repeated without any

essential modification. Turning to the states with ntot = 1, we can repeat the remainder of

the argument after performing the N 7→ Nλ substitution and find that ĉ1,m(l) = 0, l < 0

and the −Tg,1(U) contribution comes from the states

−
∑

m≥0

ĉ1,m

( m

Nλ

)

e
2πimU

Nλ = −
Nλ
∑

r=1

F1,r(U) = −Tg,1(U). (5.79)

6. Examples

In this subsection we compute some low-order, representative examples of the index to

illustrate the properties that were discussed abstractly in the previous subsection. We

include cases with and without currents, and cases where λ 6= 1.

6.1. Elements of order 2. We warm-up with the simplest possible examples. There are

two classes of involutions in the Monster, class 2A and 2B. Let us start with the CHL

model for class 2A. The McKay-Thompson series are

T
1,2A(τ) =

η(τ)24

η(2τ)24
+ 212

η(2τ)24

η(τ)24
+ 24 =

1

q
+ 4372q + 96256q2 + . . . (6.1)

T2A,1(τ) = T
1,2A(τ/2) =

1

q1/2
+ 4372q1/2 + 96256q + . . . (6.2)

so that

F0,0(τ) =
1

q
+ 0 + 100628q + . . . F0,1(τ) = 96256q + . . . (6.3)

F1,0(τ) = 96256q + . . . F1,1(τ) =
1

q1/2
+ 4372q1/2 + . . . (6.4)

Consider the R≫ 0 regime. Let us compute the contribution to the index (Zg,1(T, U))
1/24

from states with mtotal = 0. The first step is to find the positive real roots, which

correspond to m < 0, n > 0 and have multiplicity ĉn,m(
mn
2
). The only non-vanishing

polar coefficients are ĉ0,0(−1) = 1 and ĉ1,1(−1/2) = 1. Now, it is impossible to have
mn
2

= −1 with m,n ≡ 0 mod 2, so that there is no root corresponding to ĉ0,0(−1). The

only solution to mn
2

= −1/2 with m,n ≡ 1 mod 2 is (m,n) = (−1, 1) and this root

has multiplicity ĉ1,1(−1/2) = 1 (as always the case for real roots). There are no roots

with m = 0, since ĉn,0(0) = 0 for all n. Thus, the only way to get mtot = 0 is, apart
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from the vacuum, a 2-particle state of the form (mtot, ntot) = (−1, 1) + (1, n). There are

ĉ1,1(−1/2)ĉ1,n(n2 ) = ĉ1,n(
n
2
) such states. Therefore,

(Z(T, U))1/24 =− T2A,1(U) + e−2πiT +
∑

n>0

c1,n(
n

2
)e2πiTn = −T2A,1(U) + F1,0(2T ) + F1,1(2T )

(6.5)

=− T2A,1(U) + T2A,1(2T ) = −T2A,1(U) + T
1,2A(T ) . (6.6)

Note that

T
1,2A(τ) = F0,1(2τ) + F1,1(2τ) . (6.7)

This is a special case of the general identity T
1,g(T ) =

∑N
l=1 Fl,1(NT ) that can be proved

from (5.60).

Let us consider the CHL model for class 2B. The McKay-Thompson series are

T
1,2B(τ) =

η(τ)24

η(2τ)24
+ 24 =

1

q
+ 276q − 2048q2 + . . . (6.8)

T2B,1(τ) = 24 + 4096q1/2 + 98304q + . . . (6.9)

so that

F0,0(τ) =
1

q
+ 0 + 98580q + . . . F0,1(τ) = 98304q + . . . (6.10)

F1,0(τ) = 24 + 98304q + . . . F1,1(τ) = 4096q1/2 + . . . (6.11)

The only non-vanishing polar term is ĉ0,0(−1) = 1, but there is nom,n such that mn
2

= −1
with m,n ≡ 0 mod 2 andm < 0, so there is no real positive root. The only way to obtain

states with mtot = 0 is to consider multiparticle states formed from single particles with

m = 0. The latter appear for odd n and have multiplicity ĉ1,0(0) = 24. The contribution

from such states is given by

(Zg,1(T, U))
1/24 =− T2B,1(U) + e−2πiT

∏

n>0
n odd

(1− e2πiTn)24 + 24 (6.12)

=− T2B,1(U) + e−2πiT
∏

n>0

(1− e2πiTn)24

(1− e2πiT (2n))24
+ 24 (6.13)

=− T2B,1(U) +
η(T )24

η(2T )24
+ 24 = −T2B,1(U) + T

1,2B(T ) . (6.14)

In particular, we have the identity

T
1,2B(T ) = e−2πiT

∞
∏

n=1

(1− e2πiTn)ĉn,0(0) + ĉ1,0(0) , (6.15)

in agreement with (5.63).
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6.2. Elements of order 3. Again we will start with the simplest case, which is the

conjugacy class 3A. The expression for the McKay-Thompson series is

T
1,3A = 12+

(

η(q)

η(q3)

)12

+729

(

η(q3)

η(q)

)12

=
1

q
+783q+8672q2+65367q3+O

(

q4
)

(6.16)

Similarly to the previous subsection, we have

T3A,1(τ) = T
1,3A(τ/3) =

1

q1/3
+ 783q1/3 + 8672q2/3 +O(q) (6.17)

As before, we compute the functions Fn,m, for which the first few terms are

F0,0(τ) =
1

q
+ 66150q + 7170368q2 +O

(

q3
)

F0,1(τ) = 65367q + 7161696q2 +O
(

q3
)

F0,2(τ) = 65367q + 7161696q2 +O
(

q3
)

F1,0(τ) = 65367q +O
(

q2
)

F1,1(τ) = 783q1/3 + 371508q4/3 +O
(

q7/3
)

F1,2(τ) =
1

q1/3
+ 8672q2/3 + 1741787q5/3 +O

(

q8/3
)

F2,0(τ) = 65367q +O
(

q2
)

F2,1(τ) =
1

q1/3
+ 8672q2/3 + 1741787q5/3 +O

(

q2
)

F2,2(τ) = 783q1/3 + 371508q4/3 +O
(

q2
)

To write down the index, we again focus on the regime R ≫ 0, and so choose states

with m < 0, n > 0. Looking at the polar terms, we have the multiplicity ĉ2,1(−1/3) = 1 of

a positive real root with m = −1 ≡ 2 mod 3, n = 1 ≡ mod 3. Essentially identically to

2A, we have two-particle states with mtot = 0 of the form (−1, 1)+(1, n) with multiplicity

ĉ2,1(−1/3)ĉ1,n(n/3) = ĉ1,n(n/3). Plugging all this in, we have

Zg,1(T, U)
1/24 = e−2πiT

(

∏

n>0,m∈Z
(1− e2πiU m

3 e2πiTn)

)ĉn,m(mn
3

)

= −T3A,1(U) + e−2πiT +
∑

n>0

ĉn,1(n/3)e
2πiTn

= −T3A,1(U) + F0,1(3T ) + F1,1(3T ) + F2,1(3T )

= T
1,3A(T )− T3A,1(U)

In the case of 3B, the McKay-Thompson series is

T
1,3B =

(

η(q)

η(q3)

)12

+ 12 =
1

q
+ 54q − 76q2 − 243q3 + 1188q4 +O

(

q5
)

(6.18)

with

T3B,1 = 12 + 729q1/3 + 8748q2/3 + 65610q + 370332q4/3 + 1743039q5/3 +O
(

q2
)

(6.19)
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and

F0,0(τ) =
1

q
+ 65664q + 7164536q2 +O(q3) F0,1(τ) = 65610q +O

(

q2
)

F0,2(τ) = 65610q +O
(

q2
)

F1,0(τ) = 12 + 65610q +O
(

q2
)

F1,1(τ) = 729q1/3 + 370332q4/3 +O
(

q2
)

F1,2(τ) = 8748q2/3 + 1743039q5/3 +O
(

q2
)

F2,0(τ) = 12 + 65610q +O
(

q2
)

F2,1(τ) = 8748q2/3 + 1743039q5/3 +O
(

q2
)

F2,2(τ) = 729q1/3 + 370332q4/3 +O
(

q2
)

.

As in the 2B case, there are no polar terms other than the one with multiplicity 1 =

ĉ0,0(−1), which does not have a solution for m,n that satisfies our conditions. Therefore,

there are no positive real roots here either. In order to get states with mtot = 0 we again

consider combinations of single particle states with m = 0. These have the form

e−2πiT
∞
∏

n=1

(1− e2πiTn)ĉn,0(0) + ĉ1,0(0) (6.20)

Inspecting F1,0 we see that ĉ1,0(0) = 12 and ĉ2,0(0) = 12 as well, so we are only excluding

states of the form n ≡ 0 mod 3. Thus we can re-write this contribution as
(

η(q)

η(q3)

)12

+ 12 = T
1,3B(T ) (6.21)

and the total index is

(Zg,1(T, U))
1/24 = T

1,3B(T )− T3B,1(U) (6.22)

Finally, we write the McKay-Thompson series for 3C. This example has λ 6= 1 and

N = λ = 3:

T
1,3C =

(

η(q3)

η(q6)

)8

+ 28
(

η(q6)

η(q3)

)16

=
1

q
+ 248q2 + 4124q5 +O

(

q8
)

(6.23)

Applying the S-transformation we get

T3C,1 =
1

q1/9
+ 248q2/9 + 4124q5/9 + 34752q8/9 +O

(

q11/9
)

(6.24)

In this case, we have essentially 81 Fn,m sectors but most of them will be zero. For

compactness of notation, let us define the following shorthand:

α(τ) = 248q2/9 + 213126q11/9 + . . . (6.25)

β(τ) = 4124q5/9 + 1057504q14/9 + . . . (6.26)

γ(τ) = 1
q1/9

+ 34752q8/9 + 4530744q17/9 + . . . (6.27)

δ(τ) = 65628q + 7164504q2 + . . . (6.28)

κ(τ) = 1
q
+ 65628q + 7164752q2 + . . . (6.29)



MONSTROUS BPS-ALGEBRAS AND THE SUPERSTRING ORIGIN OF MOONSHINE 47

The nonzero Fn,m in this notation are:

F0,0(τ) = κ(τ) F0,3(τ) = δ(τ) F0,6(τ) = δ(τ)

F1,2(τ) = α(τ) F1,5(τ) = β(τ) F1,8(τ) = γ(τ) (6.30)

F2,1(τ) = α(τ) F2,4(τ) = γ(τ) F2,7(τ) = β(τ)

F3,0(τ) = δ(τ) F3,3(τ) = κ(τ) F3,6(τ) = δ(τ)

F4,2(τ) = γ(τ) F4,5(τ) = α(τ) F4,8(τ) = β(τ)

F5,1(τ) = β(τ) F5,4(τ) = α(τ) F5,7(τ) = γ(τ)

F6,0(τ) = δ(τ) F6,3(τ) = δ(τ) F6,6(τ) = κ(τ)

F7,2(τ) = β(τ) F7,5(τ) = γ(τ) F7,8(τ) = α(τ)

F8,1(τ) = γ(τ) F8,4(τ) = β(τ) F8,7(τ) = α(τ)

We will focus on the R≫ 0 regime again and so let m < 0, n > 0. There are no solutions

for mn
9

= −1 when m,n are both congruent (mod 9) to 0, 3, 6. We can find a solution for
mn
9

= −1
9
subject to our constraints, though: m = −1 ≡ 8 mod 9, n = 1 ≡ 1 mod 9. This

example then proceeds in the same way as a Fricke-invariant case of order Nλ = 9. The

two particle states with mtot = 0 can again be written as (−1, 1)+(1, n) with multiplicity

ĉn,1(n/9). Putting it together we again have the U -dependent piece

−
∑

m∈Z
ĉ1,m

(m

9

)

e2πiU
m
9 = −

9
∑

m=1

F1,m(U) = −T3C,1(U) (6.31)

and combining with the T -dependent piece:

Zg,1(T, U)
1/24 = e−2πiT

(

∏

n>0,m∈Z
(1− e2πiU m

9 e2πiTn)

)ĉn,m(mn
9

)

= −T3C,1(U) + e−2πiT +
∑

n>0

ĉn,1(n/9)e
2πiTn

= −T3C,1(U) + F2,1(9T ) + F5,1(9T ) + F8,1(9T )

= T
1,3C(T )− T3C,1(U)

6.3. Some elements of order 4. We also study the McKay-Thompson series corre-

sponding to the conjugacy class 4D. It is given by the expression

T
1,4D =

(

η(q2)

η(q4)

)12

=
1

q
− 12q + 66q3 − 232q5 +O(q7) (6.32)

while

T4D,1 = 64q1/8 + 768q3/8 + 4992q5/8 + 24064q7/8 +O
(

q9/8
)

(6.33)

with N = 4, λ = 2. Somewhat similarly to the previous case, there are naively 64 sectors,

but most will vanish by the arguments in Section 5.3.5. For compactness, we will only

display the minimum number of independent, nonvanishing Fn,m(τ). The others can be
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obtained by various symmetries relating the Hilbert spaces of the different CHL models.

In particular (c.f. Appendix B), we have the relation Vn,m
∼=−→ Vn+N,m−EgN , which in this

subsection becomes Vn,m
∼=−→ Vn+4,m±4

14.

We have:

F0,0(τ) =
1

q
+ 49284q + 5372928q2 +O(q3) F0,2(τ) = 49152q + 5373952q2 +O(q3)

(6.34)

F0,4(τ) = 49296q + 5372928q2 +O(q3) F0,6(τ) = 49152q + 5373952q2 +O(q3)

F1,1(τ) = 64q1/8 +O(q9/8) F1,3(τ) = 768q3/8 +O(q11/8)

F1,5(τ) = 4992q5/8 +O(q12/8) F1,7(τ) = 24064q7/8 +O(q15/8)

F2,0(τ) = 12 + 49152q +O(q2) F2,2(τ) = 2016q1/2 +O(q3/2)

F2,4(τ) = 12 + 49152q +O(q2) F2,6(τ) = 2080q1/2 +O(q3/2)

F3,1(τ) = 768q3/8 +O(q11/8) F3,3(τ) = 64q1/8 +O(q9/8)

F3,5(τ) = 24064q7/8 +O(q15/8) F3,7(τ) = 4992q5/8 +O(q12/8)

In this case let’s focus on the 1
R
≫ 0 regime. In this case we require m > 0, n ∈ Z or

m = 0, n > 0. Note that we do have zero momentum states in this example. In particular,

we have ĉ2,0(0) = 12 = ĉ6,0(0). ĉ1,1(
1
8
) = 64, much as before. In this case we have, for the

T -dependent piece

e−2πiT
∏

n>0

(1− e2πiTn)ĉn,0(0) = e−2πiT
∏

n=1,3,...

(1− e2πiT (2n))12 =

(

η(2T )

η(4T )

)12

= T
1,4D(T )

(6.35)

The U -dependent term comes from the states with n = 1 and sum to−∑m≥0 ĉ1,m(m/8)e
2πimU/8 =

−T4D,1(U).

As a final example, consider the McKay-Thompson series for 4B,

T
1,4B =

(

η(q2)

η(q4)

)12

+64

(

η(q4)

η(q2)

)12

=
1

q
+52q+834q3+4760q5+24703q7+O(q9) (6.36)

with

T4B,1 =
1

q1/8
+ 52q1/8 + 834q3/8 + 4760q5/8 + 24703q7/8 + 94980q9/8 +O(q11/8) (6.37)

14In principle, this sign differs depending on whether we are looking at a case with or without currents,

but the distinction is immaterial in these examples.
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and

F0,0(τ) =
1

q
+ 50340q + 5397504q2 +O(q3) F0,2(τ) = 48128q + 5349376q2 +O(q3)

(6.38)

F0,4(τ) = 50288q + 5397504q2 +O(q3) F0,6(τ) = 48128q + 5349376q2 +O(q3)

F1,1(τ) = 52q1/8 + 94980q9/8 +O(q17/8) F1,3(τ) = 834q3/8 +O(q11/8)

F1,5(τ) = 4760q5/8 +O(q12/8) F1,7(τ) =
1

q1/8
+ 24703q7/8 +O(q15/8)

F2,0(τ) = 48128q +O(q2) F2,2(τ) =
1

q1/2
+ 2160q1/2 +O(q3/2)

F2,4(τ) = 48128q +O(q2) F2,6(τ) = 2212q1/2 +O(q3/2)

F3,1(τ) = 834q3/8 +O(q11/8) F3,3(τ) = 52q1/8 + 94980q9/8 +O(q17/8)

F3,5(τ) =
1

q1/8
+ 24703q7/8 +O(q15/8) F3,7(τ) = 4760q5/8 +O(q12/8)

In this case we can compute directly in the R ≫ 0 regime again. There is one positive

root of multiplicity ĉ1,7(−1/8) = 1 with n = 1, m = −1 ≡ 7 mod 8; the other poles do not

satisfy the congruence conditions in the R ≫ 0 regime. If we build up the contribution

from the multi-particle states as before we get
∑

n

Fn,1(8T ) = F1,1(8T ) + F3,1(8T ) + F5,1(8T ) + F7,1(8T ) = T
1,4B(T ) (6.39)

and again we get the same kind of contribution from the U -dependent side.

7. Genus zero and Hauptmodul properties

In this section, we describe the properties of the McKay Thompson series T
1,g that can

be deduced from physics arguments, and in particular from the properties of the index

Zg,1(T, U). Starting from these properties, we will then prove that each of these functions

must be the Hauptmodul for a genus zero group.

7.1. Space-like T-duality and Weyl reflections. The analysis of section 5.3 shows

that there are two classes of algebras that can emerge from the Monstrous CHL models.

The first class corresponds to the case where there the algebra has some roots with zero

momentum, i.e. ĉn,0(0) 6= 0 for some n. Equivalently, this is the case where the orbifold

V ♮/〈gλ〉 has currents. As argued in section 5.3, both in the R ≫ 0 and in the 1/R ≫ 0

regimes, the positive roots are characterized by n > 0, m ≥ 0, the simple roots are of the

form (n = 1, m) or (n,m = 0) and the Weyl vector is (n0, m0) = (−1, 0). In particular

there are no positive roots with mn < 0 (real roots), i.e. no oscillator ηa whose energy

can change its sign as we vary the radius R.
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The second class arises when ĉn,0(0) = 0 for all windings n, i.e. when there are no

roots with zero momentum. Equivalently, this is the case where the orbifold V ♮/〈gλ〉 has
no currents. In this case, at R ≫ 0, the positive roots are characterized by n > 0, the

simple roots are the ones with n = 1 and the Weyl vector is (n0, m0) = (−1, 0). At

1/R ≫ 0, the positive roots have m > 0, the simple roots have m = 1 and the Weyl

vector is (n0, m0) = (0,−1). There is a single pair ±γ = ±(1,−1) of real roots, both

with multiplicity 1, and we denote by a ∈ g(1,−1) and θ(a) ∈ g(−1,1) the corresponding

generators. In particular, (1,−1) is positive at R≫ 0 and (−1, 1) is positive at 1/R≫ 0;

the remaining positive roots are characterized by m,n > 0 in both regimes.15 This

means that, as we cross the critical value of R =
√
Nλ, the energy of the oscillator ηa

changes sign, so that the energy of the excited state ηa|0〉 gets lower than the energy of

|0〉 and becomes the new ground state. From the point of view of the algebra, this phase

transition corresponds to a change of the subalgebra g− (corresponding to the subset of

positive definite oscillators), i.e. to a change of the Weyl chamber.

It is known that, for each real root γ of a BKM algebra, there is a Weyl reflection rγ ,

i.e. an automorphism of the algebra such that rγ(γ) = −γ and, more generally,

rγ(γ
′) = γ′ − 2γ

κ(γ, γ′)

κ(γ, γ)
. (7.1)

The two Weyl chambers relative to R >
√
Nλ and R <

√
Nλ are related by the Weyl

reflection rγ corresponding to the real root γ = (1,−1). This Weyl reflection acts by

rγ(n,m) = (n,m)− 2(1,−1)m− n−2 = (m,n) . (7.2)

Since this is an automorphism of the algebra, the multiplicities mult(n,m) and mult(rγ(n,m))

must be the same, i.e.

ĉn,m

(mn

Nλ

)

= ĉm,n

(mn

Nλ

)

. (7.3)

This implies the following symmetry for the index

(Zg,1(T, U))
1/24 = (e−2πiT − e−2πi U

Nλ )
∏

m,n>0

(1− e2πiU m
Nλ e2πiTn)ĉn,m(mn

Nλ
) (7.4)

= −(e−2πi U
Nλ − e−2πiT )

∏

m,n>0

(1− e2πiU m
Nλ e2πiTn)ĉm,n(

mn
Nλ

) (7.5)

= −
(

Zg,1

(

U

Nλ
,NλT

))1/24

, (7.6)

15To be precise, in section 5.3, we proved that γ is the only simple real root and that it has multiplicity

one. It is easy to show that there are no other positive (not only simple) real roots. Indeed, if a is the

generator of g(1,−1), the commutator of a with any positive root with m > 0 either has still m > 0 or

vanishes (remember that there are no roots with m = 0 in this algebra). Since all positive roots are

obtained by commutators of simple roots, we conclude.
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where we have separated the contribution of the ground state and the real positive root

from the contribution of the imaginary positive roots. Therefore, the Weyl transformation

exchanges the winding and momenta along the space-like circle and transforms T → U
Nλ

and U ↔ NλT , which (for b = v = 0) corresponds to R↔ Nλ
R
.

The physical interpretation is clear: the Weyl reflection corresponds to T-duality along

the space-like circle. T-duality along a single direction is not in the component S̃O
+
(L) of

the T-duality group connected to the identity. However, we can compose it with T-duality

(4.33) along the Euclidean time direction, which is always a self-duality for all Monster

CHL models. The composition of the two T-dualities gives

Zg,1(T, U) = Zg,1

(

− 1

NλT
,−Nλ

U

)

. (7.7)

It is easy to identify this T-duality with the Fricke involution (WNλ,WNλ) ∈ S̃O
+
(L).

The same reasoning as for the Fricke involution in section 4.3 shows that T-duality along

the space-like circle exchanges the CHL model relative to (V ♮, g) at the radius R with the

CHL model relative to the orbifold (V ′, g′) at the radius Nλ/R, where V ′ = V ♮/〈g〉 and
g′ is the quantum symmetry Q. The fact that the Weyl reflection is an automorphism of

the associated BKM algebra implies that the BKM algebras based on these two models

are isomorphic. This suggests that also the underlying CFTs are isomorphic, so that

this T-duality is really a self-duality, i.e. an equivalence of the same CHL model at

different values of the moduli.16 This is indeed the case, as we will now show. The

generators a and θ(a), corresponding to the real roots (1,−1) and (−1, 1), and the Cartan

generatorHa =
1
2
[a, θ(a)] form a sl2 subalgebra of the CHL algebra. At the self-dual radius

R = Rsd :=
√
Nλ, the corresponding 1-particle BPS states have all zero energy, which

by the BPS condition implies kµR = 0. This means that the CFT (V ♮ × S1)/(δ, g) at the

self-dual radius contains three purely holomorphic currents with winding and momenta

(−1, 1), (0, 0) and (1,−1), respectively; the zero energy BPS states are formed by tensoring

these three currents with one of the Ramond ground states of V̄ s♮. The zero modes of these

three holomorphic currents generate a SU(2) group which is a symmetry of (V ♮×S1)/(δ, g)

at the self-dual radius. This SU(2) symmetry contains a Z2 subgroup acting by k1L → −k1L
and fixing k0L, k

0
R, k

1
R and can be identified with space-like T-duality. The fact that T-

duality at the self-dual radius becomes part of a continuous symmetry group is a familiar

phenomenon in string theory. However, its occurrence in CHL orbifolds depends on the

existence of the holomorphic currents generating this continuous group. Any CFT whose

radius R is infinitesimally close to Rsd can be obtained as a conformal perturbation of the

one at the self-dual radius. The model at radius R = Rsd(1 + ǫ + O(ǫ2)) and the model

at radius 1/R = Rsd(1 − ǫ + O(ǫ2)) are then equivalent, since the deformations ±ǫRsd

are related by the Z2 subgroup of the SU(2) symmetry. Thus, for R in a neighbourhood

16This implication is far from trivial: in general, it is not known whether isomorphic BKM algebras

can only arise from isomorphic CFTs. We thank Scott Carnahan for clarifying this point to us.
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of Rsd, the CFT (V ♮ × S1)/(δ, g) at radius R is equivalent to the same CFT at radius

1/R. But the latter is also equivalent to the CFT (V ′×S1)/(δ, g′). Following the chain of

equivalences, we conclude that the CFTs based on (V ♮, g) and the one based on (V ′, g′) are

equivalent at the same radius R. This can only happen if V ′ ∼= V ♮ and this isomorphism

can be chosen so that g and g′ are the same symmetry.

As a consequence, whenever the orbifold V ♮/〈gλ〉 has no currents, both space-like T-

duality and the Fricke involution (WNλ,WNλ) ∈ S̃O
+
(L) are self-dualities of the model.

In particular, T-duality along the space-like circle alone corresponds to the Weyl reflection

with respect to the (unique) positive real root of the BKM algebra.

One of the most striking consequences of this construction is that whenever the orbifold

V ′ = V ♮/〈g〉 is consistent (i.e. λ = 1) and has no currents, then it is isomorphic to

V ♮. Furthermore, the quantum symmetry Q is in the same conjugacy class as g. This

results extends to the case λ > 1: if the orbifold V ′ = V ♮/〈gλ〉 has no currents, then

it is isomorphic to V ♮, and the symmetry gQ on the orbifold V ′ is mapped, via this

isomorphism, to an element in the same class as g.

More generally, one can show that for every h ∈ Aut(V ♮) that commutes with g and

fixes the generator a of the root (1,−1), the induced symmetry h′ ∈ Aut(V ′) is in the same

Monster class as h. The idea is that, in this case, h commutes with the SU(2) symmetry

at the self-dual radius containing the space-like T-duality. Therefore, the isomorphism

V ♮ ∼= V ′ induced by T-duality must map h′ ∈ Aut(V ′) to h ∈ Aut(V ♮), so that these two

symmetries must be in the same Monster class.

In Appendix A.4, we will prove that whenever g and h commute and have coprime

orders, then h fixes a

gcd(o(g), o(h)) = 1 ⇒ h(a) = a , (7.8)

so that the argument above applies17. Now, consider some g ∈ Aut(V ♮) of order N and

multiplier λ, which is the product g = h1h2 of symmetries h1, h2 of coprime orders N1, N2

and multipliers λ1 = (N1, λ) and λ2 = (N2, λ). Then, e := N1

λ1
is an exact divisor of

N
λ

and every exact divisor can be obtained in this way. Suppose that V ′ = V ♮/〈hλ1
1 〉

has no currents. Then, V ′ ∼= V ♮ and the symmetry g′ = (Qh1)h2 of V ′ is in the same

Monster class as h1h2. But this is exactly the condition for the CHL model based on g

to be self-dual under the Atkin-Lehner involution (we, we) (notice that 〈gN/e〉 = 〈hλ1
1 〉 ).

We conclude that the CHL model based on g is self-dual under (we, we) if and only if

V ♮/〈gN/e〉 has no currents.

7.2. Decompactification limits. In this section we will analyze the behaviour of the

index Zg,1(T, U) at the boundary of the moduli space H×H. We will focus on the region of

the moduli space where T2, U2 ≫ 1, i.e. the low temperature regime β ≫ 1. This condition

assures that the leading contribution to the index is given by the vacuum state. When

17In the remainder of this section, we will use the shorthand (a, b) := gcd(a, b).
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the temperature grows, one expects a Hagedorn-type phase transition. In particular,

the infinite product formula for Zg,1(T, U) diverges above the Hagedorn temperature,

signalling that the Fock space description of the index cannot be trusted in this regime.

High temperature regions are most naturally described in dual pictures, for example using

T-duality along the Euclidean time (thermal) circle.

The first limit we consider is

T → i∞ U fixed, U2 ≫ 1 , (7.9)

corresponding to

β,R→∞ β

R
fixed. (7.10)

This can be interpreted as a decompactification limit where the volume of the Euclidean

T2 torus becomes infinite. For R≫ 0, the ground state has energy

E0 = −
R√
2
, (7.11)

and its contribution e−βE0 to the index diverges as R→∞

Zg,1(T, U)
1/24 = T

1,g(T )− Tg,1(U) ∼ e2πT2 →∞ , R→∞ . (7.12)

More generally, we are interested in studying the possible divergences of the index

Zg,1(T, U) in the limits

We · T → i∞ , We · U fixed, (We · U)2 ≫ 1 , (7.13)

where We is some Atkin-Lehner involution for Γ0(Nλ), whose action on T, U is as in

(4.40). Eq.(7.13) can be interpreted as a decompactification limit for the T-dual CHL

model (V ′, g′) related to (V ♮, g) by the duality (We,We). The index Zg,1(T, U) diverges in

the limit (7.13) if and only if the McKay-Thompson series Tg has a pole (i.e., is unbounded)

at the cusp We · i∞.

Let us focus first on the Fricke involution WNλ, for which (7.13) becomes

T → 0 , U fixed, U2 ≪ 1 . (7.14)

This is a high temperature limit, whose direct analysis is quite complicated. Therefore,

it is useful to perform a T-duality T : T ↔ − 1
U

along the Euclidean time circle, so that

(7.14) becomes

U → i∞ , T fixed, T2 ≫ 1 , (7.15)

which is a small radius, low temperature limit

β →∞, R→ 0, βR fixed . (7.16)

Since the T-duality T along the Euclidean time is always a self-duality of any CHL model,

the two limits (7.14) and (7.15) are equivalent.

We can smoothly vary the moduli from the large radius limit (7.9) to the small radius

limit (7.15) while keeping the temperature low β ≫ 0, so that the main contribution to
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the index is always given by the ground state of the model. It is clear that if the state

with energy (7.11) remains the ground state of the theory as we shrink the radius R all

the way to zero, then the index Zg,1(T, U) is necessarily bounded in the limit (7.15). As

discussed in section 5, this is the behaviour expected in the case where the dual theory

V ′ = V/〈gλ〉 has currents.
Therefore, the only possibility for the index Zg,1(T, U) to diverge in the small radius

limit (7.15) is that the model undergoes a phase transition of the kind described in section

7.1. Recall that this happens if and only if the dual model V ′ has no currents. Suppose

such a phase transition occurs for a given CHL model. This means that there exists some

excited state, whose energy gets lower than (7.11) as the radius R crosses a critical (self-

dual) value Rsd; such excited state becomes the new ground state for R < Rsd. The low

temperature region T2, U2 > 1 is divided into two different phases, separated by a critical

manifold

T =
U

Nλ
, (7.17)

of codimension one in the moduli space. The critical manifold can be characterized as

the locus of the moduli space that is fixed under T-duality T ↔ U
Nλ

along the space-like

circle. As discussed in section 7.1, at the critical manifold, the model has an enhanced

gauge symmetry containing, in particular, this space-like T-duality, which is therefore a

self-duality of the model. The space-like T-duality exchanges the limits (7.9) and (7.15),

which are therefore equivalent. In section 7.1, we also argued that this phase transition

implies that the orbifold theory V ′ = V ♮/〈gλ〉 is isomorphic to V ♮ and that the CHL

model is self-dual under the Fricke involution (WNλ,WNλ). This argument provides a neat

physical understanding of the relationship between Fricke invariance and unboundedness

of a McKay-Thompson series. The index Zg(T, U) is divergent in the limit (7.15) if and

only if there is a phase transition at the critical manifold T = U
Nλ

, and the latter occurs

if and only if the Fricke involution is a self-duality.

Similar arguments apply to the limits (7.13) for more general Atkin-Lehner involutions

We = 1√
e
( ae b
Nλc de ), where e||Nλ. Let us sketch the basic steps of the reasoning. By

composing the Atkin-Lehner duality and the T-duality T along the Euclidean time circle,

we obtain a T-duality along a circle S of the Euclidean torus T2. For a general We, the

circle S is not aligned along the space-like direction. The fixed locus for the T-duality

along S is a critical submanifold of codimension 1 in the moduli space where phase

transitions can possibly occur. In general, the critical manifold does not intersect the low

temperature region T2, U2 ≫ 1, so that its physical interpretation is not clear. For this

reason, it is useful to introduce a different duality frame, where the Euclidean torus T2 is

rotated in such a way that the circle S is the space-like direction. The rotation acts by

T → T ′ = T U → U ′ =
−cU + ae

−dU + bN
e

, (7.18)
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on the moduli, and the critical manifold is now given by the equation

T ′ =
U ′

e
. (7.19)

Since the rotation mixes the space and the Euclidean time direction, the physics in the

rotated frame looks quite different than in the original one. In particular, the critical

manifold (7.19) now intersects the low temperature region T ′
2, U

′
2 ≫ 1 in the rotated

frame. Furthermore, the CHL orbifold in the rotated frame involves shifts both in the

space and in the time direction. The net result is that the index Zg,1(T, U) is interpreted

in the rotated Frame as a ‘twisted-twined index’

Zg,1(T, U) = Zh1,h2(T
′, U ′) . (7.20)

Here, Zh1,h2 is the index ‘twined’ by the symmetry h2 = ge in the CHL model (V ♮, h1),

with h1 = gNλ/e. The limit (7.9) is interpreted as a large radius, low temperature limit

both in the original and in the rotated frame. The limit (7.13) is equivalent (upon taking

T-duality T in the original Euclidean time direction) to U ′ → i∞, with T ′ fixed, which

is interpreted as a low temperature, small radius limit in the rotated frame. The index

Zh1,h2(T
′, U ′) can have a pole in this small radius limit if and only if the CHL model

(V ♮, h1) undergoes a phase transition at the critical submanifold (7.19). As argued in

section 7.1, the occurrence of this phase transition implies the self-duality of the CHL

model (V ♮, h1) under the associated space-like T-duality

T ′ ↔ U ′

e
, (7.21)

and also self-duality of the CHL model (V ♮, g) under the Atkin-Lehner involution (We,We).

We conclude that the index Zg,1(T, U) diverges in the limit (7.13) if and only if the CHL

model is self-dual under (We,We); in this case the limits (7.13) and (7.9) are physically

equivalent.

7.3. The McKay-Thompson series are Hauptmoduln. The Monstrous moonshine

conjecture claims that the McKay-Thompson series T
1,g are modular under a group Γg ⊂

SL(2,R) of genus zero in the normalizer of Γ0(N) and that they are Hauptmoduln for

such group, i.e. degree 1 holomorphic maps from H/Γg to the Riemann sphere C. In this

section, we will derive this conjecture using the properties of the index Zg,1(T, U). It is

useful to work with the eigengroup Γ′
g under which T

1,g is invariant up to a 24-th root of

unity, rather than the fixing group Γg under which T
1,g is exactly invariant.

The group of self-dualities Gg of the CHL model (V ♮, g) contains Γ0(Nλ)× Γ0(Nλ) as

well as the transformations (4.62). Since |Zg,1(T, U)|2 is invariant under Gg, the series

T
1,g must be invariant (up to a phase) under the projection proj1(Gg) of this group onto

the first factor of SL(2,R) × SL(2,R). This projection contains the group Γ0(N |λ), so
that T

1,g must be modular, up to a multiplier, under this group. Modularity of T
1,g under

Γ0(N) (up to a multiplier) also follows by standard CFT arguments – in fact, this was
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one of our starting points in the construction of the CHL orbifolds. In particular, T
1,g

is invariant under Γ0(Nλ) and transforms with a multiplier of order λ under Γ0(N) (see

appendix B). The group Γ0(N |λ) is generated by Γ0(N) together with the transformation

τ 7→ τ + 1
λ
. Using Eq.(5.75) in section 5.3, one can prove that

T
1,g

(

τ +
1

λ

)

= e−
2πi
λ T

1,g(τ) . (7.22)

This implies that T
1,g is a modular form for Γ0(N |λ) with multiplier of order λ, as ex-

pected.

Let us consider the limits of the McKay-Thompson series T
1,g at the boundary of

the quotient space H/Γ0(N |λ). This boundary consists of a finite number of points,

corresponding to the orbits of Q ∪ {∞} (cusps) under Γ0(N |λ). We say that a McKay-

Thompson series is bounded (respectively, unbounded) at a certain cusp if the limit of

T
1,g(τ) at the cusp is finite (resp., infinite). It is obvious by construction that T

1,g has a

single pole at the cusp at ∞. Furthermore, at the cusp 0, T
1,g(τ) is either bounded or it

has a single pole with coefficient 1. More precisely,

Tg,1(τ) =







O(q0) if V ♮/〈gλ〉 contains currents
q−

1
Nλ + 0 +O(q

1
Nλ ) otherwise .

(7.23)

Let us consider now the limit of T
1,g at the other cusps, different from 0 and ∞.

Consider first the case λ = 1. Each cusp for Γ0(N) has a representative of the form a
c
,

where a, c ∈ Z>0 with c|N and (a, c) = 1 (of course, it can happen that two rational

numbers of this form are equivalent under Γ0(N)). The group Γ0(N |λ) is conjugated

to Γ0(N/λ) by ( λ 0
0 1 ), so that each cusp of Γ0(N |λ) has a representative of the form a

λc
,

where a, c ∈ Z>0, with c|Nλ and (a, c) = 1. In particular, all cusps of the form a
Nλ

, with

(a,Nλ) = 1, are equivalent to ∞ and all cusps of the form a
λ
are equivalent to 0; thus,

another useful set of representatives is given by 0,∞ and rationals of the form a
λc

as above,

with the restriction 1 < c < N/λ.

Some of the cusps c = a
cλ

are related to∞ by some Atkin-Lehner involution for Γ0(N |λ),
i.e. c = wc · ∞. Such an involution exists if and only if c is an exact divisor of N/λ. In

particular, 0 is always related to ∞ by the Fricke involution.

Using the properties above, we can prove the following:

Lemma 3. If T
1,g is unbounded at a cusp c for Γ0(N |λ), then there exists an Atkin-Lehner

involution wc for Γ0(N |λ) such that c = wc · ∞.

See Appendix A.5 for the proof.

We are now ready to prove that the fixing groups Γg are genus zero and that the McKay-

Thompson series are the corresponding Hauptmoduln. The main ingredient is the result
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of section 7.1 that the Atkin-Lehner dualities (we, we) ∈ S̃O
+
(L), e||N

λ
are self-dualities

whenever the orbifold V ♮/〈gN/e〉 has no currents.

Theorem 4. Let g ∈ M have order N and T
1,g be modular under Γ0(N |λ). Then the

eigengroup Γ′
g of T

1,g is the projection proj1(Gg) to the first SL(2,R) factor of the group

Gg ⊂ SL(2,R)×SL(2,R) of self-dualities of the corresponding CHL model. Furthermore,

the fixing group Γg has genus zero and T
1,g is a Hauptmodul.

Proof. It is clear that proj1(Gg) is contained in the eigengroup Γ′
g, since Gg leaves the

index Zg,1(T, U) invariant up to a phase. Furthermore, we argued above that proj1(Gg)

contains Γ0(N |λ) as a normal subgroup. Since Γ′
g is generated by Γ0(N |λ) and some

Atkin-Lehner involutions we, e||Nλ , we only have to prove that, whenever we ∈ Γ′
g then

(we, we) ∈ Gg. To this aim, notice that if we ∈ Γ′
g, then the cusp we · ∞ is unbounded.

This happens only if the orbifold V ♮/〈gN/e〉 has no currents. By the argument in section

7.1, this implies that the model is self-dual under (we, we). Therefore, we ∈ Γ′
g implies

we ∈ proj1(Gg), so that Γ′
g = proj1(Gg).

As for the genus zero properties, by lemma 3 the only possibly unbounded cusps for

T
1,g, modulo Γ0(N |λ), are at we · ∞ for some e||N

λ
. This cusp is unbounded if and only

if the orbifold V ♮/〈gN/e〉 has no currents, and in this case the group of self-dualities Gg

contains (we, we) and the eigengroup Γ′
g contains we. Therefore, all unbounded cusps for

T
1,g are related to∞ by some γ′ in the modular eigengroup Γ′

g. It is easy to see that every

such unbounded cusp c must be related to∞ also by an element γ of the fixing group Γg.

Indeed, suppose that c = γ′ · ∞, γ′ ∈ Γ′
g, and that the series T

1,g is invariant under γ′ up

to a phase e
2πir
λ . Using the fact that the element

(

1 1/λ
0 1

)

∈ Γ′
g fixes ∞ and has multiplier

e−
2πi
λ , it is clear that γ := γ′ ◦

(

1 r/λ
0 1

)

has trivial multiplier and still maps ∞ to c. Since

T
1,g has only a single pole at ∞ modulo Γg, then it must be one-to-one as a holomorphic

function from H/Γg to the Riemann sphere C. Therefore, H/Γg must have the topology

of a sphere and T
1,g is a Hauptmodul. �

8. Outlook

The results of this paper point to many interesting directions for future research. One of

the main points of the paper was to provide a physical derivation of the genus zero property

of Monstrous moonshine in the context of the spacetime properties of certain heterotic

CHL-models. Another physical interpretation of genus zero was proposed previously by

Duncan and Frenkel [40]. Inspired by an earlier conjecture by Witten [41], Duncan and

Frenkel proposed that there exists a class of twisted chiral quantum gravity theories in

AdS3, whose partition functions are given by the McKay-Thompson series Tg(τ). If true,

this implies that all the McKay-Thompson series have a Rademacher sum, interpreted

physically as a sum over black hole states in the gravitational theory. Thus, the Duncan-

Frenkel conjecture implies that the genus zero property of moonshine can rephrased as

the statement that each McKay-Thompson series Tg coincides with the Rademacher sum
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attached to the invariance group Γg. Given that our analysis identifies the product formula

for the McKay-Thompson series with the supersymmetric index counting BPS-states, it is

natural to expect that there is a relation between our results and those of Duncan-Frenkel.

In particular, we would expect that whenever our twisted partition function Zg(T, U) is

unbounded, then the associated McKay-Thompson series Tg(τ) is Rademacher summable.

From this point of view it would also be interesting to write the one-loop integrals S1−loop

as explicit BPS-state sums, using the formalism developed in [42–44].

We have shown that the space of BPS-states in our heterotic CHL-models form a module

for the Monstrous Lie algebras mg. This differs from the original proposal of Harvey and

Moore, whose starting point was the observation that for string theory compactified on a

manifold X , there is a product on the space of BPS-states itself,

HBPS ⊗HBPS → HBPS, (8.1)

which is a realization of the fact that two BPS-states can combine into a bound state

which is also BPS. The space of BPS-states is graded by the charge lattice Γ (essentially

the integer cohomology H∗(X ;Z)):

HBPS =
⊕

γ∈Γ
HBPS(γ). (8.2)

For states B1,B2 of charges γ1, γ2 their product B1 ⊗ B2 7→ B3 yields a bound state B3
of charge γ3 = γ1 + γ2. Harvey and Moore argued that the product (8.1) on the space

of BPS-states is defined via the correspondence conjecture, which asserts that the three

BPS-states (B1,B2,B3) must fit into an exact sequence 0 → B1 → B3 → B2 → 0 which

means that the bound state B3 should be viewed as an extension of B1 and B2. The

product on HBPS(γ) should reflect this property and a natural candidate is therefore

B1 ⊗ B2 =
∑

B3

|{0→ B1 → B3 → B2 → 0}|B3, (8.3)

where we consider BPS-states as cohomology classes Bi ∈ H∗
L2(M(γ)), whereM(γ) is the

moduli space of (semi-)stable sheaves on X , and the structure constants are given by the

dimension of the space of extensions. This product is the characteristic feature of a Hall

algebra, as was first noted in [7]. It would be very interesting to understand the precise

relation between our analysis and the BPS-algebra of Harvey and Moore. Is it possible

to endow the Monstrous Lie algebras mg with a Hall algebra structure?

Carnahan has recently proven [13–15] Norton’s generalized moonshine conjecture, show-

ing in particular that all generalized McKay-Thompson series Tg,h(τ) are Hauptmoduln

for genus zero subgroups Γg,h ⊂ SL(2,R). To be precise, this may be considered as a

“weak version” of generalized moonshine, since there are possible modular phases of Tg,h

which are not specified by Carnahan’s theorem. It was conjectured by Gannon that these

phases can be completely captured by a 3-cocycle α, determining a class in H3(M, U(1)).

However, very little is known about this cohomology group so at present this seems out
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of reach. The generalized version of Mathieu moonshine for M24 [45–50] was established

in [51,51,52], where an explicit cocycle α ∈ H3(M24, U(1)) was constructed and shown to

reproduce all modular phases of the twisted twining genera φg,h(τ, z). Thus, this may be

viewed as a “strong” form of generalized moonshine for M24. It would be very interest-

ing to investigate whether the Monstrous CHL-models constructed in the present paper

can be used to shed light on the analogous strong form of generalized moonshine for the

Monster group M.

It would be illuminating to attach a better physical interpretation to the Lie algebra

homology operators d, d†, considered in [36] and employed in 5.2. In particular, we notice

that their definition is reminiscent of (part of) the usual definition of the standard world-

sheet BRST operator, if one makes the substitutions b 7→ η, c 7→ ∂
∂η
. Of course, the ηa,

∂
∂ηa

have the statistics of ordinary fermions, while the BRST operator is comprised of ghost

fields. (In fact, [36] introduce a second, equivalent, complex with operators D,D† that

match the usual worldsheet BRST operator and its conjugate after the aforementioned

substitution; the arguments of 5.2 carry through with these operators in the same way,

but with a larger technical burden.) If we take this correspondence seriously, an exciting,

but currently quite speculative, possibility is that d, d† (or D,D†) are indeed BRST-like

operators for the spontaneously broken gauge symmetry and reduce to ordinary BRST

operators in the tensionless limit, when the gauge symmetry is restored. Regardless, it

would be interesting to elucidate the physical importance of these operators more fully.

Finally, an outstanding open question is to determine whether or not our Monstrous

heterotic model has a IIA dual and, if so, what the dual theory is. The absence of

currents in this model makes this a difficult question to approach. A perhaps more

manageable, yet related, question is to investigate analogous constructions with c = 24

CFTs with currents on the left, arising from compactification on the Niemeier lattices. If

this latter class of theories admit IIA duals whose geometry includes K3 surfaces, it is

conceivable that our methods may help shed light on the proposed relationships between

umbral moonshine [53,54] (including M24 moonshine) and K3 geometry, by string-string

duality [55–60].
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Appendices

In these appendices, we will present several technical proofs referenced in the main text.

In addition, Appendix B contains details about the twisted twining genera and their

multiplier systems. Throughout these appendices, as in several parts of the main text, we

will employ the notation (a, b) := gcd(a, b).

Appendix A. Proofs

A.1. Proof of Theorem 1. Let us consider the subgroup of automorphisms of L given

by elements of the form (γ, 1) ∈ SL(2,R)× SL(2,R). It is easy to see that the image of

the action

X 7→
(

a b

c d

)

X , X ∈ L , (A.1)

is in L for all X ∈ L if and only if ( a b
c d ) ∈ Γ0(N). By an analogous reasoning, we find

that an element (1, γ2) is an automorphism of L if and only if γ2 ∈ Γ0(N). Therefore,

Γ0(N)× Γ0(N) ⊆ S̃O
+
(L) . (A.2)

Furthermore, if (γ1, γ2) ∈ S̃O
+
(L), then for any γ ∈ Γ0(N) also (γ1γγ

−1
1 , 1) is in S̃O

+
(L),

so that γ1γγ
−1
1 ∈ Γ0(N). Analogously, γ2γγ

−1
2 ∈ Γ0(N). Therefore, both γ1 and γ2 are

contained in the normalizer Γ̂0(N) of Γ0(N) in SL(2,R) and

Γ0(N)× Γ0(N) ⊆ S̃O
+
(L) ⊆ Γ̂0(N)× Γ̂0(N) . (A.3)

Let us consider the action of a generic element of Γ̂0(N)× Γ̂0(N) on L

X 7→ 1√
ee′

(

ae b/h

cN/h de

)

X

(

a′e′ b′/h

c′N/h d′e′

)

, X ∈ L , (A.4)

where, as above, a, b, c, d, a′, b′, c′, d′ ∈ Z, e, e′ ∈ Z>0, e||Nh2 , e
′||N

h2 and

ade− bc N
eh2

= 1 a′d′e′ − b′c′ N
e′h2

= 1 . (A.5)

A direct calculation shows that the image of this action is in L for all X ∈ L if and only

if ee′ is a perfect square

ee′ = z2 z ∈ Z>0 (A.6)

and the following congruences hold

aec′

hz
∈ Z

deb′

hz
∈ Z

ba′e′

hz
∈ Z

cd′e′

hz
∈ Z . (A.7)

Notice that, since both e and e′ divide N/h2, then ee′|N2

h4 , so that also z divides N/h2.
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From these relations, we can now restrict the form of the matrices that comprise S̃O
+
(L)

to be exactly that of the matrices in Theorem 1. Let p be a prime divisor of hz, and pr,

with r > 0, be the maximal power for which pr|hz. Let us consider two cases.

(1) Assume first that p|c′. Then, for the second of (A.5) to be satisfied, it is necessary

that a′, d′, and e′ be all coprime to p. By (A.7), this implies that pr|b and pr|c.
But then, by the first of (A.5), a, d, e must be all coprime to p (and since both

e and e′ are coprime to p, then also z is and pr|h). Thus, by (A.7), pr|b′ and
pr|c′. Using an analogous reasoning, we conclude that if any of b, c, b′, or c′ is

divisible by p, then all of them must be divisible by pr, and a, d, e, a′, d′, e′, and z

are coprime to p.

(2) Now, suppose that p does not divide any of b, c, b′, or c′. Then, by (A.7), pr divides

ae, de, a′e′, and d′e′. By (A.5), both N/(h2e) and N/(h2e′) must be coprime to p.

Let ps be the maximal power of p dividing N/h2. Then, p is a prime factor both

of e and e′ (and therefore also z) and with the same power s. By (A.7), a, d, a′, d′

are divisible by pr−s, which is the maximal power of p dividing h.

From this analysis, we deduce that if p is a prime factor of e (and therefore of z and hz),

then it also divides e′ with the same power. We conclude that

e = e′ = z . (A.8)

Furthermore, a, d, a′, d′ have the same greatest common divisor with h (let us call it k)

(a, h) = (a′, h) = (d, h) = (d′, h) =: k , (A.9)

and analogously

(b, h) = (b′, h) = (c, h) = (c′, h) = h/k , (A.10)

and (k, h/k) = 1. We conclude that the elements in S̃O
+
(L) have the form

(

1√
e

(

αke β/k

γN/k δke

)

,
1√
e

(

α′ke β ′/k

γ′N/k δ′ke

))

(A.11)

where α, β, γ, δ, α′, β ′, γ′, δ′ ∈ Z, k ∈ Z>0 with k||h, e ∈ Z>0 with e||N
h2 and

αδk2e− βγ N
ek2

= 1 α′δ′k2e− β ′γ′
N

ek2
= 1 . (A.12)

Upon defining ǫ := k2e, we finally obtain
(

1√
ǫ

(

αǫ β

γN δǫ

)

,
1√
ǫ

(

α′ǫ β ′

γ′N δ′ǫ

))

, (A.13)

with

αδǫ− βγN
ǫ

= 1 α′δ′ǫ− β ′γ′
N

ǫ
= 1 . (A.14)

Conversely, every ǫ||N can be written as ǫ = ek2, for some k||h and e||N
h2 , so that (4.47)

follows. The fact that S̃O
+
(L) is generated by Γ0(N) × Γ0(N) and the Atkin-Lehner

involutions follows from [1].
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A.2. Proof of Theorem 2. It is easy to verify by a direct calculation that the normal

subgroup of S̃O
+
(L) generated by elements of the form (1, γ) and elements of the form

(γ, 1) is Γ0(Nλ) × Γ0(Nλ). This means that S̃O
+
(L) is a subgroup of the normalizer of

Γ0(Nλ)× Γ0(Nλ) in SL(2,R)× SL(2,R):
Γ0(Nλ)× Γ0(Nλ) ⊆ S̃O

+
(L) ⊆ Γ̂0(Nλ)× Γ̂0(Nλ) . (A.15)

The elements of Γ̂0(Nλ) are given in (4.44), where h is the maximal integer such that h2

is a divisor of Nλ and h|24 (in particular, λ|h). Let us consider the action of a generic

element of Γ̂0(Nλ)× Γ̂0(Nλ) on L

X 7→ 1√
ee′

(

ae b/h

cNλ/h de

)

X

(

a′e′ b′/h

c′Nλ/h d′e′

)

, X ∈ L , (A.16)

where, as above, a, b, c, d, a′, b′, c′, d′ ∈ Z, e, e′ ∈ Z>0, e||Nλ
h2 , e

′||Nλ
h2 and

ade− bcNλ
eh2

= 1 a′d′e′ − b′c′Nλ
e′h2

= 1 . (A.17)

A direct calculation shows that the image of this action is in L for every X ∈ L if and

only if ee′ is a square

ee′ = z2 z ∈ Z>0 (A.18)

and the following congruences are satisfied

aec′ − ba′e′Eg
hz

∈ Z ,
cd′e′ − deb′Eg

hz
∈ Z , (A.19)

ba′e′

h
λ
z
∈ Z ,

deb′

h
λ
z
∈ Z , (A.20)

Egz(ad′ − da′) + Nλ
h2z

(cc′ − bb′E2g )
λ

∈ Z . (A.21)

Eqs.(A.19) and (A.20) imply the weaker conditions

aec′ ∈ hz
λ
Z , cd′e′ ∈ hz

λ
Z , ba′e′ ∈ hz

λ
Z , deb′ ∈ hz

λ
Z . (A.22)

Let p be a prime factor of hz
λ

and pr, with r > 0, the maximal power for which pr|hz
λ
.

Then, using a reasoning analogous to the proof of Theorem 1, (A.22) and (A.17) imply

that either pr divides b, b′, c, c′ and is coprime to a, a′, d, d′, e, e′; or pr divides ae, de,

a′e′, d′e′ and is coprime to b, b′, c, c′, Nλ
eh2 , and

Nλ
e′h2 . In particular, if ps is the maximal

power of p dividing Nλ
h2 and if p divides e, then ps is an exact divisor of both e and e′. It

follows that

e = e′ = z . (A.23)

Furthermore,
(

a,
h

λ

)

=

(

a′,
h

λ

)

=

(

d,
h

λ

)

=

(

d′,
h

λ

)

=: k , (A.24)

and
(

b,
h

λ

)

=

(

b′,
h

λ

)

=

(

c,
h

λ

)

=

(

c′,
h

λ

)

=
h

λk
, (A.25)
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with (k, h
λk
) = 1. Thus, upon defining

a = αk d = δk a′ = α′k d′ = δ′k (A.26)

b = β
h

λk
c = γ

h

λk
b′ = β ′ h

λk
c′ = γ′

h

λk
(A.27)

and ǫ := ek2 = e′k2 we obtain
(

1√
e

(

ae b
h

cNλ
h

de

)

,
1√
e′

(

a′e′ b′

h

c′Nλ
h

d′e′

))

=

(

1√
ǫ

(

αǫ β
λ

γN δǫ

)

,
1√
ǫ

(

α′ǫ β′

λ

γ′N δ′ǫ

))

, (A.28)

where α, β, γ, δ, α′, β ′, γ′, δ′ ∈ Z, ǫ ∈ Z>0 with ǫ||N
λ
(since e||Nλ

h2 and k||h
λ
, then ek2||Nλ

h2
h2

λ2 )

and

αδǫ− βγN
ǫλ

= 1 α′δ′ǫ− β ′γ′
N

ǫλ
= 1 . (A.29)

The congruence conditions (A.19)–(A.21) become

αγ′ − βα′Eg
λ

∈ Z ,
γδ′ − δβ ′Eg

λ
∈ Z , (A.30)

and
ǫEg(αδ′ − δα′) + N

ǫλ
(γγ′ − ββ ′E2g )

λ
∈ Z . (A.31)

Eqs.(A.29) and (A.30), together with (Eg, λ) = 1, imply

(α, λ) = (α′, λ) , (δ, λ) = (δ′, λ) , (β, λ) = (γ′, λ) , (γ, λ) = (β ′, λ) . (A.32)

Set f := (α, λ) = (α′, λ). The first equation in (A.32) implies that

α′ ≡ κ1α mod λ (A.33)

for some integer κ1; furthermore, eq.(A.30) determines κ1 modulo λ
f
. By (A.33) and the

first of (A.30), we obtain

γ′ ≡ βEgκ1 mod
λ

f
, (A.34)

so that there is an integer y such that

γ′ ≡ βEgκ1 + y
λ

f
mod λ . (A.35)

Since κ1 is only defined modulo λ/f , we are free to shift κ1 → κ1 + xλ
f
for some integer

x, and obtain

γ′ ≡ βEgκ1 +
λ

f
(y + xβEg) mod λ . (A.36)

Let us choose x such that

y + xβEg ≡ 0 mod f . (A.37)

Such an integer x always exists, because (β, α) = 1 by (A.29) and (Eg, λ) = 1 by construc-

tion, so that βEg is coprime to f = (a, λ) and is therefore invertible mod f . We conclude

that there is an integer κ1 satisfying (A.33) and such that

γ′ ≡ βEgκ1 mod λ . (A.38)
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Eqs.(A.33) and (A.38) determine κ1 modulo λ. By a similar reasoning, one can show that

there exists κ2 such that

δ′ ≡ κ2δ, Egβ ′ ≡ κ2γ mod λ . (A.39)

By (A.29),(A.33),(A.38),(A.39), we obtain

1 ≡ α′δ′ǫ− β ′γ′
N

ǫλ
≡ κ1κ2(αδǫ− βγ

N

ǫλ
) ≡ κ1κ2 mod λ . (A.40)

Finally, notice that, for every divisor λ of 24,

κ1κ2 ≡ 1 mod λ ⇔
(

(κ1, λ) = 1 and κ1 ≡ κ2 mod λ
)

. (A.41)

We conclude that eqs.(A.29) and (A.30) imply that there exists κ ∈ Z, with (κ, λ) = 1,

such that

α′ ≡ κα , β ′ ≡ κEgγ , γ′ ≡ κEgβ , δ′ ≡ κδ mod λ , (A.42)

where in the second equality we used that, by (A.41), (Eg, λ) = 1 implies E2g ≡ 1 mod λ.

Vice versa, (A.42) obviously implies (A.30) and (A.31). We conclude that the elements

of S̃O
+
(L) are as described in the statement of the theorem. The description of the

generators of S̃O
+
(L) follows from [1].

A.3. Proof of Eq.(5.64). The coefficient ĉn,0(0) depends only on the greatest common

divisor d := (n,N), i.e.

ĉn,0(0) = ĉd,0(0) . (A.43)

Indeed, each gn is conjugated to either gd or to its inverse within the Monster group, so

that the gn-twisted sector is isomorphic to the gd-twisted sector (or its dual). In particular,

the dimensions of the g-invariant subspaces at level L0 − 1 = 0 are the same. Thus,
∏

n>0

(1− qn)ĉn,0(0) =
∏

d|N

∏

n>0
(n,N)=d

(1− qn)ĉd,0(0) =
∏

d|N

∏

r>0
(r,N/d)=1

(1− qrd)ĉd,0(0) (A.44)

=
∏

d|N

∞
∏

r=1

(1− qrd)ĉd,0(0)
∑

i|(r,N
d

)
µ(i)

=
∏

d|N

∏

i|N
d

∞
∏

k=1

(1− qkid)ĉd,0(0)µ(i) (A.45)

=
∏

d|N

∏

i|N
d

(

q−
id
24 η(idτ)

)ĉd,0(0)µ(i) =
∏

ℓ|N

∏

d|ℓ

(

q−
ℓ
24 η(ℓτ)

)ĉd,0(0)µ(ℓ/d) =
∏

ℓ|N

(

q−
ℓ
24 η(ℓτ)

)α(ℓ)
,

(A.46)

where we used the property

∑

a|b
µ(a) =







1 for b = 1 ,

0 otherwise ,
(A.47)

of the Möbius function. It follows that

T
1,g(τ)− ĉ1,0(0) = q−1

∏

n>0

(1− qn)ĉn,0(0) = q−
24+

∑
ℓ|N ℓα(ℓ)

24

∏

ℓ|N
η(ℓτ)α(ℓ) . (A.48)
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In order for the right hand side to be modular under Γ0(N), the power of q in front of

the η-product must vanish, i.e.
∑

ℓ|N
ℓα(ℓ) = −24 . (A.49)

Finally, we notice that α(1) = ĉ1,0(0) and obtain (5.64).

A.4. Proof of Eq.(7.8). Let g ∈ Aut(V ♮) of order N be such that the orbifold V ♮/〈g〉 is
consistent (λ = 1) and has no currents. In section 7.1, we showed that, in this case, there

is an isomorphism (corresponding to T-duality in the space direction for the CHL model

based on g)

f : V ♮
n,m → V ♮

m,n n,m ∈ Z/NZ , (A.50)

of (V ♮)g modules inducing an isomorphism of the VOAs V ′ = ⊕nV
♮
n,0 and V ♮ = ⊕mV

♮
0,m.

The isomorphism maps g ∈ Aut(V ♮) to the quantum symmetry Q ∈ Aut(V ′). The BKM

algebra corresponding to the CHL model based on g has a real root γ = (1,−1) with

generator a and the Weyl reflection rγ with respect to γ is exactly the automorphism

induced by f . Let h ∈ Aut(V ♮) be a symmetry commuting with g and of order coprime

to N . In this appendix, we will prove that h always fixes the root a.

The root a corresponds to the ground state in the g-twisted sector of V ♮. Recall that

Tg,1(τ) = q−
1

Nλ + . . ., so that the g-twisted ground state is 1-dimensional and h can only

act on a by a phase ξ. The phase ξ is the coefficient of the polar term q−
1

Nλ in the series

Tg,h(τ). Since g and h have coprime order, Tg,h(τ) is a SL(2,Z) transformation of T
1,gh(τ).

If gh has order M then, for each n coprime to M , gnhn is in the same Monster conjugacy

class as gh or (gh)−1. In either case, one has T
1,gh = T

1,gnhn, so that Tgn,hn = Tg,h. Now,

one can always find n coprime to M such that gn = g and hn = h−1, so that Tg,h = Tg,h−1

and ξ = ξ−1. This means that ξ = ±1.
If h has odd order, then the only possibility is ξ = 1. Let us consider the case where

h has even order, so that the order N of g is odd. We will suppose by absurdity that

h(a) = −a and derive an inconsistency. The symmetry h must act by −1 also on the

generator θ(a), corresponding to the opposite root (−1, 1), and leave invariant the Cartan

generator Ha = 1
2
[a, θ(a)]. Consider a generator b ∈ g(1,m) ⊗ C in the (complexified)

algebra component corresponding to a simple root (1, m), m > 0, and assume it is an

eigenvector of h with eigenvalue ζ . The vector b is annihilated by θ(a) (because there are

no generators with roots (0, m+1)) and has eigenvalue 1−m under the Cartan generator

Ha. Therefore, b is the highest weight vector of a m-dimensional representation of the

sl2 subalgebra generated by a, θ(a) and Ha, whose lowest weight vector is in the root

component g(m,1). Furthermore, this sl2-representation is spanned by eigenvectors of h

with eigenvalues ±ζ ; in particular, the lowest weight vector with root (m, 1) has eigenvalue

(−1)m−1ζ . The Weyl reflection rγ exchanges the highest and lowest weight vector within

each sl2 representation. Therefore, it preserves the h-eigenvalues of all odd dimensional
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sl2-representations and multiplies by −1 the h-eigenvalues of all even dimensional sl2-

representations. In particular, a generator b ∈ g(1,m) for a simple root (1, m) and its Weyl

transform rγ(b) ∈ g(m,1) have the same (respectively, the opposite) h-eigenvalue if m is

odd (respectively, even).

This means that conjugation of h by the Weyl reflection defines a new automorphism

rγhrγ commuting with both g and h (since it has the same eigenvectors as h). An

equivalent description of rγhrγ is as follows. The symmetry h ∈ Aut(V ♮) has a unique

lift to a symmetry (automorphism of (V ♮)g-modules) of the same order acting on the

twisted sectors V ♮
n,m. This lift induces a symmetry h′ ∈ Aut(V ′) of the VOA V ′ = ⊕nV

♮
n,0.

By conjugating h′ by the isomorphism f : V ′ → V ♮, we obtain a new automorphism

h̃ := fh′f−1 ∈ Aut(V ♮) of V ♮, possibly different from h. Then, rγhrγ is the symmetry

induced on the BKM algebra by h̃. Under the assumption that h(a) = −a, the symmetries

h, h̃ ∈ Aut(V ♮) and the corresponding actions on the BKM algebra g are different. Indeed,

the composition t := h−1h̃ acts by (−1)m−1 on the simple roots in g1,m. Let us prove that

such a symmetry t cannot exist. Recall that the generators of g1,m correspond to states in

the g-twisted sector V ♮
1,m of V ♮ and level (L0 − 1) = m

N
. These states are eigenvectors of t

with eigenvalue (−1)m−1. Let χ be a t-invariant state in the g-twisted sector (for example

the ground state) and level (L0 − 1) = m
N
, with m odd. The Virasoro descendant L−rχ,

with r odd, has level (L0 − 1) = m
N

+ r = m+rN
N

and since both r and N are odd, has

t-eigenvalue (−1)m+rN−1 = −1. But this is absurd: every symmetry t must commute with

the Virasoro algebra, so χ and L−rχ must have the same eigenvalue. Thus, the symmetry

t cannot exist, and the initial assumption that h(a) = −a is inconsistent.

A.5. Proof of Lemma 3. Let a
λc
, with a, c > 0, c|N

λ
, (a, c) = 1, be a representative for

the cusp c. We have to prove that if T
1,g is unbounded at a

λc
, then c is an exact divisor of

N
λ
. Indeed, in this case also e = N

λc
is an exact divisor for N

λ
and (ae, N

λe
) = 1. Thus, we

can find integers b, d such that ade− N
λe
b = 1, so that

we =
1√
e

(

ae b
λ

N de

)

(A.51)

is an Atkin-Lehner involution for Γ0(N |λ) such that we · ∞ = ae
N

= a
λc
.

Choose integers α, β, δ such that ( α β
λc δ

) ∈ SL(2,Z). The assumption that T
1,g is un-

bounded at a
λc

implies that

T
1,g

(

( α β
λc δ

) · τ
)

= ξTgλc,gδ(τ) = ξAq−
λc
N +O(q0) , (A.52)

where ξ is a phase and A is the eigenvalue of gδ on the ground state of Hgλc . (Notice that

if T
1,g has multiplier λ, then gλc has trivial multiplier). Then

T
1,g

(

( α β+kα
λc δ+kλc ) · τ

)

= ξTgλc,gδ(τ + k) = ξAe−
2πikλc

N q−
λc
N +O(q0) . (A.53)

Set

k =
ωN

λ2c2
, (A.54)
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where ω = λ2c2

(N,λ2c2)
is the minimal integer for which (λc)2|Nω, and notice that

(

α β + kα

λc δ + kλc

)

=

(

1− kαλc kα2

−kλ2c2 1 + kαλc

)(

α β

λc δ

)

=

(

1− ωN
λc
α kα2

−ωN 1 + kαλc

)(

α β

λc δ

)

.

(A.55)

Since T
1,g is Γ0(N) invariant up to a phase, we have

T
1,g

(

( α β+kα
λc δ+kλc ) · τ

)

= T
1,g

(

( 1−ωN
λc

α kα2

−ωN 1+kαλc
)( α bβ

λc δ
) · τ

)

= e
2πiωEg

λ T
1,g

(

( α β
λc δ

) · τ
)

. (A.56)

By comparing (A.53) and (A.56), we obtain

e−
2πiω
cλ = e

2πiEgω

λ , (A.57)

that is
ω

cλ
≡ −Egω

λ
mod Z . (A.58)

Now18, since ω = λ2c2

(N,λ2c2)
the latter congruence implies λc ≡ −Egλc2 mod (N, λ2c2).

Next, for any prime p that divides c, let vp(x) be the p-valuation of the integer x,

which is defined as the number of times x can be divided by p. We have immedi-

ately that vp((N, λ
2c2)) = min (vp(N), vp(λ

2c2)) and the congruence further implies that

min (vp(λc), vp(N)) = min (vp(−Egλc2), vp(N), vp(λ
2c2)). Finally, since vp(c) > 0 by

assumption, we have vp(λc) = vp(N).

Appendix B. Twisted-twining partition functions

In this Appendix we summarize some basic properties of orbifolds of holomorphic confor-

mal field theories (vertex operator algebras). We refer to [61, 62] and references therein

for recent new results on this topic.

Given a holomorphic VOA (chiral bosonic two-dimensional CFT, in physics language)

V of central charge 24 with group of automorphisms G = Aut(V ), we can consider the

twisted-twining partition functions

Tg,h(τ) := TrVg(hq
L0−1) , (B.1)

where g, h are any commuting elements of G and Vg is the g-twisted sector of V . Strictly

speaking, the action of h on the twisted sectors is only determined up to a N -th root of

unity, where N is the order of g: we implicitly assume that a choice has been made for

this action. When h = g, we always make the standard choice

g = e2πiL0 . (B.2)

The partition functions (B.1) are related to one each other by modular transformations

Tg,h
(aτ + b

cτ + d

)

= ξg,h

(

a b

c d

)

Tgahc,gbhd(τ) ,

(

a b

c d

)

∈ SL(2,Z) , (B.3)

18We thank the anonymous referee for feedback that greatly simplified the latter part of this proof.
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where ξg,h
(

a b
c d

)

are non-zero complex numbers. We will only focus on the case where the

group generated by g and h is cyclic. For a cyclic group 〈g〉 of order N , all ξgi,gj are N -th

roots of unity and are completely determined by the conformal weight (L0-eigenvalue) of

the g-twisted ground state. In general, the L0-eigenvalue ∆g of a g-twisted state takes

value in

∆g ∈
Eg
Nλg

+
1

N
Z , (B.4)

for some positive integer λg, with λg|N , and Eg ∈ Z/λgZ coprime to λg (we often omit

the subscript in λg when there is no ambiguity). The orbifold of V by g is a consistent

CFT if and only if λ = 1; when λ > 1 we have a failure of the level matching condition.

The g-twisted and g−1-twisted sector have the same conformal weights modulo 1/N

∆g ≡ ∆g−1 mod
1

N
Z . (B.5)

More generally, the conformal weights of the gn-twisted sector take values in

∆gn ∈ n2 Eg
Nλg

+
(n,N)

N
Z . (B.6)

In particular, one has λgn = λg

(λg ,n)
, so that the orbifold of V by 〈gn〉 is consistent if and

only if n is a multiple of λg.

The Monster CFT V ♮ (or rather its group of automorphisms Aut(V ♮) = M) has another

special property: given any g ∈M of order N and any integer a coprime to N , ga is always

conjugated to either g or g−1

(a,N) = 1 → ga = hgh−1 or ga = hg−1h−1 , (B.7)

for some h ∈M. The symmetry h induces an isomorphism

φh : Vg
∼=−→ Vga , (B.8)

between the g-twisted and the ga-twisted sector. In particular, the conformal weights

must be the same

∆g ≡ ∆ga mod
1

N
Z , (B.9)

and using (B.4),(B.6) one obtains that

(a,N) = 1 ⇒ a2 ≡ 1 mod λ . (B.10)

As observed in [1], this condition holds for all a ∈ Z/λZ if and only if λ is a divisor of

24. In general, for any holomorphic CFT V and for all g ∈ Aut(V ) such that (B.7) holds,

one has λg|24.
For CFTs where (B.7) holds, the twining partition function T

1,g is a modular form for

Γ0(N) :=
{

(

a b

c d

)

∈ SL(2,Z) | c ≡ 0 mod N
}

, (B.11)
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up to a multiplier

T
1,g

(aτ + b

cτ + d

)

= e−2πi
Egcd
Nλ T

1,g(τ) ,

(

a b

c d

)

∈ Γ0(N) . (B.12)

In particular, T
1,g is invariant under Γ0(Nλ).

19

The fixed point subVOA V g has N2 irreducible modules, given by the g-eigenspaces in

the gr-twisted sectors r = 1, . . . , N . When λ > 1, by our definition (B.2), g has order

Nλ when acting on the twisted sectors, i.e. it generates a central extension of 〈g〉. In

constructing the CHL orbifolds, it is useful to define (Nλ)2 irreducible V g-modules, given

by

Vn,m = {v ∈ Vgn | g(v) = e
2πim
Nλ v} , n,m ∈ Z/NλZ . (B.13)

Notice that

m− nEg 6= 0 mod λ ⇒ Vn,m = 0 . (B.14)

so that only N2λ out of (Nλ)2 modules Vn,m are actually non-zero. Furthermore, many

of the non-zero Vn,m are isomorphic. For example, the gN -twisted sector is isomorphic, as

a V g-module, to the untwisted sector. However, as discussed in [27], it is useful to define

the action of g on the gN -twisted sector so that

g(VN) = e−2πi
Eg
λ VN , (B.15)

where VN is the vertex operator relative to the ground state of conformal weight 0 in the

gN -twisted sector. This choice yields the simple fusion rules

Vi,j ⊠V g Vk,l → Vi+k,j+l , i, j, k, l ∈ Z/NλZ , (B.16)

and allows to eliminate the phases in the SL(2,Z) transformations of T
1,g

T
1,g

(aτ + b

cτ + d

)

= Tgc,gd(τ) ,

(

a b

c d

)

∈ SL(2,Z) . (B.17)

The CHL orbifold relative to g can be simply defined by imposing that the strings with

momentum m and winding w = n
Nλ

be tensored with states in Vn,m. The OPE with the

gN -twisted vertex operator VN defines an isomorphism

VN : Vn,m
∼=−→ Vn+N,m−EgN . (B.18)

These equivalences further reduce the number of irreducible modules from N2λ to N2, as

expected.

19For a general CFT V and g ∈ Aut(V ), where (B.7) does not hold, T
1,g is only modular under a

subgroup Γ1(N) ⊆ Γ0(N).
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