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Abstract. The aim of this paper is to give a unifying description of vari-
ous constructions of sites (subanalytic, semialgebraic, o-minimal) and consider
the corresponding theory of sheaves. The method used applies to a more gen-
eral context and gives new results in semialgebraic and o-minimal sheaf theory.

Introduction.

Sheaf theory in some tame contexts such as semi-algebraic geometry ([10]), sub-
analytic geometry ([28], [35]) and o-minimal geometry ([19]) has had recently different
applications in various fields of mathematics such as model theory [4], [5], [20], analy-
sis [28], [30], [31], [36] and representation theory [1], [2], [37]. Each one of the above
theories is very useful for the mentioned applications but has some elements which are
missing in the other ones: the aim of this paper is to give a unifying description of all
these various constructions (subanalytic, semialgebraic, o-minimal) using a modification
of the notion of T-topology introduced by Kashiwara and Schapira in [28].

The idea is the following: on a topological space X one chooses a subfamily 7 of
open subsets of X satisfying some suitable hypothesis, and for each U € T one defines
the category of coverings of U as the topological coverings {U;};cr C 7 of U admitting
a finite subcover. In this way one defines a site X7 and studies the category of sheaves
on X7 (called Mod(k7)). This idea was already present in [28]. However in [28], the
space X is assumed to be Hausdorff, locally compact and the elements of 7 are assumed
to have finitely many connected components.

The exigence to treat in a unifying way all the previous constructions, to treat also
some non Hausdorff cases (as conic subanalytic sheaves which are related to the extension
of the Fourier-Sato transform [36]) and the non-standard setting which appears naturally
in the o-minimal context (where the elements of 7 are totally disconnected and never
locally compact), motivates a modification of the definition of [28]. In particular, in our
definition we replace “connectedness” by the notion of 7-connectedness (which in the
standard o-minimal context is connectedness). Remark that there are many important
o-minimal expansions

M = (R,<7Oa1;+a'a(f)f€]:)
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of the ordered field of real numbers. For example Ran, Rexp, Ran, exps Ran*s Ran*, exp S€€
resp., [12], [40], [15], [17], [18]. For each such we have 2 many non-isomorphic non
standard o-minimal models for each k > cardinality of the language. There is however a
non-standard o-minimal structure

M = ( U R((tl/n))a < Oa 1a +, (fP)PER[[Cl,...,Cn]]>

neN

which does not came from a standard one ([32], [23]).

With this more general notion of 7-space X we study the category of sheaves on
the site X7. The natural functor of sites p : X — X7 induces relations between the
categories of sheaves on X and X7, given by the functors p, and p~!'. The functor
px is fully faithful. Moreover when X is locally weakly quasi-compact there is a right
adjoint to the functor p~', denoted by pi. The functor p; is exact, commutes with lim
and ® and is fully faithful. We introduce the category of 7-flabby sheaves (known as sa-
flabby in [10] and as quasi-injective in [35]): F' € Mod(k7) is 7-flabby if the restriction
I'U;F) — I(V; F) is surjective for each U,V € T with U O V. We prove that 7-
flabby sheaves are stable under lim and ® and are acyclic with respect to the functor
I'(U;e), for U € T. More generally, if one introduces the category Coh(7) C Mod(kx)
of coherent sheaves (i.e. sheaves admitting a finite resolution consisting of finite sums
of ky,, U; € T), then T-flabby sheaves are acyclic with respect to Homy, (p.G,e), for
G € Coh(T). Coherent sheaves also give a description of sheaves on X7: for each
F € Mod(kr) there exists a filtrant inductive family {Fj};e; such that F' ~ limp, F;.

(2

In fact, we have an equivalence between the categories Mod(k7) and Ind(Coh(7)) the
indization of the category Coh(7).

All of the above results and methods are new in the o-minimal context and most
of them are new even in the semialgebraic case as well. On the other hand, we also
introduce a method for studying the category Mod(ks) of sheaves on T-spaces which
is the fundamental tool in the semialgebraic and o-minimal case, namely, we prove that
as in [19] the category of sheaves on X7 is equivalent to the category of sheaves on a
locally quasi-compact space )?T, the 7-spectrum of X, which generalizes the notion of
o-minimal spectrum as well as the real spectrum of commutative rings from real algebraic
geometry. In particular, sheaves on the subanalytic site are sheaves on the 7-spectrum
associated to the family of relatively compact subanalytic subsets. Such a result was not
present in [28].

This theory can then be specialized to each of the examples we mentioned above:
when 7 is the category of semialgebraic open subsets of a locally semialgebraic space
X we obtain the constructions (and the generalizations) of results of [10], in particular,
when X is a Nash manifold, we recover the setting of [37]. When 7 is the category
of relatively compact subanalytic open subsets of a real analytic manifold X we obtain
the constructions and results of [28], [35]. Moreover, when 7 is the category of conic
subanalytic open subsets of a real analytic manifold X we obtain a suitable category
of conic subanalytic sheaves considered in [36]. Finally, when 7 is the category of
definable open subsets of a locally definable space X we obtain in the definable case the
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constructions of [19] and we obtain new results in the o-minimal context generalizing
those of the two previous cases.

The paper is organized in the following way. In Section 1 we introduce the locally
weakly quasi-compact spaces and study some properties of sheaves on such spaces. The
results of this section will be used in two crucial ways on the theory of sheaves on
T-spaces, they are required to show that: (i) when a 7-space X is locally weakly quasi-

~!induced by the natural functor

compact, then there is a right adjoint py to the functor p
of sites p : X — X7 (ii) for a 7-space X, the category of sheaves on X7 is equivalent
to the category of sheaves on a locally quasi-compact space )277 the 7-spectrum of X.
In Section 2 we introduce the 7-spaces and develop the theory of sheaves on such spaces

as already described above.

1. Sheaves on locally weakly quasi-compact spaces.

Let X be a non necessarily Hausdorff topological space. One denotes by Op(X) the
category whose objects are the open subsets of X and the morphisms are the inclusions.
In this section we generalize some classical results about sheaves on locally compact
spaces. For classical sheaf theory our basic reference is [26]. We refer to [39] for an
introduction to sheaves on Grothendieck topologies.

1.1. Locally weakly quasi-compact spaces.

DEFINITION 1.1.1.  An open subset U of X is said to be relatively weakly quasi-
compact in X if, for any covering {U;}icr of X, there exists J C I finite, such that
U C Ujes Ui

We will write for short U CC X to say that U is a relatively weakly quasi-compact
open set in X, and we will call Op®(U) the subcategory of Op(U) consisting of open sets
V cc U. Note that, given V,W € Op®(U), then VUW € Op°(U).

DEFINITION 1.1.2. A topological space X is locally weakly quasi-compact if satis-
fies the following hypothesis for every U,V € Op(X)

LWCI1. Every z € U has a fundamental neighborhood system {V;} with V; € Op®(U).
LWC2. For every U’ € Op®(U) and V' € Op®(V) one has U' NV’ € Op“(UNV).
LWC3. For every U’ € Op®(U) there exists W € Op°(U) such that U' cC W.

Of course an open subset U of a locally weakly quasi-compact space X is also a
locally weakly quasi-compact space. Let us consider some examples of locally weakly
quasi-compact spaces:

ExaMPLE 1.1.3. A locally compact topological space X is a locally weakly quasi-
compact. In this case, for U,V € Op(X) we have V CC U if and only if V is relatively
compact subset of U.

ExaMPLE 1.1.4. Let X be a topological space with a basis of quasi-compact (i.e.
each open covering admits a finite subcover) open subsets closed under taking finite
intersections. Then X is locally weakly quasi-compact and, for U,V € Op(X) we have
V cc U if and only if V is contained in a quasi-compact subset of U. In this situation
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we have the following particular cases:

(i) X is a Noetherian topological space (each open subset of X is quasi-compact). This
includes in particular: (a) algebraic varieties over algebraically closed fields; (b)
complex varieties (reduced, irreducible complex analytic spaces) with the Zariski
topology.

(ii) X is a spectral topological space (in addition: (i) X is quasi-compact; (ii) Tp; (iii)
every irreducible closed subset is the closure of a unique point). This includes in
particular: (a) real algebraic varieties over real closed fields; (b) the o-minimal
spectrum of a definable space in some o-minimal structure.

(iii) X is an increasing union of open spectral topological spaces X;’s, i.e. X is the space
UZ.€ ; Xi. This space X has a basis of quasi-compact open subsets closed under
taking finite intersections and in addition is: (i) not quasi-compact in general unless
I is finite; (ii) Tp. This includes in particular: (a) the semialgebraic spectrum of
locally semialgebraic space; (b) more generally, the o-minimal spectrum of a locally
definable space in some o-minimal structure.

ExAMPLE 1.1.5. Let E be a real vector bundle over a locally compact space Z
endowed with the natural action p of R (the multiplication on the fibers). Let E=F \Z,
and for U € Op(E) set Uz = UNZ and U = UNE. Let Eg+ denote the space E endowed
with the conic topology i.e. open sets of Fr+ are open sets of E which are p-invariant.
With this topology Egr+ is a locally weakly quasi-compact space and, for U,V € Op(Eg+)

we have V cC U if and only if V; CC Uz in Z and V CC U in Eg+ (the later is E with
the induced conic topology).

1.2. Sheaves on locally weakly quasi-compact spaces.
Recall that X is a non necessarily Hausdorff topological space.

DEFINITION 1.2.1. Let U = {U;}ier and U" = {U}}jes be two families of open
subsets of X. One says that U’ is a refinement of U if for each U; € U there is Uj’v el

One denotes by Cov(U) the category whose objects are the coverings of U € Op(X)
and the morphisms are the refinements, and by Cov/ (U) its full subcategory consisting
of finite coverings of U.

Given V € Op(U) and S € Cov(U), one sets SNV ={U NV }yes € Cov(V).

DEFINITION 1.2.2.  The site X/ on the topological space X is the category Op(X)
endowed with the following topology: S C Op(U) is a covering of U if and only if it has
a refinement S¥ € Cov/ (U).

DEFINITION 1.2.3. Let U,V € Op(X) with V C U. Given S = {U,};cr € Cov(U)
and T = {V},cs € Cov(V), we write T'CC S if T' is a refinement of SNV, and V; C U;
if and only if V; CC U;.

Let us recall the definitions of presheaf and sheaf on a site.
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DEFINITION 1.2.4. A presheaf of k-modules on X is a functor Op(X)°? — Mod(k).
A morphism of presheaves is a morphism of such functors. One denotes by Psh(kx) the
category of presheaves of k-modules on X.

Let F € Psh(kx), and let S € Cov(U). One sets

F(S) ker( I[Hrom= ]I F(W’mw")).

wes W\ W"eS

DEFINITION 1.2.5. A presheaf F' is separated (resp. is a sheaf) if for any U €
Op(X) and for any S € Cov(U) the natural morphism F(U) — F(S) is a monomorphism
(resp. an isomorphism). One denotes by Mod(kyx) the category of sheaves of k-modules
on X.

Let F € Psh(kyx), one defines the presheaf F'™ by setting

One can show that F'T is a separated presheaf and if F is a separated presheaf, then F'T
is a sheaf. Let F' € Psh(kx), the sheaf F*1 is called the sheaf associated to the presheaf
F.

LEMMA 1.2.6. For F € Psh(kx), and let U € Op(X). If F is a sheaf on X7, then
for any V € Op°(U) the morphism

FHU) — FH(V) (1.1)

factors through F(V).

PROOF. Let S € Cov(U), and set SNV = {WNV }yyes. Since V € Op°(U), there
is a finite refinement T € Cov/ (V) of S N'V. Then the morphism (1.1) is defined by

Fr(U)~ lm F(S)
SeCov(U)
—
SeCov(U)
—  lim  F(TY)
—
TfeCovf (V)
—  lim F(T)
e
TeCov(V)

~ FT(V).

The result follows because F(TY) ~ F(V). d
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COROLLARY 1.2.7.  With the hypothesis of Lemma 1.2.6, we consider two coverings
S € Cov(U) and T € Cov(V). If T CC S, then the morphism

F*(S) — FH(T) (1.2)

factors through F(T). In particular, if T is finite, then the morphism (1.2) factors through
F(V).

From now on we will assume the following hypothesis:

the topological space X is locally weakly quasi-compact. (1.3)

LEmMMA 1.2.8. Let U € Op(X), and consider a subset V.CC U. Then for any
ST e Cov!/ (U) there exists T € Cov! (V) with T cc S7.

PrOOF. Let S/ = {U;}. For each z € U and U; > x, consider a V,; € Op°(U;)
containing x. Set V, =", Vi, the family {V, } forms a covering of U. Then there exists
a finite subfamily {V}} containing V. By construction V; NV CC U; whenever V; C U;.

O

LEMMA 1.2.9. Let F € Psh(kx), and let U € Op(X). If F is a sheaf on X7, then
for any V€ Op°(U) the morphism

FHU) = FH (V) (1.4)

factors through F(V).

PROOF. Since X is locally weakly quasi-compact, there exists W € Op“(U) with
V CcC W. As in Lemma 1.2.6 we obtain a diagram

FH(U) FHH(W) ——= FHH(V)

7

lim FT(Sf)—— lim F*(T7).
— —
SfeCovl (W) TfeCov/ (V)

Since X is locally weakly quasi-compact then by Lemma 1.2.8 for any S/ € Cov/ (W)
there exists T/ € Cov/ (V) with T¥ cc 8. By Corollary 1.2.7 the morphism

FH(ST) — FH(T7)
factors through F(T/) ~ F(V). Then the morphism

lim FY(SY) — lim FT(17)
—> —
SfeCovf (W) TfeCovf (V)
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factors through F(V) and the result follows. O

COROLLARY 1.2.10. Let F € Psh(kx). If F is a sheaf on X', then:
(i) for any V € Op®(X) one has the isomorphism lim F(U) = lim Fr(U).

U>oV USOV
(it) for any U € Op(X) one has the isomorphism lim F(V) = lim FT(V).
vccu vccu

PrOOF. (i) By Lemma 1.2.9 for each U € Op(X) with U 22> V we have a com-
mutative diagram

FtH({U) —— Ft1(V)

PN

FU) ——= F(V)

This implies that the identity morphism of lim F(U) factors through lim F*T+(U).
— —
UooV U>>V
On the other hand this also implies that the identity morphism of lim F**(U) factors
USOV
through lim F(U). Then lim F(U) = lim FH(U).
UooV UDDV UooV
The proof of (ii) is similar. O

COROLLARY 1.2.11. Let X be a quasi-compact and locally weakly quasi-compact
space, and let F' € Psh(kx). If F is a sheaf on X7, then the natural morphism
F(X) — FT(X) (1.5)

is an isomorphism.
ProOOF. It follows immediately from Corollary 1.2.10 (i) with V' = X. O

Let {F;}ier be a filtrant inductive system in Mod(kx). One sets

“lim” F; = inductive limit in the category of presheaves,

3

limF; = inductive limit in the category of sheaves.

3
Recall that limF; = (“lim” F;)* .
- -

PROPOSITION 1.2.12.  Let {F;}icr be a filtrant inductive system in Mod(kx) and
let U € Op(X). Then for any V € Op“(U) the morphism

F(U;hg,lFi) - F(V§h__H}Fi)

? 7
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factors through imI'(V; F;).

(3

PROOF. By Lemma 1.2.9 it is enough to show that “lim”F; is a sheaf on X/, Let
i
U € Op(X) and S € Cov/ (U). Since lim commutes with finite projective limits we obtain

=
7

the isomorphism (“lim” £;)(S) ~ limF;(S). The result follows because F; € Mod(kx ) for

each i € I. O

COROLLARY 1.2.13.  Let {F;}ic1 be a filtrant inductive system in Mod(kx).

(i) For any V€ Op°(X) one has the isomorphism lim I'(U;F;) —

UDDV,i
lim I'(U;limF;).
o —
U>dV i
(ii) For any U € Op(X) one has the isomorphism lim LmI'(V;F;) =
vceu i
lim T'(V;limF;).
pa—— —
vccu i
Proor. It follows from Corollary 1.2.10 with F' = “lim” F;. U

K2

COROLLARY 1.2.14. Let X be a quasi-compact and locally weakly quasi-compact
space. Then the natural morphism

liml(X; F;) — ['(X;limF;)
- -

K3 K3
s an isomorphism.

Proor. It follows from Corollary 1.2.11 with F' = “lim” F;. O

7

ExAMPLE 1.2.15. Let us consider the formula

lim ['(U;F;) > lim T(U;limF;) (1.6)
— — —
UDDV,i UDDV %

(1) Let X be a Noetherian space and let V' € Op(X). Then I'(V; F) ~ lim I'(U; F),
UDDV
since every open set is quasi-compact and (1.6) becomes li_rr)lI’(V; F) ~T(V; h_n;F,)

% i
(ii) Assume that X has a basis of quasi-compact open subsets and let V' € Op®(X).

Then V is contained in a quasi-compact open subset of X and lim (U; F) ~
UoDV
lim I(W; F), where W ranges through the family of quasi-compact subsets of X.
WOV
(iii) Let X be a locally compact space and let V € Op®(X). Then I'(V;F) ~

lim T'(U; F), and (1.6) becomes imI'(V; F}) ~ I'(V; Lim F}).

— - —

UDDV i i
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(iv) Let Eg+ be a vector bundle endowed with the conic topology, and let V €
Op°(Eg+). Then lim T'(U; F) ~ I'(K; F'), where K is the union of the closures
UDDOV
of Vz in Z and V in Eg+, and (1.6) becomes mI'(K; Fy) ~ T'(K; imF).

K2 2

LEMMA 1.2.16. Let F' € Psh(kx). Then we have the isomorphism

lim lim F(W)> lim F(V).
— == —
VccXveow vcex

PROOF. The result follows since for each V' € Op®(X) there exists W € Op®(X)
such that V. CC W since X is locally weakly compact. Let U,V CC X such that
U 5D V. The restriction morphism F'(U) — F(V) factors through lim F(W). Taking

WDoDV
the projective limit we obtain the result. O

REMARK 1.2.17. The notion of locally weakly quasi-compact can be extended to
the case of a site, by generalizing the hypothesis LWC1-LWC3. For our purpose we are
interested in the topological setting and we refer to [34] for this approach.

1.3. c-soft sheaves on locally weakly quasi-compact spaces.
Let X be a locally weakly quasi-compact space, and consider the category Mod(kx).

DEFINITION 1.3.1.  We say that a sheaf F' on X is c-soft if the restriction morphism
D(W;F) — lim I'(U; F) is surjective for each V., W € Op®(X) with V.CC W.
UooV
It follows from the definition that injective sheaves and flabby sheaves are c-soft.

Moreover, it follows from Corollary 1.2.13 that filtrant inductive limits of c-soft sheaves
are c-soft.

PropPOSITION 1.3.2. Let 0 — F' — F — F” — 0 be an ezact sequence in
Mod(kx), and assume that F' is c-soft. Then the sequence

0— lim I'(U;F') — lim I(U;F) — lim T'(U; F") — 0
— — —
U>OVv UDDV UDDV

is exact for any V € Op®(X).

Proor. Let s” € lim I'(U;F”). Then there exists U DD V such that s” is
US>V
represented by sy, € I'(U; F"). Let {U; }ier € Cov(U) such that there exists s; € I'(U;; F)
whose image is s{; |y, for each i. There exists W € Op®(U) with W DD V, a finite covering
{W;}tj—; of W and a map € : J — I of the index sets such that W; CC U,(;). We may
argue by induction on n. If n = 2, set U; = U,(;), i = 1,2. Then (s1 — s2)|u,nv, belongs
to T'(U; NUy; F'), and its restriction defines an element of lim  I'(W';F'), hence
W/ DDWiNWs
it extends to s’ € T'(U; F’). By replacing s; with s; — s’ on W; we may assume that
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s1 = 89 on Wi N Wy, Then there exists s € T'(W; U Wa; F) with s|w, = s;. Thus the
induction proceeds. O

ProroSITION 1.3.3. Let 0 — F' — F — F” — 0 be an ewvact sequence in
Mod(kx), and assume F', F c-soft. Then F" is c-soft.

ProoF. Let V,W € Op®(X) with V' CC W and let us consider the diagram below

I(W;F) ——=T(W; F")

|- )
lim T(U;F) B8_ lim T(U; F").
— —_— =
UDDOV UDDV

The morphism « is surjective since F' is c-soft and ( is surjective by Proposition 1.3.2.
Then 7 is surjective. O

PropPOSITION 1.3.4.  The family of c-soft sheaves is injective respect to the functor
lim I'(U;e) for each V € Op°(X).
UDDV

PrROOF. The family of c-soft sheaves contains injective sheaves, hence it is cogen-
erating. Then the result follows from Propositions 1.3.2 and 1.3.3. O

Assume the following hypothesis

X has a countable cover {U,, }nen with U, € Op®(X), Vn € N. (1.7)

LEMMA 1.3.5.  Assume (1.7). Then there exists a covering {Vy }nen of X such that
Vi CC Vg1 and Vi, € Op®(X) for each n € N.

ProOOF. Let {Up}nen be a countable cover of X with U, € Op°(X) for each
n € N. Set V; = U;. Given {V;}?; with V;31 DD V;, i =1,...,n — 1, let us construct
Va1 DD V,. Cousider z ¢ V,,. Up to take a permutation of N we may assume z €
U,+1. Since X is locally weakly quasi-compact there exists V.1 € Op®(X) such that
Vi UUns1 CC Vit 0

PROPOSITION 1.3.6.  Assume (1.7). Then the category of c-soft sheaves is injective
respect to the functor T'(X;e).

Proor. Take an exact sequence 0 — F/ — F — F” — 0, and suppose F’ c-
soft. By Lemma 1.3.5 there exists a covering {V, }nen of X such that V,, CC V,,11 (and
Vi, € Op°(X)) for each n € N. All the sequences

0— lim I(U;F)— lim (U, F)— lim Uy F”)—0
- - -
UnDDVp UnDDVy UnDDV,
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are exact by Proposition 1.3.2, and the morphism lim  T'(Up41; F') —
Up+12DDVnt1
lim I['(Uy; F") is surjective for all n. Then by Proposition 1.12.3 of [26] the sequence
UnDDVy

0—lim lim [(Uy;F') —lim lim [(Uy; F) —lim lim T(U,; F”) — 0
P s e

n Up,DDV, n Up,DDVyp n Up,DDVy

is exact. By Lemma 1.2.16 lim lim I'(U,;G) =~ I'(X;G) for any G € Mod(kx) and
n UpnDDVn
the result follows. O

ExXAMPLE 1.3.7. Let us consider some particular cases

(i) When X is Noetherian c-soft sheaves are flabby sheaves.

(i) When X has a basis of quasi-compact open subsets, then F' € Mod(kx) is c-soft if
the restriction morphism I'(U; F) — T'(V; F) is surjective, for any quasi-compact
open subsets U,V of X with U D V.

(iii) When X is a locally compact space countable at infinity, then we recover c-soft
sheaves as in chapter II of [26].

(iv) When FEg+ is a vector bundle endowed with the conic topology, then F €
Mod(kg,, ) is c-soft if the restriction morphism I'(Eg+; F') — I'(K; F) is surjective,
where K is defined as in Example 1.2.15.

2. Sheaves on 7T -spaces.

In the following we shall assume that k is a field and X is a topological space. Below
we give the definition of 7-space, adapting the construction of Kashiwara and Schapira
[28]. We study the category of sheaves on X7 generalizing results already known in the
case of subanalytic sheaves. Then we prove that as in [19] the category of sheaves on X7
is equivalent to the category of sheaves on a locally weakly-compact topological space
)N(T, the 7-spectrum, which generalizes the notion of o-minimal spectrum.

2.1. 7T -sheaves.
Let X be a topological space and let us consider a family 7 of open subsets of X.

DEFINITION 2.1.1. The topological space X is a 7-space if the family 7 satisfies
the hypotheses below

(i) 7 is a basis for the topology of X, and ) € T,
(ii) 7 is closed under finite unions and intersections, (2.1)

iii) every U € 7T has finitely many 7 -connected components,
Yy Yy Yy p

where we define:

e a 7T-subset is a finite Boolean combination of elements of 7
e a closed (resp. open) 7-subset is a 7-subset which is closed (resp. open) in X;
e a 7 -connected subset is a 7-subset which is not the disjoint union of two proper
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T -subsets which are closed and open.

ExampPLE 2.1.2. Let R = (R,<,0,1,4,:) be a real closed field. Let X be a
locally semialgebraic space ([10], [11]) and consider the subfamily of Op(X) defined by
T = {U € Op(X) : U is semialgebraic}. The family 7 satisfy (2.1). Note also that the
T-subsets of X are exactly the semialgebraic subsets of X ([7]).

ExaMPLE 2.1.3. Let X be a real analytic manifold and consider the subfamily
of Op(X) defined by T = Op“(Xs,) = {U € Op(Xs,) : U is subanalytic relatively
compact}. The family 7 satisfies (2.1).

ExAMPLE 2.1.4. Let X be a real analytic manifold endowed with a subanalytic
action p of R*. In other words we have a subanalytic map

e X xR — X

which satisfies, for each t1,t5 € R*:

N(x’tth) = M(N(x7t1)’t2)v
w(z, 1) = x.

Denote by Xg+ the topological space X endowed with the conic topology, i.e. U €

Op(Xg+) if it is open for the topology of X and invariant by the action of R*.

We will denote by Op®(Xg+) the subcategory of Op(Xg+) consisting of relatively

weakly quasi-compact open subsets. Consider the subfamily of Op(Xg+) defined by

T = Op°(Xsor+) = {U € Op°(Xg+) : U is subanalytic}. The family 7 satisfies (2.1).

EXAMPLE 2.1.5. Let M = (M,<,(¢)ec,(f)fer,(R)rer) be an arbitrary o-
minimal structure. Let X be a locally definable space ([3]) and consider the subfamily
of Op(X) defined by 7 = Op(Xaer) = {U € Op(X) : U is definable}. The family 7
satisfies (2.1). Note also that the T-subsets of X are exactly the definable subsets of X
(by the cell decomposition theorem in [13], see [19, Proposition 2.1]).

Let X be a 7T-space. One can endow the category 7 with a Grothendieck topology,
called the T-topology, in the following way: a family {U;}; in 7 is a covering of U € T
if it admits a finite subcover. We denote by X7 the associated site, write for short ks
instead of kx,, and let p : X — X7 be the natural morphism of sites. We have functors

Mod(ky) =—= Mod (k7). (2.2)
o1
PROPOSITION 2.1.6.  We have p~*
faithful.

o px >~ id. Equivalently, the functor p. is fully

PrROOF. Let V € Op(X) and let G € Mod(kz). Then p~1G = (p~ F)™*, where
p~ G € Psh(kx) is defined by
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Op(X)>V e lm G(U).
Uov,ueT

In particular, when U € T, p= G(U) = G(U).

Let F € Mod(kx) and denote by ¢ : Mod(kx) — Psh(kx) the forgetful functor. The
adjunction morphism p~ o p, — id in Psh(kx) defines p~ p,F — (F. This morphism is
an isomorphism on 7, since p~ p F(U) ~ p,F(U) ~ F(U) ~ +F(U) when U € 7. By
(2.1) (i) 7 forms a basis for the topology of X, hence we get an isomorphism

Pl o F = (0T pF)TT = (WF) T > F

and the result follows. O

PROPOSITION 2.1.7.  Let {F; }ier be a filtrant inductive system in Mod(kr) and let
UeT. Then

lim[(U; F;) = T(U; limFy).
- -

? K3

Proor.  Denote by “lim”F; the presheaf V' — lii>nI‘(V; F;)on X7. Let U € T and

3 3
let S be a finite covering of U. Since lim commutes with finite projective limits we obtain
i

the isomorphism (“lim” F;)(S) = limF;(S) and F;(U) = Fi(S) since F; € Mod(kr)

for each i. Moreover the family of finite coverings of U is cofinal in Cov(U). Hence
“lim” F; = (“lim” F;)™. Applying once again the functor (-)* we get
- -

K3 (2

Gim” F ~ (“lm” F) T~ (“Im? F;) T ~ B F).
— — — —

K2 K2 K2 ?

Hence applying the functor I'(U; ) we obtain the isomorphism imI'(U; ) S 1(U; lim F7;)

for each U € 7. O

PROPOSITION 2.1.8.  Let F' be a presheaf on X1 and assume that

(i) F(0) =0,
(ii) For any U,V € T the sequence 0 — F(UUV) - FU)® F(V) — F(UNV)is
exact.

Then F € Mod(kr).

PrOOF. Let U € T and let {U;}7_, be a finite covering of U. Set for short
U;j = U;NU;. We have to show the exactness of the sequence

0=FU)— P Fn)—» P FUy)

1<k<n 1<i<j<n



360 M. J. EDMUNDO and L. PRELLI

where the second morphism sends (sp)i<k<n to (tij)i1<icj<n by tij = silv, — sjlu,-
We shall argue by induction on n. For n = 1 the result is trivial, and n = 2 is the
hypothesis. Suppose that the assertion is true for j < n —1 and set U" = J,j.,, Uk-
By the induction hypothesis the following commutative diagram is exact

|
00— F(U) —— F(U") ® F(U,) —— F(U' N Uy)

£

EBi<n F(Ul) D F(Un) - EBi<n (Um)

@i<j<n F(Uij)-
Then the result follows. O

EXAMPLE 2.1.9. Let us see some examples of sites associated to 7 -topologies:

(i) When 7 is the family of Example 2.1.2 we obtain the semi-algebraic site of [10],
[11].

(ii) When 7 is the family of Example 2.1.3 we obtain the subanalytic site X, of [28],
[35].

(iii) When 7 is the family of Example 2.1.4 we obtain the conic subanalytic site of
[36].

(iv) When 7 is the family of Example 2.1.5 we obtain the o-minimal site Xger. It is
the one considered in [19] when X is a definable space.

2.2. 7 -coherent sheaves.

Let us consider the category Mod(kx) of sheaves of kx-modules on X, and denote
by K the subcategory whose objects are the sheaves F' = @,; kv, with [ finite and
U; € T for each i. The following definition is extracted from [28].

DEFINITION 2.2.1. Let 7 be a subfamily of Op(X) satisfying (2.1), and let F' €
Mod(kx).

(i) F is T-finite if there exists an epimorphism G — F with G € K.

(ii) F is T-pseudo-coherent if for any morphism ¢ : G — F with G € K, ker is
T -finite.

(iii) F is T-coherent if it is both 7-finite and 7-pseudo-coherent.

Remark that (ii) is equivalent to the same condition with “G is 7-finite” instead
of “G € K”. One denotes by Coh(7) the full subcategory of Mod(kx) consisting of
T -coherent sheaves. It is easy (see [29, Exercise 8.23]) to prove that Coh(7) is additive
and stable by kernels.
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LEMMA 2.2.2. Let F,G € K. Then, given ¢ : F — G, we have ker ¢ € K.

PROOF. We have F = @2:1 kw,, G = EB;"ZI kew. Composing with the projection
pj, j = 1,...,m on each factor of G, ker ¢ will be the intersection of the ker p; o so that,
if each one has the desired form, the same will happen to their intersection. Therefore
it is sufficient to assume m = 1, let us say, G = k. A morphism ¢ : F' — G is then
defined by a sequence v = (v1,...,v;), where v; is the image by ¢ of the section of kyy,
defined by 1 on W;, so v; = 0 if W; ¢ W. More precisely, if s = (s1,...,$;) is a germ of
F in y, we have ¢©(s1,...,8) = Zi:l ViySi. So, given s = (s1,...,5) € kery, if, for a
given i, we have v;,s; # 0, then s defines a germ of H; =: EBi,# kw.,aw, in y.

Accordingly, ker ¢ ~ @221 H;. O

Therefore, according to the definition of Coh(7) and to Lemma 2.2.2, any F €
Coh(7) admits a finite resolution

K =00K'—-... > K" S F =0

consisting of objects belonging to K.

PROPOSITION 2.2.3.  Let U € T and consider the constant sheaf ku . € Mod(kr).
We have kaT ~ p.ky.

PROOF. Let F be the presheaf on X7 defined by F(V)=kif V CU, F(V)=0
otherwise. This is a separated presheaf and ky, = = FT+. Moreover there is an injective
arrow F(V) < p.ky (V) for each V € Op(X7). Hence F* < p,ky since the functor
()T is exact. Let S C 7T be the sub-family of 7-connected elements. Then S forms a
basis for the Grothendieck topology of X7. For each W € S we have F(W) ~ p, ky(W) ~
kit W C U and F(W) = 0 otherwise. Then F*+ ~ p k. O

PROPOSITION 2.2.4.  The restriction of p. to Coh(T) is ezact.

PRrROOF. Let us consider an epimorphism G — F' in Coh(7), we have to prove
that ¢ : p.G — p.F is an epimorphism. Let U € 7 and let 0 # s € T'(U; pF) =~
Homy, (ky, F) (by adjunction). Set G' = G xp ky = ker(G @ ky = F). Then G’ €
Coh(7) and moreover G’ — ky. There exists a finite {U;};er C 7 of 7-connected
elements such that €, ky, - G’. The composition ky, — G’ — ky is given by the
multiplication by a; € k. Set Iy = {ky,; a; # 0}, we may assume a; = 1. We get a
diagram

Dics, bvi —= G ——G

N

kU*S>F.

The composition ky, — G’ — G defines t; € Homy, (ky,,G) ~ I'(U;; p«G). Hence for
each s € T'(U; p. F) there exists a finite covering {U;} of U and ¢; € I'(Uy; p«G) such that
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¥(t;) = s|y,. This means that 1) is surjective. O

NOTATION 2.2.5.  Since the functor p, is fully faithfull and exact on Coh(7), we
will often identify Coh(7) with its image in Mod(ks) and write F instead of p,F for
F € Coh(T).

THEOREM 2.2.6.  The following hold:

(1) The category Coh(T) is stable by finite sums, kernels, cokernels and extensions in
Mod(k7).
(ii) The category Coh(T) is stable by oK), e in Mod(kT).

PROOF. (i) The result follows from a general result of homological algebra of [27,
Appendix A.1]. With the notations of [27] let P be the set of finite families of elements
of T, for U = {U,}icr € P set

LU) = P kv,
for V= {Vj}jcs € P set

Homp (U, V) = Homy,, (LU), L(V)) = P @ Homy, (ku,, kv, )

z J

and for F' € Mod(k7) set

H(U, F) = Homy, (L(U), F) = @ Hom, (ku,, F).

By Proposition A.1 of [27] in order to prove (i) it is enough to prove the properties
(A.1)—(A.4) below:

(A.1) For any U = {U;} € P the functor H(U, e) is left exact in Mod(kr).

(A.2) For any morphism g : V — W in P, there exists a morphism f : i/ — V in P such
that U 4, V4 W is exact.

(A.3) For any epimorphism f : FF — G in Mod(kz), U € P and ¥ € HU,G), there
exists ¥V € P and an epimorphism g € Homp(V,U) and ¢ € H(V, F) such that
Yog=fop.

(A.4) For any U,V € P and ¢ € H(U, L(V)) there exists W € P and an epimorphism
f € Homp(W,U) and a morphism g € Homp(W,U) such that L(g) = ¢ o f in
Homy (L(W), L(V)).

It is easy to check that the axioms (A.1)—(A.4) are satisfied.
(ii) Let F' € Coh(7). Then F has a resolution

@kUjH@kUiHF—W)

jeJ iel
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with I and J finite. Let V € 7. The sequence

@ kvou, — @ kvou, — Fv — 0

jeJ i€T

is exact. Then it follows from (i) that Fy is coherent. Let G € Coh(7). The sequence

@GUJ. H@Gyi —>G®F—>O

jeJ el kT

is exact. The sheaves Gy, and Gy, are coherent for each i € I and each j € J. Hence it
follows by (i) that G' @), I is coherent as required. O

COROLLARY 2.2.7.  The following hold:

(i) The category Coh(T) is stable by finite sums, kernels, cokernels in Mod(kx).
(ii) The category Coh(T) is stable by @ @), ® in Mod(kx).

PROOF. (i) The stability under finite sums and kernels is easy, see [29, Exercise
8.23]. Let F,G € Coh(T) and let ¢ : F — G be a morphism in Mod(kx). Then
P« () is a morphism in Mod(k7) and coker(p.p) € Coh(7) by Theorem 2.2.6. We have
coker(p.p) =~ p, coker  since p, is exact on Coh(7) by Proposition 2.2.4. Composing
with p~! and applying Proposition 2.1.6 we obtain coker ¢ € Coh(7).

(ii) The proof of the stability by e ), e is similar to that of Theorem 2.2.6. O

THEOREM 2.2.8. (1) Let G € Coh(T) and let {F;} be a filtrant inductive system
in Mod(k7). Then we have the isomorphism

h_.H)lHOka (p*Ga FZ) = Hoka (p*G7 hi>nF1)

K2 2

(ii) Let F € Mod(kt). There exists a small filtrant inductive system {F; };er in Coh(T)
such that F ~ li_n}p*Fi.
K]

PROOF. (i) There exists an exact sequence Gy — Go — G — 0 with G1,Gp
finite direct sums of constant sheaves ky with U € 7. Since p, is exact on Coh(7") and
commutes with finite sums, by Proposition 2.2.3 we are reduced to prove the isomorphism
1'£>nF(U; F;) = T(U; hi>nFZ) Then the result follows from Proposition 2.1.7.

i

(ii) Let F' € Mod(kr), and define

Ip:={(U,s): UeT, seT(U;F)}

Go = @ pxku

(U,s)€ely

The morphism p.ky — F, where the section 1 € T'(U;ky) is sent to s € T'(U; F)
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defines un epimorphism ¢ : Go — F. Replacing F' by ker ¢ we construct a sheaf G; =
EB(V,t)e 1, P+kv and an epimorphism G — ker ¢. Hence we get an exact sequence G —
Go — F' — 0. For Jy C I set for short G;, = @(U,S)EJO p«ky and define similarly G, .
Set

J={(J1,Jo); Jr C It, Ji is finite and imglg, C Gt

The category J is filtrant and F'~ lim coker(G, — G ). O
(Jl,Jo)EJ

COROLLARY 2.2.9. Let G € Coh(T) and let {F;} be a filtrant inductive system in
Mod(kz). Then we have an isomorphism

limHomg, (G, Fi) = Homp, (G, imF;).

3 3

Proor. Let U € 7. We have the chain of isomorphisms

(U limHomy, (G, F;)) ~ imI(U; Homy., (G, F}))

i 7

=~ lim Homy (Gy, Fy)

~ Hoka (GU, h_H}lFZ)

~ I'(U; Homg, (G, limF;)),

?

where the first and the third isomorphism follow from Theorem 2.2.8 (i). The fact that
Gy € Coh(7) follows from Theorem 2.2.6 (ii). O

As in [28], we can define the indization of the category Coh(7 ). Recall that the cat-
egory Ind(Coh(7)), of ind-7-coherent sheaves is the category whose objects are filtrant
inductive limits of functors

lim Homeon(z) (o, £5)  (“lim” F; for short),

K2 7

where F; € Coh(7), and the morphisms are the natural transformations of such functors.
Note that since Coh(7) is a small category, Ind(Coh(7)) is equivalent to the category
of k-additive left exact contravariant functors from Coh(7) to Mod(k). See [29] for
a complete exposition on indizations of categories. We can extend the functor p, :
Coh(7') — Mod(k7) to A : Ind(Coh(7)) — Mod(k7) by setting A\(“lim” F}) := limp. F;.

(3 (2

COROLLARY 2.2.10.  The functor X : Ind(Coh(7)) — Mod(kr) is an equivalence
of categories.
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PRrOOF. Let F = “lim”F;,G = “lim”G; € I(Coh(7)). By Theorem 2.2.8 (i) and
- -
j i
the fact that the functor p, is fully faithfull on Coh(7) we have

Hoka (A(F)a )‘(G)) = Hoka (h_H)lp*F], h_H>1p*GZ)
J [
~ limlim Homg, (p Fj, p+Gi)
i
=~ limlim Homcon(7) (£}, Gi)
i

~ Hompyq(con(r)) (F, G),

hence A is fully faithful. By Theorem 2.2.8 (ii) for each F' € Mod(ky) there exists
G = “li_p[)l”Fi € Ind(Coh(7)) such that A(G) = @p*Fi ~ F, hence A is essentially
surjectivle. ' O
2.3. 7T -flabby sheaves.
DEFINITION 2.3.1.  We say that an object FF € Mod(ks) is 7-flabby if for each
U,V € T with V D U the restriction morphism I'(V; F) — I'(U; F) is surjective.

REMARK 2.3.2. Remark that the category Mod(k7) is a Grothendieck category,
hence it has enough injectives. It follows from the definition that injective sheaves are
T-flabby. This implies that the family of 7-flabby objects is cogenerating in Mod (k7).

EXAMPLE 2.3.3. Let us see some examples of 7-flabby sheaves:

(i) When 7 is the family of Example 2.1.2 we obtain the family of sa-flabby objects
of [10].

(i) When 7 is the family of Example 2.1.3 we obtain the family of quasi-injective
objects of [35].

PRrROPOSITION 2.3.4.  The following hold:
(i) Let F; be a filtrant inductive system of T -flabby sheaves. Then limF; is 7 -flabby.

(3

(ii) Products of T -flabby objects are T -flabby.

ProoF. We will only prove (i) since the proof of (ii) is similar since taking prod-
ucts is exact and commutes with taking sections. Let U € 7. Then for each i the
restriction morphism I'(V; F;) — I'(U; Fy) is surjective. Applying the exact lim and

i
using Proposition 2.1.7, the morphism

L(VilimF;) ~ MmI(V; Fy) — Iml'(U; F5) ~ T(U; im F;)

3 (2 K2 3

is surjective. O
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PROPOSITION 2.3.5.  The full additive subcategory of Mod(kt) of T -flabby object
is I'(U; ®)-injective for every U € T, i.e.:
(i) For every F € Mod(kr) there exists a T -flabby object F' € Mod(kr) and an ezxact
sequence 0 — F — F’.

(ii) Let0 — F' — F — F" — 0 be an exact sequence in Mod(kr) and assume that F’
is T -flabby. Then the sequence

0—-T(U;F')—>T(U;F) - T(U;F") -0

18 exact.
(ii) Let F',F,F" € Mod(kt), and consider the exact sequence

0—-F —-F—F'"—-0.

Suppose that F' is T -flabby. Then F is T -flabby if and only if F" is T -flabby.

ProOF. (i) It follows from the definition that injective sheaves are 7-flabby. So (i)
holds since it is true for injective sheaves. Indeed, as a Grothendieck category, Mod (k)
admits enough injectives.

(ii) Let s” € T'(U; F"), and let {V;}'_; € Cov(U) be such that there exists s, €
I'(V;; F) whose image is s”|y;,. Forn > 2 on V1NV, s1—s4 defines a section of T'(ViNVa; F)
which extends to s’ € T'(U; F’) since F’ is T-flabby. Replace s; with s; — s’ (identifying
s’ with it’s image in F'). We may suppose that s; = sy on V3 N Va. Then there exists
t € T'(V3 UV;, F) such that t|y, = s;, ¢ = 1,2. Thus the induction proceeds.

(iii) Let U,V € T with V D U and let us consider the diagram below

0 ——=T(V;F') —=T(V; F) —=T(V; F") —0

S
0—T(U; F') —=T(U;F) —=T(U; F") —=0
where the row are exact by (ii) and the morphism « is surjective since F’ is 7-flabby. It

follows from the five lemma that ( is surjective if and only if v is surjective. O

THEOREM 2.3.6. Let F' € Mod(kr). Then the following hold:

(i) F is T-flabby if and only if the functor Homy, (e, F) is exact on Coh(T).
(ii) If F is T-flabby then the functor Homy., (e, F) is exact on Coh(T).

PRrROOF. (i) is a consequence of a general result of homological algebra (see Theo-
rem 8.7.2 of [29]). For (ii), let F € Mod(k7) be T-flabby. There is an isomorphism of
functors

I'(U;Homy, (e, F)) ~ Homy, ((e)y, F)

for each U € 7. By Theorem 2.2.6 and (i) the functor Homy, ((e)y, F) is exact on
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Coh(7) and so the functor Homy, (e, F') is also exact on Coh(7T). O

THEOREM 2.3.7.  Let G € Coh(7). Then the following hold:

(i) The family of T -flabby sheaves is injective with respect to the functor Homy, (G, e).
(ii) The family of T -flabby sheaves is injective with respect to the functor Homy, (G, e).

PROOF. (i) Let G € Coh(T). Let 0 — F/ — F — F” — 0 be an exact sequence
in Mod(k7) and assume that F’ is 7-flabby. We have to show that the sequence

0 — Homy, (G, F') — Homg, (G, F) — Homy, (G, F") — 0
is exact.
There is an epimorphism ¢ : @,.; ky, — G where [ is finite and U; € T for each
i € I. The sequence 0 — kerp — @, ;ky, — G — 0 is exact. We set for short
G1 =kerp and Go = @;; ku,. We get the following diagram where the first column is
exact by Theorem 2.3.6 (i)

0 0 0

0 — Homy, (G, F') — Homy,, (G, F) — Homy,, (G, F"") ——=0

0—— Hoka (G27 F/) E—— Hoka (G27 F) E—— Hoka (GQ, F”) —0

0 —— Homy, (G4, F') —— Homy,, (G4, F) — Homy, (G1, F"") ——=0

0 0 0

The second row is exact by Proposition 2.3.5 (ii), hence the top row is exact by the
snake lemma.

(ii) Let G € Coh(7). It is enough to check that for each U € 7 and each exact
sequence 0 — F/ — F — F" — 0 with F’ T-flabby, the sequence

0 — T(U;Homy, (G, F")) — T(U;Homy, (G, F)) — T(U; Homg, (G, F")) — 0
is exact. We have
U, Homy, (G, e)) ~ Homy, (Gy, ),

and, by (i) and the fact that Gy € Coh(7) (Theorem 2.2.6 (ii)), 7-flabby objects are
injective with respect to the functor Homy, (Gy,e) for each G € Coh(7), and for each
UeT. t
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ProPOSITION 2.3.8. Let F € Mod(kr). Then F is T-flabby if and only if
Homy, (G, F) is T-flabby for each G € Coh(T).

PROOF. Suppose that F is T-flabby, and let G € Coh(7). We have

Homy, (o, Homy, (G, F)) ~ Homy,, (o ®G, F)
kT

and Homy, (¢ @), G, ) is exact on Coh(7) by Theorems 2.2.6 (ii) and 2.3.6 (i).

Suppose that Homyg, (G, F) is T-flabby for each G € Coh(7). Let U,V € T with
V 2 U. For each W € T the morphism I'(V;Tw F) — T'(U; Tw F) is surjective. Hence
the morphism

NV, F)~T(V;T'vF)
—T(U;TyF)
~T(U;F)
is surjective. O

Let us consider the following subcategory of Mod(kr):
Px, ={G € Mod(kr); G is Homy,, (e, F)-acyclic for each F' € Fx_},

where Fx, is the family of T-flabby objects of Mod (k7).
This category is generating. In fact if {U;}jes € 7, then P, ;ku, € Px, by
Theorem 2.3.7 (and the fact that

ITHomy, (e, ) >~ Homy,, (@ o)

and products are exact). Moreover Px, is stable by ¢ ), K, where K € Coh(7). In
fact it G € Px, and F' € Fx, we have

Homy, (G R K, F) ~ Homy, (G, Homy,, (K, F))

kT

and Homy, (K, F) is T-flabby by Proposition 2.3.8. In particular, if G € Px, then
Gy € Px, for every U € Op(X7).

THEOREM 2.3.9.  The category (P;’;,}"XT) is injective with respect to the functors
Homy,, (o, 0) and Homy, (e, e).

ProOOF. (i) Let G € Px, and consider an exact sequence 0 — F' — F — F" — 0
with F’ T-flabby. We have to prove that the sequence

0 — Homy, (G, F') — Homy, (G, F) — Homy, (G, F") — 0
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is exact. Since the functor Homyg, (G, e) is acyclic on 7-flabby sheaves we obtain the
result.

Let F be T-flabby, and let 0 — G’ — G — G” — 0 be an exact sequence on Px., .
Since the objects of Px, are Homy, (e, F')-acyclic the sequence

0 — Homy, (G”, F) — Homg, (G, F) — Homy, (G', F) — 0

is exact.
(ii) Let G € Px,, and let 0 — F/ — F — F” — 0 be an exact sequence with F’
T-flabby. We shall show that for each U € 7 the sequence

0 — T(U;Homy, (G, F")) — T(U;Homy, (G, F)) — T(U; Homg, (G, F")) — 0
is exact. This is equivalent to show that for each U € 7 the sequence
0 — Homy, (Gy, F') — Homy, (Gy, F) — Homy, (Gy, F"') — 0

is exact. This follows since Gy € Px, as we saw above. The proof of the exactness in
PY. is similar. O

PROPOSITION 2.3.10.  Let F € Mod(kz). The following assumptions are equivalent

(i) F is T-flabby,
(ii) F is Homg, (G, e)-acyclic for each G € Coh(7T),
(iii) R! Homy, (ky\u, ) = 0 for each U,V € T.

PROOF. (i) = (ii) follows from Theorem 2.3.7, (ii) = (iii) setting G = ky\y with
U,V € T, (iii) = (i) since if R Homy., (ky\y, F') = 0 for each U,V € T with V' 2 U,
then the restriction I'(V; F') — T'(U; F') is surjective. O

Let X,Y be two topological spaces and let 7 C Op(X), 7’ C Op(Y) satisfy (2.1).
Let f: X — Y be a continuous map. If f~1(7”) C 7 then f defines a morphism of sites
Fi Xy — Yo

ProrosiTiON 2.3.11.  Let f: X7 — Y7+ be a morphism of sites. T -flabby sheaves
are injective with respect to the functor f.. The functor f, sends T -flabby sheaves to
T'-flabby sheaves.

PrROOF. Let us consider V € 7. There is an isomorphism of functors T'(V; f.e) ~
T'(f~1(V);e). It follows from Proposition 2.3.5 that 7-flabby are injective with respect
to the functor T'(f~(V);e) for any V € 7".

Let F be T-flabby and let U,V € 7’ with V D U. Then the morphism

D(Vi foF) =T(fH(V); F) = D(f 7 (U); F) = T(U; f.F)

is surjective. U
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2.4. 7T-sheaves on locally weakly quasi-compact spaces.
Assume that X is a locally weakly quasi-compact space.

LEMMA 2.4.1.  For each U € Op°(X) there exists V € T such thatU CCV CC X.

PROOF. Since X is locally weakly quasi-compact we may find W € Op®(X) such
that U cC W. By (2.1) (i) we may find a covering {W;};c; of X with W; € T and
W; CC X for each i € I. Then there exists a finite family {W;}_, whose union

V= U§:1 W, contains W. Then V€ T and U CCV CC X. O

When X is locally weakly quasi-compact we can construct a left adjoint to the

functor p~1.

PROPOSITION 2.4.2. Let F € Mod(k7), and let U € Op(X). Then

DU;p~'F)~ lim  T(ViF)
VCCUVET

PrROOF. By Theorem 2.2.8 we may assume F' = limp, F;, with F; € Coh(7T). Then
p1F ~ limp~'p,F; ~ limF;. We have the chain of isomorphisms
- -

K2 K3

L(U;p~'F)~ lim  lim D(W;p~'F) =~ lim  lim D(W;limp~'p. F})

VCcCcUVeTVCcCcw VCCUVeETVCCW i

~ 1 . Lo—1 N\ o~ : : .1 )

~ lim  lim D(W;p7 pk3) = lim  lm (V307" pu )

VCCUVeTVCCW,i VCCcUVET i

~  lim lim N(VipFy) =~ lim  D(V;F),
VCCUVeT i VCccUVeT

where the first and the fourth isomorphisms follow from Lemma 1.2.16, the third iso-
morphism is a consequence of Corollary 1.2.13, and the last isomorphism follows from
Proposition 2.1.7. O

PROPOSITION 2.4.3. The functor p~! admits a left adjoint, denoted by p1. It
satisfies

(i) for F € Mod(kx) and U € T, p/F is the sheaf associated to the presheaf U +—

HmI(V; F),
—
vccv
(ii) For U € Op(X) one has prky ~  lim  ky.

VccUu,veT
PROOF. Let F € Psh(kr) be the presheaf U — lim I'(V;F), and let G €

uccv
Mod(k7). We will construct morphisms

~ 3
Hompsh(kT) (F, G) <T Homkx (F, p_lG) .
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To define &, let ¢ : F — G and U € Op(X). Then the morphism &(¢)(U) : F(U) —
p~LG(U) is defined as follows

F{U)~ lim lim F(W) 2 lim G(V)~p lGU).
— — —
VCccUvVeTvVCccw vccuveT

On the other hand, let ¢ : F — p~'G and U € 7. Then the morphism 9(¢)(U) :
F(U) — G(U) is defined as follows

FU)~ lm FV)-% lim p'GV) - GU).
UCCcVveT UCCcVeT

By construction one can check that the morphism £ and ¢ are inverse to each others.
Then (i) follows from the chain of isomorphisms

Hompsh(kT)(ﬁ, @) ~ Homy,, (F**, Q) ~ Homy, (F**, Q).
To show (ii), consider the following sequence of isomorphisms

Homy, (piky, F) ~ Homy, (ky,p ' F)
~ m HOI’DkT (kv, F)
VccUveT
~ Homy,, ( lim kv, F),
Vccu,veT
where the second isomorphism follows from Proposition 2.4.2. O

PROPOSITION 2.4.4.  The functor p is exact and commutes with lim and ).
a—

Proor. It follows by adjunction that p; is right exact and commutes with lim, so
let us show that it is also left exact. With the notations of Proposition 2.4.3, let F' €
Mod(kx), and let F € Psh(kr) be the presheaf U — lim T'(V;F). Then pF ~ F*++,

uccv
and the functors F — F and G — G+ are left exact.
Let us show that py commutes with ). Let F,G € Mod(kx), the morphism

lim F(V)) lim G(V) - lim (F(V)®G(V))
uccv k UCCV vccv k

defines a morphism in Mod (k)
P!F®PIG — P (F®G)
kT k’X

by Proposition 2.4.3 (i). Since p; commutes with lim we may suppose that F' = ky and
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G = ky and the result follows from Proposition 2.4.3 (ii). O

PROPOSITION 2.4.5.  The functor py is fully faithful. In particular one has p~topy ~
id. Moreover, for F' € Mod(kx) and G € Mod(k7) one has

p *Homuy, (0 F,G) ~ Homy, (F,p~*G).
Proor. For F,G € Mod(kx) by adjunction we have
Homy, (p~'pF, G) ~ Homy, (F, p~ ' p.G) ~ Homy,, (F, Q).
This also implies that py is fully faithful, in fact
Homy,, (0 F, pG) ~ Homy, (F, p~ ' pG) =~ Homy, (F, G).
Now let K, F' € Mod(kx) and G € Mod(kr), we have
Homy, (K, p~"Homy, (pF,G)) ~ Homy, (0 K, Homy., (0 F, G))

~ Homy, (p!K®ng, G)
kT
~ Homy, (p;(K@F), G)

~ Homy, <K®F, p_lG)
kx
~ Homy, (K, Homy, (F, p~'Q)). O

Finally let us consider sheaves of rings in Mod(k7). If A is a sheaf of rings in
Mod(kx), then p.A and p1A are sheaves of rings in Mod (k7).
Let A be a sheaf of unitary k-algebras on X, and let A € Psh(kz) be the presheaf

defined by the correspondence 7 > U + lim I'(V;A). Let F' € Psh(kr), and assume

uccv
that, for V. C U, with U,V € T, the following diagram is commutative:

NU; A ®,L(U; F) —=T(U; F)

N

rNV;A)Q,T(V; F) —=T(V; F).

In this case one says that F' is a presheaf of A-modules on 7.

_PROPOSITION 2.4.6.  Let A be a sheaf of k-algebras on X, and let F' be a presheaf
of A-modules on X7. Then F™ € Mod(p.A).
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Proor. Let U € 7, and let r € lim I'(V;.A). Then r defines a morphism
vccv
lim I'(V;A) @, I'(W; F) — I(W; F) foreach W C U, W € T, hence an endomorphism
vccv
of (F*)|uy, =~ (Fluy, )*". This morphism defines a morphism of presheaves A —

End(F*+) and AT ~ p.A by Proposition 2.4.3. Then F*+ € Mod(p..A). O

PROPOSITION 2.4.7.  Assume that X is locally weakly quasi-compact. Let F €
Mod(kt) be T -flabby. Then p~1F is c-soft.

PRrROOF. Recall that if U € Op(X) then T'(U;p~*F) ~ lim I'(V; F), where V €
—

vccu
T. Let W € Op(X), W cC X. It follows from Lemma 2.4.1 that every U’ DD W,

U’ € Op(X) contains U € 7 such that U DD W. Hence

lim[(U'; F) ~ limI'(U; F),
- —
U’ U

where U’ DD W, U’ € Op(X) and U € 7 such that U DD W. We have the chain of

isomorphisms

WmI(U; p~'F) ~lim lim T(V;F)

U U
~ limI"

—

U
where U € 7, U DD W and V € 7. The first isomorphism follows from Proposition
2.4.2 and second one follows since for each U DD W, U € T, there exists V € 7 such

that U DDV DD W.

Let VW € Op°(X) with V. CcC W. Since F is 7-flabby and filtrant induc-
tive limits are exact, the morphism h_H}lF(W/;p_lF) ~ h_r)nF(W’;F) — h_H}lF(U;F) ~

w w U
Lim(U; p~F), where W/, U € 7, W' D> W, U DD V, is surjective. Hence

D(W;p~'F) — lim T(U;p~'F) is surjective. O
UDDV

2.5. 7T .c-sheaves.
Let X be a 7-space and let

Tioe ={U € Op(X): UNW €T for every W € T}. (2.3)

Clearly, 0, X € Tjoe, T C Tjo. and T, is closed under finite intersections.

DEFINITION 2.5.1.  'We make the following definitions:

e asubset S of X is a 7j,.-subset if and only if SNV is a 7-subset for every V € T;
e a closed (resp. open) Tj,.-subset is a 7j,.-subset which is closed (resp. open) in X;
e a 7;,.~connected subset is a 7j,.-subset which is not the disjoint union of two proper
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clopen 7j,.-subsets.

Observe that if {S;}; is a family of 7j,.-subsets such that {i : S; N W # (J} is finite
for every W € T, then the union and the intersection of the family {S;}; is a Tj,.-subset.
Also the complement of a 7;,.-subset is a 7j,.-subset. Therefore the 7;,.-subsets form a
Boolean algebra.

EXAMPLE 2.5.2. Let us see some examples of 7;,. subsets:

(i) Let 7 be the family of Example 2.1.2. Then the 7j,. subsets are the locally semi-
algebraic subsets of X.

(ii) Let 7 be the family of Example 2.1.3. Then the 7j,. subsets are the subanalytic
subsets of X.

(iii) Let 7 be the family of Example 2.1.4. Then the 7j,. subsets are the conic suban-
alytic subsets of X.

(iv) Let 7 be the family of Example 2.1.5. Then the 7j,. subsets are the locally
definable subsets of X.

One can endow 7j,. with a Grothendieck topology in the following way: a family
{U;}i in Tpoc is a covering of U € T, if for any V' € 7, there exists a finite subfamily
covering U N'V. We denote by X7, . the associated site, write for short k7, instead of
kXTzoc’ and let

X

P
Ploc
X

loc

Xr

be the natural morphisms of sites.

REMARK 2.5.3. The forgetful functor, induced by the natural morphism of sites
X7,. — X7, gives an equivalence of categories

Mod(kfm) 5 MOd(kT).

The quasi-inverse to the forgetful functor sends F' € Mod(k7) to Fio. € Mod(k7,.) given
by Fioe(U) = @F(U NV) for every U € Tjpe.
veT
Therefore, we can and will identify Mod (k) with Mod (k7 ) and apply the previous

results for Mod(k7) to obtain analogues results for Mod (k7).

Recall that F' € Mod (k) is T-flabby if the restriction I'(V; F') — IT'(U; F) is surjec-
tive for any U,V € 7 with V O U. Assume that

X7, has a countable cover {V,,} ey with V,, € T, ¥n € N. (2.4)

PrOPOSITION 2.5.4. Let F' € Mod(kr). Then F is T-flabby if and only if the
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restriction T'(X; F) — T'(U; F) is surjective for any U € Tjpe.

PROOF. Suppose that F is T-flabby. Consider a covering {V,, }nen of X7, satis-
fying (2.4). Set U, =U NV, and S,, =V, \ U,. All the sequences

0—ky, = kv, = ks, —0

are exact. Since F' is 7-flabby the sequence
0 — Homy, (ks, , F) — Homy, (kv, , F') — Homy,, (ky, , F) — 0

is exact. Moreover the morphism Homy, (ks, . ,,F) — Homy, (ks,, F) is surjective for
all n since S, = S, 1 NV, is open in S,,11. Then by Proposition 1.12.3 of [26] the
sequence

0 — lim Homy (ks,,, ') — lim Homy, (kv,,, ) — lim Homg, (ku,,, F) — 0

n n n

is exact. The result follows since limI'(Uy; G) ~ I'(U; G) for any G € Mod(kr) and

n
U € T;,.. The converse is obvious. O

PROPOSITION 2.5.5.  The full additive subcategory of Mod(kr) of T -flabby object
is T(U; e)-injective for every U € Tjyc.

Proor. Take an exact sequence 0 — F' — F — F” — 0, and suppose that F’ is
T-flabby. Consider a covering {V;, }nen of X7, satisfying (2.4). Set U, = U NV,. Al
the sequences

0—=T(Uy; F') - T(U,; F) > T(Up; F") — 0

are exact by Proposition 2.3.5, and the morphism I'(U, 1; F') — T'(Uy; F') is surjective
for all n. Then by Proposition 1.12.3 of [26] the sequence

0 — iml'(Uy; F') — UmD(Uy; F) — im0 (Uy; F”) — 0
P — P

n n n

is exact. Since imI'(U,; G) ~ T'(U; G) for any G € Mod(kz) the result follows. O
P

n

Let X,Y be two topological spaces and let 7 C Op(X), 7/ C Op(Y) satisfy (2.1).
Let f: X — Y be a continuous map. If f~(7.) C Tj,. then f defines a morphism of
sites f : )(']‘loC — YTl/oc

COROLLARY 2.5.6.  Let f: X7, — Yz, be a morphism of sites. T-flabby sheaves
are injective with respect to the functor f.. The functor f. sends T -flabby sheaves to
T’ -flabby sheaves.
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PROOF. Let us consider V' € 7,/ .. There is an isomorphism of functors I'(V; f.e) ~
L(f~%(V);e). It follows from Proposition 2.5.5 that 7-flabby are injective with respect
to the functor I'(f~(V);e) for any V € 7/

loc®

Let F be T-flabby and let U,V € 7’ with V > U. Then the morphism
D(Vi fF) =TD(f71(V); F) = D(f7H(U); F) = T(U; f.F)

is surjective by Proposition 2.5.4. O

REMARK 2.5.7.  An interesting case is when X is a locally weakly quasi-compact
space and there exists S C Op(X) with 7 ={U € § : U CC X} satisfying (2.1).

Assume that X satisfies (1.7). Then X has a covering {V;,}nen of X such that
Vi € T and V,, CC V41 for each n € N. By Lemma 1.3.5 we may find a covering
{Un}nen of X such that U, € Op°(X) and U,, CC U,4; for each n € N. By Lemma
2.4.1 for each n € N there exists V,, € 7 such that U, CCV,, CC Uy, 41.

In this situation Proposition 2.5.4 and 2.5.5 are satisfied.

2.6. 7T-spectrum.

Let X be a topological space and let P(X) be the power set of X. Consider a
subalgebra F of the power set Boolean algebra (P(X),C). Then F is closed under
finite unions, intersections and complements. We refer to [25] for an introduction to this
subject.

The Boolean algebra F has an associated topological space, that we denote by S(F),
called its Stone space. The points in S(F) are the ultrafilters  on F. The topology on
S(F) is generated by a basis of open and closed sets consisting of all sets of the form

A={aecS(F): Aca},

where A € F. The space S(F) is a compact totally disconnected Hausdorff space.
Moreover, for each A € F, the subspace A is Hausdorff and compact.

DEFINITION 2.6.1.  Let X be a 7-space and let  be the Boolean algebra of 7jo.-
subsets of X (i.e. Boolean combinations of elements of 7;,.). The topological space X1
is the data of:

e the points of S(F) such that U € « for some U € T,
e a basis for the topology is given by the family of subsets {U : U € T }.

We call )N(T the 7-spectrum of X.

With this topology, for U € 7, the set U is quasi-compact in )N(T since it is quasi-
compact in S(F). Hence )?T is locally weakly quasi-compact with a basis of quasi-
compact open subsets given by {(7 : U € T}. Note that if X € T, then X7 = X which
is a spectral topological space.

REMARK 2.6.2.  We may also define Xr by means of prime filters of elements of
7. This is because 7 -subsets can be written as finite unions and intersections of 7-open
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and 7 -closed subsets. In this situation an ultrafilter is determined by the prime filter
contained in it.

PROPOSITION 2.6.3.  Let X be a T -space. Then there is an equivalence of categories
Mod(kr) ~ Mod(kg_).

PrOOF. Let us consider the functor
T — Op()Z'T)
U U.
This defines a morphism of sites (¢ : Xr — Xr. Indeed, if V€ T, S € Cov(V),
then S = {V; : V; € S} € Cov(V). Let F € Mod(kr) and consider the presheaf
(TF € Psh(kg ) defined by (TF(U) = lim F(V). In particular, if U =V, V € T,

Ucv
(TF(U) ~ F(V). In this case, by Corollary 1.2.11 we have the isomorphisms

(R(V) = (TR (V) ~ ¢ F(V) = F(V).
Then for V € 7 we have
GCTIF(V) = CTYF(V) = F(V).

This implies ¢, o (™! ~id. On the other hand, given o € X7 and G € Mod(k;(T),

(C'6Ga~ lim (T'GGOD)
Usa,UeT
lim  C.G(U)

Usa,UeT

1

1

lim G(U)
e
Usa,UeT
~ G,

since {ﬁ : U € T} forms a basis for the topology of X7. This implies (1o (¢, ~id. O

EXAMPLE 2.6.4. Let us see some examples of 7 -spectra.

(i) When 7 is the family of Example 2.1.2 the T-spectrum X7 of X is the semi-
algebraic spectrum of X ([10]). When X is semialgebraic, then X7 = X, the
semialgebraic spectrum of X from [9].

(ii) When 7 is the family of Example 2.1.3 the 7-spectrum X7 of X is the subanalytic
spectrum of X. The equivalence Mod(kg ) ~ Mod(kx,,) was used in [38] to
bound the homological dimension of subanalytic sheaves.

(iii) When 7 is the family of Example 2.1.5 the 7-spectrum X7 of X is the o-minimal
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spectrum of X. When X is a definable space, then )~(7 =X , the o-minimal
spectrum of X from [33], [19].

3. Examples.

In this section we recall our main examples of 7-sheaves. Good references on o-
minimality are, for example, the book [13] by van den Dries and the notes [8] by Coste.
For semialgebraic geometry relevant to this paper the reader should consult the work by
Delfs [10], Delfs and Knebusch [11] and the book [7] by Bochnak, Coste and Roy. For
subanalytic geometry we refer to the work [6] by Bierstone and Milmann.

3.1. The semialgebraic site.

Let R = (R, <,0,1,+,-) be areal closed field. Let X be a locally semialgebraic space
and consider the subfamily of Op(X) defined by 7 = {U € Op(X) : U is semialgebraic}.
The family 7 satisfies (2.1) and the associated site X7 is the semialgebraic site on X of
[10], [11]. Note also that: (i) the 7-subsets of X are exactly the semialgebraic subsets
of X ([7]); (ii) Zijoe = {U € Op(X) : U is locally semialgebraic} and (iii) the 7;,.-subsets
of X are exactly the locally semialgebraic subsets of X ([11]).

One can show (using triangulation of semialgebraic sets, as in [26]) that the family
Coh(7) corresponds to the family of sheaves which are locally constant on a locally semi-
algebraic stratification of X. For each F' € Mod(kr) there exists a filtrant inductive
system {F}};es in Coh(7) such that F' ~ limp. F;.

The subcategory of 7-flabby sheaves zzorresponds to the subcategory of sa-flabby
sheaves of [10] and it is injective with respect to I'(U; e), U € Op(X7) and Homy, (G, e),
G € Coh(T). Our results on 7-flabby sheaves generalize those for sa-flabby sheaves from
[10].

We call in this case the T-spectrum X7 of X the semialgebraic spectrum of X.
The points of X7 are the ultrafilters o of locally semialgebraic subsets of X such that
U € « for some U € Op(X7). This is a locally weakly quasi-compact space with basis
of quasi-compact open subsets given by {ﬁ : U € Op(X7)} and there is an equiva-
lence of categories Mod(k7) ~ Mod(kg_). When X is semialgebraic, then Xr = X,
the semialgebraic spectrum of X from [9], and there is an equivalence of categories
Mod(k7) ~ Mod(k5) ([10]).

3.2. The subanalytic site.

Let X be a real analytic manifold and consider the subfamily of Op(X) defined by
T = Op°(Xsq) = {U € Op(Xs,) : U is subanalytic relatively compact}. The family T
satisfies (2.1) and the associated site X7 is the subanalytic site X, of [28], [35]. In this
case the 7j,.-subsets are the subanalytic subsets of X.

The family Coh(7) corresponds to the family Modg_.(kx) of R-constructible sheaves
with compact support, and for each F' € Mod(kx,,) there exists a filtrant inductive
system {F;};er in Modg_(kx) such that F' ~ limp. F;.

K3
The subcategory of 7-flabby sheaves corresponds to quasi-injective sheaves and it
is injective with respect to I'(U;e), U € Op(X,) and Homg,_ (G, e), G € Modg_c(kx).
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We call in this case the 7-spectrum X1 of X the subanalytic spectrum of X and
denote it by )Z'm. The points of )Nfsa are the ultrafilters of subanalytic subsets of X
such that U € « for some U € Op®(Xs,). Then there is an equivalence of categories
Mod(kx,,) ~ Mod(kg_).

Let U € Op(Xs,) and denote by Uy, the site with the topology induced by Xs,.
This corresponds to the site X7, where 7 = Op°(X,,) N U. In this situation (2.1) is
satisfied.

3.3. The conic subanalytic site.
Let X be a real analytic manifold endowed with a subanalytic action g of R*. In
other words we have a subanalytic map

X xR — X,

which satisfies, for each t1,t; € R*:

w(x, tita) = p(p(x, 1), t2),
w(z, 1) = x.

Denote by X+ the topological space X endowed with the conic topology, i.e. U €
Op(Xg+) if it is open for the topology of X and invariant by the action of R*. We
will denote by Op®(Xg+) the subcategory of Op(Xgr+) consisting of relatively weakly
quasi-compact open subsets.

Consider the subfamily of Op(Xg+) defined by 7 = Op“(Xspr+) = {U €
Op®(Xg+) : U is subanalytic}. The family 7 satisfies (2.1) and the associated site X7 is
the conic subanalytic site X, g+. In this case the 7j,.-subsets are the conic subanalytic
subsets.

Set Coh(Xqr+) = Coh(7). For each F' € Mod(kx_ . ) there exists a filtrant
inductive system {F;};c; in Coh(X,, g+) such that F' ~ h_n>1p*Fl

The subcategory of T-flabby sheaves is injective with respect to T'(Uje), U €
Op(Xgq r+) and Homy, - (G,e), G € Coh(X,, g+)-

We call in this case the 7-spectrum X7 of X the conic subanalytic spectrum of X
and denote it by )?sa,RJf. The points of X sa, &+ are the ultrafilters o of conic subanalytic
subsets of X such that U € a for some U € Op®(X,, g+). Then there is an equivalence
of categories Mod(kx , ., ) ~ Mod(ky ).

sa,Rt+

3.4. The o-minimal site.

Let M = (M, <,(¢)ec, (f)fer, (R)rer) be an arbitrary o-minimal structure. Let
X be a locally definable space and consider the subfamily of Op(X) defined by 7 =
Op(Xaer) = {U € Op(X) : U is definable}. The family 7 satisfies (2.1) and the asso-
ciated site X7 is the o-minimal site Xger of [19]. Note also that: (i) the 7-subsets of
X are exactly the definable subsets of X (by the cell decomposition theorem in [13],
see [19, Proposition 2.1]); (ii) Zjo. = {U € Op(X) : U is locally definable} and (iii) the
Tioc-subsets of X are exactly the locally definable subsets of X.
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Set Coh(Xger) = Coh(T). For each F € Mod(kx,,,) there exists a filtrant inductive
system {F;};c; in Coh(Xger) such that F ~ limp. F;.

The subcategory of T-flabby sheaves (or definably flabby sheaves) is injective with
respect to I'(Use), U € Op(Xaer) and Homy (G, o), G € Coh(Xget).

We call in this case the 7-spectrum X7 of X the definable or o-minimal spectrum
of X and denote it by )N(def. The points of )}def are the ultrafilters o of the Boolean
algebra of locally definable subsets of X such that U € « for some U € Op(Xgqef). This is
a locally weakly quasi-compact space with basis of quasi-compact open subsets given by

{U : U € Op(Xaer)} and there is an equivalence of categories Mod(kx,,,) ~ Mod(kg, ).

When X is definable, then Xeaet = X , the o-minimal spectrum of X from [33], [19], and
there is an equivalence of categories Mod(kx,.,) ~ Mod(kg) ([19]).

Finally observe that since locally semialgebraic spaces are locally definable spaces in
a real closed field and real closed fields are o-minimal structures and, relatively compact
subanalytic sets are definable sets in the o-minimal expansion of the field of real numbers
by restricted globally analytic functions, both the semialgebraic and subanalytic sheaf
theory are special cases of the o-minimal sheaf theory.
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