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Sheaves on T -topologies
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Abstract. The aim of this paper is to give a unifying description of vari-
ous constructions of sites (subanalytic, semialgebraic, o-minimal) and consider
the corresponding theory of sheaves. The method used applies to a more gen-
eral context and gives new results in semialgebraic and o-minimal sheaf theory.

Introduction.

Sheaf theory in some tame contexts such as semi-algebraic geometry ([10]), sub-
analytic geometry ([28], [35]) and o-minimal geometry ([19]) has had recently different
applications in various fields of mathematics such as model theory [4], [5], [20], analy-
sis [28], [30], [31], [36] and representation theory [1], [2], [37]. Each one of the above
theories is very useful for the mentioned applications but has some elements which are
missing in the other ones: the aim of this paper is to give a unifying description of all
these various constructions (subanalytic, semialgebraic, o-minimal) using a modification
of the notion of T -topology introduced by Kashiwara and Schapira in [28].

The idea is the following: on a topological space X one chooses a subfamily T of
open subsets of X satisfying some suitable hypothesis, and for each U ∈ T one defines
the category of coverings of U as the topological coverings {Ui}i∈I ⊂ T of U admitting
a finite subcover. In this way one defines a site XT and studies the category of sheaves
on XT (called Mod(kT )). This idea was already present in [28]. However in [28], the
space X is assumed to be Hausdorff, locally compact and the elements of T are assumed
to have finitely many connected components.

The exigence to treat in a unifying way all the previous constructions, to treat also
some non Hausdorff cases (as conic subanalytic sheaves which are related to the extension
of the Fourier-Sato transform [36]) and the non-standard setting which appears naturally
in the o-minimal context (where the elements of T are totally disconnected and never
locally compact), motivates a modification of the definition of [28]. In particular, in our
definition we replace “connectedness” by the notion of T -connectedness (which in the
standard o-minimal context is connectedness). Remark that there are many important
o-minimal expansions

M = (R, <, 0, 1,+, ·, (f)f∈F )
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of the ordered field of real numbers. For example Ran, Rexp, Ran, exp, Ran∗ , Ran∗, exp see
resp., [12], [40], [15], [17], [18]. For each such we have 2κ many non-isomorphic non
standard o-minimal models for each κ > cardinality of the language. There is however a
non-standard o-minimal structure

M =
( ⋃

n∈N
R((t1/n)), <, 0, 1,+, ·, (fp)p∈R[[ζ1,...,ζn]]

)

which does not came from a standard one ([32], [23]).
With this more general notion of T -space X we study the category of sheaves on

the site XT . The natural functor of sites ρ : X → XT induces relations between the
categories of sheaves on X and XT , given by the functors ρ∗ and ρ−1. The functor
ρ∗ is fully faithful. Moreover when X is locally weakly quasi-compact there is a right
adjoint to the functor ρ−1, denoted by ρ!. The functor ρ! is exact, commutes with lim−→
and ⊗ and is fully faithful. We introduce the category of T -flabby sheaves (known as sa-
flabby in [10] and as quasi-injective in [35]): F ∈ Mod(kT ) is T -flabby if the restriction
Γ(U ;F ) → Γ(V ;F ) is surjective for each U, V ∈ T with U ⊇ V . We prove that T -
flabby sheaves are stable under lim−→ and ⊗ and are acyclic with respect to the functor
Γ(U ; •), for U ∈ T . More generally, if one introduces the category Coh(T ) ⊂ Mod(kX)
of coherent sheaves (i.e. sheaves admitting a finite resolution consisting of finite sums
of kUi , Ui ∈ T ), then T -flabby sheaves are acyclic with respect to HomkT (ρ∗G, •), for
G ∈ Coh(T ). Coherent sheaves also give a description of sheaves on XT : for each
F ∈ Mod(kT ) there exists a filtrant inductive family {Fi}i∈I such that F ' lim−→

i

ρ∗Fi.

In fact, we have an equivalence between the categories Mod(kT ) and Ind(Coh(T )) the
indization of the category Coh(T ).

All of the above results and methods are new in the o-minimal context and most
of them are new even in the semialgebraic case as well. On the other hand, we also
introduce a method for studying the category Mod(kT ) of sheaves on T -spaces which
is the fundamental tool in the semialgebraic and o-minimal case, namely, we prove that
as in [19] the category of sheaves on XT is equivalent to the category of sheaves on a
locally quasi-compact space X̃T , the T -spectrum of X, which generalizes the notion of
o-minimal spectrum as well as the real spectrum of commutative rings from real algebraic
geometry. In particular, sheaves on the subanalytic site are sheaves on the T -spectrum
associated to the family of relatively compact subanalytic subsets. Such a result was not
present in [28].

This theory can then be specialized to each of the examples we mentioned above:
when T is the category of semialgebraic open subsets of a locally semialgebraic space
X we obtain the constructions (and the generalizations) of results of [10], in particular,
when X is a Nash manifold, we recover the setting of [37]. When T is the category
of relatively compact subanalytic open subsets of a real analytic manifold X we obtain
the constructions and results of [28], [35]. Moreover, when T is the category of conic
subanalytic open subsets of a real analytic manifold X we obtain a suitable category
of conic subanalytic sheaves considered in [36]. Finally, when T is the category of
definable open subsets of a locally definable space X we obtain in the definable case the
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constructions of [19] and we obtain new results in the o-minimal context generalizing
those of the two previous cases.

The paper is organized in the following way. In Section 1 we introduce the locally
weakly quasi-compact spaces and study some properties of sheaves on such spaces. The
results of this section will be used in two crucial ways on the theory of sheaves on
T -spaces, they are required to show that: (i) when a T -space X is locally weakly quasi-
compact, then there is a right adjoint ρ! to the functor ρ−1 induced by the natural functor
of sites ρ : X → XT ; (ii) for a T -space X, the category of sheaves on XT is equivalent
to the category of sheaves on a locally quasi-compact space X̃T , the T -spectrum of X.
In Section 2 we introduce the T -spaces and develop the theory of sheaves on such spaces
as already described above.

1. Sheaves on locally weakly quasi-compact spaces.

Let X be a non necessarily Hausdorff topological space. One denotes by Op(X) the
category whose objects are the open subsets of X and the morphisms are the inclusions.
In this section we generalize some classical results about sheaves on locally compact
spaces. For classical sheaf theory our basic reference is [26]. We refer to [39] for an
introduction to sheaves on Grothendieck topologies.

1.1. Locally weakly quasi-compact spaces.
Definition 1.1.1. An open subset U of X is said to be relatively weakly quasi-

compact in X if, for any covering {Ui}i∈I of X, there exists J ⊂ I finite, such that
U ⊂ ⋃

i∈J Ui.

We will write for short U ⊂⊂ X to say that U is a relatively weakly quasi-compact
open set in X, and we will call Opc(U) the subcategory of Op(U) consisting of open sets
V ⊂⊂ U . Note that, given V, W ∈ Opc(U), then V ∪W ∈ Opc(U).

Definition 1.1.2. A topological space X is locally weakly quasi-compact if satis-
fies the following hypothesis for every U, V ∈ Op(X)

LWC1. Every x ∈ U has a fundamental neighborhood system {Vi} with Vi ∈ Opc(U).
LWC2. For every U ′ ∈ Opc(U) and V ′ ∈ Opc(V ) one has U ′ ∩ V ′ ∈ Opc(U ∩ V ).
LWC3. For every U ′ ∈ Opc(U) there exists W ∈ Opc(U) such that U ′ ⊂⊂ W .

Of course an open subset U of a locally weakly quasi-compact space X is also a
locally weakly quasi-compact space. Let us consider some examples of locally weakly
quasi-compact spaces:

Example 1.1.3. A locally compact topological space X is a locally weakly quasi-
compact. In this case, for U, V ∈ Op(X) we have V ⊂⊂ U if and only if V is relatively
compact subset of U .

Example 1.1.4. Let X be a topological space with a basis of quasi-compact (i.e.
each open covering admits a finite subcover) open subsets closed under taking finite
intersections. Then X is locally weakly quasi-compact and, for U, V ∈ Op(X) we have
V ⊂⊂ U if and only if V is contained in a quasi-compact subset of U . In this situation
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we have the following particular cases:

( i ) X is a Noetherian topological space (each open subset of X is quasi-compact). This
includes in particular: (a) algebraic varieties over algebraically closed fields; (b)
complex varieties (reduced, irreducible complex analytic spaces) with the Zariski
topology.

( ii ) X is a spectral topological space (in addition: (i) X is quasi-compact; (ii) T0; (iii)
every irreducible closed subset is the closure of a unique point). This includes in
particular: (a) real algebraic varieties over real closed fields; (b) the o-minimal
spectrum of a definable space in some o-minimal structure.

(iii) X is an increasing union of open spectral topological spaces Xi’s, i.e. X is the space⋃
i∈I Xi. This space X has a basis of quasi-compact open subsets closed under

taking finite intersections and in addition is: (i) not quasi-compact in general unless
I is finite; (ii) T0. This includes in particular: (a) the semialgebraic spectrum of
locally semialgebraic space; (b) more generally, the o-minimal spectrum of a locally
definable space in some o-minimal structure.

Example 1.1.5. Let E be a real vector bundle over a locally compact space Z

endowed with the natural action µ of R+ (the multiplication on the fibers). Let Ė = E\Z,

and for U ∈ Op(E) set UZ = U∩Z and U̇ = U∩Ė. Let ER+ denote the space E endowed
with the conic topology i.e. open sets of ER+ are open sets of E which are µ-invariant.
With this topology ER+ is a locally weakly quasi-compact space and, for U, V ∈ Op(ER+)

we have V ⊂⊂ U if and only if VZ ⊂⊂ UZ in Z and V̇ ⊂⊂ U̇ in ĖR+ (the later is Ė with
the induced conic topology).

1.2. Sheaves on locally weakly quasi-compact spaces.
Recall that X is a non necessarily Hausdorff topological space.

Definition 1.2.1. Let U = {Ui}i∈I and U ′ = {U ′
j}j∈J be two families of open

subsets of X. One says that U ′ is a refinement of U if for each Ui ∈ U there is U ′
j ∈ U ′

with U ′
j ⊆ Ui.

One denotes by Cov(U) the category whose objects are the coverings of U ∈ Op(X)
and the morphisms are the refinements, and by Covf (U) its full subcategory consisting
of finite coverings of U .

Given V ∈ Op(U) and S ∈ Cov(U), one sets S ∩ V = {U ∩ V }U∈S ∈ Cov(V ).

Definition 1.2.2. The site Xf on the topological space X is the category Op(X)
endowed with the following topology: S ⊂ Op(U) is a covering of U if and only if it has
a refinement Sf ∈ Covf (U).

Definition 1.2.3. Let U, V ∈ Op(X) with V ⊂ U . Given S = {Ui}i∈I ∈ Cov(U)
and T = {Vj}j∈J ∈ Cov(V ), we write T ⊂⊂ S if T is a refinement of S ∩V , and Vj ⊂ Ui

if and only if Vj ⊂⊂ Ui.

Let us recall the definitions of presheaf and sheaf on a site.
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Definition 1.2.4. A presheaf of k-modules on X is a functor Op(X)op → Mod(k).
A morphism of presheaves is a morphism of such functors. One denotes by Psh(kX) the
category of presheaves of k-modules on X.

Let F ∈ Psh(kX), and let S ∈ Cov(U). One sets

F (S) = ker
( ∏

W∈S

F (W ) ⇒
∏

W ′,W ′′∈S

F (W ′ ∩W ′′)
)

.

Definition 1.2.5. A presheaf F is separated (resp. is a sheaf) if for any U ∈
Op(X) and for any S ∈ Cov(U) the natural morphism F (U) → F (S) is a monomorphism
(resp. an isomorphism). One denotes by Mod(kX) the category of sheaves of k-modules
on X.

Let F ∈ Psh(kX), one defines the presheaf F+ by setting

F+(U) = lim−→
S∈Cov(U)

F (S).

One can show that F+ is a separated presheaf and if F is a separated presheaf, then F+

is a sheaf. Let F ∈ Psh(kX), the sheaf F++ is called the sheaf associated to the presheaf
F .

Lemma 1.2.6. For F ∈ Psh(kX), and let U ∈ Op(X). If F is a sheaf on Xf , then
for any V ∈ Opc(U) the morphism

F+(U) → F+(V ) (1.1)

factors through F (V ).

Proof. Let S ∈ Cov(U), and set S∩V = {W ∩V }W∈S . Since V ∈ Opc(U), there
is a finite refinement T f ∈ Covf (V ) of S ∩ V . Then the morphism (1.1) is defined by

F+(U) ' lim−→
S∈Cov(U)

F (S)

→ lim−→
S∈Cov(U)

F (S ∩ V )

→ lim−→
T f∈Covf (V )

F (T f )

→ lim−→
T∈Cov(V )

F (T )

' F+(V ).

The result follows because F (T f ) ' F (V ). ¤
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Corollary 1.2.7. With the hypothesis of Lemma 1.2.6, we consider two coverings
S ∈ Cov(U) and T ∈ Cov(V ). If T ⊂⊂ S, then the morphism

F+(S) → F+(T ) (1.2)

factors through F (T ). In particular, if T is finite, then the morphism (1.2) factors through
F (V ).

From now on we will assume the following hypothesis:

the topological space X is locally weakly quasi-compact. (1.3)

Lemma 1.2.8. Let U ∈ Op(X), and consider a subset V ⊂⊂ U . Then for any
Sf ∈ Covf (U) there exists T f ∈ Covf (V ) with T f ⊂⊂ Sf .

Proof. Let Sf = {Ui}. For each x ∈ U and Ui 3 x, consider a Vx,i ∈ Opc(Ui)
containing x. Set Vx =

⋂
i Vx,i, the family {Vx} forms a covering of U . Then there exists

a finite subfamily {Vj} containing V . By construction Vj ∩ V ⊂⊂ Ui whenever Vj ⊂ Ui.
¤

Lemma 1.2.9. Let F ∈ Psh(kX), and let U ∈ Op(X). If F is a sheaf on Xf , then
for any V ∈ Opc(U) the morphism

F++(U) → F++(V ) (1.4)

factors through F (V ).

Proof. Since X is locally weakly quasi-compact, there exists W ∈ Opc(U) with
V ⊂⊂ W . As in Lemma 1.2.6 we obtain a diagram

F++(U) //

²²

F++(W ) //

²²

F++(V )

lim−→
Sf∈Covf (W )

F+(Sf ) //

88rrrrrrrrrrrr
lim−→

T f∈Covf (V )

F+(T f ).

88rrrrrrrrrr

Since X is locally weakly quasi-compact then by Lemma 1.2.8 for any Sf ∈ Covf (W )
there exists T f ∈ Covf (V ) with T f ⊂⊂ Sf . By Corollary 1.2.7 the morphism

F+(Sf ) → F+(T f )

factors through F (T f ) ' F (V ). Then the morphism

lim−→
Sf∈Covf (W )

F+(Sf ) → lim−→
T f∈Covf (V )

F+(T f )
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factors through F (V ) and the result follows. ¤

Corollary 1.2.10. Let F ∈ Psh(kX). If F is a sheaf on Xf , then:

( i ) for any V ∈ Opc(X) one has the isomorphism lim−→
U⊃⊃V

F (U) ∼→ lim−→
U⊃⊃V

F++(U).

( ii ) for any U ∈ Op(X) one has the isomorphism lim←−
V⊂⊂U

F (V ) ∼→ lim←−
V⊂⊂U

F++(V ).

Proof. (i) By Lemma 1.2.9 for each U ∈ Op(X) with U ⊃⊃ V we have a com-
mutative diagram

F++(U) //

%%LLLLLLLLLL
F++(V )

F (U)

OO

// F (V )

OO

This implies that the identity morphism of lim−→
U⊃⊃V

F (U) factors through lim−→
U⊃⊃V

F++(U).

On the other hand this also implies that the identity morphism of lim−→
U⊃⊃V

F++(U) factors

through lim−→
U⊃⊃V

F (U). Then lim−→
U⊃⊃V

F (U) ∼→ lim−→
U⊃⊃V

F++(U).

The proof of (ii) is similar. ¤

Corollary 1.2.11. Let X be a quasi-compact and locally weakly quasi-compact
space, and let F ∈ Psh(kX). If F is a sheaf on Xf , then the natural morphism

F (X) → F++(X) (1.5)

is an isomorphism.

Proof. It follows immediately from Corollary 1.2.10 (i) with V = X. ¤

Let {Fi}i∈I be a filtrant inductive system in Mod(kX). One sets

“lim−→”
i

Fi = inductive limit in the category of presheaves,

lim−→
i

Fi = inductive limit in the category of sheaves.

Recall that lim−→
i

Fi = (“lim−→”
i

Fi)++.

Proposition 1.2.12. Let {Fi}i∈I be a filtrant inductive system in Mod(kX) and
let U ∈ Op(X). Then for any V ∈ Opc(U) the morphism

Γ(U ; lim−→
i

Fi) → Γ(V ; lim−→
i

Fi)
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factors through lim−→
i

Γ(V ;Fi).

Proof. By Lemma 1.2.9 it is enough to show that “lim−→”
i

Fi is a sheaf on Xf . Let

U ∈ Op(X) and S ∈ Covf (U). Since lim−→
i

commutes with finite projective limits we obtain

the isomorphism (“lim−→”
i

Fi)(S) ' lim−→
i

Fi(S). The result follows because Fi ∈ Mod(kX) for

each i ∈ I. ¤

Corollary 1.2.13. Let {Fi}i∈I be a filtrant inductive system in Mod(kX).

( i ) For any V ∈ Opc(X) one has the isomorphism lim−→
U⊃⊃V,i

Γ(U ;Fi)
∼→

lim−→
U⊃⊃V

Γ(U ; lim−→
i

Fi).

( ii ) For any U ∈ Op(X) one has the isomorphism lim←−
V⊂⊂U

lim−→
i

Γ(V ;Fi)
∼→

lim←−
V⊂⊂U

Γ(V ; lim−→
i

Fi).

Proof. It follows from Corollary 1.2.10 with F = “lim−→”
i

Fi. ¤

Corollary 1.2.14. Let X be a quasi-compact and locally weakly quasi-compact
space. Then the natural morphism

lim−→
i

Γ(X;Fi) → Γ(X; lim−→
i

Fi)

is an isomorphism.

Proof. It follows from Corollary 1.2.11 with F = “lim−→”
i

Fi. ¤

Example 1.2.15. Let us consider the formula

lim−→
U⊃⊃V,i

Γ(U ;Fi)
∼→ lim−→

U⊃⊃V

Γ(U ; lim−→
i

Fi) (1.6)

( i ) Let X be a Noetherian space and let V ∈ Op(X). Then Γ(V ;F ) ' lim−→
U⊃⊃V

Γ(U ;F ),

since every open set is quasi-compact and (1.6) becomes lim−→
i

Γ(V ;Fi) ' Γ(V ; lim−→
i

Fi).

( ii ) Assume that X has a basis of quasi-compact open subsets and let V ∈ Opc(X).
Then V is contained in a quasi-compact open subset of X and lim−→

U⊃⊃V

Γ(U ;F ) '

lim−→
W⊃V

Γ(W ;F ), where W ranges through the family of quasi-compact subsets of X.

(iii) Let X be a locally compact space and let V ∈ Opc(X). Then Γ(V ;F ) '
lim−→

U⊃⊃V

Γ(U ;F ), and (1.6) becomes lim−→
i

Γ(V ;Fi) ' Γ(V ; lim−→
i

Fi).



Sheaves on T -topologies 355

(iv) Let ER+ be a vector bundle endowed with the conic topology, and let V ∈
Opc(ER+). Then lim−→

U⊃⊃V

Γ(U ;F ) ' Γ(K;F ), where K is the union of the closures

of VZ in Z and V̇ in ĖR+ , and (1.6) becomes lim−→
i

Γ(K;Fi) ' Γ(K; lim−→
i

Fi).

Lemma 1.2.16. Let F ∈ Psh(kX). Then we have the isomorphism

lim←−
V⊂⊂X

lim−→
V⊂⊂W

F (W ) ∼→ lim←−
V⊂⊂X

F (V ).

Proof. The result follows since for each V ∈ Opc(X) there exists W ∈ Opc(X)
such that V ⊂⊂ W since X is locally weakly compact. Let U, V ⊂⊂ X such that
U ⊃⊃ V . The restriction morphism F (U) → F (V ) factors through lim−→

W⊃⊃V

F (W ). Taking

the projective limit we obtain the result. ¤

Remark 1.2.17. The notion of locally weakly quasi-compact can be extended to
the case of a site, by generalizing the hypothesis LWC1–LWC3. For our purpose we are
interested in the topological setting and we refer to [34] for this approach.

1.3. c-soft sheaves on locally weakly quasi-compact spaces.
Let X be a locally weakly quasi-compact space, and consider the category Mod(kX).

Definition 1.3.1. We say that a sheaf F on X is c-soft if the restriction morphism
Γ(W ;F ) → lim−→

U⊃⊃V

Γ(U ;F ) is surjective for each V, W ∈ Opc(X) with V ⊂⊂ W .

It follows from the definition that injective sheaves and flabby sheaves are c-soft.
Moreover, it follows from Corollary 1.2.13 that filtrant inductive limits of c-soft sheaves
are c-soft.

Proposition 1.3.2. Let 0 → F ′ → F → F ′′ → 0 be an exact sequence in
Mod(kX), and assume that F ′ is c-soft. Then the sequence

0 → lim−→
U⊃⊃V

Γ(U ;F ′) → lim−→
U⊃⊃V

Γ(U ;F ) → lim−→
U⊃⊃V

Γ(U ;F ′′) → 0

is exact for any V ∈ Opc(X).

Proof. Let s′′ ∈ lim−→
U⊃⊃V

Γ(U ;F ′′). Then there exists U ⊃⊃ V such that s′′ is

represented by s′′U ∈ Γ(U ;F ′′). Let {Ui}i∈I ∈ Cov(U) such that there exists si ∈ Γ(Ui;F )
whose image is s′′U |Ui for each i. There exists W ∈ Opc(U) with W ⊃⊃ V , a finite covering
{Wj}n

j=1 of W and a map ε : J → I of the index sets such that Wj ⊂⊂ Uε(j). We may
argue by induction on n. If n = 2, set Ui = Uε(i), i = 1, 2. Then (s1 − s2)|U1∩U2 belongs
to Γ(U1 ∩ U2;F ′), and its restriction defines an element of lim−→

W ′⊃⊃W1∩W2

Γ(W ′;F ′), hence

it extends to s′ ∈ Γ(U ;F ′). By replacing s1 with s1 − s′ on W1 we may assume that
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s1 = s2 on W1 ∩ W2. Then there exists s ∈ Γ(W1 ∪ W2;F ) with s|Wi
= si. Thus the

induction proceeds. ¤

Proposition 1.3.3. Let 0 → F ′ → F → F ′′ → 0 be an exact sequence in
Mod(kX), and assume F ′, F c-soft. Then F ′′ is c-soft.

Proof. Let V, W ∈ Opc(X) with V ⊂⊂ W and let us consider the diagram below

Γ(W ;F )

α
²²

// Γ(W ;F ′′)

γ
²²

lim−→
U⊃⊃V

Γ(U ;F ) β // lim−→
U⊃⊃V

Γ(U ;F ′′).

The morphism α is surjective since F is c-soft and β is surjective by Proposition 1.3.2.
Then γ is surjective. ¤

Proposition 1.3.4. The family of c-soft sheaves is injective respect to the functor
lim−→

U⊃⊃V

Γ(U ; •) for each V ∈ Opc(X).

Proof. The family of c-soft sheaves contains injective sheaves, hence it is cogen-
erating. Then the result follows from Propositions 1.3.2 and 1.3.3. ¤

Assume the following hypothesis

X has a countable cover {Un}n∈N with Un ∈ Opc(X), ∀n ∈ N. (1.7)

Lemma 1.3.5. Assume (1.7). Then there exists a covering {Vn}n∈N of X such that
Vn ⊂⊂ Vn+1 and Vn ∈ Opc(X) for each n ∈ N.

Proof. Let {Un}n∈N be a countable cover of X with Un ∈ Opc(X) for each
n ∈ N. Set V1 = U1. Given {Vi}n

i=1 with Vi+1 ⊃⊃ Vi, i = 1, . . . , n − 1, let us construct
Vn+1 ⊃⊃ Vn. Consider x /∈ Vn. Up to take a permutation of N we may assume x ∈
Un+1. Since X is locally weakly quasi-compact there exists Vn+1 ∈ Opc(X) such that
Vn ∪ Un+1 ⊂⊂ Vn+1. ¤

Proposition 1.3.6. Assume (1.7). Then the category of c-soft sheaves is injective
respect to the functor Γ(X; •).

Proof. Take an exact sequence 0 → F ′ → F → F ′′ → 0, and suppose F ′ c-
soft. By Lemma 1.3.5 there exists a covering {Vn}n∈N of X such that Vn ⊂⊂ Vn+1 (and
Vn ∈ Opc(X)) for each n ∈ N. All the sequences

0 → lim−→
Un⊃⊃Vn

Γ(Un;F ′) → lim−→
Un⊃⊃Vn

Γ(Un;F ) → lim−→
Un⊃⊃Vn

Γ(Un;F ′′) → 0
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are exact by Proposition 1.3.2, and the morphism lim−→
Un+1⊃⊃Vn+1

Γ(Un+1;F ′) →

lim−→
Un⊃⊃Vn

Γ(Un;F ′) is surjective for all n. Then by Proposition 1.12.3 of [26] the sequence

0 → lim←−
n

lim−→
Un⊃⊃Vn

Γ(Un;F ′) → lim←−
n

lim−→
Un⊃⊃Vn

Γ(Un;F ) → lim←−
n

lim−→
Un⊃⊃Vn

Γ(Un;F ′′) → 0

is exact. By Lemma 1.2.16 lim←−
n

lim−→
Un⊃⊃Vn

Γ(Un;G) ' Γ(X;G) for any G ∈ Mod(kX) and

the result follows. ¤

Example 1.3.7. Let us consider some particular cases

( i ) When X is Noetherian c-soft sheaves are flabby sheaves.
( ii ) When X has a basis of quasi-compact open subsets, then F ∈ Mod(kX) is c-soft if

the restriction morphism Γ(U ;F ) → Γ(V ;F ) is surjective, for any quasi-compact
open subsets U, V of X with U ⊇ V .

(iii) When X is a locally compact space countable at infinity, then we recover c-soft
sheaves as in chapter II of [26].

(iv) When ER+ is a vector bundle endowed with the conic topology, then F ∈
Mod(kER+ ) is c-soft if the restriction morphism Γ(ER+ ;F ) → Γ(K;F ) is surjective,
where K is defined as in Example 1.2.15.

2. Sheaves on T -spaces.

In the following we shall assume that k is a field and X is a topological space. Below
we give the definition of T -space, adapting the construction of Kashiwara and Schapira
[28]. We study the category of sheaves on XT generalizing results already known in the
case of subanalytic sheaves. Then we prove that as in [19] the category of sheaves on XT
is equivalent to the category of sheaves on a locally weakly-compact topological space
X̃T , the T -spectrum, which generalizes the notion of o-minimal spectrum.

2.1. T -sheaves.
Let X be a topological space and let us consider a family T of open subsets of X.

Definition 2.1.1. The topological space X is a T -space if the family T satisfies
the hypotheses below





(i) T is a basis for the topology of X, and ∅ ∈ T ,

(ii) T is closed under finite unions and intersections,

(iii) every U ∈ T has finitely many T -connected components,

(2.1)

where we define:

• a T -subset is a finite Boolean combination of elements of T ;
• a closed (resp. open) T -subset is a T -subset which is closed (resp. open) in X;
• a T -connected subset is a T -subset which is not the disjoint union of two proper
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T -subsets which are closed and open.

Example 2.1.2. Let R = (R, <, 0, 1,+, ·) be a real closed field. Let X be a
locally semialgebraic space ([10], [11]) and consider the subfamily of Op(X) defined by
T = {U ∈ Op(X) : U is semialgebraic}. The family T satisfy (2.1). Note also that the
T -subsets of X are exactly the semialgebraic subsets of X ([7]).

Example 2.1.3. Let X be a real analytic manifold and consider the subfamily
of Op(X) defined by T = Opc(Xsa) = {U ∈ Op(Xsa) : U is subanalytic relatively
compact}. The family T satisfies (2.1).

Example 2.1.4. Let X be a real analytic manifold endowed with a subanalytic
action µ of R+. In other words we have a subanalytic map

µ : X × R+ → X,

which satisfies, for each t1, t2 ∈ R+:

{
µ(x, t1t2) = µ(µ(x, t1), t2),

µ(x, 1) = x.

Denote by XR+ the topological space X endowed with the conic topology, i.e. U ∈
Op(XR+) if it is open for the topology of X and invariant by the action of R+.
We will denote by Opc(XR+) the subcategory of Op(XR+) consisting of relatively
weakly quasi-compact open subsets. Consider the subfamily of Op(XR+) defined by
T = Opc(Xsa,R+) = {U ∈ Opc(XR+) : U is subanalytic}. The family T satisfies (2.1).

Example 2.1.5. Let M = (M, <, (c)∈C , (f)f∈F , (R)R∈R) be an arbitrary o-
minimal structure. Let X be a locally definable space ([3]) and consider the subfamily
of Op(X) defined by T = Op(Xdef) = {U ∈ Op(X) : U is definable}. The family T
satisfies (2.1). Note also that the T -subsets of X are exactly the definable subsets of X

(by the cell decomposition theorem in [13], see [19, Proposition 2.1]).

Let X be a T -space. One can endow the category T with a Grothendieck topology,
called the T -topology, in the following way: a family {Ui}i in T is a covering of U ∈ T
if it admits a finite subcover. We denote by XT the associated site, write for short kT
instead of kXT , and let ρ : X → XT be the natural morphism of sites. We have functors

Mod(kX)
ρ∗ // Mod(kT ).

ρ−1
oo (2.2)

Proposition 2.1.6. We have ρ−1 ◦ ρ∗ ' id. Equivalently, the functor ρ∗ is fully
faithful.

Proof. Let V ∈ Op(X) and let G ∈ Mod(kT ). Then ρ−1G = (ρ←F )++, where
ρ←G ∈ Psh(kX) is defined by
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Op(X) 3 V 7→ lim−→
U⊇V,U∈T

G(U).

In particular, when U ∈ T , ρ←G(U) = G(U).
Let F ∈ Mod(kX) and denote by ι : Mod(kX) → Psh(kX) the forgetful functor. The

adjunction morphism ρ← ◦ ρ∗ → id in Psh(kX) defines ρ←ρ∗F → ιF . This morphism is
an isomorphism on T , since ρ←ρ∗F (U) ' ρ∗F (U) ' F (U) ' ιF (U) when U ∈ T . By
(2.1) (i) T forms a basis for the topology of X, hence we get an isomorphism

ρ−1ρ∗F ' (ρ←ρ∗F )++ ' (ιF )++ ' F

and the result follows. ¤

Proposition 2.1.7. Let {Fi}i∈I be a filtrant inductive system in Mod(kT ) and let
U ∈ T . Then

lim−→
i

Γ(U ;Fi)
∼→ Γ(U ; lim−→

i

Fi).

Proof. Denote by “lim−→”
i

Fi the presheaf V 7→ lim−→
i

Γ(V ;Fi) on XT . Let U ∈ T and

let S be a finite covering of U . Since lim−→
i

commutes with finite projective limits we obtain

the isomorphism (“lim−→”
i

Fi)(S) ∼→ lim−→
i

Fi(S) and Fi(U) ∼→ Fi(S) since Fi ∈ Mod(kT )

for each i. Moreover the family of finite coverings of U is cofinal in Cov(U). Hence
“lim−→”

i

Fi
∼→ (“lim−→”

i

Fi)+. Applying once again the functor (·)+ we get

“lim−→”
i

Fi ' (“lim−→”
i

Fi)+ ' (“lim−→”
i

Fi)++ ' lim−→
i

Fi.

Hence applying the functor Γ(U ; ·) we obtain the isomorphism lim−→
i

Γ(U ;Fi)
∼→ Γ(U ; lim−→

i

Fi)

for each U ∈ T . ¤

Proposition 2.1.8. Let F be a presheaf on XT and assume that

( i ) F (∅) = 0,

( ii ) For any U, V ∈ T the sequence 0 → F (U ∪ V ) → F (U)⊕ F (V ) → F (U ∩ V )is
exact.

Then F ∈ Mod(kT ).

Proof. Let U ∈ T and let {Uj}n
j=1 be a finite covering of U . Set for short

Uij = Ui ∩ Uj . We have to show the exactness of the sequence

0 → F (U) →
⊕

1≤k≤n

F (Uk) →
⊕

1≤i<j≤n

F (Uij),
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where the second morphism sends (sk)1≤k≤n to (tij)1≤i<j≤n by tij = si|Uij
− sj |Uij

.
We shall argue by induction on n. For n = 1 the result is trivial, and n = 2 is the
hypothesis. Suppose that the assertion is true for j ≤ n − 1 and set U ′ =

⋃
1≤k<n Uk.

By the induction hypothesis the following commutative diagram is exact

0

²²

0

²²
0 // F (U) // F (U ′)⊕ F (Un)

²²

// F (U ′ ∩ Un)

²²⊕
i<n F (Ui)⊕ F (Un)

²²

//
⊕

i<n F (Uin)

⊕
i<j<n F (Uij).

Then the result follows. ¤

Example 2.1.9. Let us see some examples of sites associated to T -topologies:

( i ) When T is the family of Example 2.1.2 we obtain the semi-algebraic site of [10],
[11].

( ii ) When T is the family of Example 2.1.3 we obtain the subanalytic site Xsa of [28],
[35].

(iii) When T is the family of Example 2.1.4 we obtain the conic subanalytic site of
[36].

(iv) When T is the family of Example 2.1.5 we obtain the o-minimal site Xdef . It is
the one considered in [19] when X is a definable space.

2.2. T -coherent sheaves.
Let us consider the category Mod(kX) of sheaves of kX -modules on X, and denote

by K the subcategory whose objects are the sheaves F =
⊕

i∈I kUi
with I finite and

Ui ∈ T for each i. The following definition is extracted from [28].

Definition 2.2.1. Let T be a subfamily of Op(X) satisfying (2.1), and let F ∈
Mod(kX).

( i ) F is T -finite if there exists an epimorphism G ³ F with G ∈ K.
( ii ) F is T -pseudo-coherent if for any morphism ψ : G → F with G ∈ K, kerψ is

T -finite.
(iii) F is T -coherent if it is both T -finite and T -pseudo-coherent.

Remark that (ii) is equivalent to the same condition with “G is T -finite” instead
of “G ∈ K”. One denotes by Coh(T ) the full subcategory of Mod(kX) consisting of
T -coherent sheaves. It is easy (see [29, Exercise 8.23]) to prove that Coh(T ) is additive
and stable by kernels.
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Lemma 2.2.2. Let F, G ∈ K. Then, given ϕ : F → G, we have kerϕ ∈ K.

Proof. We have F =
⊕l

i=1 kWi
, G =

⊕m
j=1 kW ′

j
. Composing with the projection

pj , j = 1, . . . , m on each factor of G, kerϕ will be the intersection of the ker pj ◦ϕ so that,
if each one has the desired form, the same will happen to their intersection. Therefore
it is sufficient to assume m = 1, let us say, G = kW . A morphism ϕ : F → G is then
defined by a sequence v = (v1, . . . , vl), where vi is the image by ϕ of the section of kWi

defined by 1 on Wi, so vi = 0 if Wi 6⊂ W . More precisely, if s = (s1, . . . , sl) is a germ of
F in y, we have ϕ(s1, . . . , sl) =

∑l
i=1 viysi. So, given s = (s1, . . . , sl) ∈ kerϕ, if, for a

given i, we have viysi 6= 0, then s defines a germ of Hi =:
⊕

i′ 6=i kWi′∩Wi
in y.

Accordingly, kerϕ ' ⊕l
i=1 Hi. ¤

Therefore, according to the definition of Coh(T ) and to Lemma 2.2.2, any F ∈
Coh(T ) admits a finite resolution

K• := 0 → K1 → · · · → Kn → F → 0

consisting of objects belonging to K.

Proposition 2.2.3. Let U ∈ T and consider the constant sheaf kUXT ∈ Mod(kT ).
We have kUXT ' ρ∗kU .

Proof. Let F be the presheaf on XT defined by F (V ) = k if V ⊂ U , F (V ) = 0
otherwise. This is a separated presheaf and kUXT = F++. Moreover there is an injective
arrow F (V ) ↪→ ρ∗kU (V ) for each V ∈ Op(XT ). Hence F++ ↪→ ρ∗kU since the functor
(·)++ is exact. Let S ⊆ T be the sub-family of T -connected elements. Then S forms a
basis for the Grothendieck topology of XT . For each W ∈ S we have F (W ) ' ρ∗kU (W ) '
k if W ⊂ U and F (W ) = 0 otherwise. Then F++ ' ρ∗kU . ¤

Proposition 2.2.4. The restriction of ρ∗ to Coh(T ) is exact.

Proof. Let us consider an epimorphism G ³ F in Coh(T ), we have to prove
that ψ : ρ∗G → ρ∗F is an epimorphism. Let U ∈ T and let 0 6= s ∈ Γ(U ; ρ∗F ) '
HomkX

(kU , F ) (by adjunction). Set G′ = G ×F kU = ker(G ⊕ kU ⇒ F ). Then G′ ∈
Coh(T ) and moreover G′ ³ kU . There exists a finite {Ui}i∈I ⊂ T of T -connected
elements such that

⊕
i kUi

³ G′. The composition kUi
→ G′ → kU is given by the

multiplication by ai ∈ k. Set I0 = {kUi ; ai 6= 0}, we may assume ai = 1. We get a
diagram

⊕
i∈I0

kUi

$$ $$IIIIIIIII
// G′

²²²²

// G

²²²²
kU

s // F.

The composition kUi
→ G′ → G defines ti ∈ HomkX

(kUi
, G) ' Γ(Ui; ρ∗G). Hence for

each s ∈ Γ(U ; ρ∗F ) there exists a finite covering {Ui} of U and ti ∈ Γ(Ui; ρ∗G) such that
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ψ(ti) = s|Ui
. This means that ψ is surjective. ¤

Notation 2.2.5. Since the functor ρ∗ is fully faithfull and exact on Coh(T ), we
will often identify Coh(T ) with its image in Mod(kT ) and write F instead of ρ∗F for
F ∈ Coh(T ).

Theorem 2.2.6. The following hold :

( i ) The category Coh(T ) is stable by finite sums, kernels, cokernels and extensions in
Mod(kT ).

( ii ) The category Coh(T ) is stable by •⊗
kT • in Mod(kT ).

Proof. (i) The result follows from a general result of homological algebra of [27,
Appendix A.1]. With the notations of [27] let P be the set of finite families of elements
of T , for U = {Ui}i∈I ∈ P set

L(U) =
⊕

i

kUi
,

for V = {Vj}j∈J ∈ P set

HomP (U ,V) = HomkT (L(U), L(V)) =
⊕

i

⊕

j

HomkT (kUi , kVj )

and for F ∈ Mod(kT ) set

H(U , F ) = HomkT (L(U), F ) =
⊕

i

HomkT (kUi , F ).

By Proposition A.1 of [27] in order to prove (i) it is enough to prove the properties
(A.1)–(A.4) below:

(A.1) For any U = {Ui} ∈ P the functor H(U , •) is left exact in Mod(kT ).
(A.2) For any morphism g : V → W in P , there exists a morphism f : U → V in P such

that U f→ V g→W is exact.
(A.3) For any epimorphism f : F → G in Mod(kT ), U ∈ P and ψ ∈ H(U , G), there

exists V ∈ P and an epimorphism g ∈ HomP (V,U) and ϕ ∈ H(V, F ) such that
ψ ◦ g = f ◦ ϕ.

(A.4) For any U ,V ∈ P and ψ ∈ H(U , L(V)) there exists W ∈ P and an epimorphism
f ∈ HomP (W,U) and a morphism g ∈ HomP (W,U) such that L(g) = ψ ◦ f in
HomkT (L(W), L(V)).

It is easy to check that the axioms (A.1)–(A.4) are satisfied.
(ii) Let F ∈ Coh(T ). Then F has a resolution

⊕

j∈J

kUj
→

⊕

i∈I

kUi
→ F → 0
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with I and J finite. Let V ∈ T . The sequence

⊕

j∈J

kV ∩Uj
→

⊕

i∈T

kV ∩Ui
→ FV → 0

is exact. Then it follows from (i) that FV is coherent. Let G ∈ Coh(T ). The sequence

⊕

j∈J

GUj →
⊕

i∈I

GUi → G
⊗

kT

F → 0

is exact. The sheaves GUi and GUj are coherent for each i ∈ I and each j ∈ J . Hence it
follows by (i) that G

⊗
kT F is coherent as required. ¤

Corollary 2.2.7. The following hold :

( i ) The category Coh(T ) is stable by finite sums, kernels, cokernels in Mod(kX).
( ii ) The category Coh(T ) is stable by •⊗

kX
• in Mod(kX).

Proof. (i) The stability under finite sums and kernels is easy, see [29, Exercise
8.23]. Let F, G ∈ Coh(T ) and let ϕ : F → G be a morphism in Mod(kX). Then
ρ∗(ϕ) is a morphism in Mod(kT ) and coker(ρ∗ϕ) ∈ Coh(T ) by Theorem 2.2.6. We have
coker(ρ∗ϕ) ' ρ∗ cokerϕ since ρ∗ is exact on Coh(T ) by Proposition 2.2.4. Composing
with ρ−1 and applying Proposition 2.1.6 we obtain cokerϕ ∈ Coh(T ).

(ii) The proof of the stability by •⊗
kX
• is similar to that of Theorem 2.2.6. ¤

Theorem 2.2.8. ( i ) Let G ∈ Coh(T ) and let {Fi} be a filtrant inductive system
in Mod(kT ). Then we have the isomorphism

lim−→
i

HomkT (ρ∗G,Fi)
∼→ HomkT (ρ∗G, lim−→

i

Fi).

( ii ) Let F ∈ Mod(kT ). There exists a small filtrant inductive system {Fi}i∈I in Coh(T )
such that F ' lim−→

i

ρ∗Fi.

Proof. (i) There exists an exact sequence G1 → G0 → G → 0 with G1, G0

finite direct sums of constant sheaves kU with U ∈ T . Since ρ∗ is exact on Coh(T ) and
commutes with finite sums, by Proposition 2.2.3 we are reduced to prove the isomorphism
lim−→

i

Γ(U ;Fi)
∼→ Γ(U ; lim−→

i

Fi). Then the result follows from Proposition 2.1.7.

(ii) Let F ∈ Mod(kT ), and define

I0 := {(U, s) : U ∈ T , s ∈ Γ(U ;F )}

G0 :=
⊕

(U,s)∈I0

ρ∗kU

The morphism ρ∗kU → F , where the section 1 ∈ Γ(U ; kU ) is sent to s ∈ Γ(U ;F )
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defines un epimorphism ϕ : G0 → F . Replacing F by kerϕ we construct a sheaf G1 =⊕
(V,t)∈I1

ρ∗kV and an epimorphism G1 ³ kerϕ. Hence we get an exact sequence G1 →
G0 → F → 0. For J0 ⊂ I0 set for short GJ0 =

⊕
(U,s)∈J0

ρ∗kU and define similarly GJ1 .
Set

J = {(J1, J0); Jk ⊂ Ik, Jk is finite and imϕ|GJ1
⊂ GJ0}.

The category J is filtrant and F ' lim−→
(J1,J0)∈J

coker(GJ1 → GJ0). ¤

Corollary 2.2.9. Let G ∈ Coh(T ) and let {Fi} be a filtrant inductive system in
Mod(kT ). Then we have an isomorphism

lim−→
i

HomkT (G,Fi)
∼→ HomkT (G, lim−→

i

Fi).

Proof. Let U ∈ T . We have the chain of isomorphisms

Γ(U ; lim−→
i

HomkT (G,Fi)) ' lim−→
i

Γ(U ;HomkT (G,Fi))

' lim−→
i

HomkT (GU , Fi)

' HomkT (GU , lim−→
i

Fi)

' Γ(U ;HomkT (G, lim−→
i

Fi)),

where the first and the third isomorphism follow from Theorem 2.2.8 (i). The fact that
GU ∈ Coh(T ) follows from Theorem 2.2.6 (ii). ¤

As in [28], we can define the indization of the category Coh(T ). Recall that the cat-
egory Ind(Coh(T )), of ind-T -coherent sheaves is the category whose objects are filtrant
inductive limits of functors

lim−→
i

HomCoh(T )(•, Fi) (“lim−→”
i

Fi for short),

where Fi ∈ Coh(T ), and the morphisms are the natural transformations of such functors.
Note that since Coh(T ) is a small category, Ind(Coh(T )) is equivalent to the category
of k-additive left exact contravariant functors from Coh(T ) to Mod(k). See [29] for
a complete exposition on indizations of categories. We can extend the functor ρ∗ :
Coh(T ) → Mod(kT ) to λ : Ind(Coh(T )) → Mod(kT ) by setting λ(“lim−→”

i

Fi) := lim−→
i

ρ∗Fi.

Corollary 2.2.10. The functor λ : Ind(Coh(T )) → Mod(kT ) is an equivalence
of categories.
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Proof. Let F = “lim−→”
j

Fj , G = “lim−→”
i

Gi ∈ I(Coh(T )). By Theorem 2.2.8 (i) and

the fact that the functor ρ∗ is fully faithfull on Coh(T ) we have

HomkT (λ(F ), λ(G)) ' HomkT (lim−→
j

ρ∗Fj , lim−→
i

ρ∗Gi)

' lim←−
j

lim−→
i

HomkT (ρ∗Fj , ρ∗Gi)

' lim←−
j

lim−→
i

HomCoh(T )(Fj , Gi)

' HomInd(Coh(T ))(F, G),

hence λ is fully faithful. By Theorem 2.2.8 (ii) for each F ∈ Mod(kT ) there exists
G = “lim−→”

i

Fi ∈ Ind(Coh(T )) such that λ(G) = lim−→
i

ρ∗Fi ' F , hence λ is essentially

surjective. ¤

2.3. T -flabby sheaves.
Definition 2.3.1. We say that an object F ∈ Mod(kT ) is T -flabby if for each

U, V ∈ T with V ⊇ U the restriction morphism Γ(V ;F ) → Γ(U ;F ) is surjective.

Remark 2.3.2. Remark that the category Mod(kT ) is a Grothendieck category,
hence it has enough injectives. It follows from the definition that injective sheaves are
T -flabby. This implies that the family of T -flabby objects is cogenerating in Mod(kT ).

Example 2.3.3. Let us see some examples of T -flabby sheaves:

( i ) When T is the family of Example 2.1.2 we obtain the family of sa-flabby objects
of [10].

( ii ) When T is the family of Example 2.1.3 we obtain the family of quasi-injective
objects of [35].

Proposition 2.3.4. The following hold :

( i ) Let Fi be a filtrant inductive system of T -flabby sheaves. Then lim−→
i

Fi is T -flabby.

( ii ) Products of T -flabby objects are T -flabby.

Proof. We will only prove (i) since the proof of (ii) is similar since taking prod-
ucts is exact and commutes with taking sections. Let U ∈ T . Then for each i the
restriction morphism Γ(V ;Fi) → Γ(U ;Fi) is surjective. Applying the exact lim−→

i

and

using Proposition 2.1.7, the morphism

Γ(V ; lim−→
i

Fi) ' lim−→
i

Γ(V ;Fi) → lim−→
i

Γ(U ;Fi) ' Γ(U ; lim−→
i

Fi)

is surjective. ¤
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Proposition 2.3.5. The full additive subcategory of Mod(kT ) of T -flabby object
is Γ(U ; •)-injective for every U ∈ T , i.e.:

( i ) For every F ∈ Mod(kT ) there exists a T -flabby object F ′ ∈ Mod(kT ) and an exact
sequence 0 → F → F ′.

( ii ) Let 0 → F ′ → F → F ′′ → 0 be an exact sequence in Mod(kT ) and assume that F ′

is T -flabby. Then the sequence

0 → Γ(U ;F ′) → Γ(U ;F ) → Γ(U ;F ′′) → 0

is exact.
(iii) Let F ′, F, F ′′ ∈ Mod(kT ), and consider the exact sequence

0 → F ′ → F → F ′′ → 0.

Suppose that F ′ is T -flabby. Then F is T -flabby if and only if F ′′ is T -flabby.

Proof. (i) It follows from the definition that injective sheaves are T -flabby. So (i)
holds since it is true for injective sheaves. Indeed, as a Grothendieck category, Mod(kT )
admits enough injectives.

(ii) Let s′′ ∈ Γ(U ;F ′′), and let {Vi}n
i=1 ∈ Cov(U) be such that there exists si ∈

Γ(Vi;F ) whose image is s′′|Vi
. For n ≥ 2 on V1∩V2 s1−s2 defines a section of Γ(V1∩V2;F ′)

which extends to s′ ∈ Γ(U ;F ′) since F ′ is T -flabby. Replace s1 with s1 − s′ (identifying
s′ with it’s image in F ). We may suppose that s1 = s2 on V1 ∩ V2. Then there exists
t ∈ Γ(V1 ∪ V2, F ) such that t|Vi

= si, i = 1, 2. Thus the induction proceeds.
(iii) Let U, V ∈ T with V ⊇ U and let us consider the diagram below

0 // Γ(V ;F ′)

α

²²

// Γ(V ;F )

β

²²

// Γ(V ;F ′′)

γ

²²

// 0

0 // Γ(U ;F ′) // Γ(U ;F ) // Γ(U ;F ′′) // 0

where the row are exact by (ii) and the morphism α is surjective since F ′ is T -flabby. It
follows from the five lemma that β is surjective if and only if γ is surjective. ¤

Theorem 2.3.6. Let F ∈ Mod(kT ). Then the following hold :

( i ) F is T -flabby if and only if the functor HomkT (•, F ) is exact on Coh(T ).
( ii ) If F is T -flabby then the functor HomkT (•, F ) is exact on Coh(T ).

Proof. (i) is a consequence of a general result of homological algebra (see Theo-
rem 8.7.2 of [29]). For (ii), let F ∈ Mod(kT ) be T -flabby. There is an isomorphism of
functors

Γ(U ;HomkT (•, F )) ' HomkT ((•)U , F )

for each U ∈ T . By Theorem 2.2.6 and (i) the functor HomkT ((•)U , F ) is exact on
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Coh(T ) and so the functor HomkT (•, F ) is also exact on Coh(T ). ¤

Theorem 2.3.7. Let G ∈ Coh(T ). Then the following hold :

( i ) The family of T -flabby sheaves is injective with respect to the functor HomkT (G, •).
( ii ) The family of T -flabby sheaves is injective with respect to the functor HomkT (G, •).

Proof. (i) Let G ∈ Coh(T ). Let 0 → F ′ → F → F ′′ → 0 be an exact sequence
in Mod(kT ) and assume that F ′ is T -flabby. We have to show that the sequence

0 → HomkT (G,F ′) → HomkT (G,F ) → HomkT (G,F ′′) → 0

is exact.
There is an epimorphism ϕ :

⊕
i∈I kUi → G where I is finite and Ui ∈ T for each

i ∈ I. The sequence 0 → kerϕ → ⊕
i∈I kUi → G → 0 is exact. We set for short

G1 = kerϕ and G2 =
⊕

i∈I kUi
. We get the following diagram where the first column is

exact by Theorem 2.3.6 (i)

0

²²

0

²²

0

²²
0 // HomkT (G,F ′)

²²

// HomkT (G,F )

²²

// HomkT (G,F ′′)

²²

// 0

0 // HomkT (G2, F
′)

²²

// HomkT (G2, F )

²²

// HomkT (G2, F
′′)

²²

// 0

0 // HomkT (G1, F
′)

²²

// HomkT (G1, F )

²²

// HomkT (G1, F
′′)

²²

// 0

0 0 0

The second row is exact by Proposition 2.3.5 (ii), hence the top row is exact by the
snake lemma.

(ii) Let G ∈ Coh(T ). It is enough to check that for each U ∈ T and each exact
sequence 0 → F ′ → F → F ′′ → 0 with F ′ T -flabby, the sequence

0 → Γ(U ;HomkT (G,F ′)) → Γ(U ;HomkT (G,F )) → Γ(U ;HomkT (G,F ′′)) → 0

is exact. We have

Γ(U,HomkT (G, •)) ' HomkT (GU , •),

and, by (i) and the fact that GU ∈ Coh(T ) (Theorem 2.2.6 (ii)), T -flabby objects are
injective with respect to the functor HomkT (GU , •) for each G ∈ Coh(T ), and for each
U ∈ T . ¤
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Proposition 2.3.8. Let F ∈ Mod(kT ). Then F is T -flabby if and only if
HomkT (G,F ) is T -flabby for each G ∈ Coh(T ).

Proof. Suppose that F is T -flabby, and let G ∈ Coh(T ). We have

HomkT (•,HomkT (G,F )) ' HomkT

(
•

⊗

kT

G,F
)

and HomkT (•⊗
kT G,F ) is exact on Coh(T ) by Theorems 2.2.6 (ii) and 2.3.6 (i).

Suppose that HomkT (G,F ) is T -flabby for each G ∈ Coh(T ). Let U, V ∈ T with
V ⊇ U . For each W ∈ T the morphism Γ(V ; ΓW F ) → Γ(U ; ΓW F ) is surjective. Hence
the morphism

Γ(V ;F ) ' Γ(V ; ΓV F )

→ Γ(U ; ΓV F )

' Γ(U ;F )

is surjective. ¤

Let us consider the following subcategory of Mod(kT ):

PXT := {G ∈ Mod(kT ); G is HomkT (•, F )-acyclic for each F ∈ FXT },

where FXT is the family of T -flabby objects of Mod(kT ).
This category is generating. In fact if {Uj}j∈J ∈ T , then

⊕
j∈J kUj ∈ PXT by

Theorem 2.3.7 (and the fact that

ΠHomkT (•, •) ' HomkT
( ⊕

•, •)

and products are exact). Moreover PXT is stable by •⊗
kT K, where K ∈ Coh(T ). In

fact if G ∈ PXT and F ∈ FXT we have

HomkT

(
G

⊗

kT

K, F
)
' HomkT (G,HomkT (K, F ))

and HomkT (K, F ) is T -flabby by Proposition 2.3.8. In particular, if G ∈ PXT then
GU ∈ PXT for every U ∈ Op(XT ).

Theorem 2.3.9. The category (Pop
XT ,FXT ) is injective with respect to the functors

HomkT (•, •) and HomkT (•, •).

Proof. (i) Let G ∈ PXT and consider an exact sequence 0 → F ′ → F → F ′′ → 0
with F ′ T -flabby. We have to prove that the sequence

0 → HomkT (G,F ′) → HomkT (G,F ) → HomkT (G,F ′′) → 0
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is exact. Since the functor HomkT (G, •) is acyclic on T -flabby sheaves we obtain the
result.

Let F be T -flabby, and let 0 → G′ → G → G′′ → 0 be an exact sequence on PXT .
Since the objects of PXT are HomkT (•, F )-acyclic the sequence

0 → HomkT (G′′, F ) → HomkT (G,F ) → HomkT (G′, F ) → 0

is exact.
(ii) Let G ∈ PXT , and let 0 → F ′ → F → F ′′ → 0 be an exact sequence with F ′

T -flabby. We shall show that for each U ∈ T the sequence

0 → Γ(U ;HomkT (G,F ′)) → Γ(U ;HomkT (G,F )) → Γ(U ;HomkT (G,F ′′)) → 0

is exact. This is equivalent to show that for each U ∈ T the sequence

0 → HomkT (GU , F ′) → HomkT (GU , F ) → HomkT (GU , F ′′) → 0

is exact. This follows since GU ∈ PXT as we saw above. The proof of the exactness in
Pop

XT is similar. ¤

Proposition 2.3.10. Let F ∈ Mod(kT ). The following assumptions are equivalent

( i ) F is T -flabby,
( ii ) F is HomkT (G, •)-acyclic for each G ∈ Coh(T ),
(iii) R1 HomkT (kV \U , F ) = 0 for each U, V ∈ T .

Proof. (i) ⇒ (ii) follows from Theorem 2.3.7, (ii) ⇒ (iii) setting G = kV \U with
U, V ∈ T , (iii) ⇒ (i) since if R1 HomkT (kV \U , F ) = 0 for each U, V ∈ T with V ⊇ U ,
then the restriction Γ(V ;F ) → Γ(U ;F ) is surjective. ¤

Let X, Y be two topological spaces and let T ⊂ Op(X), T ′ ⊂ Op(Y ) satisfy (2.1).
Let f : X → Y be a continuous map. If f−1(T ′) ⊂ T then f defines a morphism of sites
f : XT → YT ′ .

Proposition 2.3.11. Let f : XT → YT ′ be a morphism of sites. T -flabby sheaves
are injective with respect to the functor f∗. The functor f∗ sends T -flabby sheaves to
T ′-flabby sheaves.

Proof. Let us consider V ∈ T ′. There is an isomorphism of functors Γ(V ; f∗•) '
Γ(f−1(V ); •). It follows from Proposition 2.3.5 that T -flabby are injective with respect
to the functor Γ(f−1(V ); •) for any V ∈ T ′.

Let F be T -flabby and let U, V ∈ T ′ with V ⊃ U . Then the morphism

Γ(V ; f∗F ) = Γ(f−1(V );F ) → Γ(f−1(U);F ) = Γ(U ; f∗F )

is surjective. ¤
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2.4. T -sheaves on locally weakly quasi-compact spaces.
Assume that X is a locally weakly quasi-compact space.

Lemma 2.4.1. For each U ∈ Opc(X) there exists V ∈ T such that U ⊂⊂ V ⊂⊂ X.

Proof. Since X is locally weakly quasi-compact we may find W ∈ Opc(X) such
that U ⊂⊂ W . By (2.1) (i) we may find a covering {Wi}i∈I of X with Wi ∈ T and
Wi ⊂⊂ X for each i ∈ I. Then there exists a finite family {Wj}`

j=1 whose union
V =

⋃`
j=1 Wj contains W . Then V ∈ T and U ⊂⊂ V ⊂⊂ X. ¤

When X is locally weakly quasi-compact we can construct a left adjoint to the
functor ρ−1.

Proposition 2.4.2. Let F ∈ Mod(kT ), and let U ∈ Op(X). Then

Γ(U ; ρ−1F ) ' lim←−
V⊂⊂U,V ∈T

Γ(V ;F )

Proof. By Theorem 2.2.8 we may assume F = lim−→
i

ρ∗Fi, with Fi ∈ Coh(T ). Then

ρ−1F ' lim−→
i

ρ−1ρ∗Fi ' lim−→
i

Fi. We have the chain of isomorphisms

Γ(U ; ρ−1F )' lim←−
V⊂⊂U,V ∈T

lim−→
V⊂⊂W

Γ(W ; ρ−1F ) ' lim←−
V⊂⊂U,V ∈T

lim−→
V⊂⊂W

Γ(W ; lim−→
i

ρ−1ρ∗Fi)

' lim←−
V⊂⊂U,V ∈T

lim−→
V⊂⊂W,i

Γ(W ; ρ−1ρ∗Fi)' lim←−
V⊂⊂U,V ∈T

lim−→
i

Γ(V ; ρ−1ρ∗Fi)

' lim←−
V⊂⊂U,V ∈T

lim−→
i

Γ(V ; ρ∗Fi) ' lim←−
V⊂⊂U,V ∈T

Γ(V ;F ),

where the first and the fourth isomorphisms follow from Lemma 1.2.16, the third iso-
morphism is a consequence of Corollary 1.2.13, and the last isomorphism follows from
Proposition 2.1.7. ¤

Proposition 2.4.3. The functor ρ−1 admits a left adjoint, denoted by ρ!. It
satisfies

( i ) for F ∈ Mod(kX) and U ∈ T , ρ!F is the sheaf associated to the presheaf U 7→
lim−→

U⊂⊂V

Γ(V ;F ),

( ii ) For U ∈ Op(X) one has ρ!kU ' lim−→
V⊂⊂U,V ∈T

kV .

Proof. Let F̃ ∈ Psh(kT ) be the presheaf U 7→ lim−→
U⊂⊂V

Γ(V ;F ), and let G ∈

Mod(kT ). We will construct morphisms

HomPsh(kT )(F̃ , G)
ξ // HomkX

(F, ρ−1G)
ϑ

oo .
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To define ξ, let ϕ : F̃ → G and U ∈ Op(X). Then the morphism ξ(ϕ)(U) : F (U) →
ρ−1G(U) is defined as follows

F (U) ' lim←−
V⊂⊂U,V ∈T

lim−→
V⊂⊂W

F (W )
ϕ−→ lim←−

V⊂⊂U,V ∈T
G(V ) ' ρ−1G(U).

On the other hand, let ψ : F → ρ−1G and U ∈ T . Then the morphism ϑ(ψ)(U) :
F̃ (U) → G(U) is defined as follows

F̃ (U) ' lim−→
U⊂⊂V ∈T

F (V )
ψ−→ lim−→

U⊂⊂V ∈T
ρ−1G(V ) → G(U).

By construction one can check that the morphism ξ and ϑ are inverse to each others.
Then (i) follows from the chain of isomorphisms

HomPsh(kT )(F̃ , G) ' HomkT (F̃++, G) ' HomkT (F̃++, G).

To show (ii), consider the following sequence of isomorphisms

HomkT (ρ!kU , F ) ' HomkX
(kU , ρ−1F )

' lim←−
V⊂⊂U,V ∈T

HomkT (kV , F )

' HomkT ( lim−→
V⊂⊂U,V ∈T

kV , F ),

where the second isomorphism follows from Proposition 2.4.2. ¤

Proposition 2.4.4. The functor ρ! is exact and commutes with lim−→ and
⊗

.

Proof. It follows by adjunction that ρ! is right exact and commutes with lim−→, so
let us show that it is also left exact. With the notations of Proposition 2.4.3, let F ∈
Mod(kX), and let F̃ ∈ Psh(kT ) be the presheaf U 7→ lim−→

U⊂⊂V

Γ(V ;F ). Then ρ!F ' F̃++,

and the functors F 7→ F̃ and G 7→ G++ are left exact.
Let us show that ρ! commutes with

⊗
. Let F, G ∈ Mod(kX), the morphism

lim−→
U⊂⊂V

F (V )
⊗

k

lim−→
U⊂⊂V

G(V ) → lim−→
U⊂⊂V

(
F (V )

⊗

k

G(V )
)

defines a morphism in Mod(kT )

ρ!F
⊗

kT

ρ!G → ρ!

(
F

⊗

kX

G
)

by Proposition 2.4.3 (i). Since ρ! commutes with lim−→ we may suppose that F = kU and
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G = kV and the result follows from Proposition 2.4.3 (ii). ¤

Proposition 2.4.5. The functor ρ! is fully faithful. In particular one has ρ−1◦ρ! '
id. Moreover, for F ∈ Mod(kX) and G ∈ Mod(kT ) one has

ρ−1HomkT (ρ!F, G) ' HomkX
(F, ρ−1G).

Proof. For F, G ∈ Mod(kX) by adjunction we have

HomkX
(ρ−1ρ!F, G) ' HomkX

(F, ρ−1ρ∗G) ' HomkX
(F, G).

This also implies that ρ! is fully faithful, in fact

HomkT (ρ!F, ρ!G) ' HomkX
(F, ρ−1ρ!G) ' HomkX

(F, G).

Now let K,F ∈ Mod(kX) and G ∈ Mod(kT ), we have

HomkX
(K, ρ−1HomkT (ρ!F, G)) ' HomkT (ρ!K,HomkT (ρ!F, G))

' HomkT

(
ρ!K

⊗

kT

ρ!F, G
)

' HomkT

(
ρ!(K

⊗

kX

F ), G
)

' HomkX

(
K

⊗

kX

F, ρ−1G
)

' HomkX
(K,HomkX

(F, ρ−1G)). ¤

Finally let us consider sheaves of rings in Mod(kT ). If A is a sheaf of rings in
Mod(kX), then ρ∗A and ρ!A are sheaves of rings in Mod(kT ).

Let A be a sheaf of unitary k-algebras on X, and let Ã ∈ Psh(kT ) be the presheaf
defined by the correspondence T 3 U 7→ lim−→

U⊂⊂V

Γ(V ;A). Let F ∈ Psh(kT ), and assume

that, for V ⊂ U , with U, V ∈ T , the following diagram is commutative:

Γ(U ; Ã)
⊗

k Γ(U ;F )

²²

// Γ(U ;F )

²²
Γ(V ; Ã)

⊗
k Γ(V ;F ) // Γ(V ;F ).

In this case one says that F is a presheaf of Ã-modules on T .

Proposition 2.4.6. Let A be a sheaf of k-algebras on X, and let F be a presheaf
of Ã-modules on XT . Then F++ ∈ Mod(ρ!A).
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Proof. Let U ∈ T , and let r ∈ lim−→
U⊂⊂V

Γ(V ;A). Then r defines a morphism

lim−→
U⊂⊂V

Γ(V ;A)
⊗

k Γ(W ;F ) → Γ(W ;F ) for each W ⊆ U , W ∈ T , hence an endomorphism

of (F++)|UXT ' (F |UXT )++. This morphism defines a morphism of presheaves Ã →
End(F++) and Ã++ ' ρ!A by Proposition 2.4.3. Then F++ ∈ Mod(ρ!A). ¤

Proposition 2.4.7. Assume that X is locally weakly quasi-compact. Let F ∈
Mod(kT ) be T -flabby. Then ρ−1F is c-soft.

Proof. Recall that if U ∈ Op(X) then Γ(U ; ρ−1F ) ' lim←−
V⊂⊂U

Γ(V ;F ), where V ∈

T . Let W ∈ Op(X), W ⊂⊂ X. It follows from Lemma 2.4.1 that every U ′ ⊃⊃ W ,
U ′ ∈ Op(X) contains U ∈ T such that U ⊃⊃ W . Hence

lim−→
U ′

Γ(U ′;F ) ' lim−→
U

Γ(U ;F ),

where U ′ ⊃⊃ W , U ′ ∈ Op(X) and U ∈ T such that U ⊃⊃ W . We have the chain of
isomorphisms

lim−→
U

Γ(U ; ρ−1F ) ' lim−→
U

lim←−
V⊂⊂U

Γ(V ;F )

' lim−→
U

Γ(U ;F )

where U ∈ T , U ⊃⊃ W and V ∈ T . The first isomorphism follows from Proposition
2.4.2 and second one follows since for each U ⊃⊃ W , U ∈ T , there exists V ∈ T such
that U ⊃⊃ V ⊃⊃ W .

Let V, W ∈ Opc(X) with V ⊂⊂ W . Since F is T -flabby and filtrant induc-
tive limits are exact, the morphism lim−→

W ′
Γ(W ′; ρ−1F ) ' lim−→

W ′
Γ(W ′;F ) → lim−→

U

Γ(U ;F ) '

lim−→
U

Γ(U ; ρ−1F ), where W ′, U ∈ T , W ′ ⊃⊃ W , U ⊃⊃ V , is surjective. Hence

Γ(W ; ρ−1F ) → lim−→
U⊃⊃V

Γ(U ; ρ−1F ) is surjective. ¤

2.5. T loc-sheaves.
Let X be a T -space and let

Tloc = {U ∈ Op(X) : U ∩W ∈ T for every W ∈ T }. (2.3)

Clearly, ∅, X ∈ Tloc, T ⊆ Tloc and Tloc is closed under finite intersections.

Definition 2.5.1. We make the following definitions:

• a subset S of X is a Tloc-subset if and only if S ∩V is a T -subset for every V ∈ T ;
• a closed (resp. open) Tloc-subset is a Tloc-subset which is closed (resp. open) in X;
• a Tloc-connected subset is a Tloc-subset which is not the disjoint union of two proper
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clopen Tloc-subsets.

Observe that if {Si}i is a family of Tloc-subsets such that {i : Si ∩W 6= ∅} is finite
for every W ∈ T , then the union and the intersection of the family {Si}i is a Tloc-subset.
Also the complement of a Tloc-subset is a Tloc-subset. Therefore the Tloc-subsets form a
Boolean algebra.

Example 2.5.2. Let us see some examples of Tloc subsets:

( i ) Let T be the family of Example 2.1.2. Then the Tloc subsets are the locally semi-
algebraic subsets of X.

( ii ) Let T be the family of Example 2.1.3. Then the Tloc subsets are the subanalytic
subsets of X.

(iii) Let T be the family of Example 2.1.4. Then the Tloc subsets are the conic suban-
alytic subsets of X.

(iv) Let T be the family of Example 2.1.5. Then the Tloc subsets are the locally
definable subsets of X.

One can endow Tloc with a Grothendieck topology in the following way: a family
{Ui}i in Tloc is a covering of U ∈ Tloc if for any V ∈ T , there exists a finite subfamily
covering U ∩ V . We denote by XTloc

the associated site, write for short kTloc
instead of

kXTloc
, and let

X

ρloc||zz
zz

zz
zz ρ

!!B
BB

BB
BB

B

XTloc
// XT

be the natural morphisms of sites.

Remark 2.5.3. The forgetful functor, induced by the natural morphism of sites
XTloc

→ XT , gives an equivalence of categories

Mod(kTloc
) ∼→ Mod(kT ).

The quasi-inverse to the forgetful functor sends F ∈ Mod(kT ) to Floc ∈ Mod(kTloc
) given

by Floc(U) = lim←−
V ∈T

F (U ∩ V ) for every U ∈ Tloc.

Therefore, we can and will identify Mod(kTloc
) with Mod(kT ) and apply the previous

results for Mod(kT ) to obtain analogues results for Mod(kTloc
).

Recall that F ∈ Mod(kT ) is T -flabby if the restriction Γ(V ;F ) → Γ(U ;F ) is surjec-
tive for any U, V ∈ T with V ⊇ U . Assume that

XTloc
has a countable cover {Vn}n∈N with Vn ∈ T , ∀n ∈ N. (2.4)

Proposition 2.5.4. Let F ∈ Mod(kT ). Then F is T -flabby if and only if the
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restriction Γ(X;F ) → Γ(U ;F ) is surjective for any U ∈ Tloc.

Proof. Suppose that F is T -flabby. Consider a covering {Vn}n∈N of XTloc
satis-

fying (2.4). Set Un = U ∩ Vn and Sn = Vn \ Un. All the sequences

0 → kUn
→ kVn

→ kSn
→ 0

are exact. Since F is T -flabby the sequence

0 → HomkT (kSn , F ) → HomkT (kVn , F ) → HomkT (kUn , F ) → 0

is exact. Moreover the morphism HomkT (kSn+1 , F ) → HomkT (kSn
, F ) is surjective for

all n since Sn = Sn+1 ∩ Vn is open in Sn+1. Then by Proposition 1.12.3 of [26] the
sequence

0 → lim←−
n

HomkT (kSn
, F ) → lim←−

n

HomkT (kVn
, F ) → lim←−

n

HomkT (kUn
, F ) → 0

is exact. The result follows since lim←−
n

Γ(Un;G) ' Γ(U ;G) for any G ∈ Mod(kT ) and

U ∈ Tloc. The converse is obvious. ¤

Proposition 2.5.5. The full additive subcategory of Mod(kT ) of T -flabby object
is Γ(U ; •)-injective for every U ∈ Tloc.

Proof. Take an exact sequence 0 → F ′ → F → F ′′ → 0, and suppose that F ′ is
T -flabby. Consider a covering {Vn}n∈N of XTloc

satisfying (2.4). Set Un = U ∩ Vn. All
the sequences

0 → Γ(Un;F ′) → Γ(Un;F ) → Γ(Un;F ′′) → 0

are exact by Proposition 2.3.5, and the morphism Γ(Un+1;F ′) → Γ(Un;F ′) is surjective
for all n. Then by Proposition 1.12.3 of [26] the sequence

0 → lim←−
n

Γ(Un;F ′) → lim←−
n

Γ(Un;F ) → lim←−
n

Γ(Un;F ′′) → 0

is exact. Since lim←−
n

Γ(Un;G) ' Γ(U ;G) for any G ∈ Mod(kT ) the result follows. ¤

Let X, Y be two topological spaces and let T ⊂ Op(X), T ′ ⊂ Op(Y ) satisfy (2.1).
Let f : X → Y be a continuous map. If f−1(T ′loc) ⊆ Tloc then f defines a morphism of
sites f : XTloc

→ YT ′loc
.

Corollary 2.5.6. Let f : XTloc
→ YT ′loc

be a morphism of sites. T -flabby sheaves
are injective with respect to the functor f∗. The functor f∗ sends T -flabby sheaves to
T ′-flabby sheaves.
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Proof. Let us consider V ∈ T ′loc. There is an isomorphism of functors Γ(V ; f∗•) '
Γ(f−1(V ); •). It follows from Proposition 2.5.5 that T -flabby are injective with respect
to the functor Γ(f−1(V ); •) for any V ∈ T ′loc.

Let F be T -flabby and let U, V ∈ T ′ with V ⊃ U . Then the morphism

Γ(V ; f∗F ) = Γ(f−1(V );F ) → Γ(f−1(U);F ) = Γ(U ; f∗F )

is surjective by Proposition 2.5.4. ¤

Remark 2.5.7. An interesting case is when X is a locally weakly quasi-compact
space and there exists S ⊆ Op(X) with T = {U ∈ S : U ⊂⊂ X} satisfying (2.1).

Assume that X satisfies (1.7). Then X has a covering {Vn}n∈N of X such that
Vn ∈ T and Vn ⊂⊂ Vn+1 for each n ∈ N. By Lemma 1.3.5 we may find a covering
{Un}n∈N of X such that Un ∈ Opc(X) and Un ⊂⊂ Un+1 for each n ∈ N. By Lemma
2.4.1 for each n ∈ N there exists Vn ∈ T such that Un ⊂⊂ Vn ⊂⊂ Un+1.

In this situation Proposition 2.5.4 and 2.5.5 are satisfied.

2.6. T -spectrum.
Let X be a topological space and let P(X) be the power set of X. Consider a

subalgebra F of the power set Boolean algebra 〈P(X),⊆〉. Then F is closed under
finite unions, intersections and complements. We refer to [25] for an introduction to this
subject.

The Boolean algebra F has an associated topological space, that we denote by S(F),
called its Stone space. The points in S(F) are the ultrafilters α on F . The topology on
S(F) is generated by a basis of open and closed sets consisting of all sets of the form

Ã = {α ∈ S(F) : A ∈ α},

where A ∈ F . The space S(F) is a compact totally disconnected Hausdorff space.
Moreover, for each A ∈ F , the subspace Ã is Hausdorff and compact.

Definition 2.6.1. Let X be a T -space and let F be the Boolean algebra of Tloc-
subsets of X (i.e. Boolean combinations of elements of Tloc). The topological space X̃T
is the data of:

• the points of S(F) such that U ∈ α for some U ∈ T ,
• a basis for the topology is given by the family of subsets {Ũ : U ∈ T }.

We call X̃T the T -spectrum of X.

With this topology, for U ∈ T , the set Ũ is quasi-compact in X̃T since it is quasi-
compact in S(F). Hence X̃T is locally weakly quasi-compact with a basis of quasi-
compact open subsets given by {Ũ : U ∈ T }. Note that if X ∈ T , then X̃T = X̃ which
is a spectral topological space.

Remark 2.6.2. We may also define X̃T by means of prime filters of elements of
T . This is because T -subsets can be written as finite unions and intersections of T -open
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and T -closed subsets. In this situation an ultrafilter is determined by the prime filter
contained in it.

Proposition 2.6.3. Let X be a T -space. Then there is an equivalence of categories
Mod(kT ) ' Mod(k eXT ).

Proof. Let us consider the functor

ζt : T → Op(X̃T )

U 7→ Ũ .

This defines a morphism of sites ζ : X̃T → XT . Indeed, if V ∈ T , S ∈ Cov(V ),
then S̃ = {Ṽi : Vi ∈ S} ∈ Cov(Ṽ ). Let F ∈ Mod(kT ) and consider the presheaf
ζ←F ∈ Psh(k eXT ) defined by ζ←F (U) = lim−→

U⊆eV
F (V ). In particular, if U = Ṽ , V ∈ T ,

ζ←F (U) ' F (V ). In this case, by Corollary 1.2.11 we have the isomorphisms

ζ−1F (Ṽ ) = (ζ←F )++(Ṽ ) ' ζ←F (Ṽ ) ' F (V ).

Then for V ∈ T we have

ζ∗ζ−1F (V ) ' ζ−1F (Ṽ ) ' F (V ).

This implies ζ∗ ◦ ζ−1 ' id. On the other hand, given α ∈ X̃T and G ∈ Mod(k eXT ),

(ζ−1ζ∗G)α ' lim−→
eU3α,U∈T

ζ−1ζ∗G(Ũ)

' lim−→
eU3α,U∈T

ζ∗G(U)

' lim−→
eU3α,U∈T

G(Ũ)

' Gα

since {Ũ : U ∈ T } forms a basis for the topology of X̃T . This implies ζ−1 ◦ ζ∗ ' id. ¤

Example 2.6.4. Let us see some examples of T -spectra.

( i ) When T is the family of Example 2.1.2 the T -spectrum X̃T of X is the semi-
algebraic spectrum of X ([10]). When X is semialgebraic, then X̃T = X̃, the
semialgebraic spectrum of X from [9].

( ii ) When T is the family of Example 2.1.3 the T -spectrum X̃T of X is the subanalytic
spectrum of X. The equivalence Mod(k eXsa

) ' Mod(kXsa
) was used in [38] to

bound the homological dimension of subanalytic sheaves.
(iii) When T is the family of Example 2.1.5 the T -spectrum X̃T of X is the o-minimal
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spectrum of X. When X is a definable space, then X̃T = X̃, the o-minimal
spectrum of X from [33], [19].

3. Examples.

In this section we recall our main examples of T -sheaves. Good references on o-
minimality are, for example, the book [13] by van den Dries and the notes [8] by Coste.
For semialgebraic geometry relevant to this paper the reader should consult the work by
Delfs [10], Delfs and Knebusch [11] and the book [7] by Bochnak, Coste and Roy. For
subanalytic geometry we refer to the work [6] by Bierstone and Milmann.

3.1. The semialgebraic site.
Let R = (R, <, 0, 1,+, ·) be a real closed field. Let X be a locally semialgebraic space

and consider the subfamily of Op(X) defined by T = {U ∈ Op(X) : U is semialgebraic}.
The family T satisfies (2.1) and the associated site XT is the semialgebraic site on X of
[10], [11]. Note also that: (i) the T -subsets of X are exactly the semialgebraic subsets
of X ([7]); (ii) Tloc = {U ∈ Op(X) : U is locally semialgebraic} and (iii) the Tloc-subsets
of X are exactly the locally semialgebraic subsets of X ([11]).

One can show (using triangulation of semialgebraic sets, as in [26]) that the family
Coh(T ) corresponds to the family of sheaves which are locally constant on a locally semi-
algebraic stratification of X. For each F ∈ Mod(kT ) there exists a filtrant inductive
system {Fi}i∈I in Coh(T ) such that F ' lim−→

i

ρ∗Fi.

The subcategory of T -flabby sheaves corresponds to the subcategory of sa-flabby
sheaves of [10] and it is injective with respect to Γ(U ; •), U ∈ Op(XT ) and HomkT (G, •),
G ∈ Coh(T ). Our results on T -flabby sheaves generalize those for sa-flabby sheaves from
[10].

We call in this case the T -spectrum X̃T of X the semialgebraic spectrum of X.
The points of X̃T are the ultrafilters α of locally semialgebraic subsets of X such that
U ∈ α for some U ∈ Op(XT ). This is a locally weakly quasi-compact space with basis
of quasi-compact open subsets given by {Ũ : U ∈ Op(XT )} and there is an equiva-
lence of categories Mod(kT ) ' Mod(k eXT ). When X is semialgebraic, then X̃T = X̃,
the semialgebraic spectrum of X from [9], and there is an equivalence of categories
Mod(kT ) ' Mod(k eX) ([10]).

3.2. The subanalytic site.
Let X be a real analytic manifold and consider the subfamily of Op(X) defined by

T = Opc(Xsa) = {U ∈ Op(Xsa) : U is subanalytic relatively compact}. The family T
satisfies (2.1) and the associated site XT is the subanalytic site Xsa of [28], [35]. In this
case the Tloc-subsets are the subanalytic subsets of X.

The family Coh(T ) corresponds to the family Modc
R-c(kX) of R-constructible sheaves

with compact support, and for each F ∈ Mod(kXsa) there exists a filtrant inductive
system {Fi}i∈I in Modc

R-c(kX) such that F ' lim−→
i

ρ∗Fi.

The subcategory of T -flabby sheaves corresponds to quasi-injective sheaves and it
is injective with respect to Γ(U ; •), U ∈ Op(Xsa) and HomkXsa

(G, •), G ∈ ModR-c(kX).
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We call in this case the T -spectrum X̃T of X the subanalytic spectrum of X and
denote it by X̃sa. The points of X̃sa are the ultrafilters of subanalytic subsets of X

such that U ∈ α for some U ∈ Opc(Xsa). Then there is an equivalence of categories
Mod(kXsa) ' Mod(k eXsa

).
Let U ∈ Op(Xsa) and denote by UXsa

the site with the topology induced by Xsa.
This corresponds to the site XT , where T = Opc(Xsa) ∩ U . In this situation (2.1) is
satisfied.

3.3. The conic subanalytic site.
Let X be a real analytic manifold endowed with a subanalytic action µ of R+. In

other words we have a subanalytic map

µ : X × R+ → X,

which satisfies, for each t1, t2 ∈ R+:

{
µ(x, t1t2) = µ(µ(x, t1), t2),

µ(x, 1) = x.

Denote by XR+ the topological space X endowed with the conic topology, i.e. U ∈
Op(XR+) if it is open for the topology of X and invariant by the action of R+. We
will denote by Opc(XR+) the subcategory of Op(XR+) consisting of relatively weakly
quasi-compact open subsets.

Consider the subfamily of Op(XR+) defined by T = Opc(Xsa,R+) = {U ∈
Opc(XR+) : U is subanalytic}. The family T satisfies (2.1) and the associated site XT is
the conic subanalytic site Xsa,R+ . In this case the Tloc-subsets are the conic subanalytic
subsets.

Set Coh(Xsa,R+) = Coh(T ). For each F ∈ Mod(kXsa,R+ ) there exists a filtrant
inductive system {Fi}i∈I in Coh(Xsa,R+) such that F ' lim−→

i

ρ∗Fi.

The subcategory of T -flabby sheaves is injective with respect to Γ(U ; •), U ∈
Op(Xsa,R+) and HomkX

sa,R+
(G, •), G ∈ Coh(Xsa,R+).

We call in this case the T -spectrum X̃T of X the conic subanalytic spectrum of X

and denote it by X̃sa,R+ . The points of X̃sa,R+ are the ultrafilters α of conic subanalytic
subsets of X such that U ∈ α for some U ∈ Opc(Xsa,R+). Then there is an equivalence
of categories Mod(kXsa,R+ ) ' Mod(k eXsa,R+

).

3.4. The o-minimal site.
Let M = (M, <, (c)∈C , (f)f∈F , (R)R∈R) be an arbitrary o-minimal structure. Let

X be a locally definable space and consider the subfamily of Op(X) defined by T =
Op(Xdef) = {U ∈ Op(X) : U is definable}. The family T satisfies (2.1) and the asso-
ciated site XT is the o-minimal site Xdef of [19]. Note also that: (i) the T -subsets of
X are exactly the definable subsets of X (by the cell decomposition theorem in [13],
see [19, Proposition 2.1]); (ii) Tloc = {U ∈ Op(X) : U is locally definable} and (iii) the
Tloc-subsets of X are exactly the locally definable subsets of X.
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Set Coh(Xdef) = Coh(T ). For each F ∈ Mod(kXdef ) there exists a filtrant inductive
system {Fi}i∈I in Coh(Xdef) such that F ' lim−→

i

ρ∗Fi.

The subcategory of T -flabby sheaves (or definably flabby sheaves) is injective with
respect to Γ(U ; •), U ∈ Op(Xdef) and HomkXdef

(G, •), G ∈ Coh(Xdef).
We call in this case the T -spectrum X̃T of X the definable or o-minimal spectrum

of X and denote it by X̃def . The points of X̃def are the ultrafilters α of the Boolean
algebra of locally definable subsets of X such that U ∈ α for some U ∈ Op(Xdef). This is
a locally weakly quasi-compact space with basis of quasi-compact open subsets given by
{Ũ : U ∈ Op(Xdef)} and there is an equivalence of categories Mod(kXdef ) ' Mod(k eXdef

).
When X is definable, then X̃def = X̃, the o-minimal spectrum of X from [33], [19], and
there is an equivalence of categories Mod(kXdef ) ' Mod(k eX) ([19]).

Finally observe that since locally semialgebraic spaces are locally definable spaces in
a real closed field and real closed fields are o-minimal structures and, relatively compact
subanalytic sets are definable sets in the o-minimal expansion of the field of real numbers
by restricted globally analytic functions, both the semialgebraic and subanalytic sheaf
theory are special cases of the o-minimal sheaf theory.
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