
Original Citation:

Non-triviality conditions for integer-valued polynomial rings on algebras

Springer-Verlag Wien
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3226294 since: 2019-05-07T14:55:56Z

10.1007/s00605-016-0951-8

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Padova

https://core.ac.uk/display/80153407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Monatshefte für Mathematik manuscript No.
(will be inserted by the editor)

Non-triviality Conditions for Integer-valued Polynomial Rings on
Algebras

Giulio Peruginelli · Nicholas J. Werner

Received: 17 February 2016 / Accepted: 6 July 2016

Abstract Let D be a commutative domain with field of fractions K and let A be a torsion-free
D-algebra such that A ∩K = D. The ring of integer-valued polynomials on A with coefficients
in K is IntK(A) = {f ∈ K[X] | f(A) ⊆ A}, which generalizes the classic ring Int(D) = {f ∈
K[X] | f(D) ⊆ D} of integer-valued polynomials on D.

The condition on A ∩K implies that D[X] ⊆ IntK(A) ⊆ Int(D), and we say that IntK(A) is
nontrivial if IntK(A) 6= D[X]. For any integral domain D, we prove that if A is finitely generated
as a D-module, then IntK(A) is nontrivial if and only if Int(D) is nontrivial. When A is not
necessarily finitely generated but D is Dedekind, we provide necessary and sufficient conditions
for IntK(A) to be nontrivial. These conditions also allow us to prove that, for D Dedekind, the
domain IntK(A) has Krull dimension 2.

Keywords Integer-valued polynomial · Algebraic algebra of bounded degree · Maximal
subalgebra · Krull dimension
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1 Introduction

Given a (commutative) integral domain D with fraction field K, we define Int(D) := {f ∈ K[X] |
f(D) ⊆ D}, which is the ring of integer-valued polynomials on D. Integer-valued polynomials
and the properties of Int(D) have been well studied; the book [4] covers the major theory in
this area and provides an extensive bibliography. In recent years, researchers have begun to
study a generalization of Int(D) to polynomials that act on a D-algebra rather than on D itself
[7], [8], [9], [10], [11], [16], [18], [19], [20], [22], [23], [27]. For this generalization, we let A be a
torsion-free D-algebra such that A ∩ K = D, and let B = K ⊗D A, which is the extension of
A to a K-algebra. By identifying K and A with their images under the injections k 7→ k ⊗ 1
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and a 7→ 1 ⊗ a, we can evaluate polynomials in K[X] at elements of A. This allows us to
define IntK(A) := {f ∈ K[X] | f(A) ⊆ A}, which is the ring of integer-valued polynomials
on A with coefficients in K. With notation as above, the condition A ∩ K = D ensures that
D[X] ⊆ IntK(A) ⊆ Int(D).

Definition 1.1. We say that IntK(A) is nontrivial if IntK(A) 6= D[X].

The goal of this paper is to determine when IntK(A) is nontrivial. Some results in this
direction were proved by Frisch in [11, Lem. 4.1] and [11, Thm. 4.3]; these are restated below
in Proposition 2.5. In the traditional case, necessary and sufficient conditions for Int(D) to be
nontrivial were given by Rush in [26]. Using Rush’s criteria, we prove (Theorem 2.12) that when
D is any integral domain and A is finitely generated as a D-module, IntK(A) is nontrivial if
and only if Int(D) is nontrivial. Part of this work involves conditions under which we have
D[X] ⊆ IntK(Mn(D)) ⊆ IntK(A) for some n, where Mn(D) is the algebra of n×n matrices with
entries in D. This led us to investigate whether having IntK(Mn(D)) = IntK(A) implies that
A ∼= Mn(D). While this is not true in general, the result does hold if D is a Dedekind domain
and A can be embedded in Mn(D) (Theorem 2.18).

If we drop the assumption that A is finitely generated as a D-module, determining whether
IntK(A) is nontrivial becomes more complicated. However, when D is Dedekind, we are able to
give necessary and sufficient conditions for IntK(A) to be nontrivial (Theorem 3.4). Our work
on this topic also allows us to prove that if D is Dedekind, then IntK(A) has Krull dimension 2
(Corollary 3.10). This generalizes another theorem of Frisch [9, Thm. 5.4] where it was assumed
that A was finitely generated as a D-module.

2 Integral Algebras of Bounded Degree

Throughout, D denotes an integral domain with field of fractions K, and A denotes a D-algebra.
We will always assume that A satisfies certain conditions, which we call our standard assumptions.

Definition 2.1. When A is a torsion-free D-algebra such that A ∩K = D, we say that A is a
D-algebra with standard assumptions. When A is finitely generated as a D-module, we say that
A is of finite type.

As mentioned in the introduction, the condition that A ∩K = D implies that

D[X] ⊆ IntK(A) ⊆ Int(D)

and it is natural to consider when D[X] = IntK(A) or IntK(A) = Int(D). This latter equal-
ity is investigated in [21], where the following theorem is proved. Unless stated otherwise, all
isomorphisms are ring isomorphisms.

Theorem 2.2. [21, Thms. 2.10, 3.10] Let D be a Dedekind domain with finite residue rings. Let

A be a D-algebra of finite type with standard assumptions. For each maximal ideal P of D, let ÂP
and D̂P be the P -adic completions of A and D, respectively. Then, the following are equivalent.

(1) IntK(A) = Int(D).
(2) For each nonzero prime P of D, there exists t ∈ N such that A/PA ∼=

⊕t
i=1D/P .

(3) For each nonzero prime P of D, there exists t ∈ N such that ÂP ∼=
⊕t

i=1 D̂P .

In this paper, we examine the containment D[X] ⊆ IntK(A). In the traditional setting of
integer-valued polynomials, the ring Int(D) is said to be trivial if Int(D) = D[X], and we adopt
the same terminology for IntK(A). Clearly, for IntK(A) to be nontrivial it is necessary that
Int(D) be nontrivial, so we begin by reviewing the situation for Int(D). Section I.3 of [4] and
a paper by Rush [26] give several results regarding the triviality or non-triviality of Int(D). We
will summarize these theorems after recalling several definitions.
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Definition 2.3. An ideal a of D is said to be the colon ideal or conductor ideal of q ∈ K if

a = (D :D q) = {d ∈ D | dq ∈ D}.

For a commutative ring R, we denote by nil(R) the nilradical of R, which is the set of all nilpotent
elements of R, or, equivalently, the intersection of all nonzero prime ideals of R. For x ∈ nil(R),
we let ν(x) equal the nilpotency of x, i.e., the smallest positive integer n such that xn = 0. If
I ⊆ R is an ideal, let V (I) = {P ∈ Spec(R) | P ⊇ I}.

The following proposition summarizes several sufficient and necessary conditions on D in
order for Int(D) to be nontrivial.

Proposition 2.4.

(1) [4, Cor. I.3.7] If D is a domain with all residue fields infinite, then Int(D) is trivial.
(2) [4, Prop. I.3.10] Let D be a domain. If there is a proper conductor ideal a of D such that

D/a is finite, then Int(D) is nontrivial.
(3) [4, Thm. I.3.14] Let D be a Noetherian domain. Then, Int(D) is nontrivial if and only if

there is a prime conductor ideal of D with finite residue field.
(4) [26, Cor. 1.7] Let D be an integral domain. Then, the following are equivalent:

(i) Int(D) is nontrivial.
(ii) There exist a, b ∈ D with b /∈ aD such that the two sets { |D/P | | P ∈ V ((aD : b))}

and {ν(x) | x ∈ nil(D/(aD : b))} are bounded.

If A is finitely generated as a D-module, Frisch has shown that the analogs of the above
conditions in Proposition 2.4 hold for IntK(A):

Proposition 2.5. Let D be a domain. Let A be a D-algebra of finite type with standard assump-
tions.

(1) [11, Lem. 4.1] Assume there is a proper conductor ideal a of D such that D/a is finite. Then,
IntK(A) is nontrivial.

(2) [11, Thm. 4.3] Assume that D is Noetherian. Then, IntK(A) is nontrivial if and only if there
is a prime conductor ideal of D with finite residue field.

In particular, [11, Thm. 4.3] shows that for a Noetherian domain D and a finitely generated
algebra A, IntK(A) is nontrivial if and only if Int(D) is nontrivial. In Theorem 2.12, we will show
that this holds even if D is not Noetherian. Additionally, we can weaken our assumptions on A.
Recall the following definition, which can be found in [14] or [15], among other sources.

Definition 2.6. Let R be a commutative ring and A an R-algebra. We say that A is an algebraic
algebra (over R) if every element of A satisfies a polynomial equation with coefficients in R. We
say that A is an algebraic algebra of bounded degree if there exists n ∈ N such that the degree of
the minimal polynomial equation of each of its elements is bounded by n. If we insist that each
element of A satisfy a monic polynomial with coefficients in R, then we say that A is an integral
algebra over R.

Algebraic algebras are usually discussed over fields, in which case an algebraic algebra is also
an integral algebra. Over a domain however, the two structures are not equivalent. For example,
A = Z[ 12 ] is an algebraic algebra over Z that is not an integral algebra. In this case, A does
not satisfy our standard assumption that A ∩ Q should equal Z. However, if we instead take
A = Z ⊕ Z[ 12 ] (so that B = Q ⊗Z A ∼= Q ⊕ Q, D is the diagonal copy of Z in B, and K is the
diagonal copy of Q in B), then A is an algebraic algebra over D, A is not an integral algebra
over D, and A ∩K = D.
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Note also that if A is finitely generated as a D-module, then A is an integral algebra of
bounded degree, with the bound given by the number of generators (see [2, Thm. 1, Chap. V] or
[1, Prop. 2.4]). However, the converse does not hold. For instance, A = D[X1, X2, . . .]/({XiXj |
i, j ≥ 1}) is not finitely generated, but if f ∈ A with constant term d ∈ D, then f satisfies the
polynomial (X − d)2. Thus, this A is an integral algebra of bounded degree.

For our purposes, the importance of having a bounding degree n, is that it guarantees that
IntK(A) contains IntK(Mn(D)), where Mn(D) denotes the algebra of n×n matrices with entries
in D.

Lemma 2.7. Let D be a domain and let A be a D-algebra with standard assumptions. Assume
that A is an integral D-algebra of bounded degree n. Then, IntK(Mn(D)) ⊆ IntK(A).

Proof. Let a ∈ A and let µa ∈ D[X] be monic of degree n such that µa(a) = 0. Let f(x) =
g(X)/d ∈ IntK(Mn(D)), where g ∈ D[X] and d ∈ D \ {0}. By [12, Lem. 3.4], g is divisible
modulo dD[X] by every monic polynomial in D[X] of degree n; hence, µa divides g modulo d.
It follows that g(a) ∈ dA and f(a) ∈ A. Since a was arbitrary, f ∈ IntK(A).

Remark 2.8. The converse of Lemma 2.7 does not hold, even in the case when IntK(Mn(D))
is nontrivial, as Example 3.1 below will show.

Thus, in the case of an integral algebra of bounded degree n, to prove that IntK(A) is
nontrivial it suffices to show that IntK(Mn(D)) is nontrivial. This task is more tractable, because
the polynomials given in the next definition can be used to map Mn(D) into Mn(P ), where P is
a maximal ideal of D with a finite residue field.

Definition 2.9. For each prime power q and each n > 0, let

φq,n(X) = (Xqn −X)(Xqn−1

−X) · · · (Xq −X).

Lemma 2.10. [3, Thm. 3] Let Fq be the finite field with q elements. Then, φq,n sends each
matrix in Mn(Fq) to the zero matrix. Consequently, if P ⊂ D is a maximal ideal of D with
residue field D/P ∼= Fq, then φq,n maps Mn(D) into Mn(P ).

Proposition 2.11. Let D be a domain. If Int(D) is nontrivial, then IntK(Mn(D)) is nontrivial,
for all n ≥ 1.

Proof. Let n ≥ 1 be fixed. Since Int(D) is nontrivial, by [26, Cor. 1.7] there exist a, b ∈ D with
b /∈ aD such that { |D/P | | P ∈ V ((aD : b))} and {ν(x) | x ∈ nil(D/(aD : b))} are bounded.
Let I = (aD : b). Note that, because the former condition holds, each prime ideal containing I
is maximal, so the nilradical of D/I is equal to the Jacobson radical of D/I.

Let {q1, . . . , qs} = { |D/P | | P ∈ V (I)}. By Lemma 2.10, we have φq,n(Mn(D)) ⊆ Mn(P )
for each maximal ideal P ⊂ D whose residue field has cardinality q. Then

g(X) =
∏

i=1,...,s

φqi,n(X)

is a monic polynomial such that g(Mn(D)) ⊆
∏
iMn(Pi) ⊆Mn(J), where J =

√
I. Considering

everything modulo I, we have g(Mn(D/I)) ⊆Mn(J/I).
Now, since {ν(x) | x ∈ nil(D/I)} is bounded, the nilpotency of every element in J/I is

bounded by some positive integer t. It is a standard exercise that a matrix over a commutative
ring with nilpotent entries is a nilpotent matrix. Moreover, it easily follows that the nilpotency
of every matrix in Mn(J/I) is bounded by some m ∈ N, depending only on t and n. Hence,
g(X)m maps every matrix Mn(D/I) to 0, so that g(X)m maps Mn(D) into Mn(I). Finally, it is
now easy to see that the polynomial b

a · g(X)m is in IntK(Mn(D)) but not in D[X].
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Combining Lemma 2.7 with Proposition 2.11, we obtain our desired theorem.

Theorem 2.12. Let D be a domain and let A be D-algebra with standard assumptions. Assume
that A is an integral D-algebra of bounded degree. Then, IntK(A) is nontrivial if and only if
Int(D) is nontrivial. In particular, if A is finitely generated as a D-module, then IntK(A) is
nontrivial if and only if Int(D) is nontrivial.

Lemma 2.7 shows that, for an integral algebra A of bounded degree n, the following contain-
ments hold:

D[X] ⊆ IntK(Mn(D)) ⊆ IntK(A) ⊆ Int(D).

While our focus has been on whether IntK(A) equals D[X], for the remainder of this section
we will consider the containment IntK(Mn(D)) ⊆ IntK(A). In particular, we will examine to
what extent IntK(Mn(D)) is unique among rings of integer-valued polynomials. That is, if
IntK(Mn(D)) = IntK(A), then can we conclude that A ∼= Mn(D)? In general, the answer is
no, as we show below in Example 2.15. However, in Theorem 2.18 we will prove that for D
Dedekind, if A can be embedded in Mn(D), then having IntK(Mn(D)) = IntK(A) implies that
A ∼= Mn(D).

We first recall the definition of a null ideal of an algebra.

Definition 2.13. Let R be a commutative ring and A an R-algebra. The null ideal of A with
respect to R, denoted NR(A), is the set of polynomials in R[X] that kill A. That is, NR(A) =
{f ∈ R[X] | f(A) = 0}. In particular, ND/P (A/PA) = {f ∈ (D/P )[X] | f(A/PA) = 0} denotes
the null ideal of A/PA with respect to D/P .

There is a close relationship between polynomials in rings of integer-valued polynomials and
polynomials in null ideals.

Lemma 2.14. Let D be a domain and let A and A′ be D-algebras with standard assumptions.

(1) Let g(X)/d ∈ K[X], where g ∈ D[X] and d 6= 0. Then, g(X)/d ∈ IntK(A) if and only if the
residue of g (mod d) is in ND/dD(A/dA).

(2) IntK(A) = IntK(A′) if and only if ND/dD(A/dA) = ND/dD(A′/dA′) for all d ∈ D.

Proof. Notice that g ∈ IntK(A) if and only if g(A) ⊆ dA if and only if g(A/dA) = 0 mod d. This
proves (1), and (2) follows easily.

Example 2.15. Let D = Z(p) be the localization of Z at an odd prime p. Take A to be the
quaternion algebra A = D ⊕ Di ⊕ Dj ⊕ Dk, where i, j, and k are the imaginary quaternion
units satisfying i2 = j2 = −1 and ij = k = −ji. It is well known (cf. [13, Exercise 3A] or [6,
Sec. 2.5]) that A/pkA ∼= M2(Z/pkZ) ∼= M2(D/pkD) for all k > 0. By Lemma 2.14, IntQ(A) =
IntQ(M2(D)). However, A contains no nonzero nilpotent elements (and is in fact contained in
the division ring Q⊕Qi⊕Qj⊕Qk) and so cannot be isomorphic to M2(D).

Thus, in general, IntK(A) = IntK(Mn(D)) does not imply that A ∼= Mn(D). However, as
mentioned above, we do have such an isomorphism if A can be embedded in Mn(D). Proving this
theorem involves some results of Racine [24], [25] about maximal subalgebras of matrix rings,
which we now summarize.

Proposition 2.16.

(1) ([24, Thm. 1]) Let A be a maximal Fq-subalgebra of Mn(Fq). Let V be an Fq-vector space of
dimension n, so that Mn(Fq) ∼= EndFq

(V ). Then, A is one of the following two types.

(I) The stabilizer of a proper nonzero subspace of V . That is, A = S(W ) = {ϕ ∈ EndFq
(V ) |

ϕ(W ) ⊆W}, where W is a proper nonzero Fq-subspace of V .
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(II) The centralizer of a minimal field extension of Fq. That is, A = CEndFq (V )(Fql) = {ϕ ∈
EndFq

(V ) | ϕx = xϕ,∀x ∈ Fql}, where l ∈ Z is a prime dividing n.
(2) ([25, Theorem p. 12]) Let D be a Dedekind domain and let A be a maximal D-subalgebra of

Mn(D). Then, there exists a maximal ideal P of D such that A/PA is a maximal subalgebra
of Mn(D/P ).

Racine’s classification allows us to establish a partial uniqueness result for the null ideal of
Mn(Fq), and hence for IntK(Mn(D)).

Lemma 2.17. Let A be an Fq-subalgebra of Mn(Fq) such that NFq
(A) = NFq

(Mn(Fq)). Then

A = Mn(Fq).

Proof. Suppose the claim is not true, so that A is contained in a maximal Fq-subalgebra of
Mn(Fq); hence, without loss of generality, we may assume that A ( Mn(Fq) is a maximal Fq-
subalgebra. We will show that NFq

(A) properly contains NFq (Mn(Fq)). Note that NFq (Mn(Fq)) =
(φq,n(X)) by [3, Thm. 3], where φq,n is the polynomial from Definition 2.9.

Let V be an Fq-vector space of dimension n, so that Mn(Fq) ∼= EndFq
(V ). Assume first that

A = S(W ) is of Type I as in Proposition 2.16, and let m = dimFq (W ). Note that conjugating

A by an element of GL(n, q) will change the matrices in A, but not the polynomials in the null
ideal NFq (A). Moreover, up to conjugacy by an element in GL(n, q), we may assume that W
has basis e1, e2, . . . , em, where ei is the standard basis vector with 1 in the ith component and 0
elsewhere. Under this basis, the matrices in A are block matrices of the form

(
A1 A2

0 A3

)
where A1

is m×m and A3 is (n−m)× (n−m).
One consequence of this representation is that every matrix in S(W ) has a reducible char-

acteristic polynomial. As shown in the proof of [3, Thm. 3], φq,n is the least common multiple
of all monic polynomials in Fq[X] of degree n. Hence, φq,n ∈ NFq

(A), because the characteristic

polynomial of each matrix in A divides φq,n. However, if φ is the quotient of φq,n by an irre-
ducible polynomial in Fq[X] of degree n, then φ ∈ NFq

(A), but φ /∈ NFq
(Mn(Fq)). Thus, NFq

(A)
properly contains NFq

(Mn(Fq)).
Now, assume that A is of Type II of Proposition 2.16, so that A = CEndFq (V )(Fql) for some

prime l dividing n. Then, by [17, Thm. VIII.10], we have A ∼= Mn/l(Fql), and so

NFq
(A) = (φql,n/l(X)) ) (φq,n(X)) = NFq

(Mn(Fq)).

As before, the null ideal of A strictly contains the null ideal of Mn(Fq).

Theorem 2.18. Let D be a Dedekind domain with finite residue fields. Let A be a D-algebra
of finite type with standard assumptions. Assume that n ≥ 1 is such that A can be embedded in
Mn(D). Then, IntK(A) = IntK(Mn(D)) if and only if A ∼= Mn(D).

Proof. Clearly,A ∼= Mn(D) implies that IntK(A) = IntK(Mn(D)). So, assume that IntK(Mn(D)) =
IntK(A). As we will prove shortly in Lemma 3.2, IntK(A) (and likewise IntK(Mn(D))) is well-
behaved with respect to localization at primes of D: for each prime P of D, we have IntK(A)P =
IntK(AP ). Hence, IntK(Mn(DP )) = IntK(AP ) for each P . Since D is Dedekind, DP is a dis-
crete valuation ring, so there exists π ∈ DP such that PDP = πDP . Moreover, we have
DP /πDP

∼= D/P and AP /πAP ∼= A/PA, so that NDP /πDP
(AP /πAP ) = ND/P (A/PA) (and

likewise for Mn(D)). By Lemma 2.14 (2), we conclude that the null ideals ND/P (Mn(D/P )) and
ND/P (A/PA) are equal for all maximal ideals P of D.

Now, suppose by way of contradiction that the image of A in Mn(D) does not equal Mn(D).
As in Lemma 2.17, we may assume that the image of A in Mn(D) is a maximal D-subalgebra
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of Mn(D). By Proposition 2.16, there exists a maximal ideal P of D such that A/PA is isomor-
phic to a maximal subalgebra of Mn(D/P ). By Lemma 2.17, the null ideals ND/P (A/PA) and
ND/P (Mn(D/P )) are not equal. This is a contradiction. Therefore, A ∼= Mn(D).

3 General Case

We return now to the study of when IntK(A) is nontrivial. Because of Theorem 2.12, A being an
integral D-algebra of bounded degree can be sufficient for IntK(A) to be nontrivial, but it is not
necessary. There exist D-algebras A that are neither finitely generated, nor algebraic over D (let
alone integral or of bounded degree), but for which IntK(A) is nontrivial, as the next example
shows.

Example 3.1. Let D = Z and let A =
∏
i∈N Z be an infinite direct product of copies of Z. Then,

the element (1, 2, 3, . . .) cannot be killed by any polynomial in Z[X], so A is not algebraic over
Z. However, since operations in A are done component-wise, any polynomial in Int(Z) is also in
IntQ(A). Hence, IntQ(A) = Int(Z), so in particular IntQ(A) is nontrivial.

Ultimately, the previous example works because for each prime p there exists a polynomial
that sends each element of A/pA to 0. More explicitly, each element of

∏
i∈N Fp is killed by the

polynomial Xp − X. This suggests that for IntK(A) to be nontrivial, it may be enough that
there exists a finite index prime P of D with A/PA algebraic of bounded degree over D/P (since
D/P is a field in this case, this is equivalent to having A/PA be integral of bounded degree over
D/P ). We will prove below in Theorem 3.4 that if D is a Dedekind domain, then this condition
is necessary and sufficient for IntK(A) to be nontrivial.

Our work will involve localizing D, A, and IntK(A) at P , and exploiting properties of DP . In
[27, Prop. 3.2], it is shown that if D is Noetherian and A is a free D-module of finite rank, then
IntK(A)P = IntK(AP ) (in fact, [27, Prop. 3.2] will hold if A is merely finitely generated as a
D-module). The next lemma shows that we can drop this finiteness assumption if D is Dedekind.

Lemma 3.2. Let D be a Dedekind domain and A a D-algebra with standard assumptions. Let
P be a prime ideal of D. Then IntK(AP ) = IntK(A)P .

Proof. The containment IntK(A)P ⊆ IntK(AP ) follows from the proof of [27, Prop. 3.2], which
itself is an adaptation of a technique of Rush involving induction on the degrees of the relevant
polynomials (see [4, Thm. I.2.1] or [26, Prop. 1.4]).

For the other inclusion, let f ∈ IntK(AP ) and write f(X) = g(X)
d for some g ∈ D[X] and

d ∈ D \ {0}. Since D is Dedekind, we may write dD = P aI, where a ≥ 0 and I is an ideal of D
coprime with P (possibly equal to D itself). If a = 0 then f ∈ DP [X] ⊆ IntK(A)P . If a ≥ 1, let
c ∈ I \ P . We claim that cf ∈ IntK(A), from which the statement follows since c ∈ D \ P .

If Q ⊂ D is a prime ideal different from P , then cf ∈ DQ[X] ⊆ IntK(AQ); that is, cf(AQ) ⊂
AQ. Now, f(A) ⊆ f(AP ) ⊆ AP by assumption, so cf(A) ⊂ cAP = AP , since c /∈ P . Since
A =

⋂
Q∈Spec(D)AQ, it follows that cf(A) ⊂ A, and we are done.

Recall (Definition 2.13) that the null ideal of A in R is NR(A) = {f ∈ R[X] | f(A) = 0}.

Proposition 3.3. Let D be a Dedekind domain and A a D-algebra with standard assumptions.
Let P be a prime ideal of D. Then, the following are equivalent.

(1) ND/P (A/PA) ) (0).
(2) DP [X] ( IntK(AP ).
(3) D/P is finite and A/PA is a D/P -algebraic algebra of bounded degree.
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Proof. (1) ⇒ (2) Let g ∈ D[X] be a monic pullback of a nontrivial element g ∈ ND/P (A/PA)

and let π ∈ P \ P 2. Then, g(AP ) ⊆ PAP = πAP , so g(X)
π ∈ IntK(AP ) \DP [X].

(2) ⇒ (1) Let f(X) = g(X)
d ∈ IntK(AP ) \ DP [X], with g ∈ D[X] \ P [X] and d ∈ P . Let

vP denote the canonical valuation on DP . If vP (d) = e > 1 and π ∈ P \ P 2, then πe−1f(X)
is still an element of IntK(AP ) which is not in DP [X]. So, g(AP ) ⊆ d

πe−1AP ⊆ πAP . Hence,
g ∈ (DP /PDP )[X] ∼= (D/P )[X] is a nontrivial element of ND/P (A/PA).

(1)⇔ (3) Note that

ND/P (A/PA) =
⋂

a∈A/PA

ND/P (a) =
⋂

a∈A/PA

(µa(X))

where, for each a ∈ A/PA, µa ∈ (D/P )[X] is the minimal polynomial of a over the field D/P .
If ND/P (A/PA) is nonzero, then it is equal to a principal ideal generated by a monic non-

constant polynomial g ∈ (D/P )[X]. Since ND/P (A/PA) ⊆ ND/P (D/P ), it follows that D/P is
finite (if not, then ND/P (D/P ) = (0), because the only polynomial which is identically zero on
an infinite field is the zero polynomial). Moreover, each element a ∈ A/PA is algebraic over D/P
(otherwise the corresponding ND/P (a) is zero) and its degree over D/P is bounded by deg(g).

Conversely, assume D/P is finite and A/PA is a D/P -algebraic algebra of bounded degree
n. Then, there are finitely many polynomials over D/P of degree at most n, and the product of
all such polynomials is a nontrivial element of ND/P (A/PA).

We can now establish the promised criterion for IntK(A) to be nontrivial.

Theorem 3.4. Let D be a Dedekind domain and let A be a D-algebra with standard assumptions.
Then IntK(A) is nontrivial if and only if there exists a prime ideal P of D of finite index such
that A/PA is a D/P -algebraic algebra of bounded degree.

Proof. Clearly, D[X] ( IntK(A) if and only if there exists a prime ideal P ⊂ D such that the
two D-modules D[X] and IntK(A) are not equal locally at P , that is, DP [X] ( IntK(A)P . Since
IntK(A)P = IntK(AP ) by Lemma 3.2, we can apply Proposition 3.3 and we are done.

Example 3.5. Theorem 3.4 applies to the following examples.

(1) Let D = Z and A = Z, the absolute integral closure of Z. Then, for each n ∈ N, there exists
α ∈ Z of degree d > n such that OQ(α) = Z[α]. It follows that for each prime p ∈ Z, Z/pZ is

an algebraic Z/pZ-algebra of unbounded degree. Thus, IntQ(Z) = Z[X].
(2) Let D = Z(p) and A = Zp. Then, Zp/pZp ∼= Z/pZ, so Z(p)[X] ( IntQ(Zp).
(3) Let D = Z and A = Ẑ =

∏
p∈P Zp, the profinite completion of Z, where P denotes the set

of all prime numbers. For each prime p ∈ Z, we have pẐ =
∏
p′ 6=p Zp′ × pZp, so Ẑ/pẐ ∼=

Zp/pZp ∼= Z/pZ. Thus, Z[X] ( IntQ(Ẑ).

If Â is the P -adic completion of a D-algebra A, then we can say more about IntK(Â). The
following lemma also appears in [21]. We include it in its entirety since the proof is quite short.

Lemma 3.6. Let D be a discrete valuation ring (DVR) with maximal ideal P = πD. Let A

be a D-algebra with standard assumptions, and let Â be the P -adic completion of A. Then,
IntK(Â) = IntK(A).

Proof. The containment IntK(Â) ⊆ IntK(A) is clear, since A embeds in Â. Conversely, let f ∈
IntK(A) and α ∈ Â. Suppose f(X) = g(X)/πk, where g ∈ D[X] and k ∈ N. If k = 0, then the
conclusion is clear, so assume that k > 1.
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Via the canonical projection Â → A/πkA, we see that there exists a ∈ A such that α ≡ a

(mod πkÂ). Since the coefficients of g are central in A, we get g(α) ≡ g(a) (mod πkÂ). Thus,

f(α) = f(a) + λ/πk, where λ ∈ πkÂ, so that f(α) ∈ Â. Hence, f ∈ IntK(Â) and IntK(Â) =
IntK(A).

Thus, in Example 3.5 (2), we have IntQ(A) = Int(Z(p)). Moreover, in Example 3.5 (3) we
have IntQ(A) = Int(Z) (see also [5] where the profinite completion of Z was considered in order
to study the polynomial overrings of Int(Z)). A more general example, which results in proper
containments among all of D[X], IntK(A), and Int(D), is the following.

Example 3.7. Let D be a DVR with maximal ideal P = πD and finite residue field. Let A be
a D-algebra of finite type with standard assumptions and such that IntK(A) ( Int(D). Let Â be
the P -adic completion of A. Then, P satisfies the conditions of Theorem 3.4 with respect to A,
so D[X] ( IntK(A); and IntK(Â) = IntK(A) by Lemma 3.6. Thus,

D[X] ( IntK(Â) = IntK(A) ( Int(D).

In general, Â is not finitely generated as a D-module (this is the case, for instance, when A is

countable but Â is uncountable). So, Â can provide an example of a D-algebra that is not finitely
generated and for which the integer-valued polynomial ring is properly contained between D[X]
and Int(D).

Remark 3.8. Lemma 3.6 also gives us another approach to Example 2.15. With notation as in
that example, we have Â ∼= M2(Zp) (indeed, this follows from the fact that A/pkA ∼= M2(Z/pkZ)
for all k > 0). Thus, IntQ(A) = IntQ(M2(Zp)) = IntQ(M2(Z(p))) even though A 6∼= M2(Z(p)).

We close this paper by using the conditions of Proposition 3.3 to prove that when D is
Dedekind, IntK(A) has Krull dimension 2. This result was shown by Frisch [9, Thm. 5.4] in
the case where A is of finite type. Our work does not require A to be finitely generated, and
somewhat surprisingly does not require a full classification of the prime ideals of IntK(A).

Recall that a nonzero prime ideal P of IntK(A) is called unitary if P∩D 6= (0), and is called
non-unitary if P ∩D = (0).

Theorem 3.9. Let D be a Dedekind domain and let A be a D-algebra with standard assumptions.
Let P be a nonzero prime ideal of IntK(A).

(1) If P is non-unitary, then P has height 1.
(2) If P is unitary, then let P = P ∩D.

(i) If P does not satisfy any of the conditions of Proposition 3.3, then P has height 2.
(ii) If P satisfies one of the conditions of Proposition 3.3, then P is maximal and has height

at most 2.

Proof. (1) Following [9, Lem. 5.3], the non-unitary prime ideals of IntK(A) are in one-to-one
correspondence with the prime ideals of K[X]. Since K[X] has dimension 1, the non-unitary
primes of IntK(A) are all of height 1.

(2) Let P be a nonzero prime of D. Assume first that P does not satisfy any of the conditions
of Proposition 3.3. Then, DP [X] = IntK(AP ) = IntK(A)P . It follows that the unitary primes of
IntK(A) are in one-to-one correspondence with the primes of DP [X]. Since D is Dedekind, we
know that DP [X] has dimension 2; hence, all the primes of IntK(A) under consideration have
height 2.

For the remainder of the proof, assume that P = P ∩ D does satisfy the conditions of
Proposition 3.3. Since P ∩ D = P , the prime ideal P survives in IntK(A)P = IntK(AP ) and
clearly its extension Pe is still a prime unitary ideal (so, Pe ∩ DP = PDP ). It is sufficient to
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show that Pe is a maximal ideal, so we may work over the localizations. Thus, without loss of
generality we will assume that D is a DVR. In particular, this means that P = πD, for some
π ∈ D.

Let g ∈ ND/P (A/PA), g 6= 0, and let g ∈ D[X] be a pullback of g(X). Then g(A) ⊆ PA = πA.
Consequently, for each f ∈ IntK(A) we have (g ◦ f)(A) ⊂ πA. Consider the ideal A = {F ∈
IntK(A) | F (A) ⊆ PA} of IntK(A). Because P = πD is principal, we have A = πIntK(A), which
is contained in P. Hence, for each f ∈ IntK(A), g ◦ f ∈ P.

Now, if we consider the D/P -algebra IntK(A)/P, we see that each element of IntK(A)/P
is annihilated by g(X). But IntK(A)/P is a domain, and for it to be annihilated by a nonzero
polynomial, it must be finite. Thus, in fact IntK(A)/P is a finite field, and so P is maximal.

Finally, to show that P has height at most 2, let Q be a prime of IntK(A) such that (0) (
Q ⊆ P. If Q is unitary, then we have Q ∩D = P , and by our work above Q is maximal, hence
equal to P. If Q is non-unitary, then it has height 1 by part (1) of the theorem. It follows that
P has height at most 2.

Corollary 3.10. Let D be a Dedekind domain with quotient field K. Let A be a D-algebra with
standard assumptions. Then, IntK(A) has Krull dimension 2.

Proof. If IntK(A) = D[X], then its dimension equals that of D[X], which is 2. So, assume that
IntK(A) is nontrivial. By Theorem 3.4, there exists a prime P of D that satisfies the conditions
of Proposition 3.3.

Let P = {f ∈ IntK(A) | f(0) ∈ P}. Since IntK(A) ⊆ Int(D), P is an ideal of IntK(A), and
it is easily seen to be prime and unitary, with P∩D = P . Moreover, it contains the non-unitary
ideal XK[X] ∩ IntK(A). Hence, P has height at least 2, and so dim(IntK(A)) ≥ 2. However,
dim(IntK(A)) ≤ 2 by Theorem 3.9, so we conclude that dim(IntK(A)) = 2.
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