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In many important systems exhibiting crackling noise—an intermittent avalanchelike relaxation response with
power-law and, thus, self-similar distributed event sizes—the “laws” for the rate of activity after large events
are not consistent with the overall self-similar behavior expected on theoretical grounds. This is particularly
true for the case of seismicity, and a satisfying solution to this paradox has remained outstanding. Here, we
propose a generalized description of the aftershock rates which is both self-similar and consistent with all other
known self-similar features. Comparing our theoretical predictions with high-resolution earthquake data from
Southern California we find excellent agreement, providing particularly clear evidence for a unified description of
aftershocks and foreshocks. This may offer an improved framework for time-dependent seismic hazard assessment
and earthquake forecasting.
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I. INTRODUCTION

Many natural and man-made systems exhibit an intermittent
avalanchelike response to changing external conditions [1,2].
Sequences of such sudden responses or events often constitute
the most crucial features of the evolutionary dynamics of com-
plex systems, in terms of their description, characterization,
and understanding. Prominent examples include earthquakes
on fault systems [3], frictional sliding [4], irreversible plas-
tic deformation in solids [5–7], fracture [8–13], materials
failure [14,15], magnetization processes [16,17], solar flare
emissions [18,19], financial markets [20–23], Internet traffic
[24], and media coverage [25]. The avalanchelike response—
often called crackling noise—is characterized by discrete,
impulsive events spanning a broad range of energies E, with a
power-law frequency distribution P (E) ∝ E−ε [26–29]. The
empirical Gutenberg-Richter (GR) relation for earthquakes is
one specific example [30]: Energies released by earthquakes
follow a power-law distribution and are conveniently handled
in the logarithmic scale of the magnitude m with E ∝ 10

3
2 m

such that P (m) ∝ 10−bm, where b = 3
2 (ε − 1). There is also

a good degree of universality, as ε is close to 1.5 for
many systems exhibiting crackling noise [29]. The associated
absence of characteristic scales indicates scale-free or self-
similar behavior.

Significant progress has been made in understanding the
self-similar distribution of event sizes and the associated
universality of crackling noise by using mean-field and renor-
malization approaches [17,26–29,31–34]. These theoretical
approaches elevate self-similar behavior to a general principle
as in the case of critical phenomena in equilibrium systems.
Thus, it is important to establish whether other properties often
associated with crackling noise also exhibit self-similar behav-
ior. This includes those spatiotemporal correlations between
events that reflect the intrinsic or endogenous dynamics of a
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given system and are a consequence of event-event triggering
as for aftershocks [6,35–39]. This is most clearly reflected
in the time-varying (local) event rates following large events,
which are empirically found to follow—across a wide range of
scales and systems from friction and fracture to socioeconomic
systems [10,12,13,19–25,37,40–43]—the Omori-Utsu (OU)
relation,

r(t) = K

(t + c)p
≡ 1

τ (t/c + 1)p
, (1)

first proposed for earthquakes [44]. Here, t measures the
time after the large event or trigger, p is typically close
to 1 (p � 1 if one only considers directly triggered events
[42]), and τ ≡ cp/K . K is found to increase with the
energy of the trigger, according to the productivity relation
K = K0E

2α/3. Its equivalent formulation in terms of the
magnitude of the trigger, M , is K = K010αM . The exponent α

is less than b across many systems exhibiting crackling noise
[6,10,12,13,22,37,45]. The parameter K0 naturally depends
on the observational threshold mth [31,46]; by lowering it one
counts more triggered events and it was reported K0 ∼ 10−βmth

[42,47–49]. In principle the exponents α and β and the b value
for triggered events or aftershocks [37,50], bas, appearing in
the mentioned scalings may be different and indeed this is
often observed [37,42,45,51–53].

A consequence of the difference between α and bas across
many systems exhibiting crackling noise is the breakdown of
self-similarity in the triggering process in those cases [54].
Specifically, the number of triggered events of a given energy
will explicitly depend on the energy of the trigger and not just
their energy ratio: Since the magnitudes of the triggered events
or aftershocks are distributed according to P (mas) ∝ 10−basmas ,
the number of events with magnitude mas triggered by an
event of magnitude M scales as 10αM−basmas for constant c in
Eq. (1). This translates into a scaling with 10(α−bas)M+bas�m with
�m = M − mas that includes an explicit dependence on M for
α �= bas, in disagreement with the hypothesis of a self-similar
triggering process that only depends on �m [31,46,54–59].
An explicit dependence on M would imply that the triggering
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process inducing a number of events of, say, magnitude 6 due
to an event of magnitude 8 is fundamentally different from the
triggering process inducing a number of events of magnitude
3 due to an event of magnitude 5.

To reconcile different values of α and bas with self-
similar triggering, we build on the well-established behavior
of equilibrium critical phenomena and propose a natural
generalization of the OU relation that is consistent with a
self-similar triggering process. Specifically, we build on the
fact that critical phenomena can be characterized not only by
critical exponents but also by universal scaling functions that
describe the behavior near equilibrium critical points [60]. A
general way to cast the event-event triggering rates into such
a scaling form under the condition that the rates should only
depend on the energy ratios between trigger and triggered event
or, equivalently, their magnitude difference �m = M − mas is
the following ansatz:

r(mas,t |M,0) = 1

τ�m

f

(
t

c�m

)
, (2)

where τ�m and c�m are two time scales varying only with
�m. In fact, an approach based on a limited scaling form with a
constant τ�m = τ was previously introduced by Lippiello et al.
[58,59]. In this paper, by analyzing high-resolution earthquake
data from Southern California, we show that only the full self-
similar generalization of the OU relation, in a form following
Eq. (2) with both c�m and τ�m scaling with �m and with a
specific functional form of f , is consistent with all empirical
relations. In this generalized form of the OU relation, self-
similarity is present even in the case of a nonconstant c and
α �= bas.

II. GENERALIZED OU RELATION

Self-similarity in the OU relation (1) is violated if the
number of the directly triggered events of magnitude mas does
explicitly depend on the main shock magnitude M , and not
only on the magnitude difference. To ensure self-similarity
and consistency with empirical observations, we propose the
following generalization of the OU relation for conditional
event-event triggering rates:

r(mas,t |M,0) = 1

τ�m

(
t

c�m

+ 1

)−p

, (3)

with time scales

c�m = c010g �m and τ�m = τ010−z �m (4)

scaling with �m (g � 0 and z � 0 are supposedly universal
scaling exponents while c0 and τ0 are constant prefactors).
Specifically, r(mas,t |M,0) is the rate of events or aftershocks
of magnitude mas at time t triggered directly by an event
of magnitude M at time zero. This generalized OU relation
corresponds to Eq. (2) with f (x) = (1 + x)−p; hence, it is
a natural generalization in the sense that f is consistent
with the standard OU form and all parameters now depend
explicitly and exclusively on �m. Note also that Eq. (3) does
not require M > mas but it is applicable to all magnitude
or energy combinations such that it encompasses what is
often considered main shock-aftershock pairs as well as

foreshock–main shock pairs. Here, a foreshock is an event
that triggers another event with a larger magnitude.

With a simple mathematical derivation (see Ref. [55] for
a somewhat similar derivation in a context in which the
magnitude of the largest aftershock is assumed to play a
significant role), we may show that Eq. (3) ensures self-
similarity, as the total number of triggered events of magnitude
mas,

N (mas|M) ≡
∫ ∞

0
r(mas,t |M,0) dt = c�m

τ�m(p − 1)
, (5)

depends only on �m. Such self-similar generalization of the
OU relation is consistent with the GR relation since

N>(mth|M) ≡
∫ ∞

mth

N (mas|M) dmas

= c0

τ0(p − 1) ln 10(g + z)
10(g+z)(M−mth). (6)

Thus, we have the scaling relation

bas = g + z, (7)

indicating that only two out of these three scaling exponents
are independent. Hence, the generalized OU relation does
not introduce an additional independent parameter compared
to the standard OU relation with its associated productivity
relation. In particular, for K�m ≡ c

p

�m/τ�m we also have a
generalized productivity relation

K�m = K010α�m (8)

with K0 = c
p
o /τ0 and

α = z + pg = bas + g(p − 1). (9)

Note that this implies that K�m and N (mas|M) do not scale the
same way with �m if g �= 0, which explicitly allows bas �= α

in our self-similar framework.
A related consequence of the generalized OU relation given

by Eqs. (3) and (4) is that the GR relation for triggered events
needs to be modified if only triggered events over short time
intervals are considered. For example, the number of triggered
events or aftershocks of magnitude mas up to time t∗,

N (mas,t
∗|M) ≡

∫ t∗

0
r(mas,t |M,0) dt, (10)

only follows the GR relation (5) for t∗ → ∞. For finite t∗,
N (mas,t

∗|M) has two power-law regimes: For small mas, it
decays with exponent z while it decays with exponent bas =
g + z for large mas. The transition point is around a magnitude
m∗ for which cM−m∗ ≈ t∗. Thus, the transition point moves
to lower magnitudes for increasing t∗, recovering the full GR
relation for t∗ → ∞. Note that only for g = 0—corresponding
to a constant c�m—the GR relation holds for all t∗.

In contrast to the conditional rates in Eqs. (2) and (3),
the classic OU relation (1) considers the integrated rates
r>(mth,t |M,0) ≡ ∫ ∞

mth
r(mas,t |M,0) dmas. For the proposed

self-similar OU conditional rates in Eq. (3), one easily verifies
that such integrated rates inherit the scale invariance with
respect to M − mth. Moreover, these integrated rates have a
functional form very similar to the classic OU relation for
realistic situations. See the Appendix for more details.
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To summarize, the proposed self-similar form of the con-
ditional event-event triggering rates can indeed be considered
a realistic generalization of the classic OU relation as it is
consistent with the GR relation, the productivity relation, as
well as the classic form of the OU relation for integrated
rates.

III. COMPARISON WITH DATA

To test the validity of the self-similar OU relation, we
analyze the event-event triggering for earthquakes in South-
ern California. Specifically, we analyze the relocated high-
resolution Southern California catalog [61]. We consider all
local earthquakes with magnitude m � 2 from 1982 to 2011
(101 991 events).

The triggering relations between earthquakes are iden-
tified using the established methodology described in
Refs. [37,41,53,62,63]. The method quantifies the correlation
between an event i and a following event j via the expression

n(i,j ) = C|ti − tj ||
ri − 
rj |Df 10−bmi , (11)

which estimates the expected number of events in the space-
time window spanned by i and j with magnitude larger than
or equal to mi . Here ti denotes the time of occurrence of event
i, and mi its magnitude. b = 1.05 is the estimated b value
for the full catalog. As in Ref. [37], we use hypocenters 
ri

and the parameter Df = 2.3 for the fractal dimension and
set C = 1 without loss of generality. This leads to a threshold
value log10 n∗ = 10.0 for the identification of triggered events;
i.e., only events with n(i,j ) < n∗ are considered as plausible
main shock-aftershock pairs. Among all events i preceding j ,
the identification of the (most likely) trigger of j results from
selecting that with the lowest n(i,j ). Further details on the
methodology can be found in Ref. [37].

For our analysis of triggering rates, we focus only on
directly triggered events; namely, we do not consider after-
shocks of aftershocks. To obtain sufficient statistics, rates
for all events in a given small magnitude range are stacked
and averaged. In particular, triggered events with magnitude
M − mas ∈ [�m,�m + 0.5) are selected for each trigger
having a magnitude M in the range [M,M + 0.5).

A. Self-similarity of conditional rates

In Fig. 1(a) we show the conditional triggering rates for
different combinations of magnitudes. The striking feature is
that all rates with a given �m are quite indistinguishable from
each other, regardless of the magnitude of the trigger. This
strongly suggests that �m is the relevant quantity determining
the triggering rates and, thus, supports the hypothesis of
self-similarity as formulated in Eq. (2). Since this behavior
is independent on whether �m is positive or negative [see
Fig. 1(a)], it also provides a unified description of aftershocks
and foreshocks.

To further establish that the dependence on �m is correctly
captured by Eq. (4), we recall that Eq. (3) is an example
of the general scaling form (2). This implies that all curves
should collapse onto a single master curve, the scaling function
f (x), under appropriate rescaling with c�m and τ�m. This
is indeed what we observe in Fig. 1(b) for g ≈ 0.66 and

z ≈ 0.24 providing direct support for the scaling proposed
in Eq. (4).

B. Scaling function

Further support for the proposed self-similar OU relation
comes from fitting the conditional triggering rates in Fig. 1 to
Eq. (3) using a standard maximum likelihood estimator (MLE)
for p, c, and K [42], with τ ≡ cp/K as in Eq. (1). Specifically,
this allows us to estimate c�m and K�m (and consequently
τ�m) and their behavior in a more quantitative way as well as
to establish whether the form of the scaling function (3) with
a constant p is appropriate. The corresponding results for p

are shown in Fig. 2(b). There are no significant differences
in the estimates for fixed �m, though there is an increasing
trend in p with �m for large �m. This can be attributed
to the fact that the MLE slightly overestimates p for large
�m due to a detection issue of triggered events at late times
[64]. Indeed, an inspection of the rescaled rates [Fig. 1(d)]
confirms that for large �m the decay t−p is well described by
p ≈ 1.15. This is also compatible with the values of p reported
in Fig. 2(b) for smaller values of �m, which suffer much less
from the detection issue due to the more extended range of their
power-law decay and follow the proposed functional form (3)
very well [see Fig. 1(a) for an example].

Moreover, the direct estimates for c and K show a clear
scaling with �m; see Figs. 2(c) and 2(d). Not only are the
estimates statistically indistinguishable in almost all cases for
fixed �m but the scaling exponent g is also consistent with
the value obtained from the rescaling analysis above: Best
fits give g = 0.66 ± 0.04 and α = 1.10 ± 0.03, respectively.
Here, the error bars correspond to 95% confidence intervals
(however, the systematic uncertainties mentioned above lead
to higher error bars). The behavior of K shows in particular
that the generalized productivity relation (8) holds. This is
further supported by Fig. 1(c): The triggering rates collapse
for sufficiently large values of t under appropriate rescaling
with α ≈ 1.

C. Scaling relations

The self-similar OU relation provides a consistent picture
where several direct MLE estimates of scaling exponents (g, z,
p, bas, and α) match estimates from scaling relations (7) and (9)
between the different exponents. Having estimated the values
of g, z, and α fully determines p and bas. This gives bas ≈ 0.90
and p ≈ 1.15. Thus, the value of p is consistent with the
directly observed one. This is also true for bas. Figure 2(a)
shows MLE estimates of bas [65] as a function of the lower
magnitude threshold mth for different main shock ranges: They
yield bas ≈ 0.90, which is clearly consistent with the value of
bas obtained from the scaling arguments. This value emerges
independently of mth � 2.5.

Deviations from bas ≈ 0.90, for main shocks with M < 3.5,
are consistent with the established presence of earthquake
swarms in Southern California [66]. Swarms are typically
associated with very specific geological settings and triggering
mechanisms and are phenomena dominated by small magni-
tude events and characterized by larger bas values. Importantly,
these higher bas for small main shocks do not significantly
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FIG. 1. (a) Averaged conditional aftershock rates for different ranges of main shock and aftershock magnitudes. Note that all curves with
the same magnitude difference collapse. The solid lines correspond to OU fits over the full range of t , while the dashed lines correspond to
fits up to t = 104 hours only. See Fig. 2 for all the estimated OU parameters. (b) All curves collapse onto a unique scaling function under
appropriately chosen rescaling with the magnitude difference as predicted by the scaling ansatz (3). Data with t > 104 h are not considered
here due to the natural detection problem discussed in the main text. (c) Conditional rates rescaled by 10−α�m with α = 1. (d) Some conditional
rates rescaled by tp with p = 1.15.

affect the quality of the scaling collapse in Fig. 1(b), where only
four curves have M < 3.5. Yet, we expect that swarm activity
will lead to deviations from the self-similar OU relation
for smaller magnitudes if not excluded from the triggering
analysis.

IV. PHYSICAL ORIGINS VERSUS OBSERVATIONAL
LIMITATIONS

Short-term aftershock incompleteness (STAI) is intrinsic
to many earthquake catalogs. STAI arises from overlapping
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FIG. 2. (a) Estimates of bas as a function of the lower magnitude
threshold mth for different main shock ranges. (b)–(d) Estimated
parameters of the Omori-Utsu relation (1) for the conditional rates
shown in Fig. 1(a).

wave forms and/or detector saturation, in particular after
large shocks, such that events are missed in the coda of
preceding ones [67–69]. This detection problem is not specific
to earthquakes but a general problem related to crackling
noise and the identification of “events” from recordings. One
important consequence of STAI is an increase in the local
magnitude of completeness [70] and, hence, an overestimation
of the c value in Eq. (1) for large events [69,71]. Thus,
variations in c with �m for large �m are typically expected
due to STAI [67,68].

Let us discuss several points that exclude STAI as a source
of the self-similarity in the underlying triggering process
observed for the data from Southern California. First, STAI
is not relevant for foreshocks (�m < 0) and it has only minor
effects for large aftershocks. Yet, the same scaling emerges
over the whole range, namely for −1 � �m � 5; see Fig. 1.
Moreover, the scaling collapse shown in Fig. 1(b) does even
improve if we exclude rates with large �m: The rates at small
times for large �m are systematically smaller than what the
scaling collapse of the other rates suggests. Similarly, the
estimated c values are also systematically higher for the largest
�m’s [see Fig. 2(d)]. Both effects are consistent with STAI.
Thus, STAI is present, and it leads to minor deviations from
the proposed self-similar OU relation, but it cannot explain the
observed self-similar behavior itself.

Second, the direct estimates of α, p, and bas are not
significantly affected by STAI, since they either reflect the
behavior at later times (α, p) or do not vary with magnitude
threshold mth [bas ≈ 0.9, see Fig. 2(a)]. With these values and
the scaling relations (7) and (9), the other two exponents g

and z are fully determined. Hence, the scaling of c�m with
�m is needed for consistency of the empirical picture where
the complete set of five exponents is redundantly determined
by direct estimates and scaling relations. One should thus
understand the physical mechanisms generating nontrivial c�m

[48,72,73].
Third, the limited effect of STAI is also evident from the

number of triggered events over finite time intervals, defined
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FIG. 3. (a) Stacked time-limited frequency-magnitude distribu-
tions for aftershocks. Different regimes are visible consistent with
STAI and the proposed self-similar generalization of the OU relation.
(b) Indicator of departure from self-similarity as a function of time,
for the observed catalog and for four synthetic model catalogs. Only
the self-similar model is compatible with the null indicator observed
within 1 day from main shocks for the observed data.

in Eq. (10). Figure 3(a) shows two examples. For main shocks
with 5.5 � M � 6.0 and considering only aftershocks up to
time t∗ = 1 h, we observe the two regimes predicted by the pro-
posed self-similar generalization of the OU relation: one at low
m consistent with the value of z � 0.24 determined above, and
a second regime at larger m with an exponent consistent with
bas � 0.9. The typical effect of STAI of a temporary increase
in the local magnitude of completeness is visible at the lowest
magnitudes, where it leads to missing events and strong devia-
tions from the proposed scaling behavior for aftershocks with
mas � 2.5. This effect is not visible for smaller main shocks
as the second example in Fig. 3(a) shows: For 3.5 � M � 4.0,
no deviations from the behavior predicted by the self-similar
OU relation are visible on time scales longer than about 70 s.

The prediction by the self-similar OU relation of two power
laws in the time-limited frequency-magnitude distribution
plus a third regime due to STAI as shown in Fig. 3(a)
also allows us to revisit previously published work from a
new perspective. In fact, it might be possible to partially
connect documented temporal variations of the b value [70]
with (previously unnoticed) behavior in the time-limited
frequency-magnitude distribution. Reference [74] provides
a specific example using a high-resolution catalog that has
very carefully addressed the issue of STAI: The time-limited
frequency-magnitude distribution of aftershocks in Japan
shown in their Fig. 8(b) provides evidence for two different
regimes above the magnitude of completeness. This supports
the proposed self-similar OU relation beyond the catalog
studied here, while fully taking STAI into account.

V. MODEL SIMULATION OF THE SELF-SIMILAR
OU RELATION

As a final step to confirm that our analysis is able to
distinguish the proposed self-similar OU relation from
non-self-similar versions for the conditional rates, we
repeat it on synthetic catalogs generated by (a) the standard
epidemic-type aftershock sequence (ETAS) model (which
is not self-similar if the unconditional rates follow the
classic OU relation with constant c and α �= bas) [41,54,75],
and (b) our own variant built on the self-similar structure
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of Eq. (3) (see the Supplemental Material [76] for more
details). If the conditional rates are not self-similar, there
remains a dependence on the main shock magnitude M

that should be detectable in plots like that shown in Fig. 1.
By looking at groups of ETAS conditional rates with
the same �m and increasing M’s, we observe systematic
decreases (see the Supplemental Material [76]). The following
estimator quantifies the trend with M: for each time t and
each �m we have performed a linear fit of the log-log
trend of r(M − �m,t |M,0) vs M . This yields a slope
h�m(t) ≡ Cov(log10 r, log10 M)/Var(log10 M), which is
supposed to be the same for all �m’s and all t’s. Hence the
average slope h(t) ≡ ∑

�m h�m(t)/
∑

�m 1 is an indicator of
the departure from self-similarity in the data. In Fig. 3(b) we
can see that, both for the data from Southern California and
for the self-similar model, the indicator h ≈ 0 in the range
t � 1 day, while at later times the statistics is not sufficient
to perform its reliable estimate. For the ETAS models, the
expected value h = α − b ≈ −0.2 is fairly well detected as
well. We also find that self-similar behavior in the ETAS model
cannot typically be induced by STAI: If STAI is introduced
via one of the typical relations [68], our procedure continues
to detect the absence of self-similarity h �= 0 [Fig. 3(b)]. See
also the additional analysis in the Supplemental Material
[76]. Thus, the comparison with synthetic data shows that
our analysis scheme is sensible enough to detect self-similar
behavior in the conditional OU rates, corroborating that the
conditional triggering rates in Southern California are indeed
self-similar.

VI. CONCLUSIONS

In summary, we have described a natural generalization of
the OU relation that embodies self-similarity for event-event
triggering in crackling noise. From a conceptual point of view,
this provides some closure and an important piece in our un-
derstanding of event-event triggering where energy, distance,
and time appear in several scale-free empirical relations, either
singularly (e.g., the GR relation) or combined together. It has
also profound consequences for probabilistic forecasting of
aftershocks as well as modeling, as it implies that synthetic
catalogs of relevant examples of crackling noise, including
earthquakes, should be generated with algorithms reproducing
the observed self-similarity. An important challenge for the
future is to understand its physical origin, possibly with the
help of laboratory experiments [10,12,77].
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APPENDIX: CONDITIONAL VERSUS INTEGRATED
SELF-SIMILAR OMORI-UTSU RATES

If the conditional aftershock decay rate r(m,t |M,0) given
by Eq. (3) is assumed, the integrated rate r>(mth,t |M,0) ≡∫ ∞
mth

r(m,t |M,0) dm that arises,

r>(mth,t |M,0) = 1

τ0 ln 10

[
10(M−mth)z

z
2F1

(
p, − z

g
,1 − z

g
, − t

c0
10−(M−mth)g

)
− 1

z
2F1

(
p, − z

g
,1 − z

g
, − t

c0

)

+ (t/c0)−p

z + pg
2F1

(
p,p + z

g
,1 + p + z

g
, − c0

t

)]
, (A1)

includes hypergeometric functions

2F1(a,b,c,x) ≡
∞∑

k=0

(a)k(b)k
(c)k

xk

k!
, (A2)

where (a)k ≡ a(a + 1)(a + 2) · · · (a + k).
Despite the complicated form, the integrated rates described

by Eq. (A1) have a functional form very similar to the classical
Omori-Utsu relation for realistic parameters as shown in Fig. 4,
the only difference being that the transition region between
the constant regime at short times and the power-law decay
at longer times is a little bit broader than in the classic
Omori-Utsu relation. This difference vanishes for g = 0. Most
importantly, the integrated rates inherit the self-similarity with
respect to M − mth: Magnitudes enter in Eq. (A1) only through
the combination M − mth. A consequence is that, for example,
the rate of aftershocks with magnitude � 4 of a main shock
with M = 7 is the same as that of aftershocks with magnitude
� 2 of a main shock with M = 5, because M − mth = 3 in
both cases.
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log10( time )
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FIG. 4. Comparison between the conditional and the integrated
self-similar Omori-Utsu relation for M = 7, mth = 2, and several
values of the aftershock magnitudes. In this example we set c0 =
τ0 = 1, g = 0.66, z = 0.24, and p = 1.15.
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