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1 Introduction

The entry into the market of a new pharmaceutical drug requires in general an
ex-ante assessment of its performance in terms of package sales. This is relevant
both for pharmaceutical companies but also for payers negotiating price and market
access conditions.

This assessment, which has to be done before the market launch when data can-
not be available, is often performed through qualitative methods based on manage-
ment or potential customers judgements (Goodwin et al., 2014). Quantitative meth-
ods based on the characteristics of similar products already launched in the same
category may provide an interesting completion to judgemental analysis (Goodwin
et al., 2013; Kim et al., 2013; Lee et al., 2014; Wright and Stern, 2015).

In Guseo et al. (2016), a new approach is proposed to exploit the dynamic
features of the therapeutic category evolving both under the pressure of a patients’
population growth and due to the presence of drugs based on more recent active
compounds. In addition, the market composition changes for the launch of different
packages/dosages of an already commercialized compound or for the availability of
generic packages for out-of-patent products. In Jommi et al. (2016), this dynamic
approach is used to provide estimates for the future sales (number of packages) of a
prioritized drug and its emerging competitors within the antidiabetic category (ATC
A10B) in order to perform a robust Budget Impact Analysis.

The first step for the application of this approach requires the description of
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the time series of monthly or quarterly packages sold for each specialty. A specialty
here represents a single IMA (International Marketing Authorization) code, pertain-
ing to the same drug, with the same dosage and package. The choice to work at
the lowest level, the specialty level (without aggregating data at the product or at
the active compound level), is motivated by the need to link each specialty to a
single time point (its launch time into the market, that is its birth date) and also
by the consideration that aggregation of different lifecycles usually hides the evo-
lutionary performances of single components, thus weakening the prerequisites for
forecasting. The description of single mean sales trajectories is performed through
the Guseo Guidolin Model (GGM), Guseo and Guidolin (2009), which, in spite of a
reduced number of parameters, proved to be very flexible to adapt to different sales’
patterns (see Appendix A for a short summary of univariate diffusion models and
the references there cited for a more detailed study).

The model fitting of the GGM (possibly with appropriate intervention functions)
requires a nonlinear estimation procedure (nonlinear least squares, NLS), which has
to be repeated, with good initial values, for all the specialties’ time series. After that
step, parameter estimates and forecasted future sales values have to be efficiently
stored. This is not a complex task, but the huge number of parallel specialties, with
different starting points and length, may introduce some organizational challenges.
In this paper, it is proposed the detailed description of a Mathematica notebook
(Versions 9 or 10) built to face all these steps.

The choice to use Mathematica is grounded on its superiority in the implementa-
tion of algorithms for nonlinear model fitting together with its efficiency in managing
large datasets with repeated sets of commands.

In Section 2, input format and output of the Mathematica notebook are de-
scribed. Section 3 describes the model fitting procedure, separately for cumulative
and instantaneous data. In Section 4, a suggestion to improve the set of initial val-
ues when some parameters are out of range is given. Some concluding remarks are
given in Section 5. Appendix A summarizes pertinent innovation diffusion models.
Appendix B contains some hints about the syntax of Mathematica’s commands for
readers not familiar with this software.

2 Input & Output Data Structure

The notebook starts by taking as input a csv format or a xls (xlsx) file (but also
many other formats are accepted by Mathematica), with specialty instantaneous
sales time series as columns (see Figure 1). For an application to Italy, we utilized
monthly sales data starting from January 2000 until August 2014 (Source: IMS
Health, Italy).

The longer is the period covered by data, the easier is to describe a precise pic-
ture of the past evolution of the therapeutic category. It is important to know sales
data since the launch of the specialty into the country market for as many special-
ties as possible. But for older specialties, launched before the data starting point,
we can analyze a truncated time series, provided a reasonably reliable information
about their birth dates is available (here this information is recorded in the second



2 Input & Output Data Structure 3

Figure 1: Example of input data format (Excel sheet).

line of the file). The first two columns of the file contain a time reference, that is the
month and year (first column) and an absolute time index (second column) starting
with the data origin (in our example, t = 1 in January 2000).

data = Import["C:\\PATH\\example.xls"];
data = data[[1]];

Dimensions[data]

Out: {179,8}
ncol = 8; nrow = 179;

this command converts AIC to a text string to avoid the scientific
notation

Table[data[[3, h]] = ToString[Round[data[[3, h]], 1]], {h, 3, ncol}];

Table 1 contains some notation. Before proceeding with the analysis of single
specialties, the structure for estimates and forecasts storage has to be defined. Pr

represents the final point for the forecasting period (t=230, February 2019). The
matrix named Output will contain the forecasted values for each times series. The pa-
rameter estimated values for the main set of 5 parameters of the GGM (M,pc, qc, p, q)
will be stored in ParameterEstimates, together with the birth date of the specialty.
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Table 1: Notation.

ncol number of columns in the Excel sheet (equals the number
of specialties to analyze + 2)

nrow number of rows in the Excel sheet (equals the number of
months covered at maximum by data + 3)

Pr final point of the forecasting period (t=230, correspond-
ing to February 2019)

arg vector of values from 1 to Pr used for forecasts evaluation

Output matrix to store forecasts for each specialty (same struc-
ture as the data matrix, with 54 extra rows correspond-
ing to months where no data have been observed but
forecasts are required)

ParameterEstimates matrix to store the launch time and the parameter esti-
mates for (M,pc, qc, p, q) for each specialty to be analyzed

t init launch time for the specialty under analysis

len, Nd number of available data

label string to be used as identifier for the specialty under anal-
ysis in the corresponding plots

TOT data matrix for the specialty under analysis to be used
in NonlinearRegression

serieTOT column in the data matrix corresponding to the specialty
under analysis

aT vector with instantaneous fitted data (in–sample) for the
specialty under analysis to be used for squared correlation
coefficient’s evaluation

bT vector with instantaneous sales data for the specialty un-
der analysis to be used for plotting and for squared cor-
relation coefficient’s evaluation

decrem time shift between the launch time and the data origin
in the case of density estimation (number of months)

Prtemp extension of Pr in the case of density estimation
(Pr+decrem)
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Pr = 230;

arg = Table[i, {i, 1, Pr, 1}];
Matrix named Output will contain the forecasted values for each times series.
This initialization prepares columns’ names and AIC and time references according
to the input matrix named data (adding also dates to cover the forecasting period)

Output = Table[0, {i, 1, Pr + 3}, {j, 1, ncol}];
Output[[1, All]] = data[[1, All]]; Output[[2, All]] = data[[2, All]];

Output[[3, All]] = data[[3, All]];

Table[Output[[j, 2]] = j - 3, {j, 4, Pr + 3}];
Table[Output[[j, 1]] = data[[j, 1]], {j, 4, nrow}];
extend = DateRange[DateObject[2014, 9, 1, TimeObject[0, 0, 0.‘, TimeZone -> 2.‘],

TimeZone -> 2.‘], DateObject[2019, 2, 1, TimeObject[0, 0, 0.‘, TimeZone -> 2.‘],

TimeZone -> 2.‘], "Month"];

Table[Output[[h, 1]] = extend[[h - nrow, 1]], h, nrow + 1, Pr + 3];

Matrix named ParameterEstimates will store the parameter estimated values

ParameterEstimates = Table[0, {i, 1, ncol}, {j, 1, 7}];
ParameterEstimates[[1, 1]] = "name";

ParameterEstimates[[1, 2]] = "t init";

ParameterEstimates[[1, 3]] = "M";
...

ParameterEstimates[[1, 7]] = "q";

Table[ParameterEstimates[[2, h]] = "", {h, 1, 7}];

At that step, matrix Output only contains the structure for predicted values (see
Figure 2), while matrix ParameterEstimates is ready for the storage of the launch
time, t, and the estimates (M̂, p̂c, q̂c, p̂, q̂) (see Figure 3). Once completed the anal-
ysis for all the specialties, the two resulting matrices will be easily exported to csv
or xls files.

Export["C:\\PATH\\finalParameterEstimates.xls", ParameterEstimates];

Export["C:\\PATH\\finalForecasts.xls", Output];

3 Model fitting

3.1 Cumulative data

Model fitting requires a preliminary definition of the model structures (as explained
in Appendix A). For specialties launched into the market before the data origin, a
special approach based on density estimation is required and it will be described in
the next Subsection. For most of the specialties, however, data cover also the begin-
ning of the lifecycle. In that case, we can exploit the closed forms of the solutions
for the different model structures and proceed with the estimation of parameters
by fitting the models to cumulative data. These model structures for the BM, the
GGM, the GGM with a rectangular shock, the GGM with an exponential shock, the
GGM with both an exponential and a rectangular shock are defined as follows:
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Figure 2: Structure for predicted values in matrix Output after the initialization
commands (for space reasons, only the first 29 rows and 7 columns are displayed).

Figure 3: Structure for predicted values in matrix ParameterEstimates after the
initialization commands.
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modBASS = M*((1 - Exp[-(p+q)*t])/(1 + (q/p)*Exp[-(p+q)*t]));

modGGM = M*Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*

((1 - Exp[-(p+q)*t])/(1 + (q/p)*Exp[-(p+q)*t]));

modGGMR1 = Piecewise[{{M* Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*

((1 - Exp[-(p+q)*(t + c1*(b1-a1))])/(1 + (q/p)* Exp[-(p+q)*(t + c1*(b1-a1))])),

t > b1}, {M* Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*((1

- Exp[-(p+q)*(t + c1*(t-a1))])/(1 + (q/p)* Exp[-(p+q)*(t + c1*(t-a1))])),

a1 <= t <= b1}, {M* Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*

((1 - Exp[-(p+q)*t])/(1 + (q/p)*Exp[-(p+q)*t])), t < a1}}];
modGGME1 = Piecewise[{{M* Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*

((1 - Exp[-(p + q)*(t + (c1/b1)*(Exp[b1*(t-a1)] - 1))])/(1 + (q/p)*

Exp[-(p+q)*(t + (c1/b1)*(Exp[b1*(t-a1)] - 1) )])), a1 <= t },
{M* Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*

((1 - Exp[-(p+q)*t])/(1 + (q/p)*Exp[-(p+q)*t])), t < a1}}];
modGGME1R1 = Piecewise[{{M*Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*

((1 - Exp[-(p+q)*(t + c2*(b2-a2))])/(1 + (q/p)* Exp[-(p+q)*(t + c2*(b2-a2))])),

t > b2}, {M* Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*

((1 - Exp[-(p+q)*(t + c2*(t-a2))])/(1 + (q/p)* Exp[-(p+q)*(t + c2*(t-a2))])),

a2 <= t <= b2}, {M*Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*

((1 - Exp[-(p + q)*(t + (c1/b1)*(Exp[b1*(t-a1)] - 1))])/(1 + (q/p)*

Exp[-(p+q)*(t + (c1/b1)*(Exp[b1*(t-a1)] - 1) )])), a1 <= t < a2},
{M* Sqrt[(1 - Exp[-(pc+qc)*t])/(1 + (qc/pc)*Exp[-(pc+qc)*t])]*

((1 - Exp[-(p+q)*t])/(1 + (q/p)*Exp[-(p+q)*t])), t < a1}}];

The aim is to obtain estimated values for the main set of 5 parameters of the
GGM (M,pc, qc, p, q), in order to use them to forecast the parameters of an emerg-
ing drug, given its expected launch time. We observe, however, that, for some time
series, it may be difficult to provide good initial values to obtain directly a GGM
fitting. For this reason, a preliminary estimation of a simpler BM, although un-
precise, may give some indication about the size of the market potential, M, and
the adoption evolution, (p, q). The estimated values for a BM may be subsequently
used as initial values for three parameters of the GGM. This is the reason why we
suggest to start always with a BM fitting.

Moreover, very often, we observe that the main lifecycle is perturbed by exoge-
nous factors unrelated to the evolutionary path. By fitting a GGM, the effect of
these local perturbations would affect the estimation of (M,pc, qc, p, q), thus intro-
ducing a noise for subsequent steps—when those estimates will be used—and also
reducing the reliability of the forecasts. The aim of fitting a GGM with appropriate
shocks is thus to isolate external shocks from the main trajectory of the lifecycle of
the drug’s sales (for example, an external factor may be due to an aggressive pressure
from the pharmaceutical industry to physicians). Below an example will be shown
to see how the trajectory obtained by fitting a GGM with shock may represent a
better description of the data (with respect to a GGM without shock) and how the
corresponding parameters estimates may be different.

In order to apply previous models to specialties’ observations, for each series it
is necessary to extract valid data (eliminating the null values for sales before the
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product’s launch) and build cumulative observations. The counter i (ranging from 3
to the number of columns, ncol) allows exploring all the specialties with a common
set of commands that are a function of its current value.

i = 3;

serieTOT = data[[4 ;; nrow, i]];

d0 = Differences[Position[serieTOT, 0.‘]];

If[serieTOT[[1]] > 0, {initial = 1, Print["density?", data[[2, i]]]},
If[Max[d0] == 1, {initial = Length[d0] + 2,

Table[dataTEMP[[j, i]] = "", {j, 4, initial - 1 + 3}]},
{initial = Position[d0, Max[d0]][[1]][[1]] + 1,

Table[dataTEMP[[j, i]] = "", {j, 4, initial - 1 + 3}]} ]];

serieTOT = dataTEMP[[4 ;; nrow, i]];

len = nrow - 2 - initial;

TOT = Transpose[{data[[4 ;; 3 + len, 2]],

Accumulate[serieTOT[[initial ;; initial + len - 1]]]}];
Nd = len;

label = ToString[data[[1, i]]]

Out: GLICLAZIDE DOC COMPR 80MG 40

The conditional command allows highlighting whether the data origin follows the
launch time (in that case a density estimation is suggested). Otherwise, the launch
time is calculated (and its value is saved as initial). The use of a provisional
dataTEMP matrix, for assignments useful for data matrix building, allows to possibly
repeat the analysis, thus executing again these commands for the same i value
within the same session, without modifying the original data matrix. Cumulative
values are saved in the matrix TOT, whose first column contains a relative timing,
t, starting from 1 to len (the number of actual observations in the time series after
removing initial zeros). In the end, a string with the name of the specialty, label, is
built to be used in subsequent graphical representations. Figure 4 shows the matrix
TOT built with previous commands.

The next commands allow effective estimation and require a specification of
appropriate initial values to obtain convergence. The output produced contains
parameter estimates and marginal confidence intervals, an ANOVA table, the R2

and the squared correlation coefficient between observed instantaneous values and
corresponding fitted values. Finally, a plot with observed instantaneous values and
corresponding fitted values is produced.
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Figure 4: Matrix TOT built with cumulative data for model estimation (i=3).

...

modfitBASS = NonlinearModelFit[TOT, modBASS,

{{M, 100000}, {p, 0.01}, {q, 0.2}}, {t}, MaxIterations -> 10000]

modfitBASS["ParameterConfidenceIntervalTable"]

modfitBASS["ANOVATable"]

s2T = modfitBASS["ANOVATableSumsOfSquares"];

RsquacorrBASS = (s2T[[1]] - s2T[[3]] + s2T[[4]])/s2T[[4]]

g = modfitBASS["Function"];

FitValT = g[#] & /@ arg;

FitBASS = Transpose[{arg, Flatten[{FitValT[[1]], Differences[FitValT]}]}];
aT = Drop[FitBASS, -(Pr - Nd)][[All, 2]];

bT = serieTOT[[initial ;; initial + len - 1]];

RHO2BASST = (Correlation[bT, aT])̂ 2
ListPlot[{bT, FitBASS}, PlotMarkers -> {[FilledSquare], Null},

PlotStyle -> {{Blue, PointSize[Medium]}, {Black, Thick}},
Joined -> {True, True}, Frame -> True,

PlotRange -> {{0, Nd*1.2}, {0, Max[bT]*1.1}}, PlotLabel -> label,

PlotLegend -> {"data", "BM"}, LegendPosition -> {0.4, 0.25},
LegendSize -> 0.3, LegendBorderSpace -> 0.7, ShadowOffset -> 0,

LegendTextSpace -> 2]

The range covered by the axes in the plot is automatically evaluated as a function
of the actual number of observations in the specific time series, Nd, and of the
maximum value of instantaneous sales (thus preventing a large portion of the picture
to be wasted in the case of small Nd values with respect to Pr). The position of the
legend may not be adequate if it overlaps a useful portion of the plot, but the
coordinates on the LegendPosition command can be easily modified.1

Similar commands are written to fit the GGM (showing estimates and plotting
the fitted trajectory, with a comparison with the BM). See, as an example, the
corresponding output in Figure 5.

1Both coordinates of the LegendPosition command span the interval [−1,+1].
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For the examined specialty, the GGM provides a quite accurate description.
However, other specialties may require further analysis through an intervention en-
richment. For example, Figure 6 shows a situation where the GGM and the BM are
almost overlapping and both are inadequate to describe the slow take-off in the sales
of the specialty (the figure shows also the GGM parameter estimates). In that case,
a GGM with a rectangular shock slowing the sales from the beginning until around
t=60 has a much better performance and gives more reliable forecasts. Figure 7
presents the commands and the first part of the output, while in Figure 8 the plot
of the fitted trajectory is shown.

Observe that the parameter estimates of (M,pc, qc, p, q) in Figure 7 are very
different from the values in Figure 6, which as anticipated, are biased because the
GGM is not an adequate structure. Since reliable parameter estimates are the
main aim of this analysis—because they convey information on the features of the
therapeutic category under study—the model choice represents a crucial step. With
reference to this issue, usually it is quite difficult to decide in advance whether a
rectangular shock would fit better than an exponential one. Or whether a “jump”
in observations would be described better by a negative shock ending at that point
or by a positive shock starting at the jump time. A good set of initial values aimed
at exploring all the possibilities is, for this reason, a sensible approach.

Once an appropriate model has been identified, parameter estimates and fore-
casted values can be stored in matrices ParameterEstimates and Output, respec-
tively. In the following command, the red expressions have to be set to declare the
final model choice (either FitGGM or FitGGMR or FitGGME, etc.)

PREDTOT = FitGGMR;

Table[Output[[j, i]] = PREDTOT[[j - initial - 2, 2]], {j, initial + 3, Pr + 3}];
ParameterEstimates[[i, 1 ]] = label;

ParameterEstimates[[i, 2 ]] = initial;

Table[ParameterEstimates[[i, h]] =

modfitGGMR["ParameterConfidenceIntervalTableEntries"][[h - 2, 1]], {h, 3, 7}];

3.2 Instantaneous data

For specialties launched into the market before the data origin, we cannot use cu-
mulative data as a response function in the regression model. An alternative model
specification uses directly instantaneous sales, while the mean trajectory function,
z(β, t) has to be accordingly replaced by z(β, t+ 0.5)− z(β, t− 0.5) (further details
about the estimation procedure with instantaneous data could be found, e.g., in
Guseo and Mortarino, 2015, Supplementary Material).

The definition of the model structures is here presented for the BM and the GGM
without intervention functions. Extensions may be obtained by adding rectangular
or exponential shocks.
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Figure 5: Output for the GGM estimation (i=3). It shows: i) the fitted model (in
Mathematica form); ii) parameter estimates (with standard errors and marginal
confidence intervals); iii) the ANOVA table; iv) the R2 of the model (with cumu-
lative observations as a response); v) the squared correlation coefficient between
observed instantaneous values and corresponding fitted values; vi) the plot of the
instantaneous data and the corresponding fitted trajectory (both for the GGM and
the simpler BM).

i)

ii)

iii)

iv)

v)

vi)
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Figure 6: An inadequate performance for the GGM (i=7).

modBASSDENS = M*((1 - Exp[-(p+q)*(t+0.5)])/(1 + (q/p)*Exp[-(p+q)*(t+0.5)]))

- M*((1 - Exp[-(p+q)*(t-0.5)])/(1 + (q/p)*Exp[-(p+q)*(t-0.5)]));

modGGMDENS =

(M*((1 - Exp[-(pc+qc)*(t+0.5)])/(1 + (qc/pc)* Exp[-(pc+qc)*(t+0.5)]))̂ (1/2)
*(1 - Exp[-(p+q)*(t+0.5)])/(1 + (q/p)* Exp[-(p+q)*(t+0.5)]))

- (M*((1 - Exp[-(pc+qc)*(t-0.5)])/(1 + (qc/pc)* Exp[-(pc+qc)*(t-0.5)]))̂ (1/2)
*(1 - Exp[-(p+q)*(t-0.5)])/(1 + (q/p)*Exp[-(p+q)*(t-0.5)]));

The commands to build the data matrix for the regression models are different
since we use instantaneous data. In any case, we can start with the same block of
commands described at p. 8. If we examine here column 8, we obtain:

i = 8;

serieTOT = data[[4 ;; nrow, i]];
...

label = ToString[data[[1, i]]]

Out: density? 1 March 1996

Out: GLUCOMIDE CAPS 500MG 40

A suggestion to move to density is printed, together with the information about
the launch time stored in the second line of the dataset. Given this information,
the matrix for the regression model can be built with instantaneous data, while the
corresponding relative timing, has to be changed putting its start at the indicated
launch time.

Nd = nrow - 3;

serieTOT = data[[4 ;; nrow, i]];

TOT = Transpose[{data[[4 ;; nrow, 2]], serieTOT}];
decrem = DateDifference[data[[2, i]], data[[4, 1]], "Month"][[1]];

Table[TOT[[j, 1]] = TOT[[j, 1]] + decrem, j, 1, Nd];

Prtemp = Pr + decrem;

argtemp = Table[i, {i, 1, Prtemp, 1}];

Figure 9 shows the matrix TOT with instantaneous data built with previous com-
mands. The time shift, decrem, between the launch time and the data origin is
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Figure 7: Input —and output for the fitting of a GGM with an initial negative rect-
angular shock (i=7). After i) the fitted model (in Mathematica form), ii) parameter
estimates and iii) the ANOVA table, iv) the R2 of the model and v) the squared cor-
relation coefficient between observed instantaneous values and corresponding fitted
values are displayed.

i)

ii)

iii)

iv)

v)

calculated automatically through the function DateDifference giving the gap in
number of months. An extension of the the number of future predicted values—in
order to reach also in this case the ending point, here February 2019—is obtained
by Prtemp and argtemp (these are extended versions of Pr and arg, respectively,
adding decrem extra observations to compensate the initial time shift).

The commands for model fitting, output presentation and graphical comparison
is similar to the case seen for cumulative data, but some some changes are required
to deal with the time shift. In Figures 10 and 11, the modified commands and the
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Figure 8: Plot of the fitted trajectory of a GGM with a rectangular shock (i=7).

Figure 9: Matrix TOT built with instantaneous data for model estimation through
density (i=8).

...

...
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Figure 10: Input and output for the fitting of a GGM through density estimation
(i=8). After i) the fitted model (in Mathematica form), ii) parameter estimates
and iii) the ANOVA table, iv) the R2 of the model and v) the squared correlation
coefficient between observed instantaneous values and corresponding fitted values
are displayed.

i)

ii)

iii)

iv)

v)

corresponding output are shown.

Parameter estimates and forecasted values’ storage can be obtained with com-
mands identical to those presented at the end of previous Subsection for cumulative
data regression.

4 A not-so-rare estimation issue

The NonlinearModelFit command performs an unconstrained minimization of the
residual sum of squares. Given the search algorithms, it may sometimes happen
that parameter estimates are outside the expected range.

A relevant issue arises when this happens for the qc parameter (which, with
pc, determines the growth speed of the market potential towards its limit, M , see
Equation (8)). We are interested in the value obtained when t goes to +∞ (the
ultimate value of cumulative sales at the end of the life cycle). In the case (pc+qc) >
0, M actually represents the limit of m(t) as t goes to infinity. Conversely, for pc > 0
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Figure 11: Input commands and plot of the fitted trajectory of a GGM through
density estimation (i=8).

and (pc + qc) < 0,

lim
t→∞

M

√
1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

= M

√
−pc
qc
.

This consideration affects the interpretation and the meaning of parameter M for
a negative qc estimate (the situation of a negative pc usually is less relevant, since
its magnitude often is much smaller than qc and it is quite rare that a negative pc,
entails (pc + qc) < 0).

Let us illustrate this aspect with an example obtained for i=7. If for the GGM
model with a rectangular shock (as in Figure 7), we start from a different set of initial
values, we obtain the estimates reported in Figure 12. The global performance of the
model is similar for the two alternative solutions but we observe a huge difference
in the estimation for M, whose interpretation for the solution of Figure 12 might
suggest we are dealing with a very high-performing drug.

Given a negative qc estimate, we suggest then plotting the estimated trajectory
of the market potential function (see Figure 13). This plot suggests a more reliable
value for the value of M̂, by taking the asymptotic value (that is, the limit for
t→ +∞) of the plotted function2. Moreover, as shown in Figure 14, we can identify
corresponding pc and qc values to mimic the trajectory of the former function (Figure
13, blue trajectory) with the new M value. This simple graphical method provides
better initial values to be used in the NonlinearModelFit command to reach a good
convergence point.

2Clicking the right mouse button on the plot displays a context menu from which we can choose
Get Coordinates in order see approximate coordinate values of the mouse position.
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Figure 12: Output for the fitting of a GGM with an initial negative rectangular
shock with a different set of initial values (i=7). It shows parameter estimates, the
ANOVA table, the R2 of the model, and the squared correlation coefficient between
observed instantaneous values and corresponding fitted values.

Figure 13: Input and output for market potential function plotting in the case of
q̂c < 0 (i=7), in order to find the limit for t→ +∞.
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Figure 14: Input and output for market potential function plotting (red trajectory)
and identification of alternative values for pc and qc to mimic the estimated function
with an appropriate approximation (blue trajectory).

Figure 15: Final ParameterEstimates matrix.

5 Final remarks

The final matrix with all time series parameter estimates is shown, for the simple
dataset here analyzed, in Figure 15. This matrix, together with Output (containing
the predicted values for all the specialties, Figure 16), represents the aim of this
phase of the analysis. Each drug is summarized by its absolute launch time and by
the set of five parameters describing its lifecycle.

As described in Guseo et al. (2016), each parameter estimate will be regressed on
the initial time t to produce adequate models describing the dynamic features of the
category under study. For an application to Italian data (Jommi et al., 2016), about
200 series have been analyzed. A preliminary inspection of corresponding German
data, for example, show that we should be able to deal with almost 2000 time series
(even if some of them may be too short to obtain reliable estimates). It is clear that
the computational effort is, in that case, quite relevant.



5 Final remarks 19

Figure 16: Final Ouput matrix.

. . .
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Appendix A. Innovation diffusion models and statistical in-
ference

The closed-form solution of the Bass Model (BM), proposed by Bass (1969), is given
by

z(t) = m
1− e−(p+q)t

1 + q
p e
−(p+q)t , z(0) = 0, t ≥ 0, p, q > 0, (1)

and z(t) = 0 for t < 0, where z(t) denotes the observed cumulative sales up to time
t. The constraint z(0) = 0 is the initial condition and m is the asymptotic constant
market potential. The parameters p and q describe the innovative and the imitative
effects, respectively.

The Generalized Bass Model (GBM), Bass et al. (1994), represents an important
extension of the BM, introducing a general time-dependent integrable intervention
function, x(t), that is able to take into account possible effects of exogenous variables
on the diffusion process, for example marketing mix variables. Its Equation is:

z′(t) =

[
p+ q

z(t)

m

]
[m− z(t)]x(t), (2)

and its closed-form solution is, under the initial condition z(0) = 0,

z(t) = m
1− e−(p+q)

∫ t
0 x(τ)dτ

1 + q
pe
−(p+q)

∫ t
0 x(τ)dτ

, t > 0, p, q > 0. (3)

Notice that the GBM reduces to the Bass model, when x(t) = 1, i.e. when there are
no external interventions. The important effect of x(t) is to anticipate (x(t) > 1) or
delay (x(t) < 1) adoptions, but not to increase or decrease them. In other words,
this function may represent all those strategies applied to control the timing of a
diffusion process, but not its size.

In Guseo and Dalla Valle (2005) and Guseo et al. (2007) some parametric func-
tions for the intervention function, x(t), are suggested. A local perturbation, whose
effect is strong at beginning and time decaying, may be modelled through an expo-
nential function like

x(t) = 1 + ceb(t−a)It≥a, (4)

where parameter c represents the depth and sign of intervention, b describes the
persistence of the induced effect and is negative if the memory of this intervention is
decaying to the stationary position (mean reverting) and a denotes the starting times
of intervention, so that (t− a) must be positive. A more stable perturbation acting
on diffusion for a relatively long period, like institutional measures and policies, may
be described by a rectangular function giving rise to the intervention function

x(t) = 1 + cIt≥aIt≤b. (5)

Parameter c describes here the perturbation intensity and may be either positive or
negative, while parameters a and b define the temporal interval in which the shock
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occurs. Of course, the actual function x(t) could be designed as a combination of
one or many shocks as modelled in (4) and (5).

The Guseo Guidolin Model (GGM), Guseo and Guidolin (2009), extends both
the BM and the GBM. The relevant new feature of the GGM is the general shape
of latent market potential, m(t), in contrast to the constant assumption m in the
BM. Its general aggregate differential form is:

z′(t) = m(t)

{[
p+ q

z(t)

m(t)

] [
1− z(t)

m(t)

]}
xa(t) + z(t)

m′(t)

m(t)
, z(0) = 0, t ≥ 0, (6)

with the usual constraint, z(t) = 0 for t < 0, where z(t) denotes the cumulative sales,
m(t) the variable market potential, xa(t) an exogenous intervention function acting
on the adoption process, and z(t)m′(t)/m(t) a collective self–reinforcing effect that
emphasizes or depresses sales on the basis of the sign of m′(t). Parameters p and q
denote the local dynamics of the adoption process.

The general closed-form solution to Equation (6) with an initial condition z(0) =
0 and z(t) = 0 for t < 0 is:

z(t) = m(t)
1− e−(p+q)

∫ t
0 xa(τ)dτ

1 + q
pe
−(p+q)

∫ t
0 xa(τ)dτ

, t≥0, p, q>0, (7)

and zero elsewhere. Solution (7) does not depend upon special choices of m(t) and
x(t). In Guseo and Guidolin (2009) special emphasis is given to the structure

m(t) = M

√
1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

, (8)

where pc and qc denote the communication parameters generating the nonconstant
market potential, and M is the asymptotic market potential. In particular, in Guseo
and Guidolin (2011) some explicit examples are proposed in pharmaceutical drug
diffusions exhibiting saddles or slowdown effects relevant for marketers. These effects
appear as significant drops after a period of rapid growth, followed by a recovery to
the former peak. Notice that also the diffusion process under square root in (8) could
be perturbed by a proper intervention function, xc(t), acting on the communication
process.

An inferential methodology to estimate and test the performance of the models
described in previous sub-sections may be implemented through a nonlinear regres-
sive model, i.e.,

w(t) = z(β, t) + ε(t), (9)

where w(t) represents the observed cumulative sales data and z(β, t) denotes the
appropriate systematic mean rescaled cumulative distribution (either (1), or (3),
or (7)), which is a function of time t and a vector of parameters β typical of the
BM, GBM, or the GGM. The residual term ε(t) is usually a white noise or a more
complex stationary process, if seasonality and/or autoregressive aspects are included
as stochastic components.

For estimation purposes, we apply a robust nonlinear least squares algorithm
(NLS), which ignores the stochastic structure of ε(t), under the Levenberg-Marquardt
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correction of the Gauss-Newton recursive procedure; see, for instance, Seber and
Wild (1989). If the residuals of the first stage do not follow a standard white noise
pattern, in order to improve short-term prediction (when data are available), a
SARMAX refinement could be performed.

Appendix B. Hints about Mathematica’s commands sintax

Mathematica is a very powerful software. On the web there are many tutorials
illustrating its several features (writing “Mathematica introduction” in Google we
obtain about 1 million results). This Appendix is only meant to help readers not
familiar with this software understanding the commands described in this report for
this specific application.

The Mathematica prompt waits for user’s commands, written in cells. In order
to evaluate a cell’s content, we need to press simultaneously shift and enter (or to
select a cell through its right bar, click the right mouse button and select the option
“Evaluate Cell”, which is particularly useful to evaluate multiple selected cells).

A helpful shortcut is obtained with ctrl + L, which in any point of the notebook
creates a copy of the command written just above, useful to modify a command
obtaining a similar one.

The names of all built-in Mathematica functions begin with capital letters. They
tend not to abbreviate names, beyond what is normal mathematical practice, and
multi-word names have internal capitalization. Some examples are: Sin, Log,

Sqrt, Random, Eigenvalues, NonlinearModelFit.

Many operations can be performed through lists. A list is defined through curly
brackets:

{1, 2, 3, 4}.

A matrix can be defined as a list of lists:

m = {{1, 2}, {3, 4}} (a 2× 2 matrix).

List indices start at 1, not 0. To access an element of a list, double square brackets
are needed:

m[[2]][[2]] (is equivalent to m[[2, 2]]).

If a subset of rows or columns is needed, we can specify a range as follows:

m[[5 ;; 10, 4]]),

or a subset with an internal list:

m[[5, {6, 8, 9}]].

Lists can also be created as follows

Table[x̂2, {x, 4, 12}]

This last example has as its second argument, an “iterator list”, which defines the
iterator variable (”x”), and its range; you can specify either a maximum; or a min
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and max; or min, max, and step size (whose default value is 1). These three iterator
lists are equivalent: {x, 12}, {x, 1, 12}, {x, 1, 12, 1}. In general, the command Table

is useful to repeat an operation a certain number of times (see, e.g., the initialization
of matrices Output and ParameterEstimates described at p. 5).

The commands Differences and Accumulate can be applied to lists (vectors)
to obtain successive differences of the elements in the list and successive accu-
mulated totals of elements in the list, respectively. Another useful command is
Position[list, condition], which gives a list of the positions at which objects match-
ing condition appear in list. For example,

Position[M, 5]

would produce a list of elements of matrix M whose values equal 5 (if none of the
elements matches the condition, an empty list is produced).

An expression can be defined as:

expr = 3x+ 7

Notice that if a command ends with a semicolon, it will not produce an output. This
is particularly useful for assignments.

For the arguments of any function (either built-in or defined by the user), Math-
ematica uses single square brackets:

f [x, y].

Here is a function representing the same expression written for expr:

f [x ] := 3x+ 7

Note the “x ”, (called “x-blank”) that represents any expression, and names it x;
and the delayed-evaluation operator, “:=”, which leaves the right-hand side in its
symbolic form, instead of evaluating it immediately (which might cause a value to
be substituted for x). We can now evaluate this function in various ways: f [5], f [t],
f [a+ b] or represent it graphically in a specified domain:

Plot[f [x], {x,−5, 5}].

For functions with multiple definitions in different subdomains, it is easy to use the
command Piecewise taking a list as its argument:

g[x ] := Piecewise[{{x2, x < 0}, {x, x > 0}}]
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