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Abstract. Let C(t), t ≥ 0 be a Lipschitz set-valued map with closed and (mildly non-)convex
values and f(t, x, u) be a map, Lipschitz continuous w.r.t. x. We consider the problem of reaching a
target S within the graph of C subject to the differential inclusion ẋ ∈ −NC(t)(x) + G(t, x) starting
from x0 ∈ C(t0) in the minimum time T (t0, x0). The dynamics is called a perturbed sweeping (or
Moreau) process. We give sufficient conditions for T to be finite and continuous and characterize T
through Hamilton–Jacobi inequalities. Crucial tools for our approach are characterizations of weak
and strong flow invariance of a set S subject to the inclusion. Due to the presence of the normal cone
NC(t)(x), the right-hand side of the inclusion contains implicitly the state constraint x(t) ∈ C(t) and
is not Lipschitz continuous with respect to x.
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1. Introduction. The sweeping process is the time dependent evolution
inclusion

(1.1) ẋ(t) ∈ −NC(t)(x(t)), t ≥ 0,

where NC(t)(x) denotes a suitable normal cone to C(t) at x (details will be provided
in what follows). This dynamics was introduced in the 1970s by J. J. Moreau to model
quasi-static evolution processes subject to unilateral constraints (see [37, 38]). Here
the state trajectory x(·) is supposed to belong to a (possibly) infinite dimensional
Hilbert space and C(·) is a moving convex set, Lipschitz continuous with respect to
time. Several existence (and possibly uniqueness) results for the Cauchy problem
associated to various generalizations of (1.1) were obtained by several authors (see
[35, 30, 18] and references therein). In particular, existence and uniqueness properties
of solutions for the problem

(1.2)

{
ẋ(t) ∈ −NC(t)(x(t)) + f(x(t)), t ≥ 0,

x(0) = x0 ∈ C(0),

are well known for a Lipschitz continuous f , even in the case in which C is mildly
nonconvex (actually, uniformly prox-regular; see [43, Theorem 4.4]). There has been
increasing interest in a number of variants of the sweeping process as a model, e.g.,
for some electric circuits [1], for crowd motion [36], for hysteresis [29], and as a tool
for identification of parameters [8] for some mechanical systems subject to unilateral
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THE MINIMUM TIME FUNCTION FOR THE SWEEPING PROCESS 2037

constraints. On the other hand, a natural modification of such given models concerns
the case in which the behavior of the whole system is modified in order to satisfy some
expected performance requirements. Following the latter direction, control theory of
the sweeping process comes into the picture. In general, the control may appear on the
moving set C (see [15, 16, 17] for the case where f ≡ 0 and C is a moving polyhedron
to be determined) and/or on the perturbation f (see, e.g., [11, 12] and particularly
[9], where a complete discussion of the maximum principle appears, in the case where
C is fixed, smooth, and strictly convex). In this paper we focus on the case where
C is a given, nonconstant, multifunction and f is actually f(x, u), u ∈ U being the
control.

Observe that the state constraint x(t) ∈ C(t) is implicitly satisfied by any solution
of (1.2), since the normal cone NC(t)(x) is empty whenever x /∈ C(t) and it is equal
to {0} whenever x ∈ intC(t). In particular, the trajectory x(t) is driven by f(x(t))
as long as it lies in the interior of C(t), while, when on the boundary, the normal
cone component of ẋ(t) may be nonvanishing in a way that actually forces the state
trajectory to remain in C(t) for all t. Therefore (1.2) can be regarded as a state
constrained problem where the constraint is “active in the dynamics.” In the case
when C(·) ≡ C such a problem is referred to as having reflecting boundary [32, 40].

The aim of the present paper is to study the minimum time problem to reach a
target subject to

(1.3)

 ẋ(t) ∈ −NC(t)(x(t)) + f(x(t), u(t)) a.e. t > t0, u(t) ∈ U,
x(t0) = x0 ∈ C(t0) ,
x(t) ∈ C(t) ∀ t > t0.

In particular, we focus on the minimum time function T (·, ·) as depending on both
initial conditions. We give sufficient conditions for T to be continuous (with an ex-
plicit modulus of continuity) and we characterize T as the unique viscosity solution of
a suitable set of Hamilton–Jacobi inequalities. A crucial role in our analysis is played
by the Hamiltonian characterizations of weak and strong flow invariance for a closed
set K subject to (1.3). Here we follow a set-valued approach to Hamilton–Jacobi
characterization which was designed by several authors (see the historical notes to
Chapter 12 in [44]), starting from Frankowska [23] and, specifically for the minimum
time, from Wolenski and Zhuang [45]. According to this approach, the epigraph and
the hypograph of T are shown to be, respectively, weakly and strongly invariant for
a suitable augmented dynamics and the main point of the proof is actually giving
the characterizations of weak and strong invariance through Hamiltonian inequali-
ties. The main difficulty in this framework is the lack of Lipschitz continuity of the
right-hand side of (1.3), which has just a closed graph and it is not locally Lipschitz
continuous with respect to x. In order to overcome this difficulty, one may observe
that, using the close-to-convexity assumptions on C(t), the right-hand side of (1.3)
is one-sided Lipschitz (see [20]). This condition is known to be a good substitute
of Lipschitz continuity in particular with respect to the characterization of strong
invariance (see [21]), which in general is a difficult issue to solve. Here, our main con-
tribution is Theorem 5.3, where, taking into account the particular structure of (1.3),
a characterization of strong invariance by means of a single Hamiltonian inequality is
given. This is in contrast with the (albeit more general) result contained in [21], where
the necessary and the sufficient conditions for strong invariance use different Hamil-
tonians. The main result of the paper is Theorem 6.1, where the Hamilton–Jacobi
characterization is provided. In section 7 a simple sufficient condition for the conti-
nuity of T is given, while section 8 contains two examples where the minimum time
function is computed through a verification argument. Finally, section 9 is devoted
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2038 GIOVANNI COLOMBO AND MICHELE PALLADINO

to a comparison of our main result with the Hamilton–Jacobi characterization of the
minimum time T for classical state constrained problems,

We mention that the case of a Mayer problem with C(t) ≡ C was treated by
Serea [40] via different techniques. However, while the reflecting boundary problem
solution can be characterized through the projection operator onto the tangent cone
to C, it turns out that this is not the case when we consider a moving set C. This
fact will become evident in Example 1, section 8. Partial results, in the framework
of Hamilton–Jacobi theory, for the controlled sweeping process were also obtained in
[13]. In particular, the value function of an optimal control problem for (1.3) involving
an integral functional with finite horizon is proved to be a viscosity subsolution of a
suitable PDE of Hamilton–Jacobi type.

Finally we remark that all statements will be formulated in terms of G(x) =
f(x, U), G Lipschitz and compact, convex valued. Actually, it is well known that
under such assumptions the two approaches are equivalent (see, e.g., [4, Theorem
9.7.2]). An explicit dependence of G on t will also be allowed.

2. Preliminaries. We first fix some notation and then proceed to define some
concepts which will be used throughout the paper.

The unit ball in Rn is denoted by B. The positive cone generated by a set
A ⊂ Rn is

coneA = {tx : x ∈ A, t ≥ 0}
and we set also ‖A‖ = sup{‖x‖ : x ∈ A}. The complement of a set A in Rn is denoted
as Ac := Rn \A. For a function f : A→ R we will consider both the epigraph and the
hypograph of f , denoted by epi(f) and hypo(f), respectively. The graph of a (possibly
set-valued) map F : A  R is named graph(F ) := {(x, y) ∈ A× R : y ∈ F (x)}. The
usual (semi)continuity as well as Lipschitz continuity concepts for a set-valued map
will be used (see, e.g., [3, section 1.1]). A map F : [0,+∞)× A  Rn is said almost
upper semicontinuous if it is jointly Lebesgue×Borel measurable with respect to (t, x)
and upper semicontinuous with respect to x for a.e. t. It is well known that this
property is equivalent to a Scorza–Dragoni type of joint continuity, as stated, e.g., in
[21].

Let C ⊂ Rn be closed with boundary bdryC. Some concepts of nonsmooth
analysis will be needed (see, e.g., [14, Chapters 1 and 2] for more details). Given
x ∈ K and v ∈ Rn, we say that v is a proximal normal to K at x and denote as
v ∈ NK(x), provided that there exists σ = σ(v, x) ≥ 0 such that

v · (y − x) ≤ σ‖y − x‖2 ∀ y ∈ K.

If K is convex, then NK(x) coincides with the normal cone of convex analysis.
Let Ω ⊂ Rn be open and let f : Ω → R ∪ {+∞} be lower semicontinuous. The

proximal subdifferential ∂P f(x) of f at a point x of dom(f) = {x : f(x) < +∞} is
the set of vectors v ∈ Rn such that

(v,−1) ∈ Nepi(f)(x, f(x)).

Symmetrically, for an upper semicontinuous f the proximal superdifferential ∂P f(x)
of f at a point x ∈ dom(f) is the set of vectors v ∈ Rn such that

(−v, 1) ∈ Nhypo(f)(x, f(x)).

Prox-regular sets will play an important role in what follows. The definition was first
given by Federer in [22], under the name of sets with positive reach, and later studied
by several authors (see the survey paper [18]).
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THE MINIMUM TIME FUNCTION FOR THE SWEEPING PROCESS 2039

Definition 2.1. Let C ⊂ Rn be closed and r > 0 be given. We say that C is
r-prox-regular provided the inequality

(2.1) 〈ζ, y − x〉 ≤ 1

2r
‖ζ‖ ‖y − x‖2

holds for all x, y ∈ C and ζ ∈ NC(x).

In particular, every convex set is r-prox regular for every r > 0. Prox-regular
sets enjoy several properties, including uniqueness of the metric projection and differ-
entiability of the distance (in a suitable neighborhood) and normal regularity, which
hold true also for convex sets; see, e.g. [18]. We prove here a property that will be
used in the following in the case in which C depends on a parameter. It is a simple
consequence of (2.1).

Proposition 2.2. Let r > 0 be given and let C : [0, T ]  Rn be a continuous
set valued map such that for all t ∈ [0, T ], C(t) is r-prox regular. Then the map
F : graph(C)  Rn, F (t, x) = NC(t)(x) has closed graph. Consequently, F̃ (t, x) :=
F (t, x) ∩ B is upper semicontinuous.

Proof. Let the sequence {(tj , xj , ζj) : (tj , xj) ∈ graph(C), ζj ∈ NC(tj)(xj), n ∈ N}
be given and suppose that (tj , xj , ζj)→ (t, x, ζ). By assumption, x ∈ C(t). We wish
to prove that ζ ∈ NC(t)(x), namely, that

(2.2) ζ · (y − x) ≤ 1

2r
‖ζ‖ ‖y − x‖2

for all y ∈ C(t).
Fix y ∈ C(t). By the lower semicontinuity of C, for each j ∈ N there exists

yj ∈ C(tj) such that yj → y. Then we have

ζ · (y − x) = (ζ − ζj) · (y − x) + ζj · (yj − xj) + ζj ·
(
y − yj − (xj − x)

)
≤ 1

2r
‖ζj‖‖yj − xj‖2 + o(1).

(2.3)

By passing to the limit, the proof of (2.2) is concluded. The upper semicontinuity
of F̃ is obtained by standard arguments of set-valued analysis (see, e.g., Corollary 1,
p. 42, in [3]).

A concept, related to prox-regularity (of the complement of a set) but weaker, is
the r-internal sphere condition. This amounts to requiring that (2.1) holds true for
some nonvanishing normal vector ζ ∈ NC(x) for all x ∈ C. It is well known (see,
e.g., [10, Proposition 2.2.2]) that this condition is equivalent to the semiconcavity
of the distance function dC to C up to the boundary of C, namely, that for each
x, y ∈ (Rn \ C) and ζ ∈ ∂P dC(x) it holds that

(2.4) dC(y) ≤ dC(x) + ζ · (y − x) +
1

2r
‖y − x‖2.

3. The dynamics. The following standing assumptions will be valid throughout
the paper:

(HC) C : [0,∞) Rn is a set-valued map with the following properties:
(HC1) For all t ≥ 0, C(t) is nonempty and compact and there exists r > 0 such

that C(t) is r-prox regular.
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2040 GIOVANNI COLOMBO AND MICHELE PALLADINO

(HC2) C is Lipschitz continuous with constant LC (namely, dH(C(t), C(s)) ≤
LC |t − s| for all s, t ∈ [0, T ], where dH denotes the Hausdorff distance
between subsets of Rn).

(HG) G : [0,∞)×Rn  Rn is a set-valued map with nonempty, closed, and convex
values, such that

(HG1) there exists M > 0 such that

‖G(t, x)‖ ≤M ∀ (t, x) ∈ [0,∞)× Rn;

(HG2) G is Lipschitz continuous with constant LG.
The following result, a special case of a theorem due to Thibault [43, Proposition

2.1 and Theorem 3.1], will be invoked to guarantee the well-posedness of the relevant
Cauchy problem.

Theorem 3.1. Let the set-valued maps C and G satisfy assumptions (HC) and
(HG), respectively. Then the Cauchy problem

(3.1)

 ẋ(t) ∈ −NC(t)(x(t)) +G(t, x(t)) a.e. t > t0,
x(t0) = x0 ∈ C(t0) ,
x(t) ∈ C(t) ∀ t > t0,

admits solutions, and the solution set is closed w.r.t. the uniform convergence. More-
over, if x is a solution of (3.1), then it is a solution of the (unconstrained) problem

(3.2)

{
ẋ(t) ∈ −(LC +M) ∂dC(t)(x(t)) +G(t, x(t)) a.e. t > t0,
x(t0) = x0 ∈ C(t0) .

As a side remark, we mention the fact that for each v ∈ L1
loc([t0,∞),Rn) the

Cauchy problem

(3.3)

 ẋ(t) ∈ −NC(t)(x(t)) + v(t) a.e. t > t0,
x(t0) = x0 ∈ C(t0) ,
x(t) ∈ C(t) ∀ t > t0,

admits a unique solution. This follows from the (hypo)monotonicity of the normal
cone to a prox-regular set and Gronwall’s lemma using well established arguments.

4. Weak and strong invariance. Suppose C,G satisfy (HC) and (HG), re-
spectively. Let K : [0,∞)  Rn be a set-valued map with closed graph such that
K(t) ⊆ C(t) for all t ≥ 0. We recall that closedness of graph(C) is a consequence of
(HC).

Definition 4.1 (weak invariance). We say that K is weakly invariant with re-
spect to the perturbed sweeping dynamics −NC(t)(x(t)) +G(t, x(t)) if and only if, for
all (t0, x0) ∈ graph(C)∩graph(K), the Cauchy problem (3.1) admits, for some T > 0,
at least a solution x : [t0, T ]→ Rn such that x(t) ∈ K(t) for all t ∈ [t0, T ).

Definition 4.2 (strong invariance). We say that K is strongly invariant with
respect to the perturbed sweeping dynamics −NC(t)(x(t)) + G(t, x(t)) if and only if,
for all (t0, x0) ∈ graph(C) ∩ graph(K), T > 0 and x : [t0, T ] → Rn solution to the
Cauchy problem (3.1), we have x(t) ∈ K(t) for all t ∈ [t0, T ].

Necessary and sufficient conditions for weak (also known as viability) and strong
invariance are well known in the particular case where C(t) ≡ Rn for all t (i.e., the
normal part on the right-hand side of (3.1) vanishes). Such a characterization is stated
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both through tangency conditions (see, e.g., [2]) and through inequalities involving
normal vectors (see, e.g., [14]). Our results will be expressed in terms of normals since
we are interested in Hamilton–Jacobi inequalities.

We restrict our attention to the case in which C is constant and state the relevant
characterization for an augmented system in order to be ready for the application to
the epi/hypograph of the minimum time function T , which will appear in section 6.
The first result deals with weak invariance and it is largely based on the existing
theory.

Theorem 4.3. Let the set-valued maps C and G satisfy assumptions (HC) and
(HG), respectively. Take K ⊆ Rn closed and such that

C(t) ∩K 6= ∅ ∀ t ≥ 0.

For t0 ≥ 0 and x0 ∈ K ∩ C(t0), consider the Cauchy problem

(4.1)

 τ̇(t) = 1,
ẋ(t) ∈ −NC(τ(t))(x(t)) +G(τ(t), x(t)) a.e. t > 0,
(τ(0), x(0)) = (t0, x0) .

Set K := [0,∞) ×K. Then K is weakly invariant for (4.1) if and only if, for every
(τ, x) ∈ graph(C) ∩ K, we have

min
v∈{0}×{−NC(τ)(x)∩(L+M)B}

v · p+ min
v∈{1}×G(τ,x)

v · p ≤ 0 ∀ p ∈ NP
graph(C)∩K(τ, x).

(4.2)

Proof. According to Theorem 3.1, (4.1) is equivalent to the Cauchy problem with
bounded right-hand side τ̇(t) = 1,

ẋ(t) ∈ −(L+M)∂dC(τ(t))(x(t)) +G(τ(t), x(t)) a.e. t > 0,
(τ(0), x(0)) = (t0, x0) .

Applying the characterization of weak invariance proved in [14, Theorem 2.10], then
(4.2) follows. The proof is concluded.

The second result of this section deals with strong invariance and is new. Indeed,
observe that the right-hand side of (4.1) does not satisfy the one-sided Lipschitz
continuity assumption which is imposed in [21] in relation with strong invariance.
Here, taking advantage of the special structure of the dynamics we consider, we are
able to characterize strong invariance by means of a single Hamiltonian inequality. In
the more general strong invariance result contained in [21], instead, the authors use
two different inequalities, one for the necessity condition and one for the sufficiency
condition.

The notation of Theorem 4.3 is adopted in the following result.

Theorem 4.4. Let the assumptions and notation of Theorem 4.3 hold true. Then
K∩graph(C) is strongly invariant for (4.1) if and only if, for every (τ, x) ∈ graph(C)∩
K, we have

min
v∈{0}×{−NC(τ)(x)∩(L+M)B}

v · p+ max
v∈{1}×G(τ,x)

v · p ≤ 0 ∀ p ∈ NP
graph(C)∩K(τ, x).

(4.3)
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Proof. (Necessity). Fix (τ̄ , x̄) ∈ graph(C) ∩ K and p̄ ∈ NP
graph(C)∩K(τ̄ , x̄). Take

v̄ ∈ {1} ×G(τ̄ , x̄) such that

v̄ · p̄ = max
v∈{1}×G(τ̄ ,x̄)

v · p̄.

Let φ : graph(C) → Rn be a continuous selection from G(τ, x) such that φ(τ̄ , x̄) =
v̄ (such a selection exists by standard arguments of set-valued analysis; see, e.g.,
Theorem 1, p. 82, and the beginning of the proof of Corollary 1, p. 83, in [3]). Recall
that the Cauchy problem

(4.4)

 τ̇(t) = 1,
ẋ(t) ∈ −NC(τ(t))(x(t)) + φ(τ(t), x(t)) a.e. t > 0,
(τ(0), x(0)) = (t0, x0)

admits solutions. From the strong invariance of K with respect to (4.1), K is also
weakly invariant with respect to (4.4). Thus we obtain from Theorem 4.3 that

min
v∈{0}×{−NC(τ)(x)∩(L+M)B}

v · p+ φ(τ, x) · p ≤ 0 ∀ p ∈ NP
graph(C)∩K(τ, x)

for all (τ, x) ∈ graph(C) ∩ K. In particular, by taking (τ, x) = (τ̄ , x̄) and p = p̄, we
obtain

min
v∈{0}×{−NC(τ̄)(x̄)∩(L+M)B}

v · p̄+ max
v∈{1}×G(τ̄ ,x̄)

v · p̄ ≤ 0.

Since (τ̄ , x̄) and p̄ ∈ NP
graph(C)∩K(τ̄ , x̄) were arbitrarily chosen, the first part of the

proof is completed.
(Sufficiency). Take T > 0 and a solution (τ, x) : [0, T ] → R1+n of (4.1) with

(t0, x0) ∈ K ∩ graph(C). We aim at proving that (τ, x)(t) ∈ K for each t ∈ [0, T ].
To this aim, observe first that the structure of the right-hand side of (4.1) implies

through standard selection theorems (see, e.g., Proposition 4, p. 43, and Theorem 1,
p. 90, in [3]) that there exist measurable functions ξ, g : [0, T ] → Rn such that, for
a.e. t ∈ [0, T ],

ξ(t) ∈ NC(τ(t))(x(t)) ∩ (LC +M)B, g(t) ∈ G(τ(t), x(t)),

ẋ(t) = −ξ(t) + g(t).

Define

(4.5) L := LC +M,

and, for (τ, x) ∈ graph(C),

(4.6) F (τ, x) := {1} ×
(
−NC(τ)(x) ∩ LB +G(τ, x)

)
,

and, for a.e. t ∈ [0, T ],

G̃(t, τ, x) :=
{
v ∈ F (τ, x) :

(
(τ̇(t), ẋ(t))− v

)
·
(
(τ(t), x(t))− (τ, x)

)
≤ 2L

r
‖x(t)− x‖2

(4.7)

+
2LL2

C

r
|τ(t)− τ |2 + LG‖(τ(t), x(t))− (τ, x)‖ ‖x(t)− x‖+ 2LLC |τ − τ(t)|

}
.

We claim that the set-valued map G̃ has the following properties:
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(i) ∅ 6= G̃(t, τ, x) ⊆ F (τ, x) for a.e. t ∈ [0, T ] for all (τ, x) ∈ graph(C);
(ii) minv∈G̃(t,τ,x) v · p ≤ 0 for all (τ, x) ∈ graph(C) ∩ K, a.e. t ∈ [0, T ], p ∈

NP
graph(C)∩K(τ, x);

(iii) G̃ is almost upper semicontinuous and takes values compact and convex sets.
In order to see the nonemptiness of G̃, we first establish some inequalities. Fix t ∈
[0, T ] such that ẋ(t) exists and take (τ, x) ∈ graph(C). First of all, using the Lipschitz
continuity of G, it follows that there exists ḡ ∈ G(τ, x) such that

(4.8) ‖g(t)− ḡ‖ ≤ LG‖(τ(t), x(t))− (τ, x)‖.

Using now the Lipschitz continuity of C, we can find y ∈ C(τ(t)) and z ∈ C(τ) such
that

(4.9) ‖x− y‖ ≤ LC |τ − τ(t)|,

(4.10) ‖x(t)− z‖ ≤ LC |τ(t)− τ |.

By taking into account the uniform prox-regularity of C (see (2.1)) and (4.9), we
obtain

−ξ(t) · (x(t)− x) = ξ(t) · (y − x(t)) + ξ(t)(x− y)

≤ 1

2r
‖ξ(t)‖ ‖x(t)− y‖2 + ‖ξ(t)‖LC |τ − τ(t)|

≤ L

2r
‖x(t)− y‖2 + LLC |τ − τ(t)|.

(4.11)

By arguing as to obtain (4.11), for every ξ ∈ NC(τ)(x)∩LB, recalling (2.1) and (4.10)
we obtain as well

(4.12) ξ · (x(t)− x) ≤ L

2r
‖x− z‖2 + LLC |τ(t)− τ |.

Set v̄ = (1,−ξ + ḡ), where ξ is an arbitrary element of the set NC(τ)(x) ∩ LB. By
taking into account (4.8), (4.11), and (4.12), we obtain(

(τ̇(t), ẋ(t))− v̄
)
·
(
(τ(t), x(t))− (τ, x)

)
=
(
(1,−ξ(t) + g(t))− (1,−ξ + ḡ)

)
(4.13)

· (τ(t)− τ, x(t)− x) = (−ξ(t) + ξ + g(t)− ḡ) · (x(t)− x)

≤ L

2r
‖x(t)− y‖2 + LLC |τ − τ(t)|+ L

2r
‖x− z‖2 + LLC |τ(t)− τ |

+ LG‖(τ(t), x(t))− (τ, x))‖ ‖x(t)− x‖

≤ L

r

(
‖x(t)− x‖2 + ‖x− y‖2

)
+
L

r

(
‖x(t)− x‖2 + ‖x(t)− z‖2

)
+ 2LLC |τ − τ(t)|+ LG‖(τ(t), x(t))− (τ, x)‖ ‖x(t)− x‖

≤ 2L

r
‖x(t)− x‖2 +

2LL2
C

r
|τ(t)− τ |2 + 2LLC |τ − τ(t)|

+ LG‖(τ(t), x(t))− (τ, x)‖ ‖x(t)− x‖,

which shows that v̄ ∈ G̃(t, τ, x). Furthermore, property (ii) follows immediately from
(4.3), while (iii) is easily checked. Thus the claim is confirmed.
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2044 GIOVANNI COLOMBO AND MICHELE PALLADINO

Observe that in the above argument the only condition imposed on ξ was ξ ∈
NC(τ)(x) ∩ LB. Then, given p ∈ Ngraph(C)∩K(τ, x), we can choose

−ξ̄ ∈ argmin
v∈{0}×{−NC(τ)(x)∩LB}

v · p.

Therefore, by taking ḡ as in (4.8), we have

min
v∈G̃(t,τ,x)

v · p ≤ (1,−ξ̄ + ḡ) · p ≤ min
v∈{0}×{−NC(τ)(x)∩LB}

v · p+ max
{1}×G(τ,x)

v · p ≤ 0,

where the last inequality holds true by hypothesis. Thus, by a known weak flow
invariance result (see, e.g., Theorem 1 in [21]), the Cauchy problem{

(τ̇(t), ẋ(t)) ∈ G̃(t, τ(t), x(t)),

(τ(0), x(0)) = (t0, x0)

admits a solution (τ̃ , x̃) : [0, T̃ ] → R1+n such that (τ̃(t), x̃(t)) ∈ graph(C) ∩ K for
all t ∈ [0, T̃ ]. Set T ′ = min{T, T̃}. We claim that (τ(t), x(t)) = (τ̃(t), x̃(t)) for
all t ∈ [0, T ′]. Indeed, since (τ̃ , x̃) is a G̃-trajectory, by taking v = ( ˙̃τ(t), ˙̃x(t)) and
(τ, x) = (τ̃(t), x̃(t)) in (4.7), we obtain for a.e. t ∈ [0, T ′](

(τ̇(t), ẋ(t))− ( ˙̃τ(t), ˙̃x(t))
)
·
(
(τ(t), x(t))− (τ̃(t), x̃(t))

)
≤ 2L

r
‖x(t)− x̃(t)‖2(4.14)

+
2LL2

C

r
|τ(t)− τ̃(t)|+ LG‖(τ(t), x(t))− (τ̃(t), x̃(t))‖ ‖x(t)− x̃(t)‖

+ 2LLC |τ(t)− τ̃(t)|.

Observe that τ(0) = τ̃(0) = t0 and τ̇(t) = ˙̃τ(t) = 1, so that τ(t) ≡ τ̃(t). Therefore the
above inequality yields

(ẋ(t)− ˙̃x(t)) · (x(t)− x̃(t)) ≤
(

2L

r
+ LG

)
‖x(t)− x̃(t)‖2.

Since x(0) = x̃(0) = x0, it follows from Gronwall’s lemma that x(t) = x̃(t) in [0, T ′].
If T ′ < T , we can repeat the same arguments starting from the point (T ′, x(T ′)) in
place of (t0, x0). This proves that (τ(t), x(t)) ∈ K ∩ graph(C) for all t ∈ [0, T ]. Since
the trajectory (τ, x) was arbitrarily chosen, the proof is complete.

Remark 4.5. Observe that in the Hamiltonian characterization of strong invari-
ance (4.3), the summand relative to NC(t) is minimized and not maximized. Notice
that the maximum of p · ξ with ξ ∈ −NC(t)(x) is nonnegative, since 0 ∈ −NC(t)(x).
Therefore taking the maximum in condition (4.3) would imply that all the vectors of
G(t, x) point inward with respect to C(t). Taking the minimum in (4.3) reflects the
features of the perturbed sweeping process solutions x(·) with a perturbation G(t, x)
which does not satisfy inward pointing conditions on ∂C(t). In this case, a velocity
g ∈ G(t, x(t)) could push the trajectory out from the set C(t) and the action of a
correcting term ξ ∈ −NC(t)(x) is required. The minimization on ξ ∈ −NC(t)(x) takes
into account the presence of such a correcting term.

5. Invariance properties and the value function. The sweeping process,
and its perturbed version as well, is by its very nature a time varying dynamics. For
this reason we will consider the minimum time function as depending also on the
initial time.
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Definition 5.1. Let the multifunctions C and G be given as in section 3 and
consider the Cauchy problem (4.1). Let S ⊂ Rn be closed. The minimum time to
reach S subject to (4.1) is

(5.1) T (t0, x0) = inf{α ≥ 0 : x(α) ∈ S, (τ, x) solution of (4.1)}.

Since we are considering the augmented dynamics (4.1), this is exactly the mini-
mal time taken to reach the target, relative to the original dynamics (3.1) (or (1.3)).
Namely, (5.1) is equivalent to

T (t0, x0) = inf{α ≥ 0 : x(α+ t0) ∈ S, x solution of (3.1)}.

Observe that an obvious necessary condition for T (t0, x0) to be finite is

(5.2) S ∩ C(t) 6= ∅ for some t ≥ t0.

It is well known that the epigraph of the value function satisfies some forward
and backward invariance properties (see, e.g., [23, 45]). Since we are able to treat
only continuous minimum time functions, we will substitute the backward invariance
of the epigraph with the forward one for the hypograph. Our setting differs from the
classical autonomous framework and so we state and prove in detail the invariance
properties of the value function. Essentially, we follow arguments of [45, section 3].

We set

(5.3) E := epi(T ) = {(t, x, λ) : (t, x) ∈ graph(C), λ ≥ T (t, x)}

and

(5.4) H := hypo(T ) = {(t, x, λ) : (t, x) ∈ graph(C), λ ≤ T (t, x)}.

Proposition 5.2. Let the set-valued maps C and G satisfy assumptions (HC)
and (HG), respectively, and let S ⊆ Rn be closed. Consider the minimum time
function T to reach S subject to (4.1) and assume that T : graph(C) → [0,∞] is
lower semicontinuous and not identically equal to +∞. Then E, the epigraph of T ,
is weakly invariant with respect to the dynamics generated by the velocity set

(5.5) Γ(τ, x, λ) := {1} × {−NC(τ)(x) +G(τ, x)} × {−1}

for (τ, x) ∈ graph(C), x /∈ S, λ ∈ R.

Proof. Let (t0, x0, λ0) ∈ E. In particular, T (t0, x0) ≤ λ0 < ∞. By invoking
Theorem 3.1, it is not difficult to see that an optimal trajectory (τ̄ , x̄) of (4.1) exists.
Thus the optimality principle yields, for all s ∈ [0, T (t0, x0)],

T (t0 + s, x̄(s)) = T (t0, x0)− s ≤ λ0 − s.

In other words the solution(
τ(s), x(s), λ(s)

)
=
(
t0 + s, x̄(s), λ0 − s

)
of the Cauchy problem

(
τ̇(s), ẋ(s), λ̇(s)

)
∈ Γ

(
τ(s), x(s), λ(s)

)
,
(
τ(0), x(0), λ(0)

)
=(

t0, x0, λ0

)
belongs to E for all s ∈ [0, T (t0, x0)]. The proof is complete.
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Proposition 5.3. Let the set-valued maps C and G satisfy assumptions (HC)
and (HG), respectively, and let S ⊆ Rn be closed. Consider the minimum time
function T to reach S subject to (4.1) and assume that T : graph(C) → [0,∞] is
upper semicontinuous and not identically equal to +∞. Then H, the hypograph of T ,
is strongly invariant with respect to the dynamics generated by the velocity set (5.5).

Proof. Let
(
t0, x0, λ0

)
∈ H and let (τ, x) : [t0, T ] → Rn be a solution of (4.1).

Then the optimality principle yields, for all s ∈ [0, T − t0],(
λ0 ≤) T (t0, x0) ≤ s+ T

(
t0 + s, x(t0 + s)

)
,

which implies that
(
τ(s), x(s), λ(s)

)
=
(
t0 +s, x(t0 +s), λ0−s

)
∈ H for all s ∈ [T−t0].

The proof is concluded.

The following converse properties are also valid.

Proposition 5.4. Let the set-valued maps C and G satisfy assumptions (HC)
and (HG), respectively, and let S ⊆ Rn be closed and such that (5.2) is valid. Take a
function θ : graph(C) → R ∪ {∞} such that θ(t, x) > 0 for all (t, x) ∈ graph(C) for
which x /∈ S and θ(t, x) = 0 for all (t, x) ∈ graph(C) for which x ∈ S. Then

(i) if θ is lower semicontinuous and epi(θ) is weakly invariant with respect to Γ,
defined in (5.5), then

θ(t, x) ≥ T (t, x)

for all (t, x) ∈ graph(C);
(ii) if θ is upper semicontinuous and hypo(θ) is strongly invariant with respect to

Γ, then

θ(t, x) ≤ T (t, x)

for all (t, x) ∈ graph(C).

Proof.
(i) The statement needs verification just at points (t, x) ∈ dom(θ) with x /∈ S.

Let (τ, y, λ) : [0, T ) → R1+n+1 be a solution, defined on a maximal interval
of existence, of

(τ̇(t), ẏ(t), λ̇(t)) ∈ Γ(τ(t), x(t), λ(t)), (τ(0), y(0), λ(0)) = (t, x, θ(t, x))

such that

(5.6) θ(t, x)− s ≥ θ(t+ s, y(s)) > 0 ∀ s ∈ [0, T ).

By the above property, the end time T must be finite, otherwise we contradict
the hypothesis θ(t, x) ≥ 0 for all (t, x) ∈ graph(C). Observe also that, by
the boundedness of Γ, y can be extended up to s = T . We claim that
θ̄ := lim infs↑T θ(t + s, y(s)) = θ(t + T, y(T )) = 0. Indeed, if not we can
prolong (τ, y, λ) beyond T still remaining in E and with y(T + s) /∈ S for all
s > 0 small enough, hence violating the maximality of T . Thus, from our
assumptions on θ, it follows that y(T ) ∈ S and that T ≥ T (t, x). Recalling
(5.6), the verification of claim (i) is concluded.

(ii) The statement requires verification only at points (t0, x0) ∈ dom(T ) with
x0 /∈ S. Fix η > 0 and let yη be a solution of (3.1) defined on [t0, T ] with
T − t0 < T (t0, x0) + η and yη(T ) ∈ S. Define (τ(s), y(s), λ(s)) := (t0 +
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s, y(t0 + s), θ(t0, x0) − s), s ∈ [0, T − t0]. Observe that (τ, y, λ) is a solution
of the Cauchy problem

(τ̇(t), ẏ(t), λ̇(t)) ∈ Γ(τ(t), x(t), λ(t)), (τ(0), y(0), λ(0)) = (t0, x0, θ(t0, x0)).

By the strong invariance assumption, θ(t0 + s, y(s)) ≥ θ(t0, x0) − s for all
s ∈ [0, T −t0]. By taking s = T −t0, using the relation y(T −t0) = yη(T ) ∈ S,
we obtain that

θ(t0, x0)− (T − t0) ≤ 0

hence
θ(t0, x0) ≤ T − t0 < T (t0, x0) + η.

Since η was arbitrarily chosen, the proof is complete.

In the case in which T is continuous, from the above results one immediately
obtains a verification theorem.

Corollary 5.5. Let the set-valued maps C and G satisfy assumptions (HC) and
(HG), respectively, and let S ⊆ Rn be closed and such that (5.2) is valid. Take a
continuous function θ : graph(C)→ R such that

θ(t, x) > 0 ∀ (t, x) ∈ graph(C) for which x /∈ S,

θ(t, x) = 0 ∀ (t, x) ∈ graph(C) for which x ∈ S.
Assume moreover that epi(θ) is weakly invariant and hypo(θ) is strongly invariant
with respect to the dynamics Γ defined in (5.5). Then θ(t, x) = T (t, x) for every
(t, x) ∈ dom(θ).

6. Hamilton–Jacobi inequalities. The main result of this part, which follows
from combining sections 4 and 5, is the culmination of the whole paper. Before stating
the theorem, we set the Hamiltonian notation. Let C and G be the set-valued maps
which have come throughout the paper and let θ : graph(C)→ R∪{∞} be a function.
For (τ, x, λ) ∈ epi(θ) and p ∈ NP

epi(θ)(τ, x, λ), define

(6.1) H−(τ, x, λ, p) := min
v∈{0}×{−NC(τ)(x)∩(L+M)B}×{0}

v · p+ min
v∈{1}×G(τ,x)×{−1}

v · p,

while for (τ, x, λ) ∈ hypo(θ) and p ∈ NP
hypo(θ)(τ, x, λ),

(6.2) H+(τ, x, λ, p) := min
v∈{0}×{−NC(τ)(x)∩(L+M)B}×{0}

v · p+ max
v∈{1}×G(τ,x)×{−1}

v · p.

Theorem 6.1. Let the set-valued maps C and G satisfy assumptions (HC) and
(HG), respectively. Let S ⊂ Rn be closed and consider the minimum time T (t0, x0) to
reach S subject to (3.1). Assume that T is continuous on graph(C). Then T is the
unique continuous function satisfying the following properties:

T (t, x) > 0 ∀ (t, x) ∈ graph(C) for which x /∈ S,
T (t, x) = 0 ∀ (t, x) ∈ graph(C) for which x ∈ S,

(H−) H−(t, x, T (t, x), p) ≤ 0 ∀ (t, x) ∈ graph(C) ∩ (R× Sc),
∀ p ∈ NP

epi (T )(t, x, T (t, x)),

(H+) H+(t, x, T (t, x), p) ≤ 0 ∀ (t, x) ∈ graph(C),
∀ p ∈ NP

hypo (T )(t, x, T (t, x)).
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Remark 6.2. The inequalities (H−) and (H+) contain boundary conditions both
at the boundary of graph(C) and on the target set S. Furthermore, in the interior
of graph(C) ∩ (R × Sc), we recover the proximal inequalities which characterize the
case in which no constraint is present. More precisely, assume, in addition to the
hypotheses of Theorem 6.1, that intC(t) 6= ∅ for all t ≥ 0. Then (H−) yields, for all
t > 0, x ∈ intC(t) ∩ Sc, and p ∈ ∂PT (t, x), if any,

min
w∈{1}×G(t,x)

w · p ≤ 0

and p ∈ ∂PT (t, x), if any,

− min
w∈{1}×G(t,x)

w · p = max
w∈{1}×G(t,x)

w · (−p) ≤ 0.

In view of Rockafellar’s horizontality theorem [39], it is well known that is not nec-
essary to test the Hamiltonian inequalities at horizontal normal vectors (see [45,
p. 1059]). In particular, if both ∂PT (t, x) and ∂PT (t, x) are nonempty, then (∇T (t, x))
exists and

∂T

∂t
(t, x) + min

w∈G(t,x)
w · ∂T

∂x
(t, x) = 0.

Furthermore, fixing a point x ∈ intC(t) ∩ ∂S, relation (H+) reads as

max
w∈{1}×G(t,x)

w · (−p) ≤ 0

for every p ∈ ∂PT (t, x), which is a boundary condition for the target S expressed
in terms of the super (i.e., upper) differential of T (·, ·) at (t, x) (compare with [45,
Theorem 3.2], where a similar condition, expressed in terms of subdifferential, is
obtained for lower semicontinuous minimum time functions).

Proof. The result follows from combining Proposition 5.2 with Theorem 4.3 and
Proposition 5.3 with Theorem 4.4 and from Corollary 5.5. We just observe that results
of section 4 can be applied to the augmented dynamic Γ defined in (5.5) because we
can rewrite

Γ(t, x, λ) = {1} ×
(
−NC(τ)×R(x, λ) +G(τ, x)× {−1}

)
.

The proof is concluded.

We devote the last part of this section to a statement of the problem and of the
main result in the autonomous case. This is sometimes called a state constrained
problem with reflecting boundary (see [40]). The assumptions now are

C ⊂ Rn is closed and r-prox-regular,

G : Rn  Rn is a LC-Lipschitz continuous set-valued map with compact and convex

values, the closed target S ⊂ Rn is such that S ∩ C 6= ∅.

(6.3)

Consider the Cauchy problem

(6.4)

{
ẋ(t) ∈ −NC(x(t)) +G(x(t)) a.e. t > 0,
x(0) = x0 ∈ C
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and define the minimum time to reach S subject to (6.4) by setting

T (x0) = inf{α ≥ 0 : x(α) ∈ S, x is a solution of (6.4)}.

We rephrase our main result for this case.

Theorem 6.3. Let C, S, G satisfy the assumptions (6.3). Suppose that the min-
imum time function is T to reach S subject to (6.4) is continuous. Then T is the
unique continuous function satisfying the following properties:

T (x) = 0 ∀ x ∈ S ∩ C,

T (x) > 0 ∀ x ∈ S \ C,

(Ha−) minv∈(−NC(x)∩LCB)×{0}+ minv∈G(x)×{−1} v · p ≤ 0 ∀ x ∈ C ∩ Sc,
∀ p ∈ NP

epi(T )(x, T (x)),

(Ha+) minv∈(−NC(x)∩LCB)×{0}+ maxv∈G(x)×{−1} v · p ≤ 0 ∀ x ∈ C,
∀ p ∈ NP

hypo(T )(x, T (x)).

In particular, at any interior point of C (if any), the above Hamiltonian inequalities
become the classical proximal solution conditions

min
v∈G(x)×{−1}

v · p ≤ 0 ∀ x ∈ C ∩ Sc, ∀ p ∈ ∂PT (x),

min
v∈G(x)×{−1}

v · p ≥ 0 ∀ x ∈ C, ∀ p ∈ ∂PT (x).
(6.5)

Again, observe that the Hamiltonian inequalities contain some boundary condi-
tions.

7. On the continuity of the minimum time function. Throughout the
paper we have assumed that T is (finite and) continuous on the whole graph of the
moving set C. In this section we give a sufficient condition for this property. We will
state a controllability result general enough to cover the example in section 8. The
sufficient condition we propose is of Petrov type (with variable coefficient); see, e.g.,
[10, section 8.2]. Much finer results can be found in the literature (see, e.g., [31, 33, 34]
and references therein) and we believe they can be adapted to (3.1).

The result we are going to present follows the lines of Theorem 1 in [33]. However,
in order to overcome the lack of Lipschitz continuity of the normal cone NC(·)(·), we
need to impose a Petrov-like condition which takes into account also normals at nearby
points.

Proposition 7.1. Let the set-valued maps C and G satisfy (HC) and (HG),
respectively. Let S ⊂ Rn be closed and satisfy (5.2) and the internal sphere con-
dition. Assume furthermore that there exist a continuous nondecreasing function
µ : [0,∞)→ [0,∞), with µ(0) = 0 and

µ(ρ) > 0,

∫ ρ

0

dr

µ(r)
<∞ ∀ ρ > 0,

and δ > 0 with the following property: for all t ≥ 0 and x ∈ C(t), there exist v̄ ∈
G(t, x) and ξ̄ ∈ ∂P dS(x) such that for all (s, y) ∈ graph(C) with ‖(s, y)− (t, x)‖ ≤ δ
and all p ∈ NC(s)(y) ∩ LB, one has

(v̄ − p) · ξ̄ ≤ −µ(dS(x)).
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Then T : graph(C) → R+ is (finite and) continuous. More precisely, for all (t1, x1),
(t2, x2) ∈ graph(C), we have

(7.1) |T (t2, x2)− T (t1, x1)| ≤
∫ eKT ‖x2−x1‖+K′

√
|t1−t2|

0

2

µ(r)
dr

for suitable constants K and K ′ depending only on C, G and the dimension of the
space, provided T (t1, x1) and T (t2, x2) are both not larger than a given constant.

Proof. Fix (t0, x0) ∈ graph(C). We claim first that

(7.2) T (t0, x0) ≤ 2

∫ dS(x0)

0

ds

µ(s)

(hence it is finite). Let g be a LG-Lipschitz selection from G such that g(t0, x0) = v̄,
and let y0 be the solution of the Cauchy problem ẋ(t) ∈ −NC(t)(x(t)) + g(t, x(t)) a.e. t > t0,

x(t0) = x0 ∈ C(t0) ,
x(t) ∈ C(t) ∀ t > t0.

Fix t > t0 and observe that, by the uniform semiconcavity of dS (recall (2.4)), for a
suitable p(s) ∈ NC(s)(y(s)),

dS(y(t)) ≤ dS(x0) +

∫ t

t0

ξ̄ · (−p(s) + g(s, y(s)))ds+
1

r
‖y(t)− x0‖2

≤ dS(x0) +

∫ t

t0

ξ̄ · (−p(s) + g(t0, x0))ds

+

∫ t

t0

LG(L+ 1)(s− t0)ds+
L2

r
(s− t0)2

≤ dS(x0)− (t− t0)µ(dS(x0)) +K|t− t0|2,

(7.3)

where L was defined in (4.5) and K = LG(L+1)
2 + L2

r , and we have assumed that

|t− t0| ≤ δ
L+1 . With the further assumption that

|t− t0| ≤
µ(dS(x0))

2K
,

we obtain the estimate

dS(y(t)) ≤ dS(x0)− µ(dS(x0))

2
(t− t0).

Set

h1 = min
{ δ

L+ 1
,
µ(dS(x0)

2K

}
.

By repeating the same argument inductively, we construct a sequence of points {yi},
of numbers hi > 0, and of solutions yi of ẋ(t) ∈ −NC(t)(x(t)) +G(t, x(t)) a.e. t > ti,

x(ti) = yi ∈ C(ti) ,
x(t) ∈ C(t) ∀ t > ti,
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where ti = t0 +
∑i
j=1 hj , satisfying the properties, for i = 0, 1, . . . ,

yi+1 = yi(ti+1),

dS(yi+1) ≤ dS(yi)
µ(dS(yi))

2
hi+1,

hi+1 = min
{ δ

L+ 1
,
µ(dS(yi))

2K

}
.

(7.4)

Since the sequence {dS(yi)} is decreasing and µ(ρ) > 0 if ρ > 0, we obtain that
limi→∞ dS(yi) = 0. We wish now to estimate the sum

∑∞
i=1 hi, namely, the time

needed by the trajectory of (3.1) obtained by patching together yi to reach S. Indeed
(7.4) yields

(7.5)

∞∑
i=1

hi ≤ 2

∞∑
i=1

dS(yi)− dS(yi+1)

µ(dS(yi))
.

Since the right-hand side of (7.5) is a Riemann sum of the finite integral
∫ dS(x0)

0
ds
µ(ρ) ,

we have proved that the constructed trajectory of (3.1) reaches S in finite time. Since

µ is nondecreasing, the right-hand side of (7.5) is less than or equal to 2
∫ dS(x0)

0
ds
µ(s)

and so the claim is verified.
We will deduce now from (7.2) that T is continuous and satisfies (7.1). To this

aim, we use a parametrization theorem (see Theorem 9.7.2 in [4]). According to this
result, there exists a single-valued map g : graph(C) × B → Rn with the following
properties:

(a) for all (t, x) ∈ graph(C), G(t, x) = g(t, x,B);
(b) for all u ∈ B, g(·, ·, u) is Lipschitz continuous with constant cLG, where c is

a suitable number independent of G;
(c) for all (t, x) ∈ graph(C), g(t, x, ·) is Lipschitz continuous with constant c.

Fix (t1, x1) and (t2, x2) and consider the Cauchy problems for augmented dynamics

(7.6)

 τ̇(t) = 1,
ẋ(t) ∈ −NC(τ(t))(x(t)) + g(τ(t), x(t), u) a.e. t > 0,
(τ(0), x(0)) = (ti, xi), i = 1, 2.

Let u1 be a control taking values in B steering (t1, x1) to R × S in the optimal time
T (t1, x1) and let (τi, yi) be the solution of (7.6) with u1 in place of u for i = 1, 2,
respectively. If y2(T (t1, x1)) ∈ S, then obviously T (t2, x2) ≤ T (t1, x1). Otherwise, set
x̄i = yi(T (t1, x1)), i = 1, 2. Then, recalling (7.2),

(7.7) T (T (t1, x1), x̄2) ≤ 2

∫ dS(x̄2)

0

dr

µ(r)
≤ 2

∫ ‖x̄2−x̄1‖

0

dr

µ(r)
.

To conclude the proof, we need to estimate ‖x̄1 − x̄2‖. Indeed, we have for all t ∈
[0, T (t1, x1)], recalling the r-prox-regularity of C(t) (see (2.1)),

(ẏ1(t)− g(τ1(t), y1(t), u1(t))) · (y2(t)− y1(t)) ≥ − 1

2r
‖y2(t)− y1(t)‖2,

(ẏ2(t)− g(τ2(t), y2(t), u1(t))) · (y1(t)− y2(t)) ≥ − 1

2r
‖y2(t)− y1(t)‖2.

(7.8)
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By summing the above inequalities and using the Lipschitz continuity of g, we obtain

(ẏ2(t)− ẏ1(t)) · (y2(t)− y1(t)) ≤ 1

r
‖y2(t)− y1(t)‖2(7.9)

+ cLG
(
|t2 − t1|+ ‖y2(t)− y1(t)‖

)
‖y2(t)− y1(t)‖,

namely,

(7.10)
d

dt
‖y2(t)− y1(t)‖2 ≤

(
cLG +

1

r

)
‖y2(t)− y1(t)‖2 + cA|t2 − t1|

for a suitably large constant A > 0, depending on t. Therefore, for all t ∈ [0, T (t1, x1)],

(7.11) ‖y2(t)− y1(t)‖ ≤
√

2 e

(
cLG+ 1

r

)
t‖x2 − x1‖+A′

√
|t2 − t1|,

where A′ is a suitable constant depending only on cA. Combining (7.7) and (7.11) and
exchanging the role of (t1, x1) and (t2, x2), we get (7.1). The proof is
concluded.

Remark 7.2. Observe that if µ(r) =
√
r, then T (t, x) is Hölder continuous with

exponent 1
2 with respect to x and 1

4 with respect to t, while if µ is constant (as in
the original Petrov condition), then T is Lipschitz continuous with respect to x and
1
2 -Hölder continuous with respect to t.

8. Examples. This section is devoted to two examples in which a candidate
minimum time function is proved to be the exact one by verification. Indeed we
show by direct inspection that our guessed function satisfies the Hamilton–Jacobi
inequalities and so, by the sufficiency part of the characterization, it is actually T . We
plan to use the necessity part in a forthcoming paper, for numerical approximations.

8.1. Example 1. Let the space dimension be 1 and set, for t ≥ 0,

C(t) = {x ∈ R : −1 + t ≤ x ≤ 2}

(observe that C(t) 6= ∅ if and only if t ≤ 3) and

S = {x ∈ R : x ≥ 2}

Consider the controlled dynamics

ẋ(t) ∈ −NC(t)(x(t)) + x(t) + u(t), |u(t)| ≤ 1.

Due to the nonautonomous character of the problem, the minimum time function to
reach S is defined through the augmented dynamics

(8.1)

 τ̇(t) = 1,
ẋ(t) ∈ −NC(τ(t))(x(t)) + x(t) + [−1, 1] a.e. t > 0,
(τ(0), x(0)) = (t0, x0) .

The candidate minimum time function T is the following (we omit the computations
which lead us to formulate this guess):

T (t, x) :=

{
1 + log 3− t for − 1 ≤ −1 + t ≤ x ≤ −1 + et−1, 0 ≤ t ≤ 1,
log 3− log(1 + x) for − 1 + et−1 < x ≤ 2, 0 ≤ t ≤ 3.
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Figure 1. graph (T ) and some relevant curves in it (Γ5 is the blue curve; the others are on the
boundary of graph (T )).

Figure 1 shows the graph of T , together with some curves at which the computation of
normal cones is performed in what follows. Observe that T is continuous in the whole
of C := graph(C), as it is expected to be, since the assumptions of the controllability
result contained in Proposition 7.1 are satisfied. Moreover, T vanishes on C ∩ (R×S)
and it is positive on the remainder of C. Therefore, in order to prove that T is actually
the minimum time function we are looking for, it is enough to verify the Hamilton–
Jacobi inequalities (H−) and (H+) stated in Theorem 6.1. In this case, they read as
follows for all (t, x) ∈ C:

(8.2) min
v∈−NC(t)(x), |v|≤4

(0, v, 0) · (pt, px, pz) + min
|w|≤1

(1, x+ w,−1) · (pt, px, pz) ≤ 0

for all p = (pt, px, pz) ∈ Nepi(T )(t, x, T (t, x)) and

(8.3) min
v∈−NC(t)(x), |v|≤4

(0, v, 0) · (pt, px, pz) + max
|w|≤1

(1, x+ w,−1) · (pt, px, pz) ≤ 0

for all p = (pt, px, pz) ∈ Nhypo(T )(t, x, T (t, x)).
To this aim, observe first that for (t, x) in the interior of C (except at the curve γ:

x = −1 + et−1, 0 ≤ t ≤ 1) and p = (∂T∂t ,
∂T
∂x ,±1), both inequalities are satisfied as an

equality. Second, we check (8.2) and (8.3) at points (t, x, p) with (t, x) ∈ bdry C. Set
E = epi(T ) and H = hypo(T ) and observe that for a horizontal p, i.e., p = (pt, px, 0),
we need to verify only (8.3), since the horizontal normal vectors are in common
between normal cones of the epigraph and of the hypograph.

The verification procedure is employed as follows. Consider, for instance, the
point (0,−1, 1+log 3). Then the normal cones to the epigraph and to the hypograph,
respectively, together with NC(0)(−1), admit the following representation:

NE(0,−1, 1 + log 3) = cone{(0,−1, 0), (1,−1, 0), (−1, 0,−1)},
NH(0,−1, 1 + log 3) = cone{(0,−1, 0), (1,−1, 0), (1, 0, 1)},

NC(0)(−1) = (−∞, 0].

(8.4)
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For p = (0,−1, 0), (8.3) reads as

min
v∈0≤v≤4

(−v) + max
|w|≤1

(1− w) = −4 + 2 = −2 < 0,

while for p = (1,−1, 0), (8.3) reads as

min
v∈0≤v≤4

(−v) + max
|w|≤1

(2− w) = −4 + 3 = −1 < 0.

For p = (−1, 0,−1), (8.2) reads as

min
v∈0≤v≤4

(−v) + (−1) + 1 = −4 < 0,

and a similar computation holds for (8.3) at (1, 0, 1).
The same procedure can be repeated for the points (3, 2, 0), (0, 2, 0) and the

segment {(t, 2, 0) : 0 < t < 3}. In this case, one can easily verify that normal cones
of interest in such points can be written as

(8.5)


NE(3, 2, 0) = cone{(0, 1, 0), (1,−1, 0), (0,−1/3,−1)},
NH(3, 2, 0) = cone{(0, 1, 0), (1,−1, 0), (0, 1/3, 1)},
NC(3)(2) = R,

(8.6)


NE(0, 2, 0) = cone{(0, 1, 0), (−1, 0, 0), (0,−1/3,−1)},
NH(0, 2, 0) = cone{(0, 1, 0), (−1, 0, 0), (0, 1/3, 1)},
NC(0)(2) = [0,∞),

(8.7)


NE(t, 2, 0) = cone{(0, 1, 0), (0,−1/3,−1)},
NH(t, 2, 0) = cone{(0, 1, 0), (0, 1/3, 1)},
NC(t)(2) = [0,∞),

respectively.
It is now a straightforward matter to check the inequalities (8.3), (8.2) evaluated

at points (3, 2, 0), (0, 2, 0) and along the segment {(t, 2, 0) : 0 < t < 3}, taking into
account the p’s that generate the normal cones of the epigraphs and of the hypographs.
(Again, we observe that for horizontal normal vectors it is enough to check just (8.3)).

In the same spirit, we consider now the curves contained in graph(T ):

Γ1 := {(t,−1 + t, 1 + log 3− t) : 0 < t < 1},
Γ2 := {(0, x, 1 + log 3) : −1 < x < −1 + e−1},
Γ3 := {(t,−1 + t, 1 + log 3− log t) : 1 < t < 3},
Γ4 := {(0, x, log 3− log(1 + x)) : −1 + e−1 < x < 2},
Γ5 := {(t, et−1 − 1, 1 + log 3− t) : 0 ≤ t ≤ 1},

(8.8)

which are either singular for the minimum time function T or lying at the boundary
of epi/hypograph of T .

An analysis along Γ1 provides the representations

NE(t,−1 + t, 1 + log 3− t) = cone{(1,−1, 0), (−1, 0,−1)},
NH(t,−1 + t, 1 + log 3− t) = cone{(1,−1, 0), (1, 0, 1)},

NC(t)(−1 + t) = (−∞, 0].

(8.9)
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For p = (1,−1, 0), (8.3) reads as

min
v∈0≤v≤4

(−v) + max
|w|≤1

(−(−1 + t+ w) + 1) = −4 + 3− t = −1− t < 0;

for p = (−1, 0,−1), (H−) is equal to 0, as well as (H+) for p = (1, 0, 1).
The cases which comprise Γ2, Γ3, and Γ4 are treated in a similar fashion. We

mention that the cones related to epigraphs and hypographs for such curves are

(8.10)


NE(0, x, 1 + log 3) = cone{(−1, 0, 0), (−1, 0,−1)},
NH(0, x, 1 + log 3) = cone{(−1, 0, 0), (1, 0, 1)},

NC(0)(x) = {0},

(8.11)


NE(t,−1 + t, 1 + log 3− log t) = cone(1,−1, 0),

(
0,−1

t
,−1

)
,

NH(t,−1 + t, 1 + log 3− log t) = cone(1,−1, 0),

(
0,

1

t
, 1

)
,

NC(t)(−1 + t) = (−∞, 0],

(8.12)


NE(0, x, log 3− log(1 + x)) = cone(−1, 0, 0),

(
0,− 1

x+ 1
,−1

)
,

NH(0, x, log 3− log(1 + x)) = cone(−1, 0, 0),

(
0,

1

x+ 1
, 1

)
,

NC(0)(x) = {0},

for Γ2, Γ3, and Γ4, respectively. For what concerns Γ5, it turns out that NE = {0}
since graph(T ) has an upward kink. The only inequality to check is therefore (8.3),
which is confirmed by passing to the limit along the graph of T . Finally, at the vertical
spots of epi(T ), respectively, of hypo(T ), the verification procedure is a special case
of the computation above.

This shows that T is the minimum time function for the optimal control problem
governed by (8.1).

Observe, finally, that at points (t,−1 + t), 0 ≤ t < 1, due to the dragging of the
moving constraint, the velocity of the optimal trajectory is (1, 1), which is neither
the projection of the optimal unconstrained velocity (1,−1 + t + 1) = (1, t) onto
Tgraph(C)(t,−1 + t) nor the Cartesian product between {1} and the projection of
−1 + t+ 1 = t onto TC(t)(−1 + t).

8.2. Example 2. This example is concerned with a fixed set C. Let

C = {X = (x, y) ∈ R2 : −5 ≤ x ≤ 5, 0 ≤ y ≤ 4, x2 + (y − 2)2 ≥ 1}.

Observe that C is r-prox-regular with r = 1.
Let

G = {(x, y) : |x| ≤ 1, |x| ≤ y ≤ 1}, F (x) = −NC(x) +G,

and
S = {(x, y) : y ≥ 4}.
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S

C

D

P

Figure 2. The relevant sets for Example 2.

Consider the problem of reaching S in minimum time subject to the dynamics

Ẋ ∈ −NC(X) +G, X(0) = X ∈ C

and let T (X) be the minimum time function. Observe that the assumptions of Propo-
sition 7.1 are satisfied, so T is continuous. For future use, let also T0(X) be the
minimum time to reach S subject to the dynamics

Ẋ ∈ −NC1(X) +G, X(0) = X ∈ C,where

C1 := {(x, y) : −5 ≤ x ≤ 5, 0 ≤ y ≤ 4}.

Of course T differs from T0 only in the region

D :=
{

(x, y) ∈ C : − 1√
2
< x <

1√
2
, |x|+ 2−

√
2 < y < 2−

√
2

2

}
,

and in C \D we have T (x, y) = 4− y and the optimal trajectory is a segment. Figure
2 displays the sets C and D. In the region D, we make an educated guess on the
the optimal trajectory and then proceed by verification. By symmetry, we consider
only the part D+ of D which is contained in the half plane {(x, y) : x ≥ 0}. The
candidate optimal control is the constant (1, 1) until the corresponding trajectory hits
the circle ∆ := {x2 + (y − 2)2 = 1} and then the reaction of the constraint switches
on by projecting (1, 1) onto the tangent line. The candidate optimal trajectory then

moves along the circle until the point P :=
(√

2
2 , 2 −

√
2

2

)
—having tangent parallel

to (1, 1)—is reached, and then proceeds again according to the control (1, 1). More
precisely, fix 2−

√
2 < y0 ≤ 1. Then the minimum time to reach ∆ from (0, y0) with

optimal control (1, 1) is

(8.13) T1(y0) :=
1

2

(
−
√
−y2

0 + 4y0 − 2− y0 + 2

)D
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and the corresponding point on ∆ is X(y0)=(T1(y0), 1
2 (−
√
−y2

0 + 4y0 − 2 + y0 + 2)).
The angular velocity α of the candidate optimal trajectory satisfies the ODE

α̇ =
√

2 cos
(π

4
− α

)
and the initial condition is α(0) = arcsinT1(y0). The general solution of the ODE is

α(t) = 2 arctan
(√

2 tanh
(√

2t+ c
)

+ 1
)
,

where 0 ≤ c ≤ π/4 is a constant. The corresponding time to reach the angle π/4
starting from α(0) is

T2(y0) :=
√

2

[
tanh−1(1−

√
2
)
− tanh−1

(
tan

(
1
2 arcsinT1(y0)

)
− 1

√
2

)]
.

Therefore, the candidate minimal time to reach S from (0, y0) is the sum of the time
T1 needed to hit ∆, of the time T2 needed to slide along ∆ until P is reached, and of
the time needed to reach S from P ; namely, it is

T3(y0) := T1(y0) + T2(y0) + 2 +
√

2/2.

In general, for (x0, y0) ∈ D+, we have

T (x0, y0) = T3(y0 − x0)− x0,

whence, if (x, y) belongs to the interior of D+,

∂xT (x, y) = −1− T ′1(y − x)

(
1− 1√

1− T 2
1 (y − x)

(
T1(y − x) +

√
1− T 2

1 (y − x)
)),

∂yT (x, y) = T ′1(y − x)

(
1− 1√

1− T 2
1 (y − x)

(
T1(y − x) +

√
1− T 2

1 (y − x)
)),

where we recall from (8.13) that

T ′1(ξ) = −1

2
+

ξ − 2

2
√
−ξ2 + 4ξ − 2

.

For future use, we compute (the limit of) the derivative of T in the direction (normal
to ∆) v = (x,−

√
1− x2) at points of the arc (x, 2 −

√
1− x2), 0 < x < 1√

2
. To this

aim, observe first that, for 0 < x < 1√
2
, we have

T1

(
2−

√
1− x2 − x

)
− x =

1

2

(√
1− x2 −

√
1− 2x

√
1− x2 − x

)
= 0

and, taking into account the above facts,

T ′1
(
2−

√
1− x2 − x

)
= −

√
1− x2√

1− 2x
√

1− x2
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Then we receive

∂xT
(
x, 2−

√
1− x2

)
= −1 +

√
1− x2√

1− 2x
√

1− x2

(
1− 1√

1− x2
(
x+
√

1− x2
)) ,

∂yT
(
x, 2−

√
1− x2

)
= −

√
1− x2√

1− 2x
√

1− x2

(
1− 1√

1− x2
(
x+
√

1− x2
)) .

By simplifying, using the identity

−x+
√

1− x2 =

√
1− 2x

√
1− x2, |x| ≤

√
2

2
,

we obtain the normal derivative ∂T/∂v at (x, 2−
√

1− x2), 0 < x < 1√
2
, namely, the

scalar product

(8.14)
(
∂xT (x, 2−

√
1− x2), ∂yT (x, 2−

√
1− x2)

)
·
(
x,−

√
1− x2

)
= 0.

Observe furthermore that T is not Lipschitz around the point
(√

2
2 , 2−

√
2

2

)
, since at

ξ = 2−
√

2
2 −

√
2

2 = 2−
√

2 we have T ′1(ξ) = −∞.
Now we wish to verify that T is indeed the minimum time by proving that it

satisfies both Hamiltonian conditions. Set E to be the epigraph of T and H to be its
hypograph. We wish to verify that

H−(X, p) := min
v∈
(

(−NC(X))×{0}
)
∩
√

2B
v · p+ min

v∈G
(v,−1) · p ≤ 0 ∀p ∈ NP

E (X,T (X)),

(8.15)

H+(X, p) := min
v∈
(

(−NC(X))×{0}
)
∩
√

2B
v · p+ max

v∈G
(v,−1) · p ≤ 0 ∀p ∈ NP

H (X,T (X)).

(8.16)

We exploit the symmetry and proceed only in the region C+ := {(x, y) ∈ C : x ≥ 0}.
To this aim, observe first that both in the interior and in the exterior of the region D+

(within C) the function T is differentiable and its gradient satisfies both Hamiltonian
conditions as an equality. In fact, since in both conditions the first summand vanishes,
we have first to verify that the (minimized) Hamiltonian equals −1 at differentiability
points. In intD+, the minimum is attained by choosing v = (1, 1) and it is evident
that in this case the condition is verified (i.e., ∂xT (x, y) + ∂yT (x, y) ≡ −1), while in
the intersection of C with the exterior of D+ the minimum is attained at any point of
G of the type (x, 1), x ≥ 0, and in this case ∂yT (x, y) ≡ −1. Thus also at the part of
the boundary of D+ which is contained in the interior of C the condition is verified,
since it is easy to check by direct inspection that the normal cone to the epigraph
(resp., hypograph) of T either is zero or is a convex combination of limiting normal
vectors. Therefore, we are left to check conditions (8.15) and (8.16) at points of the
graph corresponding to the circle ∆, at the two relevant vertices of the rectangle, at
the three relevant segments of its perimeter (without endpoints), and at the cylinder
as well as at the vertical rays/faces parallel to the t-axis placed above (resp., below)
the above mentioned points/sets.
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Let us consider first the point (5, 0, 4). Then

NE(5, 0, 4) = cone {(1, 0, 0), (0,−1, 0), (0,−1,−1)},
NH(5, 0, 4) = cone {(1, 0, 0), (0,−1, 0), (0, 1, 1)},
−NC(5, 4) = cone {(−1, 0), (0, 1)}.

Of course, it is enough to check (8.15), respectively, (8.16), at the vectors generating
NE , respectively NH , and NC . If p = (1, 0, 0), then H− ≤ H+ = −

√
2. If p =

(0,−1, 0), then H+ = −
√

2. If p = (0,−1,−1), then H− = −
√

2. If p = (0, 1, 1), then
H+ = 0.

Let us consider now the points (5, y, 4 − y), with 0 < y < 4, which belong to
graph(T ). Then

NE(5, y, 4− y) = cone {(1, 0, 0), (0,−1,−1)},
NH(5, y, 4− y) = cone {(1, 0, 0), (0, 1, 1)},

−NC(5, y) = cone {(−1, 0)}.

If p = (1, 0, 0), thenH+ = 1−
√

2. If p = (0,−1,−1), thenH− = 0, and if p = (0, 1, 1),
then H+ = 0 as well.

Let us consider now the point (5, 4, 0). Then

NE(5, 4, 0) = cone {(1, 0, 0), (0, 1, 0), (0,−1,−1)},
NH(5, 4, 0) = cone {(1, 0, 0), (0, 1, 0), (0, 1, 1)},
−NC(5, 4) = cone {(−1, 0), (0,−1)}.

(8.17)

If p = (1, 0, 0), then H+ = 1 −
√

2. If p = (0, 1, 0), then H+ = 1 −
√

2. If p =
(0,−1,−1), then H− = −1. If p = (0, 1, 1), then H+ = 0.

We pass now to considering the points of the two arcs A1 :=
{

(x, y, T (x, y)) :

(x, y) ∈ ∆, x ≥ 0, 1 < y < 2 −
√

2
2

}
and A2 :=

{
(x, y, T (x, y)) : (x, y) ∈ ∆, x ≥

0, 2−
√

2
2 < y < 3

}
. In both cases we have

NE(x, y, T (x, y)) = cone {(−x, 2− y, 0), (∂xT (x, y), ∂yT (x, y),−1)},
NH(x, y, T (x, y)) = cone {(−x, 2− y, 0), (−∂xT (x, y),−∂yT (x, y), 1)},

−NC(x, y) = cone {(x, y − 2)}.
(8.18)

Along the arc A1, if p = (−x, 2 − y, 0), we have that H− = −2 and H+ ≤ 0, while
if p = (∂xT (x, y), ∂yT (x, y),−1), taking into account that ∇T on A1 has vanishing
scalar product with (x, y − 2) and also that ∂xT + ∂yT ≡ −1, we have that H− = 0.
If p = (−∂xT (x, y),−∂yT (x, y), 1), by the same argument we obtain H+ = 0. Along
the arc A2, we obtain H− = H+ ≤ 0, where in the first summand one must choose
v = 0 if y < 2.

The verification of (8.15) and (8.16) at junction points (0, y), 0 ≤ y ≤ −1, where
T is nonsmooth, is done by passing to the limit from the interior of D+ and exploiting
the symmetry, while the verification of (8.15) and (8.16) at the remaining points (lying
on vertical spots) is easier and its analysis is contained in the previous cases.

Thus, T is the minimum time function.

9. Conclusions and comparison with the Hamilton–Jacobi theory for
state constrained optimal control problems. Our main result is a character-
ization of the (nonautonomous) minimum time function subject to a non-Lipschitz
dynamics, including a Lipschitz perturbation or Moreau’s sweeping process.
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The novelty of the result lies on one hand in the lack of regularity of the velocity set
of (3.1) and on the other in the interpretation of (3.1), which can be given in terms of
(moving) state constraints. In fact, in (3.1) the state constraint is accommodated into
the dynamics, through the normal cone to the moving set, whose nonemptiness forces
x(t) to belong to the constraint C(t). An interpretation of (3.1) through viability
(weak flow invariance) was given by Henry [27] in the case where C(t) ≡ C is a
convex set and later generalized by Cornet to tangentially regular (also known as
sleek) sets [19], a case which comprises prox-regularity: actually, (6.4) and projected
differential inclusion

(9.1)

{
ẋ(t) ∈ ΠTC(x(t))G(x(t)) a.e. t > 0,
x(0) = x0 ∈ C

are equivalent. Here, ΠTC(x(t))(z) denotes the (unique) metric projection of z onto
the (convex) tangent cone to C at x(t). This equivalence shows that the (internal)
normal part of (6.4) annihilates the component of G which points outward C, and
this effect is obtained with the minimum effort with respect to the length of the added
normal component.

The interpretation of (6.4) through (9.1) gives some insights into the behavior
of trajectories close to the constraint. First, a trajectory is allowed, and in some
cases is actually forced, to slide on the boundary of C. This phenomenon shows clear
differences between our dynamics with active constraints (6.4) and other approaches
to state constrained optimal control problems. In fact, the structure of (9.1) makes
irrevelant the inward/outward pointing conditions that are often required.

The literature on constrained control problems is vast and growing. In the litera-
ture, two approaches can be recognized. The first requires compatibility conditions be-
tween the dynamics and the constraint, which is usually stated as an inward/outward
pointing condition on the velocity set G with respect to the normal cone NC(·).
Among the many results of Hamilton–Jacobi type, we quote the earliest papers by
Soner [41, 42] (with the inward pointing condition), [26] (with the outward pointing
condition and a discussion explaining its role in the framework of the approach using
the invariance of the epi/hypographs that we also adopt), and [24, 25], which contain
the state of the art on the subject. The inward/outward pointing condition approach
makes strong use of distance estimate tools (see, e.g., [6]), which are not used here.
We further observe that in our dynamics the outward pointing condition is forbidden
(see (9.1)), while the inward one is irrelevant. On the other hand, in the approach of
Soner, Frankowska, and Vinter a priori regularity properties of the constraint C play
a minor role. Some regularity properties on C, however, follow from the inward point-
ing condition. For example, the nonemptiness of the interior of the Clarke tangent
cone to C is required.

Our approach, instead, requires the assumption of prox-regularity of C. This
condition is, on one hand, more restrictive, since in particular it does not allow inward
corners; on the other hand it permits outward cusps, which exhibit the empty Clarke
tangent cone.

The second approach is based on the fact that actual constraints are usually
tame, and so both C and the dynamics are assumed to be stratified (see [7, 5, 28]). In
this approach, the main difficulty to be overcome is the Zeno phenomenon, namely,
touching a stratum on a totally disconnected bounded infinite set of times and patch-
ing together the Hamiltonians related to each stratum. Such a phenomenon does
not represent a difficulty in our framework, since our Hamiltonian admits a unitary
representation.
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Finally, we note that Example 1 shows that the interpretation of the nonau-
tonomous dynamics (1.3) through a projection of the controlled part onto the tangent
cone to the constraint is not valid. Therefore, the technique on which the results
contained in [40] are based cannot be used in our framework.
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