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Stupnjevi 

 

Kao što vene cvat i svaku mladost 

smjenjuje starost, života stupanj svaki 

i mudrost svaka i vrlina svaka 

u svoje vrijeme cvate i ne traje. 

Uvijek kad život zove mora srce, 

na rastanak i nov početak spremno, 

bez tuge, hrabro, novoj vezi prići. 

jer svakom je početku svojstven neki čar 

što štiti nas i pomaže nam živjeti. 

 

Prostor za prostorom vedro valja proći, 

ni s jednim se ne vezat zavičajno: 

uske i sputane Duh nas Svijeta neće, 

stupanj po stupanj diže nas i širi; 

jer čim u jednom krugu smo se našli 

i svikli se, klonuće već nam prijeti. 

Tek onaj putnik spreman da se otkine, 

naviku ruši što sve snage veže. 

Možda će i u času smrti naše 

poslat nas mlade novim prostorima; 

ne prestaje nas zov života zvati: 

iscijeli srce, rastani se, kreni! 

Herman Hesse, iz Igre staklenim perlama 

  



 

 

SUMMARY 

 

Glycans constitute the most abundant and diverse form of the post-translational 

modifications. While genes unequivocally determine the structure of each polypeptide, there 

is no genetic template for the glycan part. Instead, hundreds of genes and their products 

interact in the very complex pathway of glycan biosynthesis which is further complicated by 

environmental influences. Therefore, the aim of this thesis was to determine the extent to 

which individual differences in immunoglobulin G and total plasma proteins glycosylation 

patterns reflect genetic versus environmental influences. A twin study design was used and 

study subjects were twins enrolled in the TwinsUK registry, a national register of adult twins. 

More than 4500 samples were analyzed by HILIC-UPLC (Hydrophilic Interaction Ultra 

Performance Liquid Chromatography). A high contribution of the genetic component to N-

glycome composition was found. Variation in levels of 51 of the 76 IgG glycan traits studied 

was at least 50% heritable and only a small proportion of N-glycan traits had a low genetic 

contribution. Heritability of plasma N-glycome was also high, with half of the plasma glycan 

traits being at least 50% heritable. Further, epigenome-wide association (EWA) analysis 

showed that methylation levels at some genes are also implicated in glycome composition, 

both in those with high heritability and those with a lower genetic contribution. The study to 

investigate the potential role of glycosylation in kidney function was also conducted. 

Fourteen IgG glycan traits were associated with renal function in discovery population and 

remained significant after validation in an independent subset of monozygotic twins 

discordant for renal disease, reflecting difference in galactosylation, sialylation, and level of 

bisecting N-acetylglucosamine. Using the weighted correlation network analysis (WGCNA) 

for IgG glycan traits, a correlation between low back pain (LBP) and glycan modules was 

established. There was a weak positive correlation between pain phenotypes and "pro-

antibody-dependent cell-mediated cytotoxicity (ADCC)" WGCNA glycan modules (high 

bisecting N-acetylglucosamine and low core fucose) and a weak negative correlation between 

pain phenotypes and "anti-ADCC" module (high core fucose, no bisecting N-

acetylglucosamine). This suggests that glycans are promising candidates for biomarkers in 

many different diseases. 

KEYWORDS: IgG glycome, total plasma glycome, N-glycosylation, glycan analysis, 

HILIC, twin study, heritability, chronic kidney disease, low back pain 



 

 

SAŢETAK 

 

Uvod: Glikozilacija je sloţen, visokospecifičan i strogo reguliran kotranslacijski proces 

kovalentnog vezanja sloţenih šećernih struktura na proteine i lipide. Dok geni nedvosmisleno 

određuju strukturu svakog polipeptida, za sintezu glikana ne postoji genski predloţak. 

Umjesto toga, stotine gena i njihovih produkata sudjeluju u vrlo kompleksnoj biosintezi 

glikana koju okolišni utjecaji čine još sloţenijom. Stoga je cilj ovog doktorskog rada odrediti 

razmjer kojim genski i okolišni čimbenici utječu na N-glikane imunoglobulina G (IgG) i 

ukupnih glikoproteina plazme. Da bi se postigao navedeni cilj, upotrijebljena je studija na 

blizancima. 

 

Ispitanici: Ispitanici su regrutirani TwinsUK registrom, najvećim registrom blizanaca u 

Velikoj Britaniji. Svi su ispitanici potpisali informirani pristanak o sudjelovanju u ispitivanju 

te za njega postoje dopuštenja odgovarajućih britanskih etičkih povjerenstava. Za ovo se 

istraţivanje upotrijebila njihova krvna plazma – 90 μl po uzorku za analizu N-glikana IgG-a 

te 10 μl po uzorku za analizu N-glikana ukupnih proteina plazme. 

 

Metode: IgG je izoliran iz krvne plazme uz pomoć protein G monolitne pločice. Glikani 

ukupnih proteina plazme pripremljeni su za analizu na jednak način kao glikani IgG-a. N-

glikani su oslobođeni od proteina enzimom PNG-azom F te su obiljeţeni 2-

aminobenzamidom (koji je fluorofor) u reakciji reduktivne aminacije. Fluorescentno 

obiljeţeni i pročišćeni N-glikani analizirani su HILIC-UPLC metodom (kromatografijom vrlo 

visoke djelotvornosti temeljenoj na hidrofilnim interakcijama, eng. Hydrophilic Interaction 

Ultra Performance Liquid Chromatography). Analizirano je više od 4500 uzoraka. 

Epigenomska asocijacijska analiza provedena je pomoću Illumina 27k čipa. 

 

Rezultati:  

U prvoj studiji analizirani su glikani 220 monozigotnih (MZ) i 310 dizigotnih (DZ) 

blizanaca. Za analizu podataka upotrijebljen je klasični dizajn studije na blizancima kojim se 

uspoređuje varijacija unutar jedne grupe s varijacijom izvan te grupe (MZ i DZ blizanci). 

Ispitivao se utjecaj: aditivne genetike - što podrazumijeva sumu svih efekata jednog 

individualnog mjesta na kromosomu, zajedničnog okoliša i uvjeta ţivota te individualnih 

odgovora na utjecaj okoliša, specifičnog za pojedinca. Velika genska komponenta 



 

 

(heritabilnost, h
2
 ≥  50%) pokazana je za 51 od 76 glikanskih svojstava IgG-a. Nasuprot 

tome, samo je 12 glikanskih svojstava IgG-a pokazalo malu gensku komponentu (h
2 

< 35%). 

Heritabilnost plazmatskog N-glikoma također se pokazala velikom. Polovica plazmatskih 

glikanskih svojstava bila je barem 50% heritabilna. Prosječna heritabilnost IgG glikoma 

(53%, bez izvedenih svojstava) nešto je veća od prosječne heritabilnosti ukupnog 

plazmatskog glikoma (47%). Također je testirana povezanost između razine metilacije DNA i 

razine IgG glikana (P<2 x10
-6

). Epigenomskom asocijacijskom analizom pronađeno je 5 

značajnih asocijacija (koje odgovaraju dvama različitim genima) za 64 glikanska svojstava s 

h
2 

> 35% i 5 značajnih asocijacija (koje također odgovaraju dvama različitim genima) za 12 

glikanskih svojstava s h
2
≤0.35. Udio značajnih asocijacija bio je značajno veći (P<0.005) 

među glikanima s niskom heritabilnošću (42%), u usporedbi s glikanima s visokom 

heritabilnošću (6.2%). 

Također je provedeno prvo istraţivanje potencijalne uloge IgG glikozilacije u funkciji 

bubrega. Istraţena je povezanost između IgG glikana i bubreţne funkcije kod 3274 ispitanika. 

Koristeći se linearnom regresijom korigiranom na kovarijable i višestruko testiranje, 

analizirana je korelacija između bubreţne funkcije iskazane kao procijenjena brzina 

glomerularne filtracije (eng. estimated glomerular filtration rate, eGFR) i 76 glikanskih 

svojstava IgG-a. Rezultati su replicirani na 31 paru MZ blizanaca diskordantnih za bubreţnu 

funkciju (blizanci svakog pojedinačnog para imaju različitu bubreţnu funkciju). Nakon toga, 

rezultati obje analize su metaanalizirani. U prvoj je analizi pronađena značajna povezanost 

(P<6.5×10
−4

) s bubreţnom funkcijom za 14 glikanskih svojstava, a ostala je značajna i nakon 

validacije. Ta glikanska svojstva pripadaju trima glavnim glikozilacijskim karakteristikama 

IgG-a: galaktozilaciji (pozitivno korelirana s eGFR-om), sijalinizaciji (pozitivno korelirana s 

eGFR-om) i razini račvajućeg N-acetilglukozamina (negativno korelirana  s eGFR-om). Da bi 

se utvrdilo jesu li promjene u glikozilaciji kod kronične bubreţne bolesti ograničene na IgG 

ili su rezultat opće promjene glikozilacije više različitih proteina, istraţena je povezanost 

između ukupnih plazmatskih N-glikana i eGFR-a u podskupini od 426 ispitanika. Nije 

pronađena razlika u plazmatskoj glikozilaciji, što upućuje na to da su prije pronađeni efekti 

izravna posljedica promijenjene glikozilacije IgG-a. Rezultati ove studije ukazuju na ulogu 

IgG-a u bubreţnoj funkciji i pruţaju novi uvid u patofiziologiju kronične bubreţne bolesti te 

predlaţu glikane kao moguće biomarkere za tu bolest. 

Bol u donjem dijelu leđa (eng. low back pain, LBP) učestali je iscrpljujući poremećaj 

kojemu su etiologija i patogeneza slabo razjašnjeni. U sklopu ovog doktorskg rada provedena 

je prva analiza povezanosti između LBP-a i plazmatskih IgG N-glikana u skupini od 4511 



 

 

blizanaca koji su ispitani za LBP i oštećenje intervertebralnog diska, kao mogućeg uzroka 

LBP-a. Koristeći se WGCNA (eng. weighted correlation network analysis) metodologijom, 

provedena je mreţna anliza razina IgG glikana kod blizanaca, da bi se uspostavili klasteri 

koreliranih glikana. Identificirano je sedam modula koreliranih glikana koji odraţavaju 

funkcionalno povezane grupe glikana i pokazuju poklapajuće biološke aktivnosti. Pronađene 

su povezanosti između tih klastera i fenotipova boli kod blizanaca s LBP-om. Opaţena je 

pozitivna korelacija između fenotipova boli i „pro-stanična citotoksičnost ovisna o 

protutijelima (eng. antibody-dependent cell-mediated cytotoxicity, ADCC)“  WGCNA 

glikanskog modula (visoka razina račvajućeg N-acetilglukozamina i niska razina srţne 

fukoze) te negativna korelacija između fenotipova boli i „anti-ADCC“ modula (visoka razina 

srţne fukoze, bez račvajućeg N-acetilglukozamina). Razine četiriju glikanskih svojstava, koja 

su zastupljena u ta dva WGCNA modula, statistički su se značajno razlikovale kod MZ 

blizanaca diskordantnih za LBP. Također, pokazan je trend prema većoj prevalenciji 

sistemskih upalnih poremećaja kod blizanaca s niskom razinom fukoziliranih glikana i 

visokom razinom glikana s račvajućim N-acetilglukozaminom. Srţna fukozilacija je 

„sigurnosni prekidač“ koji sprječava prekomjerni ADCC, stoga ovi rezultati upućuju na 

sudjelovanje ADCC-a i posljedične upale u patogenezi LBP-a. Nije pronađena korelacija 

između oštećenja intervertebralnih diskova i razine glikana, što upućuje na to da upala moţda 

ne sudjeluje u oštećenju diskova. Ovi rezultati pruţaju novi uvid u razumijevanje sloţene 

patofiziologije LBP-a i ističu glikane kao moguće biomarkere za neke podvrste LBP-a, u 

patogenezu kojih je uključena upala. 

 

Zaključak: Unatoč nedostatku strogoga genskog predloška, varijabilnost razine glikana 

ponajprije je posljedica genske pozadine i specifičnih patofizioloških procesa pa bi glikani 

mogli postati obećavajući biomarkeri za mnoge bolesti. Metodom upotrijebljenom za analizu 

glikana u ovome radu još uvijek se rutinski ne koristi u kliničkoj praksi. Međutim, u skorijoj 

budućnosti, napredovanjem tehnologije koja omogućuje  visokoprotočnu analizu glikanskih 

profila, glikani bi mogli postati atraktivni i klinički isplativi biomarkeri. Jednako tako, širenje 

znanja o glikozilaciji proteina moglo bi potaknuti nove uvide u patofiziologiju bolesti i razvoj 

novih terapeutika. 

 

KLJUČNE RIJEČI: IgG glikom, ukupni plazmatski glikom, N-glikozilacija, analiza 

glikana, HILIC, studija na blizancima, kronična bubreţna bolest, bol u donjem dijelu leđa 
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1. INTRODUCTION 
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1.1. The importance of glycosylation 

Glycosylation is a complex, highly specific and strictly regulated cotranslational 

process of covalent bonding of complex sugar structures on proteins and lipids 
1,2

. Changes of 

glycosylation can strongly effect the structure and function of proteins. Glycans have 

numerous important roles such as modulation of protein degradation, folding and secretion, 

cell signalling, immune function and transcription 
3–5

. Multicellular life without glycans is not 

possible and the complete absence of glycans is embryologically lethal 
6
.  Most proteins in 

nature are glycoproteins 
7
. We can find them in plants, animals and microorganisms. More 

than half of all human proteins and nearly all membrane and extracellular proteins are 

glycosylated 
8
. Glycoproteins can be found in soluble form and in membranes, in all 

compartments of the cell and also in extracellular space. Different glycans can be attached to 

multiple glycosylation sites on a single protein, thus each glycoprotein comes as a mixture of 

numerous glycoforms. Monosaccharides that form glycans are linked via glycosidic bonds, 

which can be α linkages or β linkages, depending on the relationship of the oxygen from 

hydroxyl group to the anomeric carbon. These linkages give a different structural properties 

and biological functions to the sequences that are otherwise identical in composition (e.g. 

cellulose and starch) 
9
. 

Due to the nature of linkage, by which they are attached to polypeptide backbones, 

glycans in eukaryotes are divided in N-linked, O-linked and C-linked glycans 
10

. A N-linked 

glycan is an oligosaccharide covalently linked to an asparagine residue of a polypeptide chain 

which generally occurs at the sequon: Asn-X-Ser/Thr. These glycans are transferred to 

protein moiety on the luminal side of the endoplasmatic reticulum (ER) membrane. N-

glycans have a common core region made of five monosaccharides and they further differ by 

the subsequent sequence on the basis of which they form three subgroups: high mannose - 

only mannose residues are attached to the core, complex - two or more antennae are attached 

to core via N-acetylglucosamine (GlcNac) and hybrid type N-linked glycans - mannose 

residues attached to the Manα1,6 arm and one or two antennae to the Manα1,3 arm (Figure 

1).  An O-linked glycan is usually linked to the polypeptide chain via N-acetylgalactosamine 

(GalNAc) to a serine or threonine residue and can exist as variety of different structural 

classes 
10

. C-linked glycans are a rare form of glycosylation which involves the addition of an 

α-mannopyranose to the C2-carbon of the indole ring of tryptophan 
11

. 
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While genes unequivocally determine the structure of each polypeptide, there is no 

direct genetic template for the glycan part 
12

. Instead, glycans are shaped by complex 

dynamic interactions between hundreds of enzymes, transcription factors, ion channels and 

other proteins. That is further complicated by both direct environmental influence (nutrition, 

hormonal status, etc.) and epigenetic memory of past environmental effects (altered gene 

expression) 
13–16

. Glycosylation is known to be affected by factors such as: type of glyco-

enzymes, their localization and expression levels, abundance and trafficking of glycoprotein 

substrates and activated sugar donors concentrations 
17,18

. 

Probably the most important feature of glycoproteins is their heterogeneity. It can be 

manifested from minor to considerable differences through higher branching, loss of 

monosaccharides from one of glycan branches, through absence or presence of certain 

monosaccharide such as sialic acid, fucose, N-acetylglucosamine or through type of linkage 

between sugars 
19

.  Variability in terminal glycan antennae is common and recent studies 

demonstrated significant variation in glycome composition between individuals 
20–22

. Many 

diseases are associated with changes in glycan structures, e.g. congenital disorders of 

glycosylation, cancer, autoimmune diseases (rheumatoid arthritis, systemic lupus 

Figure 1. Examples of three N-glycan types: oligomannose (only 

mannose residues are attached to the core), complex (two or more 

antennae are attached to core via N-acetylglucosamine) and hybrid 

glycans (a mixture of the two previous types - it has one or more 

oligomannose branches and one branch of complex structure). All N-

glycans share a common core (marked with red rectangle). From: 

Gornik, O., Keser, T. & Lauc, G. in Sample Prep. Tech. Soil, Plant, 

Anim. Samples (ed. Mičić, M.) (Humana Press, 2016). 
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erythematosus, inflammatory bowel disease) and AIDS 
23,24

. Rapid glycosylation changes, 

associated with occurrence, severity and outcome of pathological processes, have a potential 

for good biochemical markers and as novel therapeutic targets 
19,25

. 

 

1.2. Human plasma protein N-glycosylation 

Most human plasma proteins, except for albumin and CRP (C-reactive protein), are 

modified by glycans 
26

. Kneţević et al. 
21

 performed the first large-scale analysis of human 

plasma glycome, revealing a high variability in a glycome composition between individuals 

with the median difference between the minimal and maximal values of glycans being over 

six-fold.  At the same time, individual plasma glycome appears to change very little in a 

healthy individual, even after a prolonged period of time, which indicates stable long-term 

regulation of the glycosylation machinery 
27

. It is only when the homeostasis of a person 

changes, by lifestyle or pathological conditions, that the glycosylation will change notably 
28

.   

Variations observed in a human glycome are probably a combination of genetic 

differences and environmental factors. Several studies have already shown that there are 

consistent genetic factors that affect circulating levels of some N-glycans 
29–31

.  Heritability is 

one of the most basic and often one of the first analyses to be made in a genetic study, since it 

represents the proportion of the trait variance that can be attributed to genetic factors 
32

.  A 

broad range of variation in heritability levels of plasma glycans has been shown in one study, 

from insignificant or very low to over 50% for some glycans 
21

. Pedigree information was 

used to calculate this heritability estimates. Their interpretation is usually complicated by 

differences in methodological approaches and sampling schemes and variation in trait values 

over time. Population-specific differences can all influence heritability values, resulting in a 

wide range of heritability estimates in different studies 
32

. The heritability of glycome has 

never been estimated with twin studies. The advantage of twin studies is that the total 

variance can be split up into genetic, shared or common environmental, and unique 

environmental components, enabling an accurate estimation of heritability 
33

. 

The fact that there are hundreds of genes involved in the complex glycan metabolic 

pathways argues in favor of a strong genetic influence, but environmental effects on glycan 

structures have also been reported 
34–37

. Large studies which involve thousands of individuals 

have identified that glycosylation correlates with age, sex and lifestyle 
21,28,30

. However, 
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besides age, which significantly affected galactosylation, all other environmental factors 

individually accounted only for a small fraction of the observed variance, thus the main 

source of glycome variation between individuals is still not known. 

Since plasma proteins originate from different tissues and organs, their properties are 

affected by the physiological or pathological conditions of these tissues and organs, 

indicating that plasma proteins and their glycans could be good biomarkers for monitoring 

various health conditions 
26

. Plasma is an easily obtainable biofluid and hence its 

glycosylation analysis could be of considerable interest for using in clinics. Although, when 

analyzing total plasma N-glycome at the released glycan level, it is not directly apparent 

whether an observed change originates from a change in relative protein abundance, in the 

relative glycoforms of a specific protein, or whether it reflects a general regulatory effect 

influencing the glycosylation of many different glycoproteins 
38

. Therefore, glycosylation 

analysis of individual proteins of human plasma could help in understanding the total plasma 

N-glycomic changes. 

 

1.3. Immunoglobulin G N-glycosylation 

1.3.1. Function and structure of immunoglobulin G 

Immunoglobulins (Igs) have a significant role in the adaptive immune system by 

defending the body against invading pathogens. All five classes of human Igs (IgG, IgM, 

IgA, IgD and IgE) are glycoproteins which are produced by B cells
39,40

.  IgG is the most 

abundant Ig class in the human blood (approx. 10 mg/ml, 15–20% of serum glycoproteins) 

and a major effector molecule of the humoral immune response. There are four subclasses of 

human IgG: IgG1, IgG2, IgG3 and IgG4. They are all glycoproteins composed of two heavy 

and two light chains linked together by interchain disulphide bonds. The two light chains 

together with the parts of the heavy chains (VH and CH1 domains) form two Fab moieties 

which are linked by a flexible hinge region to one Fc moiety formed by the remainders of the 

two heavy chains (CH2 and CH3 domains) 
41,42

.  The effectiveness of IgG antibodies comes 

from two functional properties: first, the ability of the Fab regions to specifically recognize 

and bind the target antigen; and second, the ability to induce different immune system 

effector mechanisms through interaction of the Fc region with: Fc gamma receptors (FcγRs), 

the C1q component of complement and the neonatal receptor (FcRn) 
43

. 
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1.3.2. Interaction between Fc glycans and FcγRs is critical for IgG function 

FcγRs play a crucial role in induction of IgG effector mechanisms. Human FcγRs are 

divided into the three main groups: I, II and III. FcγRII and FcγRIII are further divided in 

subgroups: IIa, IIb, IIc and IIIa, IIIb. FcγRs differ in their affinity for the Ig Fc-part. The 

FcγRI is usually described as a high affinity receptor, whereas the FcγRII and the FcγRIII are 

referred to as receptors with low and moderate affinity respectively. In view of initiated 

immune response, FcγRs can be further classified as activating or inhibitory. FcγRIIb is the 

only inhibitory receptor and the rest are activating receptors. Binding of an IgG or immune 

complexes to activating FcγRs induce: antibody dependent cell-mediated cytotoxicity 

(ADCC), phagocytosis and endocytosis and it can promote antigen presentation and release 

of pro-inflammatory mediators. FcγRIIb modulates the immune response by inhibiting the 

activation of activating receptors. Thus, immune responses are balanced between activating 

and inhibitory functions of the FcγRs 
43

.  

Each heavy chain of IgG carries a single covalently attached N-glycan at the highly 

conserved asparagine 297 residue in each of the CH2 domains of the Fc region of the 

molecule 
44

. The Fc N-glycans are biantennary complex-type structures which are mostly 

core-fucosylated and may contain a bisecting GlcNAc and a small portion of sialic acid. The 

majority of IgG N-glycans are attached to the heavy chains of the Fc region, but about 20% of 

polyclonal human IgG molecules also contain N-glycans within the Fab regions of the light 

chain, the heavy chain or both 
45

. Fab glycosylation is restricted to the variable domains and it 

was shown to affect stability, half-life, activity and binding characteristics of IgG, however 

its function is still poorly understood 
46

. 

Fc glycans are essential structural components of the IgG molecule and even minor 

changes in glycan composition can have a profound influence on IgG effector functions by 

modulating binding to Fc receptors 
47

 (Figure 2). Many important functional effects of 

alternative IgG glycosylation have been described 
48

. Glycans that lack terminal galactose 

activate complement and make IgG pro-inflammatory, while the addition of galactose 

decreases inflammatory potential of IgG 
49–51

. Further extension of IgG glycans by the 

addition of sialic acid dramatically changes the physiological role of IgG, converting it from 

a pro-inflammatory into an anti-inflammatory agent. Terminal α2,6-sialylation of IgG 

glycans decreases the ability of IgG to bind to activating FcγRs and promotes recognition by 

the C-type lectin dendritic cell-specific intercellular adhesion molecule (ICAM)-grabbing 
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non-integrin (DC-SIGN), which increases expression of inhibitory FcγRIIB and is anti-

inflammatory 
52,53

.  However, these findings have not been confirmed in all studies 
54–56

. 

Another example of Fc glycans influencing the IgG function is the role of core fucose 

in the modulation of ADCC: IgG containing glycans that lack core fucose have over 50-fold 

increased affinity for FcγRIIIa and FcγRIIIb and are therefore much more efficient in 

activating ADCC than fucosylated glycoforms of the same molecule. By binding to this 

activating Fc receptor expressed primarily on natural killer (NK) cells antibodies initiate 

ADCC which leads to destruction of target cells 
57

. Subsequently, improved ADCC by 

increased interaction with Fc receptors was shown in CHO cells transfected with the human 

β1,4-Nacetylglucosaminyltransferase III (GnT-III) gene which adds bisecting GlcNAc 
58,59

. 

The addition of bisecting GlcNAc, a relatively early event in glycoprotein processing, inhibits 

α1,6-fucosyltransferase (FUT8) and the addition of core fucose 
60

. However, it seems that the 

Figure 2. Changes in Fc glycan composition influence IgG effector functions by 

modulating binding to Fc receptors. From: Lauc, G., Pezer, M., Rudan, I. & Campbell, 

H. Mechanisms of disease: The human N-glycome. Biochim. Biophys. Acta - Gen. 

Subj. (2015). 
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lack of core fucose and not the presence of bisecting GlcNAc, has the most critical role in 

enhanced ADCC 
61

. Due to drastic enhancement of ADCC, afucosylated monoclonal 

antibodies have a strong therapeutic potential in anti-cancer therapy 
62

.  

In addition to functional aspects, Fc glycosylation has also been shown to play an 

important role in maintaining the structural integrity, stability and solubility of IgGs 
63,64

. 

1.3.3. IgG N-glycosylation changes with age and in many diseases 

Several IgG glycans change considerably with age and the combination of only three 

glycans can explain up to 58% of variance in chronological age, significantly more than other 

markers of biological age like telomere lengths 
65

. The most influenced feature of IgG 

glycosylation is galactosylation, which decreases to less than 50% of its maximal value 

through lifetime. The decrease in IgG galactosylation with age was initially reported almost 

30 years ago 
66

 and was replicated in a number of subsequent studies 
65,67

.  

It is well known that IgG glycosylation pattern is changing in many diseases. Similar 

to healthy individuals, IgG heterogeneity in diseased individuals is also most commonly 

expressed in galactosylation levels. More than 30 years ago, low IgG galactosylation was 

associated with rheumatoid arthritis and osteoarthritis 
68

 and since then many different studies 

have reported reduction of galactosylation in a number of different pathological conditions:  

infectious diseases (hepatitis C infection 
69

, HIV infection 
70

), autoimmune diseases 

(rheumatoid arthritis 
68,71–73

, juvenile chronic arthritis 
74,75

, Chron's disease 
24,76

, ulcerative 

colitis 
24,76

, systemic lupus erythematosus 
77

, myositis 
78

) and cancer (prostate cancer 
79

, lung 

cancer 
80

, ovarian cancer 
81

, gastric cancer 
82

, breast cancer 
83

). The exact meaning of these 

changes is still difficult to interpret and further studies are necessary to clarify variation and 

regulation of IgG glycosylation in an immune response. 

 

1.4. High-throughput glycomics 

The existence of many thousands of different glycans attached to human proteins, 

multiple glycosylation sites, large variety of the attached glycans in a single glycosylation site 

and structural complexity of glycans (differences in monosaccharide composition, anomeric 

state, linkage of the subunits, branching and linkage to the peptide part of a glycoprotein), all 

contribute to complexity of glycan structural analysis  
23,84,85

. Therefore, the knowledge about 
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the role of glycans in disease mechanisms is lagging significantly behind the knowledge 

about the role of genes and proteins. However, recently a major progress has been made and 

several high-throughput analytical techniques for glycan analysis have been developed 
22,86–

91
. 

Glycan analysis may involve: whole glycoprotein analysis, analysis of glycopeptides 

obtained after enzymatic treatment of the glycoprotein, analysis of released glycans obtained 

after chemical or enzymatic treatment of the glycoprotein and monosaccharide analysis 
11

. 

Analysis of released glycans is the most widely used as it provides a convenient way to 

obtain information on the various populations of glycans present on the protein. In general, 

there are three major analytical techniques that are used for glycan analysis: liquid 

chromatography (high performance – HPLC and ultra performance - UPLC), mass 

spectrometry (MS) and capillary electrophoresis (CE) 
92

. In most cases UPLC and CE enable 

reliable relative glycan quantification, but separation of glycans is rarely complete and each 

peak is usually a mixture of signal contributions originating from different glycans 
93

. MS 

analysis can provide more structural details, but is generally less quantitative. An additional 

problem of MS lies in the fact that signal response factors are different for different glycans 

92
.  

One of the major bottlenecks in large scale proteomics and glycomics studies is 

protein purification from a great number of samples. The most widely used technique for that 

purpose is affinity chromatography using immobilized affinity ligand. Protein G is frequently 

used as bioaffinity ligand for the IgG purification from plasma or serum 
94,95

. All four 

subclasses of human IgG strongly bind to protein G through their Fc fragments 
96

.  

To study the glycosylation of the protein, its structure or function, it is often needed to 

remove its glycans. The most commonly used enzyme for deglycosylation of glycoproteins is 

peptide-N-glycosidase F (PNGase F) 
21

. This enzyme efficiently releases all asparagine-

linked glycans unless they are α1,3-core fucosylated - a modification usually found in plants 

and insects 
97

.  

There is no natural chromophore in the carbohydrate molecules. Therefore, a wide 

range of techniques have been developed for the detection of glycans. The released glycans 

are most commonly fluorescently tagged (with fluorophores such as: 2-aminobenzoic acid, 2-

aminobenzamide, 2-aminopyridine, 1-aminopyrene-3,6,8-trisulfonic acid) at their reducing 

end by reductive amination 
98–100

 and then separated by LC or CE, followed by fluorescence 
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detection or mass spectrometry. They can also be derivatized to improve the ionization 

efficiency and minimize in-source or post-source decay in MS analysis 
91,101

. 

Liquid chromatography is broadly used for analysis of both neutral and charged 

glycans in a single separation 
21,22,81,86,93

. Glycans are predominantly separated using 

hydrophilic interaction liquid chromatography (HILIC) mode, however, high-pH anion-

exchange chromatography with pulsed amperometric detection (HPAEC-PAD), weak anion 

exchange (WAX), porous graphitic carbon (PGC) and reverse phase (RP) chromatographies 

can also be employed 
11

. In HILIC, glycans are resolved based on differences in the 

hydrophilicity and hydrophobicity. Glycan size, charge, composition, linkage and arm 

specificity are all contributing to retention times 
86,102

. HILIC enables the separation of 

structural isomers, which is one of its main advantages 
93

.  

None of the currently available analytical techniques are capable of performing a 

detailed structural analysis of protein glycosylation in a single step. However, a multistep 

process which combines existing methods can provide detailed characterization of protein 

glycan profile in complex biological samples.  

 

1.5. Twin studies 

Twin studies are often used for the estimation of heritability. They are based on 

analysis and comparison of a given trait in monozygotic (MZ) and dizygotic (DZ) twins, to 

determine the extent to which genetic and environmental factors influence the given trait. MZ 

twins share all of their genetic background and they grow up sharing many factors in their 

environment. However, even MZ twins growing up together do not share all possible 

environmental experiences - some experiences are unique to each twin. The classical twin-

design contains only twins raised in their biological family. If MZ twins are considerably 

more similar than DZ twins (which is found for most traits), this implicates that genes play an 

important role in a trait. The similarity between dizygotic twins indicates that shared 

environmental factors have an important influence on a trait 
103,104

. 

Heritability is estimated using structural equation modelling to break down the 

observed phenotypic variance into three sources of variation: additive genetic variance (A), 

shared/common environmental variance (C), and non-shared/unique environmental variance 

(E). Additive genetic influences are indicated when MZ twins are more similar than DZ 
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twins. The common environmental component estimates the contribution of family 

environment which is assumed to be equal in both MZ and DZ twin pairs, whereas the unique 

environmental component does not contribute to twin similarity, rather it estimates the effects 

that apply only to each individual and includes measurement error. The equal environment 

assumption across zygosities implies that any greater similarity between MZ twins than DZ 

twins is attributed to greater sharing of genetic influences. The best fitting model (among 

ACE, AE, CE, and E models) is used to estimate heritability, defined as the proportion of the 

phenotypic variation attributable to genetic factors 
103,105

. 

Twins are also useful in case–control studies because MZ twins offer the possibility 

of carrying out the ideal case–control study, as they are perfectly matched for genotype and 

family background 
104

. 

1.5.1. Disadvantages of twin studies 

Twin studies usually presume that genes and environment have independent and 

distinct contributions to a trait. Nevertheless, interactions between genes and environment 

could influence the development and intensity of traits. With the use of twins it is not 

possible to examine the effects of both shared environment and gene-environment interaction 

at the same time. This problem can be solved by including additional siblings in the study 

design.  

Gene-environment interactions can be mediated via methylation. DNA methylation is 

one of the main epigenetic mechanisms, which attribute to chemical instructions for gene 

activity that do not alter DNA sequences 
106

. Differences in methylation, which can be an 

outcome of unique environmental influences, may create phenotypic differences between MZ 

twins. Therefore, ignoring this issue could lead to a false conclusion of direct environmental 

causes to explain phenotypic discordance in MZ twins 
107

. However, availability of new and 

relatively inexpensive technology to determine changes in gene expression can easily solve 

this problem. Another solution would be to study relatively young MZ twin pairs, because 

epigenetic differences between MZ twins seem to become apparent later in life 
108

. 

Also, one thing to consider when using twin studies is that their results cannot be 

directly generalized to the general population. Twins are not a random sample of the general 

population. They differ in their developmental environment and parents’ genetic factors may 

lead to a higher incidence of twinning. Therefore, twin study results should be validated by 
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demonstrating that MZ twin samples are comparable to population-based samples of 

singletons 
109

.  

However, when all the precautions are taken, twin studies provide an ideal model to 

estimate the proportion of variance in a trait attributable to genetic variation, versus the 

proportion that is due to shared environment or unshared environment. 
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Introduction

Glycans constitute the most abundant and diverse form of
the post-translational modifications. All cell surface and
secreted glycoproteins that contain appropriate sequences

(Asn-X-Ser/Thr where X is any amino acid except proline) can
potentially acquire N-linked oligosaccharides (N-glycans) while
they travel through the endoplasmic reticulum and the Golgi
compartments [1]. Glycans can influence disease development
in many syndromes such as congenital disorders of
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glycosylation, cancer, rheumatoid arthritis and AIDS [2].
Glycans are crucial for the immune system, as some of the
most important interactions between the immune system and
viruses and bacteria are mediated by protein-glycan
interactions. Moreover, glycans are key in the recognition of
non-self events and an altered glycome can lead to
autoimmune disorders [3]. The biological functions of glycans
go from basic structural roles to development, protein folding
and immune response. Glycosylation is known to be affected
by factors such as sugar nucleotide concentration, type of
glyco-enzymes and their expression levels [1].

While genes unequivocally determine the structure of each
polypeptide, there is no genetic template for the glycan part [4].
Instead, hundreds of genes and their products interact in the
complex pathway of glycan biosynthesis resulting in a very
complex biosynthetic pathway that is further complicated by
both direct environmental influence (nutrition, hormonal status,
etc) and epigenetic memory of past environmental effects
(altered gene expression) [5-8].

Some recent studies [9,10] demonstrated large variability of
plasma proteins and immunoglobulin G (IgG) N-glycome
composition in a population. However, longitudinal studies in
individuals also revealed very high temporal stability of the
individual plasma glycome [11] indicating stable long-term
regulation of the glycosylation machinery.

Several studies have already shown that there are consistent
genetic factors that affect circulating levels of some IgG N-
glycans [12-14]. However, the extent to which genetic and non-
genetic factors affect glycan levels is still unexplored.

In this study we aim to determine the extent to which
individual differences in IgG glycosylation pattern reflect
genetic versus environmental influences by estimating
heritability in a cohort of female twins. We, then, hypothesized
that IgG glycosylation pattern with low heritability (h2≤0.35)
might be epigenetically mediated and we explored the
relationship with epigenetic data.

Results

The study cohort comprised 220 monozygotic (MZ) and 310
dizygotic (DZ) twin pairs, and the baseline characteristics are
presented in Table 1. MZ and DZ twin pairs were not
significantly different for age and body mass index (BMI), and
all of them were females. The number of twin pairs used in this
study is sufficient to detect with 95% power heritability of 0.4 or
higher with P<0.05 for a range of shared environmental
contributions from low (0.1) to high (0.5) [15].

Table 1. Demographic characteristics of the study
population, mean (SD).

Phenotype MZ DZ P
N 440 610  
age, yrs 58.71(9.37) 57.83(9.61) 0.14
BMI, kg/m2 26.65(4.85) 26.50(4.68) 0.60

doi: 10.1371/journal.pone.0082558.t001

In total 76 glycan traits were studied which were derived from
24 directly measured glycan structures and derived measures.
A detailed description of the glycan structures and the derived
measures can be found in Lauc et al. [14]. For example, the Fc
region of IgG contains two highly conserved asparagine
(Asn-297) residues where complex core-fucosylated glycans
such as FA2 (GP4) , FA2G1 (GP8, GP9) and FA2G2 (GP14)
are found [14]. These carbohydrates are critical components of
the Fc-Fcγ receptor interaction [1].

The heritability analyses for the 76 IgG patterns are
presented in Table 2. The best fitting model for the majority of
the IgG pattern was the AE model (including additive genetic
and non-shared environment), ascribing the total variance to
additive genetic factors and non-shared environmental factors,
with heritability estimates ranging from 0.49 for GP21 (which
reflects the proportion of the A2G2S2 glycan, i.e. disialylated,
digalactosylated, bi-antennary N-linked glycans; see Table S1
for description of glycan codes) to 0.80 for GP8n (which
reflects the proportion of the monogalactosylated isomer
FA2[6]G1 relative to all the neutral glycans). The ACE model
(including additive genetic, common environment and unique
environments) was the best fitting model for 18 glycan traits
with heritability estimates ranging from 0.19 for FtotalS1/
FtotalS2 to 0.52 for FBG0n/G0n. In contrast, 7 glycan traits
showed no clear genetic influence and appeared to be affected
primarily by common and unique environmental factors. We
have classified these 7, added to the 5 glycan traits in Table 2
with an additive component under 0.35, as “low heritability”.

51 of the 76 glycan traits (67%) studied have an additive
genetic component of 0.5 or greater, meaning that at least half
of the variance in their levels is determined by genetic factors,
5 glycan traits had a genetic contribution under 0.35.
Heritability estimates for the remaining glycan traits varied
between 0.35 and 0.5.

We hypothesized that IgG glycans showing none or low
genetic influences could be epigenetically mediated and we
compared their levels with genome-wide DNA methylation
profiles from the Illumina HumanMethylation27 DNA Analysis
BeadChip assay in 127 MZ and DZ female twins [16]. The
analyses were adjusted for age, sex, BMI, methylation chip,
sample position on methylation chip, and family relatedness.

Among glycan traits with a low heritability we identified 2
CpG-sites (cg08392591, cg26991199) at which DNA
methylation levels were associated with levels of 4 IgG glycan
traits with P <2 x 10-6 (the Bonferroni cut off for array-wide
significance; see Table 3). Probe cg08392591 maps to a CpG
island 5’ from the ANKRD11 gene on chromosome 16 while
cg26991199 maps to SRSF10 gene on chromosome 1.
ANKRD11 is a p53 activator, while SFRS10 is involved in
constitutive and regulated RNA splicing and in particular is
involved in regulation of splicing of mRNA precursors upon
heat shock.

Among the 64 glycan traits that had heritabilities above 0.35
we observed five array-wide significant hits (Table 3) for the
two probes, cg13782134 (mapping to the NRN1L gene) and
cg16029957 (mapping near the QPCT gene). NRN1L encodes
a neuritin-like protein precursor and its role in immunoglobulin
glycosylation is unclear. QPCT encodes the human pituitary
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Table 2. Heritability estimates and 95% confidence intervals for IgG glycan traits adjusted for age and batch.

 MZ DZ     

Glycan Trait Mean(SD)* ICC[95%CI] Mean(SD)* ICC[95%CI] Best model A[95%CI] C[95%CI] E[95%CI]

GP1 0.1(0.06) 0.54[0.44,0.63] 0.11(0.06) 0.38[0.28,0.47] AE 0.58[0.49,0.65]  0.42[0.35,0.51]

GP2 0.48(0.27) 0.68[0.61,0.75] 0.53(0.34) 0.24[0.13,0.34] AE 0.72[0.64,0.48]  0.28[0.22,0.36]

GP4 19.41(6.45) 0.73[0.66,0.79] 19.26(5.63) 0.39[0.29,0.49] AE 0.70[0.64,0.75]  0.30[0.25,0.36]

GP5 0.32(0.15) 0.63[0.54,0.71] 0.4(0.17) 0.41[0.32,0.50] AE 0.72[0.65,0.77]  0.28[0.23,0.35]

GP6 5.33(1.77) 0.76[0.70,0.82] 5.32(1.68) 0.33[0.23,0.43] AE 0.75[0.69,0.79]  0.25[0.21,0.31]

GP7 0.54(0.24) 0.66[0.58,0.73] 0.62(0.31) 0.33[0.23,0.43] AE 0.73[0.67,0.79]  0.27[0.21,0.33]

GP8 18.97(1.74) 0.73[0.67,0.80] 19.19(1.83) 0.30[0.20,0.41] AE 0.74[0.68,0.79]  0.26[0.21,0.32]

GP9 9.98(1.42) 0.74[0.68,0.80] 9.99(1.44) 0.41[0.32,0.51] AE 0.75[0.69,0.79]  0.25[0.21,0.31]

GP10 6(1.21) 0.76[0.71,0.82] 5.99(1.19) 0.37[0.28,0.47] AE 0.76[0.70,0.80]  0.24[0.20,0.30]

GP11 0.84(0.22) 0.73[0.67,0.79] 0.86(0.2) 0.38[0.28,0.48] AE 0.71[0.65,0.76]  0.28[0.24,0.35]

GP12 0.67(0.32) 0.54[0.44,0.63] 0.71(0.38) 0.32[0.22,0.43] AE 0.60[0.51,0.67]  0.40[0.33,0.49]

GP13 0.5(0.22) 0.64[0.57,0.72] 0.62(0.23) 0.46[0.37,0.55] AE 0.70[0.63,0.75]  0.30[0.25,0.37]

GP14 14.33(4.96) 0.78[0.72,0.83] 13.6(4.22) 0.50[0.42,0.58] ACE 0.36[0.19,0.55] 0.37[0.19,0.52] 0.27[0.22,0.33]

GP15 1.86(0.69) 0.75[0.69,0.81] 1.79(0.56) 0.55[0.47,0.63] CE  0.66[0.61,0.70] 0.34[0.30,0.39]

GP16 3.3(0.74) 0.78[0.73,0.83] 3.45(0.65) 0.48[0.39,0.56] ACE 0.45[0.28,0.65] 0.29[0.10,0.45] 0.26[0.21,0.32]

GP17 0.94(0.26) 0.60[0.51,0.68] 0.98(0.28) 0.32[0.22,0.42] AE 0.62[0.54,0.68]  0.38[0.32,0.46]

GP18 9.54(3.28) 0.77[0.71,0.82] 9.68(2.86) 0.39[0.30,0.49] AE 0.73[0.68,0.78]  0.27[0.22,0.32]

GP19 1.86(0.42) 0.54[0.45,0.64] 1.89(0.44) 0.44[0.35,0.53] ACE 0.27[0.03,0.50] 0.29[0.10,0.47] 0.44[0.36,0.53]

GP21 1.32(0.41) 0.48[0.36,0.60] 1.31(0.42) 0.28[0.06,0.50] AE 0.49[0.37,0.60]  0.51[0.40,0.63]

GP22 0.15(0.08) 0.27[0.14,0.39] 0.17(0.08) 0.28[0.18,0.38] CE  0.28[0.20,0.36] 0.72[0.64,0.80]

GP23 1.65(0.53) 0.61[0.53,0.69] 1.65(0.54) 0.44[0.35,0.53] ACE 0.37[0.14,0.59] 0.25[0.05,0.43] 0.38[0.32,0.47]

GP24 1.93(0.57) 0.53[0.43,0.62] 1.93(0.6) 0.51[0.42,0.59] CE  0.51[0.45,0.57] 0.49[0.43,0.55]

FGS/(FG+FGS) 24.89(4.6) 0.76[0.70,0.81] 25.51(3.77) 0.41[0.31,0.50] ACE 0.49[0.28,0.71] 0.21[0.01,0.39] 0.30[0.25,0.36]

FBGS/(FBG+FBGS) 30.66(6.62) 0.64[0.56,0.72] 30.91(6.89) 0.51[0.42,0.59] ACE 0.32[0.12,0.52] 0.34[0.16,0.49] 0.34[0.28,0.42]

FGS/(F+FG+FGS) 18.68(4.63) 0.72[0.66,0.77] 19.2(4.07) 0.36[0.27,0.46] AE 0.69[0.63,0.74]  0.31[0.26,0.37]

FBGS/(FB+FBG+FBGS) 21.64(5.2) 0.63[0.55,0.71] 21.86(5.57) 0.49[0.41,0.58] ACE 0.35[0.15,0.56] 0.30[0.12,0.46] 0.35[0.28,0.42]

FG1S1/(FG1+FG1S1) 10.24(2.2) 0.76[0.70,0.81] 10.57(1.86) 0.45[0.36,0.54] ACE 0.42[0.24,0.63] 0.29[0.09,0.45] 0.29[0.24,0.35]

FG2S1/(FG2+FG2S1+FG2S2) 37.65(6.68) 0.84[0.80,0.88] 38.9(4.76) 0.67[0.61,0.73] CE  0.77[0.73,0.80] 0.23[0.20,0.27]

FG2S2/(FG2+FG2S1+FG2S2) 6.69(1.97) 0.64[0.57,0.72] 6.82(2.15) 0.44[0.35,0.53] AE 0.69[0.63,0.75]  0.31[0.25,0.37]

FBG2S1/(FBG2+FBG2S1+FBG2S2) 33.2(5.86) 0.68[0.61,0.75] 33.84(4.86) 0.52[0.44,0.60] CE  0.61[0.55,0.66] 0.39[0.34,0.45]

FBG2S2/(FBG2+FBG2S1+FBG2S2) 33.97(6.12) 0.49[0.39,0.59] 34.12(5.78) 0.48[0.39,0.57] CE  0.48[0.41,0.54] 0.52[0.46,0.59]

FtotalS1/FtotalS2 4.34(1.36) 0.70[0.63,0.77] 4.44(1.26) 0.55[0.47,0.63] ACE 0.19[0.01,0.37] 0.48[0.32[0.62] 0.33[0.27,0.40]

FS1/FS2 8.29(2.59) 0.74[0.68,0.80] 8.52(2.54) 0.53[0.45,0.61] ACE 0.39[0.22,0.57] 0.34[0.18,0.49] 0.27[0.22,0.33]

FBS1/FBS2 1.01(0.25) 0.44[0.33,0.55] 1.02(0.21) 0.44[0.35,0.53] CE  0.44[0.36,0.51] 0.56[0.49,0.64]

FBStotal/FStotal 0.28(0.1) 0.66[0.59,0.74] 0.27(0.09) 0.43[0.34,0.52] ACE 0.23[0.02,0.46] 0.37[0.17,0.55] 0.40[0.17,0.55]

FBS1/FS1 0.16(0.06) 0.67[0.59,0.74] 0.15(0.05) 0.43[0.34,0.52] ACE 0.39[0.18,0.61] 0.26[0.06,0.43] 0.35[0.29.0.43]

FBS1/(FS1+FBS1) 0.13(0.04) 0.69[0.62,0.76] 0.13(0.04) 0.43[0.34,0.53] ACE 0.42[0.22,0.64] 0.25[0.05,0.41] 0.33[0.27,0.40]

FBS2/FS2 1.22(0.32) 0.67[0.60,0.74] 1.21(0.28) 0.20[0.09,0.31] AE 0.61[0.54,0.68]  0.39[0.32,0.46]

FBS2/(FS2+FBS2) 0.54(0.06) 0.66[0.58,0.73] 0.54(0.06) 0.23[0.12,0.34] AE 0.61[0.54,0.68]  0.39[0.32,0.46]

GP1n 0.12(0.07) 0.52[0.41,0.62] 0.13(0.08) 0.37[0.27,0.47] AE 0.57[0.48,0.65]  0.43[0.35,0.52]

GP2n 0.6(0.34) 0.68[0.61,0.75] 0.67(0.41) 0.24[0.13,0.34] AE 0.71[0.64,0.77]  0.29[0.23,0.36]

GP4n 24.29(7.41) 0.74[0.68,0.80] 24.21(6.4) 0.42[0.32,0.51] ACE 0.49[0.29,0.70] 0.21[0.01,0.38] 0.30[0.25,0.36]

GP5n 0.41(0.18) 0.59[0.51,0.68] 0.51(0.21) 0.40[0.31,0.49] AE 0.69[0.62,0.75]  0.31[0.25,0.38]

GP6n 6.65(2) 0.76[0.71,0.82] 6.67(1.9) 0.34[0.24,0.44] AE 0.75[0.70,0.80]  0.25[0.20,0.30]

GP7n 0.68(0.3) 0.65[0.58,0.73] 0.78(0.39) 0.32[0.22,0.42] AE 0.73[0.66,0.78]  0.27[0.22,0.34]

GP8n 23.96(2.42) 0.80[0.75,0.85] 24.33(2.45) 0.36[0.27,0.46] AE 0.80[0.76,0.84]  0.20[0.16,0.24]
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glutaminyl cyclase, which is responsible for the presence of
pyroglutamyl residues in many neuroendocrine peptides.

Overall, the proportion of array-wide epigenetic associations
was significantly larger (P<0.005) among glycan traits with low
heritability (5/12= 41.6%) than in those showing high heritability
(4/64 = 6.2%).

We also tested if the glycan traits measured could have
some clinical relevance and we found that 4 of the 76 glycan
traits are significantly (after adjustment for multiple tests)
associated with circulating levels of triglycerides, a well known
risk factor of cardiovascular risk [17] and 3 are associated with
circulating levels of C-reactive protein (CRP), a well known
marker of systemic inflammation [18] (Table S2). Although the

investigation of the role of the various glycans in health and
disease is beyond the scope of our study, these data suggest
that the molecular mechanisms underlying IgG glycans can
yield clinically relevant insights. We note that all the glycans
associated with these two traits have high heritabilities and no
epigenetic significant associations were found for these.
However, we did not carry out a systematic study of the
relationship between IgG glycans and cardiovascular or
inflammatory traits which may show associations also among
glycans with low heritabilities.

Table 2 (continued).

 MZ DZ     

Glycan Trait Mean(SD)* ICC[95%CI] Mean(SD)* ICC[95%CI] Best model A[95%CI] C[95%CI] E[95%CI]

GP9n 12.59(1.72) 0.76[0.70,0.81] 12.66(1.77) 0.42[0.33,0.51] AE 0.76[0.71,0.81]  0.24[0.19,0.29]

GP10n 7.55(1.4) 0.75[0.69,0.81] 7.58(1.44) 0.37[0.27,0.46] AE 0.76[0.70,0.80]  0.24[0.20,0.30]

GP11n 1.06(0.24) 0.70[0.63,0.77] 1.09(0.23) 0.36[0.26,0.46] AE 0.70[0.63,0.75]  0.30[0.25,0.37]

GP12n 0.85(0.42) 0.54[0.45,0.64] 0.92(0.53) 0.30[0.20,0.41] AE 0.61[0.52,0.68]  0.39[0.32,0.48]

GP13n 0.63(0.29) 0.63[0.55,0.71] 0.79(0.31) 0.44[0.35,0.53] AE 0.70[0.63,0.75]  0.30[0.25,0.37]

GP14n 18.23(6.63) 0.77[0.72,0.82] 17.39(5.83) 0.46[0.37,0.55] ACE 0.47[0.29,0.67] 0.26[0.07,0.42] 0.27[0.22,0.33]

GP15n 2.36(0.86) 0.73[0.67,0.79] 2.28(0.74) 0.51[0.42,0.59] ACE 0.24[0.06,0.43] 0.44[0.27,0.59] 0.32[0.26,0.38]

G0n 31.68(9.06) 0.75[0.69,0.81] 31.68(7.96) 0.40[0.30,0.49] AE 0.72[0.66,0.76]  0.28[0.24,0.34]

G1n 45.84(2.78) 0.68[0.61,0.75] 46.44(2.79) 0.33[0.23,0.43] AE 0.69[0.62,0.74]  0.31[0.26,0.38]

G2n 22.08(7.72) 0.76[0.70,0.81] 21.37(6.83) 0.48[0.39,0.56] ACE 0.41[0.23,0.61] 0.31[0.12,0.46] 0.28[0.23,0.34]

Fn total 96.81(1.06) 0.55[0.46,0.64] 96.33(1.36) 0.32[0.21,0.42] AE 0.64[0.55,0.71]  0.36[0.29,0.45]

FG0n total/G0n 98.07(0.97) 0.57[0.48,0.66] 97.89(1.08) 0.27[0.16,0.37] AE 0.60[0.51,0.67]  0.40[0.33,0.49]

FG1n total/G1n 98.52(0.65) 0.64[0.56,0.72] 98.31(0.86) 0.33[0.23,0.43] AE 0.72[0.65,0.78]  0.28[0.22,0.35]

FG2n total /G2n 93.04(2.25) 0.52[0.43,0.62] 91.87(2.69) 0.33[0.23,0.43] AE 0.63[0.54,0.70]  0.37[0.30,0.46]

Fn 79.19(3.33) 0.70[0.63,0.77] 78.71(3.53) 0.36[0.26,0.46] AE 0.72[0.66,0.77]  0.28[0.23,0.34]

FG0n/G0n 76.69(4.51) 0.71[0.65,0.78] 76.62(4.25) 0.41[0.32,0.50] AE 0.70[0.64,0.75]  0.30[0.25,0.36]

FG1n/G1n 79.72(3.44) 0.73[0.66,0.79] 79.62(3.59) 0.37[0.28,0.47] AE 0.74[0.68,0.79]  0.26[0.21,0.32]

FG2n/G2n 82.16(3.32) 0.56[0.47,0.65] 81.03(3.59) 0.28[0.18,0.39] AE 0.61[0.52,0.68]  0.39[0.32,0.48]

FBn 17.62(2.98) 0.76[0.71,0.82] 17.62(2.93) 0.37[0.28,0.47] AE 0.76[0.71,0.81]  0.24[0.19,0.29]

FBG0n/G0n 21.38(4.24) 0.75[0.69,0.81] 21.26(3.78) 0.43[0.34,0.52] ACE 0.52[0.33,0.73] 0.20[0.01,0.37] 0.27[0.29,0.34]

FBG1n/G1n 18.8(3.29) 0.76[0.70,0.81] 18.69(3.3) 0.39[0.29,0.48] AE 0.76[0.71,0.80]  0.24[0.20,0.29]

FBG2n/G2n 10.88(2.07) 0.70[0.63,0.77] 10.81(1.86) 0.34[0.25,0.44] AE 0.68[0.61,0.73]  0.32[0.27,0.39]

FBn/Fn 0.22(0.05) 0.75[0.69,0.81] 0.23(0.05) 0.36[0.26,0.46] AE 0.75[0.69,0.79]  0.25[0.21,0.31]

FBn/Fn total 18.21(3.12) 0.75[0.69,0.81] 18.3(3.12) 0.36[0.27,0.47] AE 0.76[0.70,0.80]  0.24[0.20,0.30]s

Fn/(Bn + FBn) 4.49(0.94) 0.74[0.69,0.80] 4.42(0.93) 0.43[0.33,0.52] AE 0.75[0.69,0.79]  0.25[0.21,0.31]

Bn/(Fn + FBn) ‰ 6.54(3.06) 0.62[0.54,0.70] 8.19(3.34) 0.44[0.35,0.53] AE 0.69[0.62,0.74]  0.31[0.26,0.38]

FBG2n/FG2n 0.13(0.03) 0.68[0.60,0.75] 0.13(0.03) 0.31[0.21,0.41] AE 0.66[0.59,0.72]  0.34[0.28,0.41]

FBG2n /(FG2n + FBG2n ) 11.71(2.3) 0.68[0.61,0.75] 11.79(2.13) 0.32[0.22,0.42] AE 0.66[0.59,0.72]  0.34[0.28,0.41]

FG2n/(BG2n + FBG2n) 6.17(1.36) 0.70[0.64,0.77] 5.72(1.15) 0.38[0.29,0.48] AE 0.69[0.62,0.74]  0.31[0.26,0.38]

BG2n/(FG2n + FBG2n) ‰ 32.44(15.27) 0.62[0.54,0.70] 42.02(16.45) 0.43[0.34,0.52] AE 0.73[0.67,0.78]  0.27[0.22,0.33]

Values in the three rightmost columns indicate the amount of variance attributed to the compartment of additive genetic factors (A or heritability), common/shared
environmental factors (C) and unique environmental factors (E). ICC = intra-class correlation coefficient. 95% confidence intervals for both ICC and ACE are reported.
* means and SD reported are unadjusted
doi: 10.1371/journal.pone.0082558.t002
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Discussion

In this study we have evaluated, using a classical study
design, the heritable and non-heritable component of
circulating immunoglobulin G glycome composition. The study
was sufficiently powered to detect with 95% probability
heritabilities above 0.4 even with low-shared environmental
contributions and we detected 59 glycan traits with heritabilities
above this cut-off.

Our data show that variation in levels of 51 of the 76 IgG
glycan traits studied is at least half heritable and only a small
proportion of N-glycan traits have a low genetic contribution.
Though glycans are produced in a complex biosynthetic
pathway [19] and were believed to be significantly affected by
many environmental factors [20], we find a high contribution of
the genetic component to IgG glycome composition. Compared
to GWAS study of the plasma glycome in 2705 individuals [13],
the recent GWAS study of the IgG glycome in 2247 [14] has
identified five times more genetic loci with genome-wide
significant associations. Inter-individual variation of the IgG
glycome [9] is more than three-fold larger than the inter-
individual variation of the plasma glycome [10]. Large
heritability and the large number of involved genetic loci
suggest that the genetic regulation of the IgG glycome is
stronger than the regulation of the total plasma glycome. Fine
details of IgG glycan structure significantly affect function of
immunoglobulins [21], thus close regulation of IgG
glycosylation is required for proper function of the immune
system [22]. Genetic loci with variants that affect IgG glycome
composition were reported for the majority of glycans with high
heritability [12-14] (Table S3), and some of the highly heritable
glycans seem to be affected by multiple loci (e.g., FG0n/G0n
associates with genetic variants in the following genes: FUT8,
MGAT3, IKZF1 and SMARCB1-DERL3).

In addition to the genetic contribution to the glycome, an
important source of complexity and variability in IgG
glycosylation is the interaction with the environment, some of
which may be revealed by epigenetic changes [23]. Epigenetic
silencing of HNF1A, a known master regulator of plasma
protein fucosylation, has been shown to be associated with
changes in the composition of the human plasma N-glycome
[24]. In this study we find that methylation levels at other genes

are also implicated in glycome composition, both in those with
high heritabilities and those with a lower genetic contribution.
By using a well-characterized cohort with epigenetics data
available, such as TwinsUK, it was possible to integrate
glycome data with other existing molecular data and adjust for
confounders.

The main limitation of the present study is that due to the
novelty of the glycan phenotypes we lack the replication for the
epigenetic findings in an independent cohort. The fact that we
find epigenome-wide significant hits on a relatively small
sample suggests that epigenetic factors contribute to IgG
glycan levels, although due to the lack of replication we cannot
exclude false positive results. Epigenetic factors also play a
role in the case of some glycans with a high heritability.
However, we only found 5 significant methylation hits (mapping
to two probes) for 64 glycan traits with h2 >0.35 and 5
significant hits (mapping to two probes) for 12 glycan traits with
h2≤0.35. The probes associated with highly heritable glycan
traits were different to those associated with glycan traits with
lower heritabilities.

For glycan traits with lower heritabilities the most significant
probe maps to the p53 activator ANKRD11. The tumor
suppressor p53 is known to be able to modulate innate immune
gene responses. For glycan traits with high heritabilities the two
hits appear related to neuroendocrine regulation, in one case
directly to a glycosylation enzyme QPCT, in the second case to
a neuritin-like protein precursor which has been implicated in
neuronal survival [25]. These genes have not been previously
reported to have a role in IgG glycosylation. A similar
observation was recently reported in a GWA study of the IgG
glycome which identified 12 genes not previously known to be
involved in IgG glycosylation [14], providing further evidence
that IgG glycosylation is a very complex and tightly regulated
process. As more epigenetic and genetic data become
available for cohorts with IgG N-glycan characterizations it will
become possible to elucidate the molecular pathways
underlying many complex traits.

Table 3. Association between IgG levels and methylation probes (P<2x10-6).

Probe Chr Map position(hg 18 B36) nearest gene Glycan Beta SE P h2 h2>0.35
cg13782134 16 67919362 NRN1L FBS2/FS2 -0.36 0.05 1.19x10-9 0.61 yes
cg08392591 16 89556376 ANKRD11 FBGS/(FB+FBG+FBGS) 0.35 0.06 3.05x10-8 0.35 no
cg13782134 16 67919362 NRN1L FBS2/(FS2+FBS2) -0.33 0.05 5.8x10-8 0.61 yes
cg16029957 2 37425956 QPCT GP13n -0.19 0.03 2x10-7 0.70 yes
cg16029957 2 37425956 QPCT Bn/(Fn + FBn) ‰ -0.19 0.03 3.57x10-7 0.69 yes
cg26991199 1 24307153 SFRS10 GP24 0.24 0.04 8.99x10-7 - no
cg26991199 1 24307153 SFRS10 FBGS/(FB+FBG+FBGS) 0.28 0.05 1.01x10-6 0.35 no
cg16029957 2 37425956 QPCT GP13 -0.17 0.03 1.44x10-6 0.70 yes
cg26991199 1 24307153 SFRS10 GP19 0.27 0.05 1.47x10-6 0.27 no
cg08392591 16 89556376 ANKRD11 FBGS/(FBG+FBGS) 0.34 0.07 1.67x10-6 0.32 no

doi: 10.1371/journal.pone.0082558.t003
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Materials and Methods

Ethic statement
The study was approved by St. Thomas’ Hospital Research

Ethics Committee, and all twins provided informed written
consent.

Study subjects
Study subjects were twins enrolled in the TwinsUK registry, a

national register of adult twins. Twins were recruited as
volunteers by successive media campaigns without selecting
for particular diseases or traits [26]. All twin pairs recruited
were of the same sex.

In this study we analysed data from 440 monozygotic and
610 dizygotic female twins with glycomics and epigenomic data
available.

Isolation of IgG from human plasma
The IgG was isolated using protein G monolithic plates as

described previously [9]. Briefly, 90 µl of plasma was diluted
10x with PBS, applied to the protein G plate (BIA Separations,
Ljubljana, Slovenia) and instantly washed. IgGs were eluted
with 1 ml of 0.1 M formic acid and neutralized with 1 M
ammonium bicarbonate.

N-Glycan Release
Isolated IgG samples were dried in a vacuum centrifuge.

After drying, proteins were denatured with addition of 20 μL 2%
SDS (w/v) (Invitrogen, Carlsbad, CA, USA) and by incubation
at 60 °C for 10 min. Subsequently, 10 μL of 4% Igepal-CA630
(Sigma-Aldrich, St. Louis, MO, USA) and 0.5 mU of PNGase F
in 10 μL 5× PBS were added to the samples. The samples
were incubated overnight at 37 °C for N-glycan release.

2-aminobenzamide labelling
The released N-glycans were labelled with 2-

aminobenzamide (2-AB), the fluorescent dye used to make
glycans visible in UPLC. The labelling mixture was freshly
prepared by dissolving 2-AB (Sigma-Aldrich, St. Louis, MO,
USA) in DMSO (Sigma-Aldrich, St. Louis, MO, USA) and
glacial acetic acid (Merck, Darmstadt, Germany) mixture
(85:15, v/v) to a final concentration of 48 mg/mL. A volume of
25 μL of labelling mixture was added to each N-glycan sample
in the 96-well plate. Also, 25 μL of freshly prepared reducing
agent solution (2-picoline borane (Sigma-Aldrich, St. Louis,
MO, USA) in DMSO – concentration of 106.96 mg/ml) was
added and the plate was sealed using adhesive tape. Mixing
was achieved by shaking for 10 min, followed by 2 hour
incubation at 65 °C. Samples (in a volume of 100 μL) were
brought to 80% ACN (v/v) by adding 400 μL of ACN.

Cleaning and elution of labelled glycans using HILIC-
Solid Phase Extraction (SPE)

Free label and reducing agent were removed from the
samples using HILIC-SPE. An amount of 200 μL of 0.1 g/mL
suspension of microcrystalline cellulose (Merck, Darmstadt,
Germany) in water was applied to each well of a 0.45 μm GHP

filter plate (Pall Corporation, Ann Arbor, MI, USA). Solvent was
removed by application of vacuum using a vacuum manifold
(Millipore Corporation, Billerica, MA, USA). All wells were
prewashed using 5 × 200 μL water, followed by equilibration
using 3 × 200 μL acetonitrile/water (80:20, v/v). The samples
were loaded to the wells. The wells were subsequently washed
5 × using 200 μL acetonitrile/water (80:20, v/v).

Glycans were eluted 2 × with 100 μL of water and combined
elutes were not dried, but either analyzed immediately by
UPLC or stored at –20 °C until usage.

Hydrophilic interaction high performance liquid
chromatography (HILIC)

Fluorescently labelled N-glycans were separated by
hydrophilic interaction chromatography on a Waters Acquity
UPLC instrument (Milford, MA, USA) consisting of a quaternary
solvent manager, sample manager and a FLR fluorescence
detector set with excitation and emission wavelengths of 330
and 420 nm, respectively. The instrument was under the
control of Empower 2 software, build 2145 (Waters, Milford,
MA, USA). Labeled N-glycans (10 μl) were separated on a
Waters BEH Glycan chromatography column, 100 × 2.1 mm
i.d., 1.7 μm BEH particles, with 100 mM ammonium formate,
pH 4.4, as solvent A and acetonitrile as solvent B. Separation
method used linear gradient of 75–62% acetonitrile (v/v) at flow
rate of 0.4 ml/min in a 25 min analytical run. Samples were
maintained at 5 °C before injection, and the separation
temperature was 60 °C. The system was calibrated using an
external standard of hydrolyzed and 2-AB labelled glucose
oligomers from which the retention times for the individual
glycans were converted to glucose units. Data processing was
performed using an automatic processing method with a
traditional integration algorithm after which each chromatogram
was manually corrected to maintain the same intervals of
integration for all the samples. The chromatograms obtained
were all separated in the same manner into 24 peaks and the
amount of glycans in each peak was expressed as % of total
integrated area. In addition to 24 directly measured glycan
structures, 53 derived traits were calculated as described
previously [9] (see Table S1). These derived traits average
particular glycosylation features (galactosylation, fucosylation,
sialylation) across different individual glycan structures.
Consequently, they are more closely related to individual
enzymatic activities, and underlying genetic polymorphisms
[13].

Epigenetics
DNA methylation levels were obtained using the 27k Illumina

CpG methylation probe array in 127 female twins aged 32 to 80
randomly selected from the discovery cohort. QC measure
were applied, as previously described [16] and 24,641
autosomal probes passed quality control and were included in
the analysis. Probes were standardized to have mean zero and
variance 1.

Statistical methods
Statistical analysis was carried out using Stata version 11.

The R package OpenMX was used to calculate heritability.

IgG Glyacans: Genetic and Epigenetic Influences
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Heritability of glycome composition was estimated using
structural equation modelling to decompose the observed
phenotypic variance into three latent sources of variation:
additive genetic variance (A), shared/common environmental
variance (C), and non-shared/unique environmental variance
(E) [27] adjusting for age and batch. Additive genetic influences
are indicated when monozygotic twins are more similar than
dizygotic twins. The common environmental component
estimates the contribution of family environment which is
assumed to be equal in both MZ and DZ twin pairs [28],
whereas the unique environmental component does not
contribute to twin similarity, rather it estimates the effects that
apply only to each individual and includes measurement error.
The equal environment assumption across zygosities implies
that any greater similarity between MZ twins than DZ twins is
attributed to greater sharing of genetic influences.

The best fitting model (among ACE, AE, CE, and E models)
was determined by removing each factor sequentially from the
full model and testing the deterioration in fit of the various
nested models, using the likelihood ratio test (p=0.05). In
addition, the Akaike Information Criteria (AIC) was considered,
with lower values indicating the most suitable model. The AIC
combines the goodness of fit of a model (the discrepancy of
expected to observed covariance matrixes) with its simplicity,
resulting in a measure of parsimony [27]. The most
parsimonious model was then used to estimate heritability,
defined as the proportion of the phenotypic variation
attributable to genetic factors

Random intercept logistic regression was used to test the
association between whole-blood DNA methylation patterns

and IgG patterns with low heritability, adjusting for age, sex,
BMI, methylation chip, sample position on methylation chip,
and family relatedness. Adjusting for zygosity did not change
the results.
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ABSTRACT
Glycans constitute themost abundant and diverse form of the post-translational modifications, and animal
studies have suggested the involvement of IgG glycosylation in mechanisms of renal damage. Here, we
explored the associations between IgG glycans and renal function in 3274 individuals from the TwinsUK
registry. We analyzed the correlation between renal function measured as eGFR and 76 N-glycan traits
using linear regressions adjusted for covariates and multiple testing in the larger population. We repli-
cated our results in 31 monozygotic twin pairs discordant for renal function. Results from both analyses
were then meta-analyzed. Fourteen glycan traits were associated with renal function in the discovery
sample (P,6.531024) and remained significant after validation. Those glycan traits belong to three main
glycosylation features: galactosylation, sialylation, and level of bisecting N-acetylglucosamine of the IgG
glycans. These results show the role of IgG glycosylation in kidney function and provide novel insight into
the pathophysiology of CKD and potential diagnostic and therapeutic targets.

J Am Soc Nephrol 27: ccc–ccc, 2015. doi: 10.1681/ASN.2015010109

Chronic kidney disease affects 13% of the adult
population in developed countries and it is associ-
ated with increased cardiovascular morbidity and
mortality.1,2 Though many genetic3–5 and environ-
mental factors (such as diabetes, hypertension and
ageing)6 are implicated in the development of kid-
ney damage, its physiopathology is still not fully
understood. Heritability estimates for CKD range
between 0.33 and 0.417,8 and despite the discovery
of several important genetic associations, these loci
collectively account for only 1.4% of the variation
in eGFR.5 This suggests that epigenetic or post-
transcriptional factors may be playing an important
role in renal damage.

Glycosylation is the most abundant and diverse
form of post-transcriptional modification and par-
ticipates in every physiologic process.9

Immunoglobulin G is an excellent glycoprotein
model as its glycosylation is well defined and many
important functional effects of alternative IgG

glycosylation have been described.10 N-glycans at-
tached to the conserved asparagine 297 in the Fc
part of IgG are important modulators of IgG effec-
tor functions.11 For example, glycosylation acts as a
switch between pro- and anti-inflammatory IgG
functionality. Malfunction of this system is associ-
ated with different inflammatory and autoimmune
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diseases such as SLE,12 rheumatoid arthritis, inflammatory
bowel diseases,13,14 cancer15,16 and AIDS.17 Furthermore, it
has been shown that inflammation pathways play a key role
in endothelial and kidney damage.18 ,19 Indeed, the activation
of inflammatory pathways and subsequent fibrosis are hallmark
of renal injury.20,21 Different IgG glycosylation profiles may pro-
vide an at-risk phenotype to the development of renal damage.

Animal models highlighted the potential role of IgG
glycosylation in the pathophysiologic mechanism involved
in renal damage. Indeed studies have shown thatmodulationof
ANCA IgG glycosylation reduces its pathogenicity in mouse
ANCA-associated GN.21 Also, IgG Fcg receptor deficiency
was found to be renoprotective in a mouse model of diabetic
nephropathy.20 Human studies suggest that aberrant glyco-
sylation of the IgA1 is implicated in the deposit and forma-
tion of the immunocomplex IgA–IgG in patients with IgA
nephropathy.22,23

However, no human studies investigated the role of the IgG
glycosylation profiles in the onset of CKD.

The aim of this study is to investigate the potential role of
IgGglycosylation inkidney function, by analyzing IgGglycome
composition in a large population-based cohort from the UK.
As glycans are associated with many factors including genes,24

we validate our significant results in an independent popula-
tion of identical twins discordant for renal diseases.

RESULTS

Levels of 76 IgG glycans (24 directly measured and 52 derived
traits) (Supplemental Figure 1) were obtained in 3274 indi-
viduals with different eGFR from the TwinsUK population
(age range: 18–87 years). The demographic characteristics of
the study populations are presented in Table 1. We identified
31 monozygotic (MZ) twin pairs discordant for the renal phe-
notype (difference in eGFR.15 mL/min per 1.73 m2).

We first ran the linear regressions in the discovery pop-
ulation adjusting for age, sex, bodymass index (BMI), diabetes,

hypertension, glycan analysis batch and family relatedness,
excluding theMZdiscordant twins.We controlled formultiple
testing using Bonferroni correction (P,6.531024; 0.05/76 gly-
can traits). This identified 14 glycans significantly associated
with eGFR; six glycans were positively associated with eGFR,
while eight were negatively associated (Table 2, Supplemental
Table 1). To ensure that sexual hormones did not affect our
results, we ran the same linear regression analysis including
menopause as a covariate and our results were unchanged.

We then assessed whether these associations with renal
function were robust by testing an independent group of MZ
twins discordant for renal disease. The regression coefficients
were in the same direction in both analyses (discordant identical
twins and the rest of the population). We then combined the
results using inverse-variance fixed effect meta-analysis. All 14
glycans remainedBonferroni significant (Table 2).Asdepicted in
Figure 1 andTable 2, the 14 significant glycan traits fell into three
particular glycosylation features: galactosylation, sialylation and
the level of bisecting N-acetylglucosamine (GlcNAc) of the IgG
glycans.

We observed a decrease in agalactosylated glycans: A2 (GP2
and GP2n) and FA2B (GP6 and GP6n) glycan structures and
derived trait G0n, which combines all agalactosylated struc-
tures. Conversely, glycan with galactose on both antennae,
FA2G2 (GP14 and GP14n), and the G2n derived trait, repre-
senting the percentage of digalactosylated structures in neutral
IgG glycans, increased in parallel with the eGFR. The same
pattern was observed in the MZ discordant pairs. As for sia-
lylation, the major sialylated glycan, FA2G2S1 (GP18) and the
percentage of sialylated structures without bisecting GlcNAc
(represented by the ratio FGS/[F+FG+FGS]) increased with
eGFR.

The level of bisecting GlcNAc in sialylated IgG glycans
represented by three ratios, FBStotal/FStotal, FBS1/FS1, and
FBS1/(FS1+FBS1), as well as in digalactosylated neutral gG
glycans (FG2n/[BG2n+FBG2n]) were found to be inversely as-
sociated with eGFR.

To reinforce our findings we searched for associations in an
independent population with more severe renal phenotype
(eGFR,30 mL/min per 1.73 m2). Eight twins, mean aged 65.0
(range 42.2–75.5 years) with CKD stage 4/5 (mean eGFR 24.7
[range 8.0–27.3]) were compared with their age-matched co-
twin with eGFR.30 ml/min per 1.73 m2. As depicted in Fig-
ure 2, IgG glycans profiles follow the same patterns as were
observed in the discovery population with the worsening of
the renal function.

To determine whether the findings were restricted to IgG or
to amore general change in glycosylation of multiple proteins,
we searched for association between total plasma glycome25,26

and eGFR in a subset 426 individuals (eGFR,mL/min/1.73m2:
78.95616.00). We found no difference in plasma glycosylation,
suggesting that the effects we see here are likely direct effects of
IgG glycosylation. However, the lack of associationmight also be
due to power issues and so further study on larger sample size is
needed to test this (Supplementary Table 2).

Table 1. General characteristics of the study population

Discovery
Population

MZ Discordant Twins

Sample size, n 3212 62
Age, years 52.67614.15 55.45612.2
MZ:DZ:singletons 506:1772:934 62:0:0
Female, n (%) 3050 (94.9) 60 (96.7)
BMI, kg/m2 25.9564.65 25.6465.65
Creatinine, mg/ml 0.8360.15 0.7560.10
eGFR, mL/min per 1.73 m2 84.15617.02 88.5269.91
CKD (eGFR#60), n (%) 294 (9.15) 1 (1.6)
Type II diabetes, n (%) 72 (2.2) 4 (6.4)
Hypertension, n (%) 705 (21.9) 18 (29.0)

CKD eGFR estimated using Chronic Kidney Disease Epidemiology Collab-
oration equation. Values for categorical variables are given as n (%); values for
continuous variable as mean (6SD). MZ:DZ, monozygotic:dizygotic.
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Finally, we assessed whether glycan profiles could improve
the prediction of the CKD status (as per Guidelines, CKD cases
have eGFR,60 mL/min per 1.73 m2) beyond that achieved
with age and sex. In the discriminative model only the four
main glycans (GP2, GP6, GP14, and GP18) were included.
The predictive ability for CKD status, as measured by the
area under the curve was 0.87 (95% confidence interval
[95% CI], 0.85 to 0.89) for clinical parameters alone, 0.81
(95% CI, 0.78 to 0.84) for glycans alone, and 0.88 (95% CI, 0.86
to 0.90) for themodel incorporating a combination of glycans and
clinical parameters (P=0.23) (Supplemental Figure 2).

DISCUSSION

This is the first study to investigate the potential role of IgG
glycosylation in kidney function. We identified 14 IgG glycan
traits with high statistical significance associated with eGFR
and validated them in an independent subset of MZ twins
discordant for renal disease. Moreover we see the same pattern
in a small independent sample with a more extreme renal
dysfunction.

The glycans identified fall into three principal glycan traits.

Galactosylation of IgG
Decreased IgG galactosylation has been found to be associated
with rheumatoid arthritis27 as well as with several autoim-
mune and inflammatory diseases16 and with chronologic and
biologic age.28 The decrease in galactosylation is not disease-
specific, but a general phenomenon that is associated with

decreased immunosuppressive and anti-inflammatory poten-
tial of circulating IgG. We observed a higher risk of CKD in
subjects with agalactosylated glycans (GP2, GP6, and G0n)
and lower in those with galactosylated IgG (GP14 and G2n).
Lack of terminal galactose activates complement cascade and
makes IgG pro-inflammatory, whereas the addition of galactose
decreases its inflammatory potential.29,30 Hence, the IgG galac-
tosylation pattern observed in our population supports the the-
ory that complement activation/dysregulation is crucial in renal
damage.31 It is not clear whether IgG galactosylation is a conse-
quence or an individual predisposition for a disease. The heri-
tability of galactosylated glycans was very high,24 indicating that
galactosylation could partly be genetically predetermined. This
hypothesis is further supported by the fact that in rheumatoid
arthritis, the decrease in IgG galactosylation was observed up to
several years before the onset of the disease.32–35

Sialylation
Further extension of IgG glycans by the addition of sialic acid
dramatically changes the physiologic role of IgG, converting it
from a proinflammatory into an anti-inflammatory agent.36,37

This relatively small fraction of sialylated IgG is believed to be
responsible for the immunosuppressive activity of intrave-
nously administered immunoglobulins.38 Approximately
50% of IgG glycans are not sialylated and are proinflamma-
tory.39 However, the terminal a2,6-sialylation of IgG glycans
decreases the ability of IgG to bind Fcg receptors (FcgRs),
which increases expression of inhibitory FcgRIIB and is
anti-inflammatory.40 Contrary to changes in galactosylation,
the significant changes in sialylation have not been associated

Figure 1. Correlation of IgG glycosylation and eGFR in the discovery and MZ discordant populations. (A) Directly measured glycan
structures. (B) Derived traits that measure sialylation, galactosylation, and bisecting GlcNAc.
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with other diseases. Recently, some of us found that major
sialylated glycans (GP16, GP18, and GP23) were significantly
decreased in patients with SLE (F. Vu�ckovi�c et al., submitted
for publication). In our population, the major sialylated gly-
can, FA2G2S1 (GP18), and the ratio FGS/(F+FG+FGS), which
represents the percentage of sialylated structures without bi-
secting GlcNAc in total IgG glycans, were decreased in patients
with CKD (green dots in Figure 1). These sialylated glycan
traits displayed a protective independent risk for CKD.

Bisecting N-Acetylglucosamine and Core Fucosylation
of IgG
Another feature is the role of core fucose in the modulation of
antibody-dependent cellular cytotoxicity.41 On average, 95% of
the IgG population is core fucosylated42; hence, most of the
immunoglobulins have a “safety switch”, which prevents them
from antibody-dependent cellular cytotoxicity. IgG-containing
glycans that lack core fucose have 100-fold higher affinity to the
FcgRIIIa and are thereforemuchmore efficient than fucosylated
glycoforms.43 We have observed a significant and independent
decreased risk of CKD when sialylated and core fucosylated gly-
cans did not have bisecting GlcNAc; and in contrast, lower eGFR
if those glycans contained bisecting GlcNAc (FBStotal/FStotal,
FBS1/FS1, and FBS1/[FS1+FBS1]). Also for neutral digalactosy-
lated glycans, when there is less of these glycans with bisecting
GlcNAc, the ratio FG2n/(BG2n+FBG2n) is higher and this is pos-
itively associated with eGFR. The presence of bisecting GlcNAc
was always associated with a higher risk of CKD.

It is not clear how the modulation of antibody-dependent
cellular cytotoxicity could affect the renal damage in the onset
of a nonautoimmune CKD. Studies in experimental animals
have reported that modifications in the Fcg receptor can di-
minish renal damage in a well known autoimmune disease,
ANCA-related GN, as well as in diabetic nephropathy.20,21 On
the other hand, renal fibrosis is the common pathway of many
kidney diseases and leads to progressive renal failure; natural
killer cells have been linked with this process in different organ
systems.11

Notably, glycan traits associated with lower eGFR have on
average a higher heritability (Table 2). For example, the aga-
lactosylated IgG glycans we found associated with lower eGFR,
have a high heritability, ranging from 0.72 to 0.75, whereas
galactosylated glycans GP14 and G2n derived trait have a low
heritability (0.36 and 0.41, respectively).24 The highly heritable
glycans associated with eGFR, have been previously associated
with different genes.12 However, there is as yet no overlap with
genes previously reported in CKD genome-wide association
studies.5 Our findings may indicate a new approach to deeper
understanding of the contribution of genetics in IgG glycosyla-
tion and kidney damage.

Although the identified glycans do not predict incident
CKD (defined as eGFR,60 mL/min per 1.73 m2) more accu-
rately than clinical parameter, their inclusion in the models
improves the incident CKD risk prediction. These glycansmay
be more sensitive to earlier stages of reduced renal function, as
the eGFR-defined onset of CKD occurs only after half of the

Figure 2. IgG glycan profiles in eight pairs of twins discordant for renal function. Comparisons between each pair of twins where one has
extreme renal phenotype (eGFR,30 mL/min per 1.73 m2) versus non-CKD. (A) Directly measured glycans structures. (B) Derived traits
that measure sialylation, galactosylation, and bisecting GlcNAc. Results are in line with those observed in the discovery population
(Figure 1).
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kidneys’ filtration ability has been lost. Longitudinal studies
could help to address this hypothesis.

Thepresent studyhas several strengths. First,we employed a
two-stage design (discovery and independent replication with
stringent P values), so minimizing the risk of false positive
findings. Second, we used identical twins discordant for renal
function in the validation analysis. Glycan levels may be influ-
enced by many factors including genetics, age and environ-
ment.12 As identical twins share 100% of their genetic
makeup, and are matched perfectly for age, gender, social
class, etc., we were able to validate the role of IgG on renal
function; isolating the nongenetic contribution. These data
help us to understand the complex interplay between genetic
and nongenetic influences that determine renal function.

We note some study limitations. First, there is a female
predominance in our study sample (95%of the individuals are,
for historical reasons, women). Second, our population being
volunteers is slightly healthier than average with a lower rate of
diabetes and results might not be generalizable to more severe
diabetes populations. Third, the cross-sectional nature of our
data does not allow us to draw conclusions as to whether the
glycans identified are causative of kidney function decline or
merely correlated with it. Finally, we cannot provide reliable
estimates as to what proportions of the identified glycans were
from Fc and from Fab, respectively.However, in a small pilot of
Fc-glycopeptides by nano-liquid chromatography tandem
mass spectrometry39 on 96 representative age-matched indi-
viduals from the extremes of the eGFR distribution, we find
the same direction of effect with renal function for all but one.
This suggests that our initial observations mostly come from
the Fc glycans (Supplemental Table 3).

Our results highlight the promising role of glycomics in
renal studies. Uncovering this relationship by extending the
researchwith clinical subsets and longitudinal datawould help
to identify further novel markers that would be potentially
useful to detect at-risk patients, in the early stages of CKD.
These results open new avenues to our understanding of renal
damage and encourage further studies in populations with
more severe CKD and proteinuria information, as well as
studies comparing patients with autoimmune CKD with
patients whose CKD is due to other etiologies. Moreover,
this would help to gain additional insights into the patho-
physiology of CKD and potential therapeutic targets.

CONCISE METHODS

Study Subjects
Study subjects were twins enrolled in the TwinsUK registry, a national

registerof adult twins. Twinswere recruited as volunteers by successive

media campaigns without selecting for particular diseases or traits.44

In this study we analyzed data from 3274 individuals with glycomics

and creatinine data available. The study was approved by St. Thomas’

Hospital Research Ethics Committee, and all twins provided in-

formed written consent.

Phenotype Definitions
Data relevant to the present study include BMI (body weight in

kilograms divided by the square of height in square meters), type II

diabetes (defined if fasting glucose $7 mmol/L or physician’s letter

confirming diagnosis) and hypertension. Renal parameters; eGFR

was calculated from standard creatinine using the Chronic Kidney

Disease Epidemiology Collaboration equation.45 CKD was defined as

an eGFR,60 ml/min per 1.73 m2 according to the current Kidney

Disease OutcomeQuality Initiative (K/DOQI) guidelines.46MZ pairs

were considered discordant for renal function if one twin had an

eGFR$90 and the other had eGFR#90 mL/min per 1.73 m2 and

the difference between their eGFR levels was.15 ml/min per 1.73 m2.

Analysis of IgG Glycans
Isolation of IgG from Human Plasma
The IgG was isolated using protein G monolithic plates (BIA

Separations, Ajdovš�cina, Slovenia) as described previously.42

Glycan Release and Labeling
Glycan release and labeling were performed essentially as previously

described.24,42 Briefly, dried IgGwas denaturedwith 2%SDS (wt/vol) and

N-glycans were released by digestionwith PNGase F (ProZyme,Hayward,

CA). After deglycosylation,N-glycans were labeled with 2-AB fluorescent

dye. Free label and reducing agent were removed from the samples using

hydrophilic interaction chromatography–solid-phase extraction.

Hydrophilic Interaction Chromatography-UPLC
Fluorescently labeled N-glycans were separated by hydrophilic in-

teraction chromatography on a Waters Acquity UPLC instrument

(Waters, Milford, MA) as described previously.42 Data processing

was performed using an automatic processing method with a tradi-

tional integration algorithm after which each chromatogram was

manually corrected to maintain the same intervals of integration for

all the samples. The chromatograms were all separated in the same

manner into 24 peaks and the amount of glycans in each peak was

expressed as a percentage of the total integrated area. In addition to 24

directly measured glycan structures, 52 derived traits were calculated.

These derived traits average particular glycosylation features (galacto-

sylation, fucosylation, bisecting GlcNAc, and sialylation) (Supplemental

Figure 1, Table 1).

Statistical Analysis
Statistical analysis was carried out using Stata version 12 and R

(version 3.1.2) and visualized using the ggplot2 package.

Glycans were globally normalized and log transformed using the

right-skewness of their distributions. To remove experimental biases,

all measurements were adjusted for batch and run-day effects using

ComBat (R-package sva). Derived glycan traits were calculated using

normalized and batch-corrected glycan measurements (exponential

of batch corrected measurements). All variables were centered and

scaled to have mean 0 and standard deviation 1. Outliers (more than

6SD from the mean) were excluded from the analysis.

Association analyses between eGFR and glycan traits were

performed using random intercept linear regressions adjusting for

age, sex, BMI, diabetes, hypertension, and family relatedness as

6 Journal of the American Society of Nephrology J Am Soc Nephrol 27: ccc–ccc, 2015

CLINICAL RESEARCH www.jasn.org

http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2015010109/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2015010109/-/DCSupplemental


random effect. We used a conservative Bonferroni correction to

account for multiple testing assuming 76 independent tests as

suggested by Pucic et al.,42 so giving a significant threshold of

(P,6.53104; 0.05/76). The Bonferroni-significant eGFR glycan as-

sociations were replicated in the previously excluded group of MZ

discordant twins using the same model. Paired t-tests were used to

evaluate the association with incident CKD in an independent subset

of twins where one co-twin had a significant decline in renal function.

To assess how glycans can improve the prediction of CKD

(eGFR,60 ml/min per 1.73 m2), three Least Absolute Shrinkage

and Selection Operator regression models were created (R package

glmnet): The first one using only clinical parameters; age, sex, type II

diabetes, and hypertension, to predict CKD, the second using the set

of original glycan traits, which were found to be Bonferroni signifi-

cant before (GP2, GP6, GP14, GP18), and the last one using both

glycans and clinical parameters. The quality of all three models was

assessed using a ten-fold cross-validation. The regularization parameter

l was trained separately for each fold using a nested cross-validation.

Receiver operating characteristic curves (and particularly the area under

the curves) were calculated for each fold and averages and confidence

intervals were reported.
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The Association Between Low  
Back Pain and Composition  
of IgG Glycome
Maxim B. Freidin1,*, Toma Keser2,*, Ivan Gudelj3, Jerko Štambuk3, Dunja Vučenović1,4, 
Massimo Allegri5, Tamara Pavić2, Mirna Šimurina2, Stella M. Fabiane1, Gordan Lauc2,3,# & 
Frances M. K. Williams1,#

Low back pain (LBP) is a common debilitating condition which aetiology and pathogenesis are 
poorly understood. We carried out a first so far analysis of associations between LBP and plasma 
IgG N-glycome in a sample of 4511 twins from TwinsUK database assessed for LBP, lumbar disc 
degeneration (LDD) as its possible cause, and IgG-glycan levels. Using weighted correlation network 
analysis, we established a correlation between LBP and glycan modules featured by glycans that either 
promote or block antibody-dependent cell-mediated cytotoxicity (ADCC). The levels of four glycan 
traits representing two of those modules were statistically significantly different in monozygotic 
twins discordant for LBP. Also, the trend to higher prevalence of systemic inflammatory disorders was 
shown for twins with low level of fucosylated glycans and high level of non-fucosylated glycans. Core 
fucosylation of IgG is a “safety switch” reducing ADCC, thus our results suggest the involvement of 
ADCC and associated inflammation in pathogenesis of LBP. No correlation between LDD scores and 
glycans was found assuming that the inflammation may not be a part of LDD. These data provide a new 
insight into understanding the complex pathophysiology of LBP and suggest glycan levels as a possible 
biomarker for inflammation-related subtypes of LBP.

Low back pain (LBP) is a common musculoskeletal condition in all ages1. The lifetime prevalence of non-specific 
LBP may reach 80%, with the annual prevalence ranging between 25% and 60% in different ethnic groups2,3. It is a 
diverse group of mixed pain syndromes with different molecular pathologies at different structural levels display-
ing similar clinical manifestations and radiologic findings. Why there is such huge inter-personal variability in 
severity of chronic LBP is yet to be clearly defined. Lumbar disk degeneration (LDD) is widely believed to be one 
of the major contributing factors. Nevertheless, MRI findings of disc degeneration cannot help to define clearly 
the pathophysiology of LBP and its prognosis4.

Even though, the development of LDD is associated with such occupational factors as heavy lifting, frequent 
bending and twisting5, genetic predisposition is much more important as a risk factor6.

A TwinsUK study showed genetic background as the major factor associated with LBP in women and also 
revealed a significant genetic correlation between LBP and LDD7. Genetic studies identified a dozen of genes 
associated with LDD, such as genes coding collagens, vitamin D receptor, interleukins, matrix metalloproteinases 
and other molecules8,9.

Large genome-wide linkage study and a genome-wide meta-analysis identified CHST3 gene associated with 
LDD, and a subsequent functional analysis showed the risk allele decreases the gene expression, possibly, due to 
the enhanced interaction with miR-513a-5p microRNA10. Also, a meta-analysis of several genome-wide associa-
tion studies revealed an association between LDD and PARK gene with the differential methylation of the PARK 
gene promoter as a possible cause for the association11. Also, an increased methylation of SPARC gene was found 
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to be associated with LBP and LDD in humans and mice12. These studies incur epigenetic factors in the develop-
ment of LDD and LBP.

Thus, the discovery of molecular factors contributing to the predisposition to LBP and LDD and mechanisms 
by which these factors act is essential to facilitate the development of new biomarkers of risk and response to 
specific treatments. Apart from genomic and epigenomic factors, other newly established “omes” can be of value.

In particular, glycome (the entire composition of glycans) attracts attention. Glycans constitute the most abun-
dant and diverse form of the post-translational modifications. All cell surface and secreted glycoproteins that 
contain appropriate sequences (Asn-X-Ser/Thr where X is any amino acid except proline) can potentially acquire 
N-linked oligosaccharides (N-glycans) while they travel through the endoplasmic reticulum and the Golgi com-
partments. Glycans can influence disease development in many syndromes such as congenital disorders of glyco-
sylation, cancer, rheumatoid arthritis and AIDS13. Glycans are crucial for the immune system, as some of the most 
important interactions between the immune system and viruses and bacteria are mediated by protein-glycan 
interactions. The biological functions of glycans go from basic structural roles to development, protein folding 
and immune response.

While genes unequivocally determine the structure of each polypeptide, there is no genetic template for the 
glycan part. Instead, hundreds of genes and their products interact in the complex pathway of glycan biosynthesis 
resulting in a very complex biosynthetic pathway that is further complicated by both direct environmental influence 
(nutrition, hormonal status, etc) and epigenetic memory of past environmental effects (altered gene expression)14–16.  
It is possible that some of the considerable genetic predisposition to LDD may be mediated via glycans.

Immunoglobulin G (IgG) glycosylation has been well defined, and many important functional effects of 
alternative IgG glycosylation have been described17. Glycans that lack terminal galactose activate complement 
and make IgG pro-inflammatory, while the addition of galactose decreases inflammatory potential of IgG18,19. 
Further extension of IgG glycans by the addition of sialic acid dramatically changes the physiological role of 
IgG, converting it from a pro-inflammatory into an anti-inflammatory agent. Terminal α2,6-sialylation of IgG 
glycans decreases the ability of IgG to bind to activating FcγRs and promotes recognition by DC-SIGN, which 
increases expression of inhibitory FcγRIIB and is anti-inflammatory20. Another example is the role of core fucose 
in the modulation of antibody-dependent cellular cytotoxicity: IgG-containing glycans that lack core fucose have 
100-fold increased affinity for FcγRIIIA and are therefore much more efficient in activating antibody-dependent 
cellular cytotoxicity than fucosylated glycoforms of the same molecule21.

In this study, we analyzed twins from TwinsUK registry, to assess whether persons reporting episodes of LBP 
had detectable levels of altered IgG glycosylation.

Results
The study aimed at identifying relationships between IgG glycosylation and pain. We used a cohort of twins from 
TwinsUK registry with established phenotypes of LBP and using a recently developed high-throughput analysis 
method quantified IgG glycans in their plasma specimens. After pre-processing and filtering of the data, a total 
of 4511 individuals were analyzed including 1215 pairs of DZ twins, 491 pairs of MZ twins, and 1099 unpaired 
individuals (Table 1). Low back pain status was known for 3557 individuals.

Analysis of association between glycan levels and LBP.  Overall, 76 directly measured or derived gly-
can traits were assessed for an association with LBP (Supplementary Table 1). Linear mixed model analysis with 
BMI, sex, inflammatory diseases and LBP status included as fixed covariate and variation in IgG glycan quantities 
within twin pairs as random effect revealed nominally statistically significant associations of LBP with several 
glycan traits with the strongest association seen for IGP49 (GP10n) (Fig. 1). However, none of the associations 
passed the significance threshold set to control for multiple testing (p = 0.0027). Same was true for the analysis 
of correlations between glycan levels and summary scores for lumbar magnetic resonance imaging signs (LSUM; 
Supplementary Table 2; Supplementary Figure 1).

Trait Value %

Age ± SD 51.8 ± 14.1 –

Females/males 4175/336 92.6/7.4

BMI ± SD 26.3 ± 5.0 –

LBP in total sample, 
positive/negative/
unknown

1064/2493/954 23.6/55.3/21.1

LBP in pairs of twins, number of pairs

  MZ twins

both positive/both 
negative/discordant/
unknown in at least 
one of the twins

57/252/126/56 11.6/54.7/25.7/11.4

  DZ twins

both positive/both 
negative/discordant/
unknown in at least 
one of the twins

146/452/316/301 12.0/37.2/26.0/24.8

Table 1.   Demographics of the studied twins.
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WGCNA.  Using the weighted correlation network analysis (WGCNA) methodology, we carried out a network 
analysis for glycan levels to establish clusters of correlated glycans which, possibly, reflect their functional rela-
tionships and revealed associations between these clusters and pain phenotypes.

Using signed networks, we identified seven modules of correlated glycans (Fig. 2; Supplementary Table 1), 
which can be grouped into two big branches comprising yellow, brown and turquoise modules, from one hand, 
and black, green, blue and red modules, from the other hand (Fig. 3).

The most abundand turquoise module is comprised of glycans with bisecting N-acetylglucosamine (GlcNAc) 
which was reported to promote antibody-dependant cell-mediated cytotoxicity (ADCC)22. Similarly, the brown 
module belonging to the same branch of modules, contains non-fucosylated glycans, which also promote ADCC. 
The yellow module from the same branch is enriched of bi-galactosylated and sialylated glycans which are main 
immunosuppressive glycans.

Another branch’s biggest blue module, in opposition to the turquoise and brown modules, is enriched of 
fucosylated glycans, does not include glycans with bisecting GlcNAc, and also contains some monogalactosylated 
glycans. The red module is comprised of primarily disialyated glycans exhibiting immunosupressive capacity. 
The green module is mostly presented by minor structures, beside GP4, IGP43 (GP4n) and IGP55 (G0n), which 
are main non-galactosylated glycans exhibiting pro-inflammatory features. Finally, the black module contains 
glycans with one sialic acid, bisecting GlcNAc, and core fucose.

To reveal relationships between glycan modules and pain phenotypes, we carried out a correlation analysis 
between module eigenvalues (estimated as first principal component of glycan levels in a module) and LBP and 
MRI trait LSUM (Fig. 4). LBP was found to be positively correlated with turquoise and brown modules and neg-
atively with blue module. A hint to correlation between green module and LBP was seen; however, these correla-
tions did not reach statistical significance.

Also, even though the correlation strength between glycan modules and MRI-traits was of similar magnitude 
as those for LBP (R = 0.04–0.05), the correlations did not reach statistical significance for MRI-traits.

Figure 1.  P-values (−log10) for the analysis of associations between glycan levels and low back pain. Linear 
mixed models were used to estimate the associations using LBP status, BMI, sex, and major inflammatory 
disease status as fixed factors and family status as a random factor.

Figure 2.  Modules of correlated glycans obtained using WGCNA methodology. 



www.nature.com/scientificreports/

4Scientific Reports | 6:26815 | DOI: 10.1038/srep26815

Average glycan significance for this phenotype (defined as the average for the correlation coefficients between 
glycan levels in a module and a trait) was highest for blue and turquoise modules for LBP (Fig. 5). These results 
suggest that glycans from the blue and turquoise modules may be of especial interest for subsequent study of their 
relationships with pain phenotype.

Discordant twins analysis.  To further analyse the relationships between glycome and pain phenotypes, we 
carried out comparisons of glycan levels in MZ and DZ twins discordant for LBP using paired t-test.

For MZ twins, we identified statistically significant differences between the twins with and without LBP for the 
IGP65 (FG2n/G2n), IGP74 (FBG2n/FG2n), IGP75 (FBG2n /[FG2n + FBG2n ]), and IGP76 (FG2n/[BG2n + FBG2n]) 

Figure 3.  Relationships between modules of correlated glycans. 

Figure 4.  Correlations between module eigenvalues and pain phenotypes. Correlations were calculated 
between module eigenvalues (vector of first principal component of glycans in a module) and low back pain 
(LBP) using point-biserial correlation coefficient and summary score for magnetic resonance imaging signs for 
lumbar spine (LSUM) using Pearson correlation coefficients. Corresponding p-values are provided in brackets.
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derived traits (Fig. 6; p < 0.0027). Notably, these four glycan traits belong to the blue and turquoise modules 
identified in the WGCNA analysis. Accordingly, IGP65 and IGP76 of the blue module were found to be elevated 
in MZ twins without LBP, while IGP74 and IGP75 of the turquoise module were elevated in MZ twins with LBP 
(Fig. 7). The four glycan traits were derived from neutral glycans GP14 and GP15, and also GP13 for IGP76, with 
GP14 being the numerator for IGP65 and IGP76, while GP15 the numerator for the other two (Supplementary 
Table 1). Intriguingly, neither GP14, nor GP15 showed any trend to association with LBP; however, there was 
a weak, but significant negative correlation between GP14 and LCUM values (Pearson r = −0.08, p = 0.04; 
Supplementary Table 2; Supplementary Figure 1).

No statistical significant differences in glycan levels were found for DZ twins or MZ and DZ twins combined.
To pursue a cause for association between LBP and glycan levels in MZ twins discordant for LBP, we split them 

into groups of high and low level of IGP65, IGP74, IGP75, and IGP76 using 25% and 75% quintiles as the cut off 
points and compared the prevalence of systemic inflammatory disorders (rheumatoid arthritis, systemic lupus 
erythematosus, ulcerative colitis and Crohn’s disease) in these groups. We found the increase of inflammatory 
diseases in individuals exhibiting low levels of IGP65 and IGP76 and high levels of IGP74 and IGP75 (Fig. 8). This 
pattern was in full agreement with the observation of association between these glycan levels and LBP, though 
the differences in inflammatory disorders prevalence did not reach statistical significance (according to Fisher’s 
exact test p-values).

Figure 5.  Average glycan significance across modules for LBP. Glycan significance was defined as the average 
coefficient of correlation between a trait and glycan levels in a module; p-value is given for Kruskal-Wallis test 
for the difference of glycan significance across the modules.

Figure 6.  P-values (−log10) for comparisons of mean glycan levels in MZ twins discordant for LBP 
phenotype by paired t-test. Red line corresponds to p = 0.0027 which was taken as the significance threshold 
based on the 19 effective independent tests with Sidak’s correction for multiple testing.
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Discussion
In this study we have evaluated association between levels of plasma IgG glycans and 
LBP.  Linear mixed-models analysis did not reveal statistically significant (p < 0.0027) associations between 
glycan levels and LBP. However, for several glycans nominally significant associations were obtained.

In an attempt to consider glycome as a whole, we carried out a network analysis using weighted correlation 
network approach (WGCNA). This is a powerful methodology for revealing clusters (modules) of multiple omic 
traits, such as genome-wide gene expression or global methylation profiles, and placing them into a biological 
context through the analysis of associations between the clusters and diseases or traits of interest23–28. To the best 
of our knowledge, this method has never been applied before to glycome. Even though, glycans do not interact 
with each other in a way of genes or proteins, the network methodology underlying WGCNA analysis still seems 
valuable for glycome as it allows revealing functionally related groups of glycans exhibiting overlapping biological 
activity.

Using WGCNA approach we revealed seven modules of glycans clustered according to their functional capa-
bilities, with the two biggest modules (turquoise and blue) enriched with glycans with opposite potential for 
the development of ADCC through the regulation of core fucosylation and bisection. Fucosylation is crucial 
in many biological processes and inflammation in particular. On average, 95% of the IgG population is core 

Figure 7.  Glycan levels in MZ twins discordant for LBP phenotype. 

Figure 8.  The prevalence of systemic inflammatory disorders (rheumatoid arthritis, systemic lupus 
erythematosus, ulcerative colitis, and Crohn’s disease) in twins with high and low levels of glycans and 
discordant for LBP. The cut off points for glycans levels were set at 25% and 75% quintile for the corresponding 
distribution.



www.nature.com/scientificreports/

7Scientific Reports | 6:26815 | DOI: 10.1038/srep26815

fucosylated29; core fucose prevents activation of ADCC, thus, most of the immunoglobulins have a “safety 
switch”, which prevents them from killing the target cell. Malfunction of this system appears to be associated 
with autoimmune diseases, as indicated by both pleiotropic effects of genes that associate with IgG glycosylation 
on different inflammatory and autoimmune diseases, and observed alterations in IgG glycosylation in systemic 
lupus erythematous30,31 and many inflammatory diseases32. We observed a positive correlation between LBP and 
“pro-ADCC” turquoise and brown modules and a negative correlation between LBP and “anti-ADCC” blue mod-
ule (Fig. 4). Assuming that the development of LBP syndrome is in part related to inflammation33 and that ADCC 
contributes to the joint inflammation in some types of back pain34, one could expect that the decreased levels of 
core fucosylation and increased levels of bisecting GlcNAc in IgG glycans may contribute to increased ADCC 
and inflammation in LBP patiens. This observation corroborates with the finding of the significant difference 
in the levels of blue and turquoise module glycans in MZ twins discordant for LBP: IGP65 and IGP76 (blue 
module) were decreased in LBP-positive persons, while IGP74 and IGP75 (turquoise module) were increased 
in LBP-positive persons (Figs 6 and 7). Accordingly, we found the increased prevalence of major inflammatory 
diseases in LBP-discordant MZ twins with low levels of IGP65 and IGP76 and high levels of IGP75 and IGP76 
(Fig. 8). Even though, the differences in the diseases prevalence were not statistically significant, the pattern of 
the differences corresponds to the pattern of association between the glycan levels and LBP, thus linking the three 
entities (glycans, LBP, and systemic inflammatory diseases). It is worth noting, that during inflammation process 
IgG glycome may vary in a quite complex way following several different patterns35. Therefore, the relationships 
between fucosylation, bisecting GlcNAc and LBP may not be entirely straightforward.

Interestingly, no statistically significant differences were found between DZ twins discordant for LBP. This may 
reflect a pronounced impact of environmental or gene-environment variability on co-variation between glycan 
levels and LBP.

Conclusion
The current study was a first attempt to establish relationships between LBP and glycome. We proceeded from 
a hypothesis that LBP may be associated with an occult inflammation reflected by IgG glycan levels. We found 
consistent associations between pro- and anti-ADCC glycans with LBP, thus providing a proof for the tested 
hypothesis. Overall, our findings provide a further clue how inter-individual differences in IgG glycosylation 
might affect mechanisms of the development of LBP and suggest that glycans can be of interest as possible patient 
stratification biomarkers of this pain syndrome.

Material and Methods
Sample.  Participants were a sample of MZ and DZ twins enlisted in the Twins UK registry36. The partici-
pants in the present study had undergone height and weight measurements used to calculate BMI. Collection of 
socio-demographic and LBP data was carried out during clinical visit or via a postal self-completion question-
naire. The twins were unaware of the precise research hypothesis addressed in the present study.

The study was carried out under the auspices of the FP7 PainOmics project and was approved by the St 
Thomas’ Hospital Research Ethics Committee. All the methods were carried out in accordance with the approved 
guidelines. All participating twins provided signed informed consent.

Participating twins underwent an assessment that included a nurse-led interview and a number of clinical 
and laboratory tests. As part of the study, the twins completed two standardized questionnaires relating to their 
lifetime history of low back symptoms. The questionnaires have been completed by each twin separately. The 
questionnaires included written questions and a mannequin pain diagram allowing an assessment of the timing, 
distribution, radiation, severity, and duration of pain together with information relating to functional disability. 
Low back pain was defined on a mannequin as being located between the 12th rib and the gluteal folds. First 
questionnaire followed the format of questions used in the UK Medical Research Council Nurses Study37 and the 
procedure of the assessment is detailed elsewhere38. The assessment of twins using this questionnaire was done in 
framework of the UK Twin Spine Study7,39. Another questionnaire followed the format of London Fibromyalgia 
Epidemiology Symptom Screening Questionnaire40. Specifically, the following questions have been used: “In the 
past month, have you had pain symptoms in this area (central lumbar region, left lumbar region, right lumbar 
region, left buttock, right buttock) lasting at least 24 hours? ” and “Have you had pain like this in this areas for at 
least the past 3 months? ”. This assessment using this questionnaire was done in framework of ongoing studies of 
chronic pain syndromes undertaken by the Department of Twin Research and Genetic Epidemiology at King’s 
College London41.

The LBP phenotype was defined as a binary trait based on questionnaire responses (1 = affected and 0 = non-
affected). Participants were categorised as cases for LBP if they reported having the syndrome with a total dura-
tion of >1 month and associated with disability according to the first questionnaire or at least 3 months according 
to the second questionnaire. Overall, 1656 and 2975 partly overlapping participants have been assessed using first 
and second questionnaire, respectively, which allowed identification of the LBP status in 3557 participants. Out 
of them, 585 participants (35.3% tested using first questionnaire) had disabling LBP lasting >1 month and 582 
participants (20.0% tested using second questionnaire) had LBP lasting at least 3 months.

For 647 participants magnetic resonance imaging (MRI) was carried out as a part of LBP status assessment. 
The MRI scan was performed using a Siemens (Munich, Germany) 1.0 T superconducting magnet. Sagittal images 
were obtained using a fast spin-echo sequence of time to recovery (TR)/time to echo (TE) 5000–4500/112 msec, 
with a slice thickness of 4 mm. Grading was performed on T2-weighted images, although T1 images were also 
obtained for certain measurements. Axial sections were obtained at selected levels to assess structural changes in 
individuals who had features suggesting prolapse. To avoid problems related to diurnal variation in disc height all 
MRI scans were performed >1 hour after the subjects arose from sleep in the morning, with no exercise or other 
rest allowed between arising and the scan, and importantly, each twin pair was scanned at the same appointment 
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and on the same machine42. A disease (LBP) severity score was constructed from the sum of scores for disc bulge, 
height, signal change, and narrowing in the lumbar spine (LSUM).

Analysis of IgG glycans
Isolation of IgG from Human Plasma.  The IgG was isolated using protein G monolithic plates (BIA 
Separations, Ajdovščina, Slovenia) as described previously29. Briefly, 50 to 90 μL of serum was diluted 7 × with 
1 × PBS, pH 7.4, applied to the protein G plate and instantly washed with 1 × PBS, pH 7.4, to remove unbound 
proteins. IgG was eluted with 1 mL of 0.1 M formic acid (Merck, Darmstadt, Germany) and neutralized with 1 M 
ammonium bicarbonate (Merck).

Glycan Release and Labeling.  IgG samples were first denatured with addition of 30 μL 1.33% sodium 
dodecyl sulfate (w/v) (Invitrogen, Carlsbad, CA) and by incubation at 65 °C for 10 min. Subsequently, 
10 μL of 4% Igepal-CA630 (Sigma-Aldrich, St. Louis, MO) and 1.25 mU of PNGase F (ProZyme) in 10 μL 
5 × phosphate-buffered saline were added to the samples. The samples were incubated overnight at 37 °C for 
N-glycan release. The released N-glycans were labeled with 2-AB. The labeling mixture was freshly prepared by 
dissolving 2-AB (Sigma–Aldrich) in dimethyl sulfoxide (Sigma–Aldrich) and glacial acetic acid (Merck) mix-
ture (85:15, v/v) to a final concentration of 48 mg/mL. A volume of 25 μL of labeling mixture was added to each 
N-glycan sample in the 96-well plate. Also, 25 μL of freshly prepared reducing agent solution (106.96 mg/mL 
2-picoline borane [Sigma-Aldrich] in dimethyl sulfoxide) was added and the plate was sealed using adhesive 
tape. Mixing was achieved by shaking for 10 min, followed by 2-hour incubation at 65 °C. Samples (in a volume 
of 100 μL) were brought to 80% acetonitrile (ACN) (v/v) by adding 400 μL of ACN (J.T. Baker, Phillipsburg, NJ).  
Free label and reducing agent were removed from the samples using hydrophilic interaction chromatography–
solid-phase extraction. An amount of 200 μL of 0.1 g/mL suspension of microcrystalline cellulose (Merck) in 
water was applied to each well of a 0.45 μm GHP filter plate (Pall Corporation, Ann Arbor, MI). Solvent was 
removed by application of vacuum using a vacuum manifold (Millipore Corporation, Billerica, MA). All wells 
were prewashed using 5 × 200 μL water, followed by equilibration using 3 × 200 μL acetonitrile/water (80:20, v/v). 
The samples were loaded to the wells. The wells were subsequently washed seven times using 200 μL acetonitrile/
water (80:20, v/v). Glycans were eluted two times with 100 μL of water and combined eluates were stored at 
−20 °C until usage.

Hydrophil ic  Interaction Chromatography (HILIC)–Ultra Performance Liquid 
Chromatography.  Fluorescently labeled N-glycans were separated by hydrophilic interaction chromatogra-
phy on a Waters Acquity ultra performance liquid chromatography (UPLC) instrument (Milford, MA) consisting 
of a quaternary solvent manager, sample manager, and an FLR fluorescence detector set with excitation and emis-
sion wavelengths of 250 and 428 nm, respectively. The instrument was under the control of Empower 2 software, 
build 2145 (Waters). Labeled N-glycans were separated on a Waters bridged ethylene hybrid, glycan chromatogra-
phy column, 100 × 2.1 mm internal diameter, 1.7-μm bridged ethylene hybrid particles, with 100 mM ammonium 
formate, pH 4.4, as solvent A and acetonitrile as solvent B. The separation method used a linear gradient of 75% 
to 62% acetonitrile (vol/vol) at flow rate of 0.4 mL/min in a 25-minute analytical run. Samples were maintained 
at 5 °C before injection, and the separation temperature was 60 °C. The system was calibrated using an external 
standard of hydrolyzed and 2-AB labeled glucose oligomers from which the retention times for the individual 
glycans were converted to glucose units. Data processing was performed using an automatic processing method 
with a traditional integration algorithm after which each chromatogram was manually corrected to maintain the 
same intervals of integration for all the samples. The chromatograms were all separated in the same manner into 
24 peaks (GP1-GP24).

Statistical analysis.  Pre-processing and filtering.  Directly measured glycan levels were normalized and 
experimental noise was removed through filtering and batch correction. Before this, we removed GP3 and com-
bined GP20 and GP21 into a single trait.

First, we filtered out most extreme values from the dataset (beyond 0.999% percentile). Then, quotient nor-
malization was applied using median values across the dataset as a reference43. Batch effect associated with dif-
ferent plates used to measure glycan levels was identified and corrected for using ratio-based method with either 
geometric mean or median44. As the results were almost equivalent, herewith, we report only the results for the 
dataset corrected with geometric mean.

After these steps, we estimated 55 derived glycan levels from the directly measured glycans45 using glycanr 
package for R [https://github.com/iugrina/glycanr] (Supplementary Table 1). These derived traits average par-
ticular glycosylation features (galactosylation, fucosylation, sialylation) across different individual glycan struc-
tures and consequently they are more closely related to individual enzymatic activities and underlying genetic 
polymorphisms. Finally, we applied inverse transformation of ranks to normality to obtain standard Normal 
distribution using rntransform function from GenABEL package for R46.

After pre-processing we assessed the dependency between the glycan traits and such confounders as age, 
sex, and body-mass index (BMI). For age piece-wise relationships with glycan levels were found, which made it 
unjustified adding age in linear regression models as a confounder. Therefore, before further analysis we corrected 
glycan levels for age (through residuals) by segmented regression using 40–45 years as initial break-down 
points as implemented in segmented package for R47. The choice of the break-down points was done based on 
the observation of the correlation clouds for age and glycans followed by a bootstrap based search for “true” 
breakpoints. Depending on specific glycans, both BMI and sex exhibited remarkable (and significant) to negligible  
(and insignificant) linear relationships with glycan levels.

https://github.com/iugrina/glycanr


www.nature.com/scientificreports/

9Scientific Reports | 6:26815 | DOI: 10.1038/srep26815

Linear mixed-models analysis.  Because of the twin structure of the dataset, association analyses between disease 
status and glycan traits were performed using linear mixed models with lme4 package for R with BMI and sex 
included as fixed covariates and variation in IgG glycan quantities between twin pairs as random effect. Also, for 
36 participants a diagnosis of a major systemic inflammatory disorder was established, including rheumatoid 
arthritis, systemic lupus erythematosus, ulcerative colitis, and Crohn’s disease. As people with such diagnoses 
normally undergo therapy with painkillers and anti-inflammatory medicine, and also the diseases have previously 
been found associated with variation in glycan levels, we included the diseases status as a fixed effect covariate in 
the analysis. The association was analysed for each glycan separately.

Weighted glycan “expression” networks.  We used WGCNA package for R48,49 to carry out an exploratory analysis 
of “network” dependencies between the glycan traits. The algorithm of the analysis is based on the estimation of 
correlations between the glycan levels across the dataset followed by extraction of relatively independent modules 
of correlated glycans. Glycan levels were adjusted for age, sex, BMI, and inflammatory disease status before the 
analysis. Signed networks algorithm was used which takes into account the direction of the correlation between 
glycans. The modules (represented by their eigenvalue estimated as first principal component for the glycans in 
every module) then were correlated with the pain phenotypes, including LBP and MRI trait LSUM. To estimate 
correlations between glycan modules and pain phenotypes we used point-biserial correlation coefficients and 
Pearson’s correlation coefficients for qualitative and quantitative traits, respectively.

Discordant twins analysis.  We compared the glycan levels in MZ and DZ twins discordant for LBP using paired 
t-test. Prior to the test, glycan levels were adjusted for age, sex, BMI, and inflammatory disease status.

The significance level consideration.  There is an essential correlation between the glycan traits, many of which 
were derived from the original set of directly measured glycans. This complicates straightforward application of 
correction for multiple testing due to the violation of the requirement for the independence of the tests. Taking 
this into account, we estimated the effective number of independent statistical tests as of 1950, which after Sidak’s 
correction for multiple testing provided the significance level of 0.0027.
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5. GENERAL DISCUSSION 
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In contrast to proteins and nucleic acids, N-glycans are non-linear branched 

molecules. Because of their structural complexity and methodological difficulties associated 

with their analysis, the knowledge about the function of glycans and their role in disease 

mechanisms is lagging significantly behind the knowledge about the role of genes and 

proteins. However, as high-throughput analytical techniques for glycan analysis have been 

developed and more information about protein glycosylation emerges, it is becoming clear 

that glycosylation is strictly regulated and that glycan attachment to proteins is of great 

physiological significance 
18

. Several large N-glycome population studies have been 

published until now 
20–22,110

 and they all revealed a high variability in the glycome 

composition between individuals.  However, besides age, which significantly affected 

galactosylation, all other environmental factors individually accounted only for a small 

fraction of the observed variance 
20

, thus the main source of glycome variation between 

individuals is still unknown.  

Using a classical study design with twins enrolled in the TwinsUK registry we have 

evaluated the heritable and non-heritable component of circulating IgG N-glycome and total 

plasma N-glycome. Variation in levels of 51 of the 76 IgG glycan traits studied was at least 

50% heritable and only a small proportion of N-glycan traits had a low genetic contribution. 

Heritability of plasma N-glycome was also high, with half of the plasma glycan traits being at 

least 50% heritable (Table 1 in Supplemental data 2). Although glycans are shaped in a 

complex biosynthetic pathway 
111

 and were believed to be significantly affected by many 

environmental factors 
112

, we found a high contribution of the genetic component to N-

glycome composition. It seems that genetic regulation of the IgG glycome (average 

heritability of all directly measured traits equals 53%) is slightly stronger than the regulation 

of the total plasma glycome (average heritability equals 47%). This makes sense regarding 

how IgG glycan structures can have a profound influence on IgG effector functions 
48

 and 

how proper IgG glycosylation is important for the function of the immune system 
113

. 

Furthermore, plasma glycome is not affected only by the glycan amounts, but also by the 

concentration of each glycoprotein. 

Even though most of the variation in IgG N-glycome in twins is contributed to genetic 

factors, interaction with the environment is also an important source of variability. Because 

some of this variation may be caused by epigenetic changes 
114

, we performed epigenome-

wide association (EWA) analysis. It showed that methylation levels at some genes are also 

implicated in glycome composition, both in those with high heritabilities and those with a 
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lower genetic contribution. These genes have not been previously reported to have a role in 

IgG glycosylation. A similar observation was recently reported in a genome-wide association 

(GWA) study of the IgG glycome which identified 12 genes not previously known to be 

involved in IgG glycosylation 
31

, providing more evidence that IgG glycosylation is a very 

complex and tightly regulated process. Further cohorts with IgG N-glycome information, 

epigenetic and genetic data will be needed to explain the exact meaning and molecular 

pathways underlying this EWA and GWA hits. 

By analysing IgG glycosylation in our population of twins, we also conducted the first 

study to investigate the potential role of IgG glycosylation in kidney function and identified 

14 IgG glycan traits with high statistical significance associated with estimated glomerular 

filtration rate (eGFR). This was also validated in an independent subset of MZ twins 

discordant for renal disease, because MZ twins enable to carry out the ideal case–control 

study, as they are perfectly matched for age, genotype, family background, etc. 

One of the prominently changed features of IgG glycosylation in chronic kidney 

disease (CKD) was the extent of galactosylation. We observed a higher risk of CKD in 

subjects with higher agalactosylated glycans and lower risk in those with higher 

galactosylated IgG. Decreased IgG galactosylation can lead to a more proinflammatory 

antibody response 
48

. This change in IgG galactosylation has been reported in a number of 

inflammatory diseases 
19

, but also occurs with aging in the general population 
65

. The 

decrease in galactosylation is not disease-specific, but is instead a general phenomenon 

associated with decreased immunosuppressive potential of circulating IgG. 

Opposite to changes in galactosylation, the significant changes in sialylation have not 

been associated with many other diseases. Sialylation promotes recognition of IgG by DC-

SIGN, which leads to increased expression of inhibitory FcγRIIB with consequent anti-

inflammatory actions 
50

. Sialylated IgG glycans are also believed to be the active fraction that 

harbors the anti-inflammatory potential of intravenous immunoglobulins (IVIg) therapy, 

which is used to suppress inflammation in a number of diseases 
115

. Decreased IgG sialylation 

significantly reduces antiinflammatory activity of circulating IgG. In our population of twins, 

the sialylation was decreased in patients with CKD and sialylated glycans displayed a 

protective effect against CKD.  

Approximately 18% of IgG glycans contain a bisecting GlcNAc, which significantly 

changes the structural properties of the glycan 
22

. The effects of bisecting GlcNAc on 
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functional properties of IgG are not well understood 
48

, although increase in bisecting 

GlcNAc was reported to promote cell-mediated ADCC 
59

. The addition of bisecting GlcNAc 

also inhibits α1,6-fucosyltransferase (FUT8) and the addition of core fucose to the glycan 
60

. 

Fucosylation is crucial in many biological processes and inflammation in particular.  IgG 

containing glycans that lack core fucose have over 50-fold increased affinity for FcγRIIIa and 

FcγRIIIb and are therefore much more efficient in activating ADCC than fucosylated 

glycoforms of the same molecule. It appears that the lack of core fucose and not the presence 

of bisecting GlcNAc has the most critical role in enhanced ADCC 
61

. In our population of 

twins, the presence of bisecting GlcNAc on IgG glycans was associated with a higher risk of 

CKD. However, it is not clear how the modulation of ADCC could affect the renal damage in 

the onset of a nonautoimmune CKD.  

To determine whether the changes in glycosylation in CKD were restricted to IgG or 

to a more general change in glycosylation of multiple proteins, we searched for an association 

between total plasma N-glycome and eGFR in a subset of 426 individuals. We found no 

difference in plasma glycosylation, suggesting that the effects we see here are likely direct 

effects of IgG glycosylation. However, the lack of association might also be due to power 

issues and so further study on larger sample size is needed to test this.  

Using the WGCNA (weighted correlation network analysis) methodology 
116

, we 

carried out a network analysis for IgG glycan levels in twins to establish clusters of correlated 

glycans. WGCNA is a powerful methodology for revealing clusters (modules) of multiple 

omic traits and placing them into a biological context through the analysis of associations 

between the clusters and diseases or traits of interest. Using signed networks, we identified 

seven modules of correlated glycans. They reflected functionally related groups of glycans 

exhibiting overlapping biological activity. We also found associations between these clusters 

and pain phenotypes in twins with low back pain (LBP). We observed a positive correlation 

between pain phenotypes and "pro-ADCC" WGCNA glycan modules (high bisecting 

GlcNAc and low core fucose) and a negative correlation between pain phenotypes and "anti-

ADCC" module (high core fucose, no bisecting GlcNAc). Although these correlations were 

weak, they may reflect some subtypes of LBP syndromes, which are related to inflammation 

117
 and in which ADCC contributes to the joint inflammation due to the decreased levels of 

core fucosylation and increased levels of bisecting GlcNAc in IgG glycans. This provides a 

new insight into understanding the complex pathophysiology of LBP and suggests glycan 

levels as a possible biomarker for inflammation-related subtypes of LBP. 
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Still, it is not clear whether changes in glycosylation are a consequence or a 

predisposition for the development of a disease. Despite the absence of a direct genetic 

template, the heritability of individual IgG glycans in twin population was very high (up to 

80%), indicating that proinflammatory IgG glycome may also be a predisposition for the 

development of inflammatory diseases. This hypothesis is further supported by the fact that in 

rheumatoid arthritis the decrease in IgG galactosylation has been demonstrated to predate the 

onset of arthritis 
118

. However, galactosylation of IgG is also dynamic and can change quite 

rapidly in acute inflammation 
119

. Thus, it seems that both genetic and environmental factors 

strongly affect IgG galactosylation. This is also supported by the fact that glycome 

composition is associated with both genetic polymorphisms 
29,31

 and epigenetic modification 

on multiple genetic loci. It would be especially interesting to conduct longitudinal studies of 

the IgG glycome within an individual patient before and at different stages of the disease. 

In our study on TwinsUK population we found association between IgG N-glycome 

and CKD and LBP. However, we did not find significant associations between total plasma 

proteins N-glycome and the diseases. Also, plasma glycan traits had a slightly lower 

heritability compared to IgG glycan traits. Interestingly, in previous studies, when glycome 

composition of isolated IgG was analysed in population, it varied more between individuals 

(more than three-fold) 
22

 compared to glycome composition of total plasma proteins 
21

. 

Similarly, compared to GWAS study of the plasma glycome in 2705 individuals 
29

, the recent 

GWAS study of the IgG glycome in 2247 individuals 
31

 has identified five times more 

genetic loci with genome-wide significant associations. The variability of the composition of 

the plasma glycome derives from both variability in the composition of the plasma proteome 

and the variability in the glycosylation process. This difference implies that varying 

concentrations of plasma proteins and different structural and functional roles of the same 

glycans on different plasma proteins actually blur protein-specific regulation of glycosylation 

of individual proteins. By analysing total plasma glycome, glycans are probably averaged 

across the proteome which introduces considerable noise to the quantitation and 

interpretation of plasma glycan levels. Therefore, it may be beneficial to analyse 

glycosylation at a single protein level. 

One of the limitations of this study was that, because of the novelty of the glycan 

phenotypes, we lack the replication for the epigenetic findings in an independent cohort. The 

fact that we find epigenome-wide significant hits on a relatively small sample suggests that 

epigenetic factors contribute to IgG glycan levels, although we cannot exclude false positive 
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results.  Also, results from twin studies cannot be directly generalized to the general 

population because twins are not a random sample of the general population. Therefore, twin 

study results should be validated by demonstrating that twin samples are comparable to 

population-based samples of singletons. Furthermore, for historical reasons, the TwinsUK 

registry has considerably more female than male members. 

The method that we used (HILIC-UPLC analysis) to analyse glycans is able to 

describe changes in galactosylation, sialylation, bisecting GlcNAc, and core fucosylation, but 

it cannot differentiate glycans released from Fc and Fab portions of IgG. Glycans from the Fc 

and Fab portions are known to be different, with Fab glycans having less core fucose and 

more galactose, sialic acid, and bisecting GlcNAc 
46,98

. Nevertheless, only ∼20% of the total 

IgG glycome originates from the Fab portion of IgG. In a small pilot of Fc-glycopeptides by 

nano-liquid chromatography tandem mass spectrometry 
92

 on 96 representative age-matched 

individuals from the extremes of the eGFR distribution, we found the same direction of effect 

with renal function for all but one. This suggests that the observed differences between 

patients and controls presumably originate from the Fc glycans.  

This method for analyzing glycans is currently still not routinely used in clinics. 

However, it is foreseeable that in the near future, with advancing technology which allows 

high-throughput assessment of glycan profiles and with more information about protein 

glycosylation, glycan traits will become attractive and clinically feasible biomarkers. 

Moreover, increased knowledge about protein glycosylation could help to gain additional 

insights into the pathophysiology of disease and encourage development of new therapeutics. 
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6. CONCLUSIONS 
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In this thesis, heritable and non-heritable component of circulating IgG and total 

plasma protein N-glycome composition was evaluated, using a classical study design with 

twins enrolled in the TwinsUK registry. A high contribution of the genetic component to N-

glycome composition was found. Variation in levels of 51 of the 76 IgG glycan traits studied 

was at least 50% heritable and only a small proportion of N-glycan traits had a low genetic 

contribution. Heritability of plasma N-glycome was also high, with half of the plasma glycan 

traits being at least 50% heritable. Average heritability of the IgG glycome was slightly larger 

than the average heritability of the total plasma glycome. Furthermore, epigenome-wide 

association (EWA) analysis showed that methylation levels at some genes are also implicated 

in glycome composition, both in those with high heritability and those with a lower genetic 

contribution. 

By analysing IgG glycosylation in the population of twins, the first study to 

investigate the potential role of IgG glycosylation in kidney function was conducted. 

Fourteen glycan traits were associated with renal function in the discovery population 

(P<6.5×10
−4

) and remained significant after validation in an independent subset of MZ twins 

discordant for renal disease. Those glycan traits belong to three main glycosylation features: 

galactosylation, sialylation, and level of bisecting GlcNAc of the IgG glycans. These results 

indicate the role of IgG glycosylation in kidney function. They provide a novel insight into 

the pathophysiology of CKD and suggest glycan levels as a possible biomarker for CKD. 

  Using the WGCNA methodology, a network analysis for IgG glycan levels to 

establish clusters of correlated glycans was performed. Associations between these clusters 

and pain phenotypes in twins with low back pain were found. There was a weak positive 

correlation between pain phenotypes and "pro-ADCC" WGCNA glycan modules (high 

bisecting GlcNAc and low core fucose) and a weak negative correlation between pain 

phenotypes and "anti-ADCC" module (high core fucose, no bisecting GlcNAc). This suggests 

that some subtypes of LBP may be associated with an occult inflammation which is reflected 

by IgG glycan levels.  

It appears that, even in the absence of a strict genetic template, variability in glycan 

levels is predominantly driven by genetic background and specific pathophysiological 

processes, which makes glycans to be promising candidates for biomarkers in many different 

diseases. 
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8.1. Supplemental data 1: Glycosylation of Immunoglobulin G: 

Role of Genetic and Epigenetic Influences  

 

Table S1. Description of the glycan codes. 

Glycan Code DESCRIPTION FORMULA 

GP1 The percentage of FA1 glycan in total  IgG glycans  GP1 / GP× 100 

GP2 The percentage of A2 glycan in total  IgG glycans  GP2 / GP× 100 

GP4 The percentage of FA2 glycan in total  IgG glycans  GP4 / GP× 100 

GP5 The percentage of M5 glycan in total  IgG glycans  GP5 / GP× 100 

GP6 The percentage of FA2B glycan in total  IgG glycans  GP6 / GP× 100 

GP7 The percentage of A2G1 glycan in total  IgG glycans  GP7 / GP× 100 

GP8 The percentage of FA2[6]G1 glycan in total  IgG 

glycans  
GP8 / GP× 100 

GP9 The percentage of FA2[3]G1 glycan in total  IgG 

glycans  
GP9 / GP× 100 

GP10 The percentage of FA2[6]BG1 glycan in total  IgG 

glycans  
GP10 / GP× 100 

GP11 The percentage of FA2[3]BG1 glycan in total  IgG 

glycans  
GP11 / GP× 100 

GP12 The percentage of A2G2 glycan in total  IgG glycans  GP12 / GP× 100 

GP13 The percentage of A2BG2 glycan in total  IgG glycans  GP13 / GP× 100 

GP14 The percentage of FA2G2 glycan in total  IgG glycans  GP14 / GP× 100 

GP15 The percentage of FA2BG2 glycan in total  IgG 

glycans  
GP15 / GP× 100 

GP16 The percentage of FA2G1S1 glycan in total  IgG 

glycans  
GP16 / GP × 100 

GP17 The percentage of A2G2S1  glycan in total  IgG 

glycans  
GP17/ GP × 100 

GP18 The percentage of FA2G2S1 glycan in total  IgG 

glycans  
GP18 / GP × 100 

GP19 The percentage of FA2BG2S1 glycan in total  IgG 

glycans  
GP19 / GP × 100 

GP20 Structure not determined GP20 / GP × 100 

GP21 The percentage of A2G2S2 glycan in total  IgG glycans  GP21 / GP × 100 

GP22 The percentage of A2BG2S2 glycan in total  IgG 

glycans  
GP22 / GP × 100 

GP23 The percentage of FA2G2S2 glycan in total  IgG 

glycans  
GP23 / GP × 100 

GP24 The percentage of FA2BG2S2 glycan in total  IgG 

glycans  
GP24 / GP × 100 

FGS/(FG+FGS) The percentage of sialylation of fucosylated 

galactosylated structures without bisecting GlcNAc in 

total IgG glycans 

Ʃ(GP16 + GP18 + GP23) / 

Ʃ(GP16 + GP18 + GP23 + 

GP8 + GP9 + GP14)× 100 

FBGS/(FBG+FBGS) The percentage of sialylation of fucosylated 

galactosylated structures with bisecting GlcNAc in 

total IgG glycans 

Ʃ(GP19 + GP24) / Ʃ(GP19 

+ GP24 + GP10 + GP11 + 
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Glycan Code DESCRIPTION FORMULA 

GP15)× 100 

FGS/(F+FG+FGS) The percentage of sialylation of all fucosylated 

structures without bisecting GlcNAc in total IgG 

glycans 

Ʃ(GP16 + GP18 + GP23) / 

Ʃ(GP16 + GP18 + GP23 + 

GP4 +  GP8 + GP9 + 

GP14)× 100 

FBGS/(FB+FBG+FB

GS) 

The percentage of sialylation of all fucosylated 

structures with bisecting GlcNAc in total IgG glycans 
Ʃ(GP19 + GP24) / Ʃ(GP19 

+ GP24 + GP6 + GP10 + 

GP11 + GP15)× 100 

FG1S1/(FG1+FG1S1) The percentage of monosialylation of fucosylated 

monogalactosylated structures in total IgG glycans 
GP16 / Ʃ(GP16 + GP8 + 

GP9)× 100 

FG2S1/(FG2+FG2S1

+FG2S2) 

The percentage of monosialylation of fucosylated 

digalactosylated structures in total IgG glycans 
GP18 / Ʃ(GP18 + GP14 + 

GP23)× 100 

FG2S2/(FG2+FG2S1

+FG2S2) 

The percentage of disialylation of fucosylated 

digalactosylated structures in total IgG glycans 
GP23 / Ʃ(GP23 + GP14 + 

GP18)× 100 

FBG2S1/(FBG2+FB

G2S1+FBG2S2) 

The percentage of monosialylation of fucosylated 

digalactosylated structures with bisecting GlcNAc in 

total IgG glycans 

GP19 / Ʃ(GP19 + GP15 + 

GP24)× 100 

FBG2S2/(FBG2+FB

G2S1+FBG2S2) 

The percentage of disialylation of fucosylated 

digalactosylated structures with bisecting GlcNAc in 

total IgG glycans 

GP24 / Ʃ(GP24 + GP15 + 

GP19)× 100 

F
total

S1/F
total

S2 Ratio of all fucosylated (+/- bisecting GlyNAc) 

monosialylated and disialylated structures in total IgG 

glycans 

Ʃ(GP16 + GP18 + GP19) / 

Ʃ(GP23 + GP24) 

FS1/FS2 Ratio of fucosylated (without bisecting GlcNAc) 

monosialylated  and disialylated structures in total IgG 

glycans 

Ʃ(GP16 + GP18) / GP23 

FBS1/FBS2 Ratio of fucosylated (with bisecting GlcNAc) 

monosialylated  and disialylated structures in total IgG 

glycans 

GP19 / GP24 

FBS
total

/FS
total 

Ratio of all fucosylated sialylated structures with and 

without bisecting GlcNAc 
Ʃ(GP19 + GP24) / Ʃ(GP16 

+ GP18 + GP23) 

FBS1/FS1 Ratio of  fucosylated monosialylated structures with 

and without bisecting GlcNAc 
GP19 / Ʃ(GP16 + GP18) 

FBS1/(FS1+FBS1) The incidence of bisecting GlcNAc in all fucosylated 

monosialylated structures in total IgG glycans 
GP19 / Ʃ(GP16 + GP18 + 

GP19) 

FBS2/FS2 Ratio of fucosylated disialylated structures with and 

without bisecting GlcNAc 

GP24 / GP23 

FBS2/(FS2+FBS2) The incidence of bisecting GlcNAc in all fucosylated 

disialylated structures in total IgG glycans  
GP24 / Ʃ(GP23 + GP24) 

  GP = Ʃ(GP1:GP24) 

GP1
n 

The percentage of FA1 glycan in total neutral IgG 

glycans (GP
n
) 

GP1 / GP
n× 100 

GP2
n 

The percentage of A2 glycan in total  neutral IgG 

glycans (GP
n
) 

GP2 / GP
n× 100 

GP4
n 

The percentage of FA2 glycan in total  neutral IgG 

glycans (GP
n
) 

GP4 / GP
n× 100 

GP5
n 

The percentage of M5 glycan in total  neutral IgG 

glycans (GP
n
) 

GP5 / GP
n× 100 

GP6
n 

The percentage of FA2B glycan in total  neutral IgG 

glycans (GP
n
) 

GP6 / GP
n× 100 
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Glycan Code DESCRIPTION FORMULA 

GP7
n 

The percentage of A2G1 glycan in total  Ineutral IgG 

glycans (GP
n
) 

GP7 / GP
n× 100 

GP8
n 

The percentage of FA2[6]G1 glycan in total neutral 

IgG glycans (GP
n
) 

GP8 / GP
n× 100 

GP9
n 

The percentage of FA2[3]G1 glycan in total  neutral 

IgG glycans (GP
n
) 

GP9 / GP
n× 100 

GP10
n 

The percentage of FA2[6]BG1 glycan in total  neutral 

IgG glycans (GP
n
) 

GP10 / GP
n× 100 

GP11
n 

The percentage of FA2[3]BG1 glycan in total  neutral 

IgG glycans (GP
n
) 

GP11 / GP
n× 100 

GP12
n 

The percentage of A2G2 glycan in total  neutral IgG 

glycans (GP
n
) 

GP12 / GP
n× 100 

GP13
n 

The percentage of A2BG2 glycan in total  neutral IgG 

glycans (GP
n
) 

GP13 / GP
n× 100 

GP14
n 

The percentage of FA2G2 glycan in total  neutral IgG 

glycans (GP
n
) 

GP14 / GP
n× 100 

GP15
n 

The percentage of FA2BG2 glycan in total  neutral IgG 

glycans (GP
n
) 

GP15 / GP
n× 100 

G0
n 

The percentage of agalactosylated structures in total 

neutral IgG glycans  
Ʃ(GP1

n
: GP6

n
) 

G1
n 

The percentage of monogalactosylated structures in 

total neutral  IgG glycans  
Ʃ(GP7

n
: GP11

n
) 

G2
n 

The percentage of digalactosylated structures in total 

neutral IgG glycans  
Ʃ(GP12

n
: GP15

n
) 

F
n total 

The percentage of all fucosylated (+/- bisecting 

GlcNAc) structures in total neutral IgG glycans  
Ʃ(GP1

n
+ GP4

n
+ GP5

n
+ 

GP6
n
+ GP8

n
+ GP9

n
+ 

GP10
n
+ GP11

n
+ GP14

n
+ 

GP15
n
) 

FG0
n total

/G0
n 

The percentage of fucosylation of agalactosylated 

structures  
Ʃ(GP1

n
+ GP4

n
+ GP5

n
+ 

GP6
n
) / G0

n × 100 

FG1
n total

/G1
n 

The percentage of fucosylation of monogalactosylated 

structures  
Ʃ(GP8

n
+ GP9

n
+ GP10

n
+ 

GP11
n
) / G1

n × 100 

FG2
n total 

/G2
n 

The percentage of fucosylation of digalactosylated 

structures  
Ʃ(GP14

n
+ GP15) / G2

n × 

100 

F
n 

The percentage of fucosylated (without bisecting 

GlcNAc) structures in total neutral IgG glycans  
Ʃ(GP1

n
+ GP4

n
+ GP5

n
+ 

GP8
n
+ GP9

n
+ GP14

n
) 

FG0
n
/G0

n 
The percentage of fucosylation (without bisecting 

GlcNAc) of agalactosylated structures  
Ʃ(GP1

n
+ GP4

n
+ GP5

n
) / G0

n 

× 100 

FG1
n
/G1

n 
The percentage of fucosylation (without bisecting 

GlcNAc) of monogalactosylated structures  
Ʃ(GP8

n
+ GP9

n
) / G1

n × 100 

FG2
n
/G2

n 
The percentage of fucosylation (without bisecting 

GlcNAc) of digalactosylated structures  
GP14

n
/ G2

n × 100 

FB
n 

The percentage of fucosylated (with bisecting GlcNAc) 

structures in total neutral IgG glycans  
Ʃ(GP6

n 
+ GP10

n 
+ GP11

n 
+ 

GP15
n
) 

FBG0
n
/G0

n 
The percentage of fucosylation (with bisecting GlcNAc) 

of agalactosylated structures  
GP6

n
/ G0

n × 100 

FBG1
n
/G1

n 
The percentage of fucosylation (with bisecting GlcNAc) 

of monogalactosylated structures  
Ʃ(GP10

n 
+ GP11

n
) / G1

n × 

100 

FBG2
n
/G2

n 
The percentage of fucosylation (with bisecting GlcNAc) 

of digalactosylated structures  
GP15) / G2

n × 100 

FB
n
/F

n   
Ratio of fucosylated structures with and without 

bisecting GlcNAc 
FB

n
/ F

n
 × 100  
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Glycan Code DESCRIPTION FORMULA 

FB
n
/F

n total
  The incidence of bisecting GlcNAc in all fucosylated 

structures in total neutral IgG glycans  
FB

n
/ F

n
 
total

 × 100 

F
n
/(B

n
 + FB

n
) Ratio of fucosylated non-bisecting GlcNAc structures 

and all structures with bisecting GlcNAc 

F
n
/(GP13

n 
+ FB

n
 ) 

B
n
/(F

n
 + FB

n
)  Ratio of structures with bisecting GlcNAc and all 

fucosylated structures (+/- bisecting GlcNAc) 
GP13

n
/ (F

n
+ FB

n
 ) × 1000 

FBG2
n
/FG2

n  
Ratio of fucosylated digalactosylated structures with 

and without bisecting GlcNAc 

GP15
n
/GP14

n
  

FBG2
n 
/(FG2

n
 + 

FBG2
n
 ) 

The incidence of bisecting GlcNAc in all fucosylated 

digalactosylated structures in total neutral IgG glycans  
GP15

n
/(GP14

n 
+ GP15

n
) × 

100 

FG2
n
/(BG2

n
 + 

FBG2
n
) 

Ratio of fucosylated digalactosylated non-bisecting 

GlcNAc structures and all digalactosylated structures 

with bisecting GlcNAc 

GP14
n
/(GP13

n 
+ GP15

n
) 

BG2
n
/(FG2

n
 + 

FBG2
n
)  

Ratio of digalactosylated structures with bisecting 

GlcNAc and all fucosylated digalactosylated structures 

(+/- bisecting GlcNAc) 

GP15
n
/(GP14

n 
+ GP15

n
) × 

1000 

  GP
n
 = Ʃ(GP1

n
:GP15

n
) 

 

 

 

Table S2. List of glycans associated with circulating levels of triglycerides (log) and of C-

reactive protein (Bonferroni P<7x10
-4

). 

Phenotype Glycan Beta[95%CI] P h2 

tryglicerides GP6 0.24[0.13,0.35] 2.54 x10-5 0.75 

tryglicerides GP6n 0.24[0.13,0.35] 3.30 x10-5 0.75 

tryglicerides GP18 -0.2[-0.32,-0.09] 7.10 x10-4 0.73 

tryglicerides FG2n/(BG2n + FBG2n) -0.21[-0.33,-0.09] 7.16 x10-4 0.69 

CRP FG0n total/G0n 0.01[0,0.01] 3.09 x10-4 0.52 

CRP GP8n -0.01[-0.01,0] 6.54 x10-4 0.80 

CRP GP7n -0.01[-0.01,0] 6.81x10-4 0.73 
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Table S3. List of loci associated with all glycans with high heritability (h
2
>0.55). 

Glycan trait Gene 1 Gene 2 Gene 3 Gene 4 

GP1 SUV420H1     
 

GP2 IKZF1 ABCF2-SMARCD3 FUT8 

 GP4 IL6ST-ANKRD55 
   

GP5 
    

GP6 
ABCF2-

SMARCD3 
SYNGR1-TAB1-

MGAT3-CACNA1I   

GP7 IKZF1 FUT8 
  

GP8 
    

GP9 
    

GP10 SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I   

GP11 SMARCB1-DERL3 
   

GP12 FUT8 
   

GP13 
    

GP17 
    

GP18 ST6GAL1 B4GALT1 
  

FGS/(F+FG+FGS) ST6GAL1 B4GALT1 
  

FG2S2/(FG2+FG2S1+FG2S2) ST6GAL1 
   

FBS2/FS2 B4GALT1 SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I  

FBS2/(FS2+FBS2) B4GALT1 SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I  

GP1n SUV420H1 
   

GP2n IKZF1 ABCF2-SMARCD3 FUT8 

 GP5n 
    

GP6n 
ABCF2-

SMARCD3 
SYNGR1-TAB1-

MGAT3-CACNA1I   

GP7n IKZF1 FUT8 
  

GP8n 
    

GP9n 
    

GP10n SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I   

GP11n SMARCB1-DERL3 
   

GP12n FUT8 
   

GP13n 
    

G0n IL6ST-ANKRD55 
   

G1n 
    

Fn total IKZF1 FUT8 
  

FG0n total/G0n IKZF1 FUT8 
  

FG1n total/G1n IKZF1 FUT8 
  

FG2n total /G2n FUT8 
   

Fn IKZF1 SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I  

FG0n/G0n IKZF1 FUT8 SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I 

FG1n/G1n SMARCB1-DERL3 SYNGR1-TAB1-
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MGAT3-CACNA1I 

FG2n/G2n FUT8 
   

FBn SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I   

FBG0n/G0n IKZF1 SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I  

FBG1n/G1n SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I   

FBG2n/G2n SMARCB1-DERL3 

 
  

FBn/Fn IKZF1 SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I  

FBn/Fn total IKZF1 SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I  

Fn/(Bn + FBn) IKZF1 SMARCB1-DERL3 
SYNGR1-TAB1-

MGAT3-CACNA1I  

Bn/(Fn + FBn) ‰ 
    

FBG2n/FG2n SMARCB1-DERL3 
   

FBG2n /(FG2n + FBG2n ) SMARCB1-DERL3 
   

FG2n/(BG2n + FBG2n) SMARCB1-DERL3 
   

BG2n/(FG2n + FBG2n) ‰ 
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8.2. Supplemental data 2: Table 1 
 

The amount of variance attributed to: additive genetic factors (A or heritability), 

common/shared environmental factors (C) and unique environmental factors (E) for total 

plasma N-glycome (data from 440 monozygotic and 610 dizygotic female twins were 

analysed, data not published). 

 

Glycan peak
a 

Glycan structure
b 

Best model A C E 

GP1 FA2 ACE 0.53 0.24 0.23 

GP2 
M5 

FA2B 
ACE 0.54 0.24 0.21 

GP3 A2[6]BG1 AE 0.49 
 

0.51 

GP4 FA2[6]G1 AE 0.73 
 

0.27 

GP5 FA2[3]G1 AE 0.77 
 

0.23 

GP6 FA2[6]BG1 AE 0.81 
 

0.19 

GP7 
M6 

FA2[3]BG1 
AE 0.53 

 
0.47 

GP8 A2G2 ACE 0.55 0.14 0.30 

GP9 A2BG2 AE 0.61 
 

0.39 

GP10+11 FA2G2 ACE 0.44 0.32 0.24 

GP12 FA2BG2 ACE 0.11 0.29 0.59 

GP13 
A2[3]BG1S[3]1 

A2[3]BG1S[6]1 
ACE 0.46 0.21 0.33 

GP14 
FA2[3]G1S[3]1 

FA2[3]G1S[6]1 
AE 0.71 

 
0.29 

GP15 
A2G2S[6]1 

A2G2S[3]1 
ACE 0.18 0.15 0.68 

GP16 A2BG2S[6]1 AE 0.71 
 

0.29 

GP17 FA2G2S[6]1 ACE 0.49 0.16 0.36 

GP18 FA2G2S[6]1 ACE 0.62 0.20 0.18 

GP19 
FA2BG2S[3]1 

FA2BG2S[6]1 
AE 0.72 

 
0.28 

GP20+21 A2G2S[3,6]2 AE 0.63 
 

0.37 

GP22 

M9 

A3G3S[3]1 

A3G3S[6]1 

ACE 0.25 0.31 0.44 

GP23 A2G2S[3,6]2 AE 0.67 
 

0.33 

GP24 A2BG2S[3,6]2 AE 0.65 
 

0.35 

GP25 FA2G2S[3,6]2 AE 0.75 
 

0.25 

GP26 
FA2BG2S[3,6]2 

FA2BG2S[6,6]2 
ACE 0.47 0.34 0.19 

GP27+28 
A3G3S[3,6]2 

A3BG3S[3,6]2 
AE 0.71 

 
0.29 

GP29 A3G3S[3,3]2 ACE 0.36 0.21 0.43 

GP30 A3G3S[3,3,3]3 ACE 0.40 0.15 0.46 

GP31+32 
A3G3S[3,3,6]3 

FA3G3S[3,3,3]3 
AE 0.49 

 
0.51 

GP33 A3G3S[3,3,6]3 AE 0.53 
 

0.47 

GP34 
FA3G3S[3,3,6]3 

FA3G3S[3,6,6]3 
AE 0.48 

 
0.52 

GP35 A3F1G3S[3,3,3]3 ACE 0.17 0.40 0.43 

GP36 A4G4S[3,3,3]3 ACE 0.39 0.24 0.37 
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GP37 
A4G4S[3,3,6]3 

A4G4S[3,6,6]3 
ACE 0.25 0.47 0.28 

GP38 

A4F1G3S[3,3,3]3 

A4F1G3S[3,3,6]3 

A4F1G3S[3,6,6]3 

ACE 0.51 0.17 0.32 

GP39 A4G4S[3,3,3,3]4 CE 
 

0.48 0.52 

GP40 A4G4S[3,3,3,6]4 ACE 0.15 0.32 0.53 

GP41 A4G4S[3,3,3,6]4 CE 
 

0.38 0.62 

GP42 A4F1G4S[3,3,3,6]4 ACE 0.12 0.28 0.59 

a
42 glycan peaks obtained by UPLC analysis of released N-glycans from total plasma proteins. 

b
The 

most abundant glycan structures in each glycan peak - structure abbreviations: all N-glycans have two 

core GlcNAcs; F at the start of the abbreviation indicates a core fucose α1-6 linked to the inner 

GlcNAc; Mx, number (x) of mannose on core GlcNAcs; Ax, number of antenna (GlcNAc) on 

trimannosyl core; A2, biantennary with both GlcNAcs as β1-2 linked; A3, triantennary with a 

GlcNAc linked β1-2 to both mannose and the third GlcNAc linked β1-4 to the α1-3 linked mannose; 

A4, GlcNAcs linked as A3 with additional GlcNAc β1-6 linked to α1-6 mannose; B, bisecting 

GlcNAc linked β1-4 to  β1-3 mannose; Gx, number (x) of α1-4 linked galactose on antenna; [3]G1 

and [6]G1 indicates that the galactose is on the antenna of the α1-3 or α1-6 mannose; F(x), number (x) 

of fucose linked α1-3 to antenna GlcNAc; Sx, number (x) of sialic acids linked to galactose; the 

numbers 3 or 6 or in parentheses after S indicate whether the sialic acid is in an α2-3 or α2-6 linkage. 
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8.3. Supplemental data 3: Glycosylation Profile of IgG in 

Moderate Kidney Dysfunction  

 

Supplementary Table 1. Glycan traits and their association with eGFR. Description of 24 

quantitative IgG glycosylation traits and 52 derived traits and association between 

all tested glycans and derived traits with CKD status and eGFR. 
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Supplementary Figure 1. UPLC analysis of the IgG glycome. An example of a UPLC 

chromatogram with graphical representation of glycan structures present in each 

chromatography peak (GP1– GP24). 
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Supplementary Table 2. Comparison of Fc IgG glycopeptides analysed by nano LC-MS/MS 

with released IgG glycans analysed by UPLC. 

 

  

Supplementary Figure 2. ROC curves illustrating the performance of regularized logistic 

regression model in predicting disease status for CKD cases and controls in the discovery 

population. 
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Supplementary Table 3. Association of total plasma glycome and eGFR. 
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8.4. Supplemental data 4: The Association Between Low Back 

Pain and Composition of IgG Glycome 

Supplementary Table 1. Structure and description of the studied IgG glycans. 

GROUP 
Edinburgh 

Code 
Zagreb 
Code 

STRUCTUREa DESCRIPTION FORMULA 

Total 
IgG 

glycans 
(neutral 

+ 
charged) 

IGP1 GP1 

 

The percentage of 
FA1 glycan in total  
IgG glycans  

GP1 / GP* 100 

IGP2 GP2 

 

The percentage of 
A2 glycan in total  
IgG glycans  

GP2 / GP* 100 

IGP3 GP4 

 

The percentage of 
FA2 glycan in total  
IgG glycans  

GP4 / GP* 100 

IGP4 GP5 

 

The percentage of 
M5 glycan in total  
IgG glycans  

GP5 / GP* 100 

IGP5 GP6 

 

The percentage of 
FA2B glycan in total  
IgG glycans  

GP6 / GP* 100 

IGP6 GP7 

 

The percentage of 
A2G1 glycan in 
total  IgG glycans  

GP7 / GP* 100 

IGP7 GP8 

 

The percentage of 
FA2[6]G1 glycan in 
total  IgG glycans  

GP8 / GP* 100 

IGP8 GP9 

 

The percentage of 
FA2[3]G1 glycan in 
total  IgG glycans  

GP9 / GP* 100 

IGP9 GP10 

 

The percentage of 
FA2[6]BG1 glycan 
in total  IgG glycans  

GP10 / GP* 
100 

IGP10 GP11 

 

The percentage of 
FA2[3]BG1 glycan 
in total  IgG glycans  

GP11 / GP* 
100 

IGP11 GP12 

 

The percentage of 
A2G2 glycan in 
total  IgG glycans  

GP12 / GP* 
100 
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IGP12 GP13 

 

The percentage of 
A2BG2 glycan in 
total  IgG glycans  

GP13 / GP* 
100 

IGP13 GP14 

 

The percentage of 
FA2G2 glycan in 
total  IgG glycans  

GP14 / GP* 
100 

IGP14 GP15 

 

The percentage of 
FA2BG2 glycan in 
total  IgG glycans  

GP15 / GP* 
100 

IGP15 GP16 

 

The percentage of 
FA2G1S1 glycan in 
total  IgG glycans  

GP16 / GP * 
100 

IGP16 GP17 

 

The percentage of 
A2G2S1  glycan in 
total  IgG glycans  

GP17/ GP * 
100 

IGP17 GP18 

 

The percentage of 
FA2G2S1 glycan in 
total  IgG glycans  

GP18 / GP * 
100 

IGP18 GP19 

 

The percentage of 
FA2BG2S1 glycan in 
total  IgG glycans  

GP19 / GP * 
100 

IGP19 GP20 
 
 
 

Structure not 
determined 

GP20 / GP * 
100 

IGP20 GP21 

 

The percentage of 
A2G2S2 glycan in 
total  IgG glycans  

GP21 / GP * 
100 

IGP21 GP22 

 

The percentage of 
A2BG2S2 glycan in 
total  IgG glycans  

GP22 / GP * 
100 

IGP22 GP23 

 

The percentage of 
FA2G2S2 glycan in 
total  IgG glycans  

GP23 / GP * 
100 

IGP23 GP24 

 

The percentage of 
FA2BG2S2 glycan in 
total  IgG glycans  

GP24 / GP * 
100 

Total 
IgG 

glycans - 
derived 

IGP24 FGS/(FG+FGS) 

 The percentage of 
sialylation of 
fucosylated 
galactosylated 
structures without 

SUM(GP16 + 
GP18 + GP23) 
/ SUM(GP16 + 
GP18 + GP23 + 
GP8 + GP9 + 
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paramet
ers 

bisecting GlcNAc in 
total IgG glycans 

GP14)* 100 

IGP25 
FBGS/(FBG+FB

GS) 

 The percentage of 
sialylation of 
fucosylated 
galactosylated 
structures with 
bisecting GlcNAc in 
total IgG glycans 

SUM(GP19 + 
GP24) / 
SUM(GP19 + 
GP24 + GP10 + 
GP11 + 
GP15)* 100 

IGP26 
FGS/(F+FG+FG

S) 

 
The percentage of 
sialylation of all 
fucosylated 
structures without 
bisecting GlcNAc in 
total IgG glycans 

SUM(GP16 + 
GP18 + GP23) 
/ SUM(GP16 + 
GP18 + GP23 + 
GP4 +  GP8 + 
GP9 + GP14)* 
100 

IGP27 
FBGS/(FB+FBG

+FBGS) 

 The percentage of 
sialylation of all 
fucosylated 
structures with 
bisecting GlcNAc in 
total IgG glycans 

SUM(GP19 + 
GP24) / 
SUM(GP19 + 
GP24 + GP6 + 
GP10 + GP11 + 
GP15)* 100 

IGP28 
FG1S1/(FG1+F

G1S1) 

 The percentage of 
monosialylation of 
fucosylated 
monogalactosylate
d structures in total 
IgG glycans 

GP16 / 
SUM(GP16 + 
GP8 + GP9)* 
100 

IGP29 
FG2S1/(FG2+F
G2S1+FG2S2) 

 The percentage of 
monosialylation of 
fucosylated 
digalactosylated 
structures in total 
IgG glycans 

GP18 / 
SUM(GP18 + 
GP14 + 
GP23)* 100 

IGP30 
FG2S2/(FG2+F
G2S1+FG2S2) 

 The percentage of 
disialylation of 
fucosylated 
digalactosylated 
structures in total 
IgG glycans 

GP23 / 
SUM(GP23 + 
GP14 + 
GP18)* 100 

IGP31 
FBG2S1/(FBG2
+FBG2S1+FBG

2S2) 

 The percentage of 
monosialylation of 
fucosylated 
digalactosylated 
structures with 
bisecting GlcNAc in 
total IgG glycans 

GP19 / 
SUM(GP19 + 
GP15 + 
GP24)* 100 

IGP32 
FBG2S2/(FBG2
+FBG2S1+FBG

2S2) 

 The percentage of 
disialylation of 
fucosylated 
digalactosylated 
structures with 
bisecting GlcNAc in 
total IgG glycans 

GP24 / 
SUM(GP24 + 
GP15 + 
GP19)* 100 

IGP33 F
total

S1/F
total

S2 
 Ratio of all 

fucosylated (+/- 
SUM(GP16 + 
GP18 + GP19) 
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bisecting GlyNAc) 
monosyalilated and 
disialylated 
structures in total 
IgG glycans 

/ SUM(GP23 + 
GP24) 

IGP34 FS1/FS2 

 Ratio of fucosylated 
(without bisecting 
GlcNAc) 
monosialylated  
and disialylated 
structures in total 
IgG glycans 

SUM(GP16 + 
GP18) / GP23 

IGP35 FBS1/FBS2 

 Ratio of fucosylated 
(with bisecting 
GlcNAc) 
monosialylated  
and disialylated 
structures in total 
IgG glycans 

GP19 / GP24 

IGP36 FBS
total

/FS
total

 

 Ratio of all 
fucosylated 
sialylated 
structures with and 
without bisecting 
GlcNAc 

SUM(GP19 + 
GP24) / 
SUM(GP16 + 
GP18 + GP23) 

IGP37 FBS1/FS1 

 Ratio of  
fucosylated 
monosialylated 
structures with and 
without bisecting 
GlcNAc 

GP19 / 
SUM(GP16 + 
GP18) 

IGP38 
FBS1/(FS1+FB

S1) 

 The incidence of 
bisecting GlcNAc in 
all fucosylated 
monosialylated 
structures in total 
IgG glycans 

GP19 / 
SUM(GP16 + 
GP18 + GP19) 

IGP39 FBS2/FS2 

 Ratio of fucosylated 
disialylated 
structures with and 
without bisecting 
GlcNAc 

GP24 / GP23 

IGP40 
FBS2/(FS2+FB

S2) 

 The incidence of 
bisecting GlcNAc in 
all fucosylated 
disialylated 
structures in total 
IgG glycans  

GP24 / 
SUM(GP23 + 
GP24) 

Neutral 
IgG 

glycans 

IGP41 GP1
n
 

 The percentage of 
FA1 glycan in total 
neutral IgG glycans 
(GP

n
) 

GP1 / GP
n
* 

100 

IGP42 GP2
n
 

 The percentage of 
A2 glycan in total  
neutral IgG glycans 
(GP

n
) 

GP2 / GP
n
* 

100 
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IGP43 GP4
n
 

 The percentage of 
FA2 glycan in total  
neutral IgG glycans 
(GP

n
) 

GP4 / GP
n
* 

100 

IGP44 GP5
n
 

 The percentage of 
M5 glycan in total  
neutral IgG glycans 
(GP

n
) 

GP5 / GP
n
* 

100 

IGP45 GP6
n
 

 The percentage of 
FA2B glycan in total  
neutral IgG glycans 
(GP

n
) 

GP6 / GP
n
* 

100 

IGP46 GP7
n
 

 The percentage of 
A2G1 glycan in 
total  Ineutral IgG 
glycans (GP

n
) 

GP7 / GP
n
* 

100 

IGP47 GP8
n
 

 The percentage of 
FA2[6]G1 glycan in 
total neutral IgG 
glycans (GP

n
) 

GP8 / GP
n
* 

100 

IGP48 GP9
n
 

 The percentage of 
FA2[3]G1 glycan in 
total  neutral IgG 
glycans (GP

n
) 

GP9 / GP
n
* 

100 

IGP49 GP10
n
 

 The percentage of 
FA2[6]BG1 glycan 
in total  neutral IgG 
glycans (GP

n
) 

GP10 / GP
n
* 

100 

IGP50 GP11
n
 

 The percentage of 
FA2[3]BG1 glycan 
in total  neutral IgG 
glycans (GP

n
) 

GP11 / GP
n
* 

100 

IGP51 GP12
n
 

 The percentage of 
A2G2 glycan in 
total  neutral IgG 
glycans (GP

n
) 

GP12 / GP
n
* 

100 

IGP52 GP13
n
 

 The percentage of 
A2BG2 glycan in 
total  neutral IgG 
glycans (GP

n
) 

GP13 / GP
n
* 

100 

IGP53 GP14
n
 

 The percentage of 
FA2G2 glycan in 
total  neutral IgG 
glycans (GP

n
) 

GP14 / GP
n
* 

100 

IGP54 GP15
n
 

 The percentage of 
FA2BG2 glycan in 
total  neutral IgG 
glycans (GP

n
) 

GP15 / GP
n
* 

100 

Neutral 
IgG 

glycans - 
derived 

paramet

IGP55 G0
n
 

 The percentage of 
agalactosylated 
structures in total 
neutral IgG glycans  

SUM(GP1
n
: 

GP6
n
) 

IGP56 G1
n
 

 The percentage of 
monogalactosylate
d structures in total 

SUM(GP7
n
: 

GP11
n
) 
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ers neutral  IgG glycans  

IGP57 G2
n
 

 The percentage of 
digalactosylated 
structures in total 
neutral IgG glycans  

SUM(GP12
n
: 

GP15
n
) 

IGP58 F
n total

 

 
The percentage of 
all fucosylated (+/- 
bisecting GlcNAc) 
structures in total 
neutral IgG glycans  

SUM(GP1
n
+ 

GP4
n
+ GP5

n
+ 

GP6
n
+ GP8

n
+ 

GP9
n
+ GP10

n
+ 

GP11
n
+ 

GP14
n
+ 

GP15
n
) 

IGP59 FG0
n total

/G0
n
 

 The percentage of 
fucosylation of 
agalactosylated 
structures  

SUM(GP1
n
+ 

GP4
n
+ GP5

n
+ 

GP6
n
) / G0

n 
* 

100 

IGP60 FG1
n total

/G1
n
 

 The percentage of 
fucosylation of 
monogalactosylate
d structures  

SUM(GP8
n
+ 

GP9
n
+ GP10

n
+ 

GP11
n
) / G1

n 
* 

100 

IGP61 FG2
n total 

/G2
n
 

 The percentage of 
fucosylation of 
digalactosylated 
structures  

SUM(GP14
n
+ 

GP15) / G2
n 

* 
100 

IGP62 F
n
 

 The percentage of 
fucosylated 
(without bisecting 
GlcNAc) structures 
in total neutral IgG 
glycans  

SUM(GP1
n
+ 

GP4
n
+ GP5

n
+ 

GP8
n
+ GP9

n
+ 

GP14
n
) 

IGP63 FG0
n
/G0

n
 

 The percentage of 
fucosylation 
(without bisecting 
GlcNAc) of 
agalactosylated 
structures  

SUM(GP1
n
+ 

GP4
n
+ GP5

n
) / 

G0
n 

* 100 

IGP64 FG1
n
/G1

n
 

 The percentage of 
fucosylation 
(without bisecting 
GlcNAc) of 
monogalactosylate
d structures  

SUM(GP8
n
+ 

GP9
n
) / G1

n 
* 

100 

IGP65 FG2
n
/G2

n
 

 The percentage of 
fucosylation 
(without bisecting 
GlcNAc) of 
digalactosylated 
structures  

GP14
n
/ G2

n 
* 

100 

IGP66 FB
n
 

 The percentage of 
fucosylated (with 
bisecting GlcNAc) 
structures in total 
neutral IgG glycans  

SUM(GP6
n 

+ 
GP10

n 
+ GP11

n 

+ GP15
n
) 

IGP67 FBG0
n
/G0

n
 

 The percentage of 
fucosylation (with 

GP6
n
/ G0

n 
* 

100 
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bisecting GlcNAc) of 
agalactosylated 
structures  

IGP68 FBG1
n
/G1

n
 

 The percentage of 
fucosylation (with 
bisecting GlcNAc) of 
monogalactosylate
d structures  

SUM(GP10
n 

+ 
GP11

n
) / G1

n 
* 

100 

IGP69 FBG2
n
/G2

n
 

 The percentage of 
fucosylation (with 
bisecting GlcNAc) of 
digalactosylated 
structures  

GP15) / G2
n 

* 
100 

IGP70 FB
n
/F

n
 

 Ratio of fucosylated 
structures with and 
without bisecting 
GlcNAc 

FB
n
/ F

n
 * 100  

IGP71 FB
n
/F

n total
 

 The incidence of 
bisecting GlcNAc in 
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bisecting GlcNAc 
and all fucosylated 
digalactosylated 
structures (+/- 
bisecting GlcNAc) 

a
Symbol nomenclature for glycan representation was used according to: Varki, A. et al. Symbol nomenclature 

for glycan representation. Proteomics 9, 5398–9   (2009). 

 

 

Supplementary Table 2. Correlations between glycan levels and summary scores for 

lumbar magnetic resonance imaging signs. 

 

Glycan Correlation coefficient* p-value 

GP1 -0.008 0.835 

GP2 0.085 0.032 

GP4 -0.001 0.974 

GP5 0.063 0.115 

GP6 0.024 0.549 

GP7 0.066 0.096 

GP8 -0.014 0.725 

GP9 -0.045 0.255 

GP10 0.005 0.907 

GP11 0.011 0.781 

GP12 0.022 0.574 

GP13 -0.011 0.781 

GP14 -0.083 0.037 

GP15 -0.044 0.265 

GP16 -0.016 0.681 

GP17 0.041 0.306 

GP18 -0.064 0.109 

GP19 -0.043 0.281 

GP2021 0.045 0.258 

GP22 -0.011 0.783 

GP23 -0.050 0.211 
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GP24 -0.053 0.183 

IGP24 -0.021 0.606 

IGP25 -0.031 0.433 

IGP26 -0.029 0.462 

IGP27 -0.043 0.281 

IGP28 0.012 0.755 

IGP29 0.045 0.260 

IGP30 0.014 0.720 

IGP31 0.003 0.938 

IGP32 -0.017 0.670 

IGP33 0.002 0.962 

IGP34 0.004 0.917 

IGP35 0.009 0.831 

IGP36 0.009 0.819 

IGP37 0.008 0.846 

IGP38 0.008 0.847 

IGP39 0.019 0.634 

IGP40 0.019 0.634 

IGP41 0.001 0.976 

IGP42 0.095 0.017 

IGP43 0.020 0.623 

IGP44 0.082 0.040 

IGP45 0.035 0.381 

IGP46 0.069 0.082 

IGP47 0.007 0.864 

IGP48 -0.035 0.378 

IGP49 0.023 0.569 

IGP50 0.030 0.459 

IGP51 0.027 0.491 

IGP52 0.004 0.917 
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IGP53 -0.063 0.115 

IGP54 -0.021 0.607 

IGP55 0.031 0.442 

IGP56 0.014 0.718 

IGP57 -0.053 0.183 

IGP58 -0.061 0.126 

IGP59 -0.086 0.030 

IGP60 -0.067 0.091 

IGP61 -0.070 0.081 

IGP62 -0.050 0.211 

IGP63 -0.043 0.285 

IGP64 -0.035 0.383 

IGP65 -0.081 0.042 

IGP66 0.033 0.406 

IGP67 0.023 0.560 

IGP68 0.021 0.594 

IGP69 0.056 0.162 

IGP70 0.038 0.341 

IGP71 0.038 0.341 

IGP72 -0.038 0.342 

IGP73 0.007 0.851 

IGP74 0.064 0.111 

IGP75 0.064 0.111 

IGP76 -0.068 0.087 

IGP77 0.072 0.072 

* Pearson's correlations were estimated after adjusting glycan levels for age, sex, BMI, and 

inflammatory disease status. 
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Supplementary Figure 1. P-values (-log10) for the analysis of correlations between glycan 

levels and LSUM MRI scores. P-values correspond to Pearson's correlation coefficients 

provided in Supplementary table 2.  
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